Lasso and machine learning using Stata

StataCorp LLC

December 5, 2019

(StataCorp LLC)

December 5, 2019 1/42

3

(日)

• For the same reason we always care: Extracting signal from noise.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Why do we care?

- For the same reason we always care: Extracting signal from noise.
- Noise is larger. We have access to more data than we have ever had.
- Methods and theory need to adapt to new problems.

Why do we care?

- For the same reason we always care: Extracting signal from noise.
- Noise is larger. We have access to more data than we have ever had.
- Methods and theory need to adapt to new problems.
- Lasso type methods are one answer (popular)
 - Prediction originally
 - Estimation of effects recently

• Model selection and parameter estimation simultaneoulsy

< □ > < 同 > < 回 > < 回 > < 回 >

э

Lasso

Model selection and parameter estimation simultaneoulsy

- Model selection allows more covariates than observations in data
- AIC or BIC 2^{M} . With 10 regressors you have 1,024 candidate models.
- You obtain coefficients, \widehat{eta} , that can be used for prediction
- Regularized (penalized) coefficients avoid overfitting (ridge)

Lasso

Model selection and parameter estimation simultaneoulsy

- Model selection allows more covariates than observations in data
- AIC or BIC 2^{M} . With 10 regressors you have 1,024 candidate models.
- You obtain coefficients, \widehat{eta} , that can be used for prediction
- Regularized (penalized) coefficients avoid overfitting (ridge)
- Original Tibshirani (1996). Numerous variations:
 - Elastic net
 - Square-root lasso
 - Adaptive lasso

A brief introduction to Lasso

э

(日)

Mathematically

• Think about linear regression

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - x_i' \beta \right)^2$$

3

A D N A B N A B N A B N

Mathematically

• Think about linear regression

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - x_i' \beta \right)^2$$

• Lasso minimizes (constrained optimization)

$$\min_{\beta} \sum_{i=1}^{n} (y_i - x'_i \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

- $\lambda = 0$ Back to regression (unbiased)
- $\lambda = \infty$ No coefficients
- $0<\lambda<\infty$ biased but avoids overfitting and is good for prediction
- $|\beta_j|$ penalizes additional coefficients

< □ > < □ > < □ > < □ > < □ > < □ >

Graphically

(StataCorp LLC)

December 5, 2019 6 / 42

- 2

イロト イヨト イヨト イヨト

Much more

- Beyond linear
 - Logit
 - Probit
 - Poisson
 - Nonparametric (more on this later)

э

A D N A B N A B N A B N

Much more

- Beyond linear
 - Logit
 - Probit
 - Poisson
 - Nonparametric (more on this later)
- Beyond absolute value penalty (Elastic net)

$$\lambda \sum_{j=1}^{p} \left\{ \alpha |\beta_j| + \frac{1-\alpha}{2} \beta_j^2 \right\}$$

α = 1 Lasso
α = 0 Ridge regression

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Selecting λ

- Cross-validation and adaptive lasso (Good for prediction)
 - Tends to overselect
 - Minimizes out of sample prediction error.
- Plugin (Good for inference)
 - Tends to underselect
 - Closed form formula to dominate noise level of problem

・ 同 ト ・ ヨ ト ・ ヨ ト

A general framework

• The model is given by:

$$y_i = g(x_i) + \varepsilon_i$$
$$E(\varepsilon_i | x_i) = 0$$

• The function $g(x_i)$ is unknown

3

-

Image: A match a ma

• The model is given by:

$$y_i = g(x_i) + \varepsilon_i$$

$$\Xi(\varepsilon_i | x_i) = 0$$

- The function $g(x_i)$ is unknown
- Emphasizes the idea that lasso is an approximation
 - This is even true if the unknown function is linear $g(x_i) = x'_i\beta$
 - If $g(x_i) = x'_i \beta$ you might miss some small coefficients

< (17) > < (17) > <

• The model is given by:

$$y_i = g(x_i) + \varepsilon_i$$

$$\Xi(\varepsilon_i | x_i) = 0$$

- The function $g(x_i)$ is unknown
- Emphasizes the idea that lasso is an approximation
 - This is even true if the unknown function is linear $g(x_i) = x'_i\beta$
 - If $g(x_i) = x'_i \beta$ you might miss some small coefficients
- Embrace model selection error

A general framework: approximating an unknown function

- Belloni, Chernozhukov, and Hansen suggest approximating the unknown function linearly
 - Series estimation: polynomials, natural-splines, B-splines, furier series, etc.

