The role of teachers' expectation on the human capital formation technology

Gabriela Fonseca¹ Cristine Pinto² Vladimir Ponczek³

¹EESP-FGV, ²EESP-FGV, ³EESP-FGV

2019 Brazilian Stata Conference

December 5th, 2019

Outline

Introduction

- 2 Human Capital Formation Technology
 - **Measures**
- Sampling and Fieldwork 4
- **Descriptive Statistics** 5
- **Empirical Model** 6

Stata Use

Introduction

- The role of subjective expectations about returns is well documented in the education literature.
 - Psychology: Hunt (1961), Vygostky (1978), Nespor (1987), Mutua (2012).
 - Economics of education: Jensen (2010), Lee et al (2012), Cunha et al (2016), Boneva and Rauh (2018).
- Most of the literature focused on parental beliefs (Dizon-Ross (2019)).
- However, it is also well documented that teachers play a fundamental role on children formation.
 - Cognitive skills: Hanushek (2006), Rockoff (2004), Chetty et al (2014).
 - Socioemotional skills: Jackson (2018).
- Teachers' expectation is also important: Dobie and Fryer (2012), Pinto and Ponczek (2018) and Papageorge et al (2016).

Our goal is threefold

- Elicit teachers' beliefs on the relative importance of cognitive and socioemotional skills on human capital formation.
- Show how beliefs play an important role on teachers' allocation on different tasks.
- Evaluate an intervention that sends information to teacher about the importance of socioemotional skills.
- We are collecting data on 84 municipal schools in Rio. Data from 168 3rd and 4th-grade teachers and around 3,500 students.

Human Capital Formation Technology

- Assumption: Teachers maximize the expectation of adult outcome
- This expected value will depend on:
 - Teacher's belief on the importance of non-cognitive skills $(\phi^{\tau} = E[\alpha | \Omega^{\tau}, \theta_t^N, \theta_t^C])$
 - Teacher's Tasks Investments

Measures

• Expectation and Investment Measure

• 1st Part: **Effort allocation** in each of the teaching practices (inside or outside the classroom). Total effort should sum 100.

Dentro da sala de aula – atividades devem somar 100 unidades de esforç	0	
Resolver/discutir questões da matéria em sala de aula	0	
Incentivar os alunos a buscarem métodos alternativos para resolver os problemas que encontram dificuldades ou a se aprofundarem no conteúdo	0	
Elogiar o esforço dos alunos	0	
Buscar relacionar o conteúdo da matéria ao cotidiano dos alunos	0	
Encorajar bom comportamento	0	
Passar e/ou corrigir tarefa de casa	0	
Realizar avaliações com o intuito de identificar as dificuldades dos alunos	0	
Estimular a autonomia dos alunos e a participação deles em aula	0	
Revisar com os alunos o conteúdo anterior antes de avançar para um conteúdo novo	0	
Estabelecer conexões emocionais com os alunos	0	
Estimular os alunos a trabalharem em grupo	0	

Measures

Expectation and Investment Measure

 2nd Part: Rank of teaching practices according to their priors on how much each practice develops students' socioemotional skills.

> Para as prálicas de dentro da sala de aula arraste cada prálica até a posição que esta ocupa no seu ordenamento, de forma que a 1º deve ser aquela que você acredita que mais desenvolve habilidades accioemocionais. A 11º prálica será aquela que menos desenvolve habilidades socioemocionais.

Dentro da sala de aula:

Estimular a autonomia dos alunos e a participação deles em aula	1
Resolver/discutir questões da matéria em sala de aula	2
Passar e/ou corrigir tarefa de casa	3
Buscar relacionar o conteúdo da matéria ao cotidiano dos alunos	4
Revisar com os alunos o conteúdo anterior antes de avançar para um conteúdo novo	5
Encorajar bom comportamento	6
Elogiar o esforço dos alunos	7
Incentivar os alunos a buscarem métodos alternativos para resolver os problemas que encontram dificuldades ou aprofundarem no conteúdo	8 a se
Realizar avaliações com o intuito de identificar as dificuldades dos alunos	9
Estabelecer conexões emocionais com os alunos	10
Estimular os alunos a trabalharem em grupo	11

Measures

• Expectation and Investment Measure

 3rd Part: Teachers' expectations on future wage and schooling of students with different combinations of cognitive and non-cognitive skills.

> Ana tem facilidade de aprendizado e é responsável. Além disso, ela <u>nunca se envolve em conflitos</u> com seus colegas e trabalha bem em grupo. Apesar de se frustrar algumas vezes, com situações escolares ou pessoais, Ana lida bem com os problemas que enfrenta.

Qual renda você acha que a Ana receberá aos 25 anos caso, por toda sua vida escolar, tenha professores como os dos casos abaixo:

Renda em R\$

How beliefs are formed? (Rokeach, M., 1960)

- Self-generated: Experience, Experiment, Reflection.
- Externally generated: Information, Experts, Authority, etc.