A general framework: approximating an unknown function

- Belloni, Chernozhukov, and Hansen suggest approximating the unknown function linearly
 - Series estimation: polynomials, natural-splines, B-splines, furier series, etc.
- For example:

$$\widehat{g}(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots \beta_5 x_i^5$$
$$\widehat{g}(x_i) = f_i' \beta$$

A general framework: Assumptions and workflow

Assumptions

• Conjectured f_i can be large, i.e. the dimensions of β are large. Even larger that the sample size n.

・ 同 ト ・ ヨ ト ・ ヨ ト

A general framework: Assumptions and workflow

Assumptions

- Conjectured f_i can be large, i.e. the dimensions of β are large. Even larger that the sample size n.
- The elements in the best approximating function f_{i0} is smaller than n. Sparsity.
- You are minimizing approximation error not going after a true model

Workflow

- Conjecture a large dimensional approximating model
- Choose a method to select λ . Cross-validation is the default.
- Get approximating function for prediction

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lasso for prediction using Stata

(StataCorp LLC)

Lasso and machine learning using Stata

- ∢ ⊒ → December 5, 2019 12/42

< /⊒> <

Example: Predicting housing value

- Predict the value of a house
- Data from American Housing Survey

3

- ∢ ⊒ →

Variables

. keep if state==20 (871,947 observations deleted)

. tab state

State code	Freq.	Percent	Cum.
Kansas/KS	9,652	100.00	100.00
Total	9,652	100.00	

Variables

```
. keep if state==20
(871,947 observations deleted)
```

. tab state

State code	Freq.	Percent	Cum.
Kansas/KS	9,652	100.00	100.00
Total	9,652	100.00	

. describe value lotsize bedrooms rooms bage vpperson ptaxes insurance

variable nam	storage e type	display format	value label	variable label
value	long	%10.0g		Property value in \$ (top coded)
lotsize	byte	%36.0g	lsvalues	Lot size
bedrooms	byte	%10.0g		Number of bedrooms
rooms	byte	%10.0g		Number of rooms
bage	float	%9.0g		Building age
vpperson	float	%9.0g	3	* Vehicles per person
ptaxes	float	%9.0g		Property taxes; top coded at \$10,000
insurance	float	%10.0g	,	* yearly insurance in \$1,000

Discrete covariates in Stata

- . local discrete lotsize bedrooms rooms
- . quietly mean i.(`discrete`)
- . mean i.(lotsize bedrooms)

Mean estimation

Number of obs = 9,652

	Mean	Std. Err.	[95% Conf.	Interval]
lotsize				
House on less than one acre	.7662661	.0043079	.7578217	.7747104
House on one to less than	.1422503	.0035557	.1352805	.1492202
House on ten or more acres	.0914836	.0029346	.0857312	.0972361
bedrooms				
0	.0021757	.0004743	.001246	.0031054
1	.0297348	.001729	.0263456	.0331239
2	.2260671	.0042578	.217721	.2344133
3	.4391836	.0050518	.429281	.4490862
4	.2253419	.0042529	.2170052	.2336786
5	.0661003	.0025291	.0611427	.0710579
10	.0113966	.0010805	.0092787	.0135145

イロト 不得下 イヨト イヨト 二日

Continuous covariates in Stata

. local continuous bage vpperson ptaxes insurance

. quietly mean c.(`continuous`)##c.(`continuous`)##c.(`continuous`)

. mean c.(bage vpperson)##c.(bage vpperson)##c.(bage vpperson)

Mean estimation

Number of obs =

= 9,652

	Mean	Std. Err.	[95% Conf.	Interval]
bage vpperson	46.29351 .9654589	.237585	45.8278 .9527087	46.75923 .9782091
c.bage#c.bage	2687.856	21.30915	2646.086	2729.627
c.bage#c.vpperson	44.68529	.4281789	43.84597	45.52461
c.vpperson#c.vpperson	1.340433	.0213607	1.298561	1.382304
c.bage#c.bage#c.bage	172171.8	1690.535	168858	175485.6
c.bage#c.bage#c.vpperson	2590.722	32.05076	2527.896	2653.549
c.bage#c.vpperson#c.vpperson	63.86	1.270451	61.36965	66.35035
c.vpperson#c.vpperson# c.vpperson	2.478089	.0897912	2.302079	2.654098

<ロト < 回 ト < 臣 ト < 臣 ト 三 の </p>

December 5, 2019 16 / 42

Estimation

```
. local cubic c. (`continuous´)##c. (`continuous´)##c. (`continuous´)
. local dinter i.(`discrete`)#i.(`discrete`)
. set seed 111
. lasso linear value (`discrete´)##(`cubic´) `dinter´
Grid value 1:
                 lambda = 120184.5
                                     no. of nonzero coef. =
                                                                   0
Folds: 1...5....10 CVF = 2.71e+10
(output omitted ...)
Grid value 34:
              lambda = 5578,472
                                    no. of nonzero coef. =
                                                                  32
Folds: 1...5....10 CVF = 1.11e+10
... cross-validation complete ... minimum found
Lasso linear model
                                                                     7,657
                                            No. of obs
                                                              =
                                            No. of covariates =
                                                                     1.030
                                            No. of CV folds
                                                              =
                                                                       10
```

Selection: Cross-validation

ID	Description	lambda	No. of nonzero coef.	Out-of- sample R-squared	CV mean prediction error
1	first lambda	120184.5	0	0.0056	2.71e+10
29	lambda before	8882.505	18	0.5925	1.11e+10
* 30	selected lambda	8093.408	19	0.5931	1.11e+10
31	lambda after	7374.412	21	0.5930	1.11e+10
34	last lambda	5578.472	32	0.5909	1.11e+10

* lambda selected by cross-validation.

イロト イポト イヨト イヨト 二日

cvplot

(StataCorp LLC)

Lasso and machine learning using Stata

December 5, 2019

<ロト <問ト < 目と < 目と

18/42

lassoknots

. lassoknots

ID	lambda	No. of nonzero coef.	CV mean pred. error	Variables (A)dded, (R)emoved, or left (U)nchanged
2	109507.7	2	2.49e+10	A ptaxes c.ptaxes#c.ptaxes
4	90915.19	3	2.09e+10	A c.ptaxes#c.insurance
11	47403.26	4	1.41e+10	A c.vpperson#c.ptaxes#c.ptaxes
16	29770.63	5	1.25e+10	A c.ptaxes#c.ptaxes#c.insurance
20	20519.74	6	1.20e+10	A c.ptaxes#c.ptaxes#c.ptaxes
21	18696.82	7	1.18e+10	A insurance
				1.lotsize#c.bage
21	18696.82	7	1.18e+10	R c.ptaxes#c.ptaxes
22	17035.85	9	1.17e+10	A 11.rooms#c.bage#c.ptaxes#c.ptaxes
				4.bedrooms#c.vpperson#c.ptaxes#
				c.ptaxes
24	14143.46	9	1.15e+10	A 3.lotsize#c.insurance
24	14143.46	9	1.15e+10	R c.ptaxes#c.insurance
(out	put omitted)		•
29	8882.505	18	1.11e+10	A 3.lotsize
* 30	8093.408	19	1.11e+10	A c.bage#c.ptaxes#c.ptaxes
(out	put omitted.)		
33	6122.366	28	1.11e+10	A 4.bedrooms
				1.lotsize#c.bage#c.ptaxes#c.ptaxes
34	5578.472	32	1.11e+10	A 10.rooms 1.lotsize#c.vpperson
				13.rooms#c.ptaxes#c.ptaxes#c.ptaxes
				4.rooms#c.insurance#c.insurance#
				c.insurance

* lambda selected by cross-validation.