 Reverse Causality: Teaching practices (experience) might impact belief and not the other way around.
 We randomly selected participants for an information intervention (text messages: change in information set).

- Information Intervention (*T*₁): Text messages during 2018 school-year.
 - Treatment: 14 messages with pieces of evidences on the importance of socioemotional skills (+ 14 control messages).
 - Eg. "It is well documented that socioemotional skills are rewarded in the labor market in the form of higher wages and a shorter period of unemployment."
 - Control: 14 messages with general info about the Brazilian school system.
 - Eg. "There are approximately 280 thousand schools in Brazil and about 5% of these are in the State of Rio de Janeiro."

• Focus Group of the Messages with 27 elementary school teachers of a Sao Paulo municipal school with SEL.

Existem cerca de 3 mil escolas indígenas no Brasil, mais de 60% delas localizadas na região Norte do país.							
Voo	ê estava familiarizada com a informação acima?						
0	Sim						
0	Não						
A ii aul	iformação acima faria com que você repensasse as práticas adotada em sala de a?						
•	Sim						
	Não						

 83% (73%) of teacher's said they would rethink their teaching practices after reading treatment (control) messages.

Information Intervention: Text Messages

Treatment – Intervention 2 (belief's text messages) . Control – Intervention 2 (belief's text messages)

Challenges

How beliefs are formed? (Rokeach, M., 1960)

- Self-generated: Experience, Experiment, Reflection.
- Externally generated: Information, Experts, Authority, etc.
- Reverse Causality: Teaching practices (experience) might impact belief and not the other way around.

 \Rightarrow We randomly selected participants for an information intervention (text messages: change in information set).

Prom beliefs to practice (Schraw and Olafson, 2006):

• Teacher beliefs may not predict behavior. Problems with instrumentation due to lack of knowledge.

 \Rightarrow SEL Intervention train teachers how to implement "socioemotional tasks".

• SEL Intervention (T₂): Programa Compasso

- Created by a Brazilian NGO called Vila Educacao; based on the American Second Step.
- Regular school teachers are trained in the methodology to teach 22 socioemotional lessons once a week.
- Lessons: Skills for learning, empathy, emotion management and problem solving.
- Material: student's handbook (homeworks for family integration), CDs, DVDs and teacher's handbook.
- Fonseca et al (2018): companion paper with a preliminary evaluation of PC effects using data from 2017 implementation in Rio.
 - Some significant on executive functions and angry bias, especially on violent neighborhood.

Challenges

How beliefs are formed? (Rokeach, M., 1960)

- Self-generated: Experience, Experiment, Reflection.
- Externally generated: Information, Experts, Authority, etc.
- Reverse Causality: Teaching practices (experience) might impact belief and not the other way around.

 \Rightarrow We randomly selected participants for an information intervention (text messages: change in information set).

- Prom beliefs to practice (Schraw and Olafson, 2006):
 - Teacher beliefs may not predict behavior. Problems with instrumentation due to lack of knowledge.

 \Rightarrow SEL Intervention train teachers how to implement "socioemotional tasks".

- Measurement Error on Teaching Practices (Stigler and Hiebert, 1999)
 - Teachers report what they believe and not what they actually do.
 ⇒ Class Observation: random sample of 20 schools (40 classrooms) during the month of October.

- Measurement Error on Teaching Practices (Stigler and Hiebert, 1999)
 - Teachers report what they believe and not what they actually do.
 ⇒ Class Observation: random sample of 20 schools (40 classrooms) during the month of October.
 - Double-coded
 - Task intensity on a likert-scale
 - Correlation with teacher report: 68%.
 - Measurement error is not different for treated and controls

Sampling and Fieldwork

- 2017 sample: 94 schools; Around 4000 students(3rd and 5th grade); 188 teachers.
- 2018 sample: 84 (out of 2017's 94) schools; Around 3500 students(3rd and 4th grade); 168 teachers.

Sampling and Fieldwork

• Teachers' Measures:

- Growth Mindset
- Perceived Stress Scale
- Teacher Efficacy
- Teacher Expectation and Investments Measure only in 2018

• Students' Measures:

- Cognitive Skills (Executive Function and Vocabulary)
- Socioemotional Competences (ACES and teacher's report)

Sampling and Fieldwork

Table 1: Take-up

	$T_1 = 1$				$T_1 = 0$				Total	
	7	2 = 1	T ₂	= 0	T	2 = 1	T2	= 0		
Sample (100%)		42	4	2		42	4	2	1	68
Baseline	27	(64%)	23	(55%)	27	(64%)	24	(57%)	101	(60%)
Follow-up	38	(90%)	35	(83%)	35	(83%)	32	(76%)	140	(83%)
Both Baseline + Follow-up	27	(64%)	21	(50%)	24	(57%)	21	(50%)	93	(55%)
T_1 Total		48	(57%)			45	(54%)			

- No evidence of unbalance nor selective attrition.
- Teachers from both groups are similar on observables.
- Statistical power compromised.