Give me my lambda

. lassoselect id=24 ID = 24 lambda = 14143.46 selected

Give me my lambda

	1a	asso	select i	d=	=24	
ID	=	24	lambda	=	14143.46	selected

. lasso Lasso line	ear model	No. of	obs	= 7,657	
Selection:	User		No. of	CV folds	= 1,030
ID	Description	lambda	No. of nonzero coef.	Out-of- sample R-squared	CV mean prediction error
1	first lambda	120184.5	0	0.0056	2.71e+10
23	lambda before	15522.43	9	0.5762	1.15e+10
* 24	selected lambda	14143.46	9	0.5795	1.15e+10
25	lambda after	12886.99	11	0.5827	1.14e+10
34	last lambda	5578.472	32	0.5909	1.11e+10

Give me my lambda

	1a	asso	select i	d=	=24	
ID	=	24	lambda	=	14143.46	selected

. lasso Lasso line	ear model	No. of	obs	= 7,657	
Selection:	User		No. of	CV folds	= 1,030
ID	Description	lambda	No. of nonzero coef.	Out-of- sample R-squared	CV mean prediction error
1	first lambda	120184.5	0	0.0056	2.71e+10
23	lambda before	15522.43	9	0.5762	1.15e+10
* 24	selected lambda	14143.46	9	0.5795	1.15e+10
25	lambda after	12886.99	11	0.5827	1.14e+10
34	last lambda	5578.472	32	0.5909	1.11e+10

splitsample

- . splitsample, generate(sample) split(0.60 0.40)
- . label define splits 1 "training" 2 "validation"
- . label value sample splits

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

Estimators

- linear lasso using:
 - cross-validation
 - adaptive lasso
 - plugin-method
- ridge regression

< □ > < 同 > < 回 > < 回 > < 回 >

э

Estimation

```
. quietly lasso linear value (`discrete')##(`cubic') `dinter' if sample==1
. estimates store cv
. generate esample = e(sample)
. quietly lasso linear value (`discrete`)##(`cubic`) `dinter`
                                                                        111
>
         if sample==1 & esample==1, selection(adaptive)
. estimates store adaptive
. guietly lasso linear value (`discrete´)##(`cubic´) `dinter´
                                                                        111
         if sample==1 & esample==1, selection(plugin)
>
. estimates store plugin
. quietly elasticnet linear value (`discrete`)##(`cubic`) `dinter`
                                                                        111
>
         if sample==1 & esample==1, alpha(0)
. estimates store ridge
```

イロト 不得 トイヨト イヨト 二日

Evaluating out-of-sample prediction

. lassogof cv adaptive plugin ridge, over(sample) Penalized coefficients

Name	sample	MSE	R-squared	Obs
cv				
	training validation	1.08e+10 1.03e+10	0.6230 0.5917	4,573 3,084
adaptive				
	training validation	1.00e+10 1.08e+10	0.6491 0.5758	4,573 3,084
plugin				
1 0	training validation	1.20e+10 1.08e+10	0.5798 0.5732	4,573 3,084
ridge				
0	training validation	2.84e+10 2.52e+10	0.0044 0.0040	4,573 3,084

イロト 不得 トイヨト イヨト 二日

Lasso for inference

3

イロト イヨト イヨト イヨト

Asymptotic metaphor

• Get multiple draws from the population (true model)

イロト イポト イヨト イヨト

э

Asymptotic metaphor

- Get multiple draws from the population (true model)
 - Every time you have the same covariates
 - Asymptotically normal and centered around the true value

▲ 伊 → ▲ 三

Asymptotic metaphor

- Get multiple draws from the population (true model)
 - Every time you have the same covariates
 - Asymptotically normal and centered around the true value
- With model selection
 - Covariates are different every time
 - Distribution is not asymptotically normal

Metaphor is broken

3

<ロト <問ト < 目と < 目と

Simulated example

$$y = 1 + 2x_1 + .3x_2 + \varepsilon$$

- ε is a standardized chi-squared
- x₁ and x₂ are correlated
- The coefficient on x₂ is "small"
- x₂ is going to be omitted sometimes

< 1 k

Asymptotic distribution 3000 repetitions

э

< 回 > < 三 > < 三 >

Distribution when x_2 is omitted

(StataCorp LLC)

December 5, 2019 30 / 42

э

イロト イヨト イヨト イヨト

Distribution is bimodal

- 2

<ロト <問ト < 目と < 目と

What have we learned

- Standard errors when using model selection are not normal
- Post-model selection (using selected variables and fitting a model) is unjustified
 - Covariates are correlated
 - Some covariates are "small" and belong in the model

What have we learned

- Standard errors when using model selection are not normal
- Post-model selection (using selected variables and fitting a model) is unjustified
 - Covariates are correlated
 - Some covariates are "small" and belong in the model
- We need to account for model selection

Lasso for inference (intuition)

- Want parameters associated with a fixed set of covariates
- All other parameters are controls (nuisance parameter, may be large)
- There is no free lunch:
 - We get reliable inference for the set of fixed covariates
 - We get no inference for the nuisance parameter
- Useful and justified
- You have to have a "reasonable" approximation for the nuisance

Simulated data example

```
. set seed 111
. set obs 3000
number of observations (_N) was 0, now 3,000
. generate a = (rchi2(5)-5)/sqrt(10)
. generate x1 = (rchi2(5)-5)/sqrt(10) + a
. generate x2 = (rchi2(5)-5)/sqrt(10) + a
. generate x3 = (rchi2(5)-5)/sqrt(10) + a
. generate x4 = (rchi2(5)-5)/sqrt(10) + a
. generate x5 = (rchi2(5)-5)/sqrt(10) + a
. generate b = 1+ int(runiform()*4 + a)
. generate d = runiformint(2,5)
. generate e = (rchi2(5)-5)
. generate y = 1 + x1 - sin(3*(x2-x3 + x4))*b - b + e
```

. local cubic c.(x2 x3 x4 x5)##c.(x2 x3 x4 x5)##c.(x2 x3 x4 x5)

Simulated data example: Estimation results

```
. poregress v x1, controls(`cubic´##i.b##i.d)
(output omitted ...)
Estimating lasso for y using plugin
(output omitted ...)
Estimating lasso for x1 using plugin
(output omitted ...)
Partialing-out linear model
                                     Number of obs
                                                                         3.000
                                     Number of controls
                                                                         1.749
                                     Number of selected controls
                                                                             14
                                                                  =
                                     Wald chi2(1)
                                                                         221.03
                                                                   =
                                     Proh > chi2
                                                                         0.0000
                                                                   =
                             Robust
                    Coef.
                            Std. Err.
                                           z
                                                P>|z|
                                                           [95% Conf. Interval]
           v
          x1
                 1.017465
                            .0684369
                                      14.87
                                                0.000
                                                          .8833308
                                                                       1.151599
```

Note: Chi-squared test is a Wald test of the coefficients of the variables of interest jointly equal to zero. Lassos select controls for model estimation. Type lassoinfo to see number of selected variables in each lasso.

December 5, 2019 35 / 42

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

() For each of the covariates of interest (d_j) run lasso on d_j and controls

3

イロト イポト イヨト イヨト

- For each of the covariates of interest (d_j) run lasso on d_j and controls
- 2 Regress d_j on selected covariates and get residuals

3

(4) (日本)

- **9** For each of the covariates of interest (d_j) run lasso on d_j and controls
- 2 Regress d_j on selected covariates and get residuals
- 8 Run lasso of dependent variable on controls

・ 同 ト ・ ヨ ト ・ ヨ ト

- **(**) For each of the covariates of interest (d_j) run lasso on d_j and controls
- 2 Regress d_j on selected covariates and get residuals
- 8 Run lasso of dependent variable on controls
- Regress dependent variable on selected covariates from (3) and get residuals

- **(1)** For each of the covariates of interest (d_j) run lasso on d_j and controls
- Regress d_j on selected covariates and get residuals
- 8 Run lasso of dependent variable on controls
- Regress dependent variable on selected covariates from (3) and get residuals
- Solution Run gmm (regression) of residuals from (3) on residuals from (2)

- **(1)** For each of the covariates of interest (d_j) run lasso on d_j and controls
- Regress d_j on selected covariates and get residuals
- 8 Run lasso of dependent variable on controls
- Regress dependent variable on selected covariates from (3) and get residuals
- Solution Run gmm (regression) of residuals from (3) on residuals from (2)
- You are familiar with this, it is partialing out

- **(1)** For each of the covariates of interest (d_j) run lasso on d_j and controls
- Regress d_j on selected covariates and get residuals
- 8 Run lasso of dependent variable on controls
- Regress dependent variable on selected covariates from (3) and get residuals
- Solution (regression) of residuals from (3) on residuals from (2)
- You are familiar with this, it is partialing out
- This is regression partialing as in FWL

- **(1)** For each of the covariates of interest (d_j) run lasso on d_j and controls
- Regress d_j on selected covariates and get residuals
- 8 Run lasso of dependent variable on controls
- Regress dependent variable on selected covariates from (3) and get residuals
- Solution (regression) of residuals from (3) on residuals from (2)
- You are familiar with this, it is partialing out
- This is regression partialing as in FWL

Alternatives

Continuous outcome

- poregress
- dsregress
- xporegress
- Binary outcome
 - pologit
 - dslogit
 - xpologit
- Count outcome
 - popoisson
 - dspoisson
 - xpopoisson

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Alternatives

Continuous outcome

- poregress
- dsregress
- xporegress
- Binary outcome
 - pologit
 - dslogit
 - xpologit
- Count outcome
 - popoisson
 - dspoisson
 - xpopoisson
- contrasts, marginal effects, odds ratios, incidence rates

э

There is more

- Instrumental variable regression (endogeneity)
- Lasso to select exogenous controls and instruments
- Tools
 - poivregress
 - xpoivregress

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Labor market data

. // Exogenous	3					
. describe exp	per age hu	usage kidsl	t6 kidsge6	city		
	storage	display	value			
variable name	type	format	label	variable label	_	
exper	byte	%9.0g		actual labor mkt exper		
age	byte	%9.0g		woman's age in yrs		
husage	byte	%9.0g		husband's age		
kidslt6	byte	%9.0g		# kids < 6 years		
kidsge6	byte	%9.0g		# kids 6-18		
city	byte	%9.0g		=1 if live in SMSA		
. // Instrumer	nts					
. describe mot	theduc fat	theduc huse	duc			
	storage	display	value			
variable name	type	format	label	variable label		
motheduc	byte	%9.0g		mother's years of schooling		
fatheduc	byte	%9.0g		father's years of schooling		
huseduc	byte	%9.0g		husband's years of schooling		

Set up

- . local exog exper age husage kidslt6 kidsge6 city
- . local interex c.(`exog`)##c.(`exog`)
- . local ins motheduc fatheduc huseduc
- . local insex c.(`ins´)##c.(`ins´)

- 31

イロト イポト イヨト イヨト

Estimation

. xpoivregress lwage (educ = `insex`), controls(`interex`) rseed(12345) Cross-fit fold 1 of 10 ... Estimating lasso for lwage using plugin note: c.city#c.city dropped because of collinearity with another variable Estimating lasso for educ using plugin note: c.city#c.city dropped because of collinearity with another variable Cross-fit fold 2 of 10 ... (output omitted ...) Cross-fit partialing-out Number of obs 428 IV linear model Number of controls -27 Number of instruments 9 -Number of selected controls 4 3 Number of selected instruments = 10 Number of folds in cross-fit = Number of resamples 1 Wald chi2(1) = 10.84 Prob > chi2 = 0.0010

lwage	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
educ	.0727853	.0221045	3.29	0.001	.0294612	.1161094

Endogenous: educ

Note: Chi-squared test is a Wald test of the coefficients of the variables of interest jointly equal to zero. Lassos select controls for model estimation. Type lassoinfo to see number of selected variables in each lasso.

Parting Remarks

- Explored lasso for prediction in detail
- Looked at the challenges of estimation after model selection
- Explored some of the solutions

3

(4) (日本)