Expected Wages - Baseline

Beliefs

• Beliefs (Baseline vs Follow-up)

- How we measure the investments (effort) of the teachers on non-cog tasks?
 - Investment-Ranking: correlation between task-investments and task-ranking (baseline).
 - We fixed baseline task-ranking.

• This is robust to many different definitions of Investment-Ranking.

Exploring the Message Treatment - Empirical Method

• Main Model:

$$\beta_{1}^{\tau} = \alpha_{0} + \alpha_{1}\beta_{0}^{\tau} + \alpha_{2}\phi_{0}^{\tau} + \alpha_{3}\phi_{1}^{\tau} + \sum_{i=1}^{21} \gamma_{i}d_{strata_{i}} + \varepsilon^{\tau}$$
$$\phi_{1}^{\tau} = \mu_{0} + \mu_{1}T_{1} + \mu_{2}\beta_{0}^{\tau} + \mu_{3}\phi_{0}^{\tau} + \sum_{i=1}^{21} \delta_{i}d_{strata_{i}} + u^{\tau}$$

- β^{*τ*}: correlation in *t* between task-investments and baseline task-ranking, ie, Corr(r(S_{ij})_t, (r(α^N_i) − r(α^N_i))₀)
- ϕ_t : non-cognitive expectation measure in *t*.
- T_1 as a instrument for ϕ_1^{τ} .
- Dependent variable estimated: bootstrap or WLS (inverse of β^τ₁ variance)

Table 2: First Stage

	(1)	(2)	(3)	(4)
Treatment (T_1)	0.115***	0.145***	0.115**	0.145***
Baseline Expectation (ϕ_0)	(0.042) 0.146	(0.044) 0.176	(0.052) 0.146	(0.054) 0.176
Baseline Correlation Investment-Ranking (β_0)	(0.146) -0.115 (0.157)	(0.153) -0.188 (0.152)	(0.164) -0.115 (0.171)	(0.177) -0.188 (0.176)
	0.268	0.331	0.268	0.331
Observations	93	93	93	93
Covariates: Strata Fixed Effects Teacher's Covariates	х	x x	х	x x
Method: OLS	x	x	x	x
Boostrap (500 reps)			х	х

Results

Table 3: Second Stage - IV

	(1)	(2)	(3)	(4)	(5)	(6)
Baseline Correlation	0.553***	0.550***	0.553***	0.567***	0.553***	0.550***
	(0.158)	(0.146)	(0.167)	(0.150)	(0.163)	(0.146)
Baseline Expectation Measure	-0.256*	-0.254**	-0.211	-0.221*	-0.256	-0.254*
	(0.142)	(0.125)	(0.151)	(0.130)	(0.318)	(0.130)
Follow-up Expectation Measure	0.654*	0.514*	0.696	0.529*	0.654	0.514*
	(0.376)	(0.275)	(0.444)	(0.300)	(0.996)	(0.277)
Constant	-0.204	-0.092	-0.160	-0.068	-0.204	-0.092
	(0.315)	(0.264)	(0.332)	(0.257)	(0.534)	(0.263)
Observations	93	93	93	93	93	93
Covariates:						
Strata Fixed Effects	х	х	х	х	х	х
Teacher's Covariates		х		х		х
Method:						
GMM	х	х	х	х	х	х
WLS			х	х		
Boostrap (500 reps)					х	х

• Results are larger for inside than for outside the classroom tasks.

- T₁ (Information intervention) has an impact of 0.1 on teacher's expectations.
- Increased expectations get teachers to invest 50% more in "socioemotional- tasks".
- Further Questions: (i) Do teachers know how to implement socioemotional tasks? Teacher's from SEL intervention do. (ii) Is it possible that the results above are actually from SEL intervention?

Table 4: Using T_2 insted of T_1

	(1)	(2)	(3)	(4)
SEL Treatment (T_2)	-0.051	-0.039	-0.051	-0.039
	(0.053)	(0.053)	(0.056)	(0.058)
Baseline Expectation	0.245	0.264*	0.245	0.264
	(0.149)	(0.149)	(0.166)	(0.185)
R^2	0.216	0.242	0.216	0.242
Observations	93	93	93	93
Covariates:				
Strata Fixed Effects	х	х	х	х
Teacher's Covariates		х		х
Method:				
OLS	х	х	х	х
Boostrap (500 reps)			х	х

Table 5: Effects on Students' Outcomes

	Cog	nitive Sco	ores	Non-Cognitive Scores			
	PPVT	BDS	H&F	ACES (Sit)	Angry Bias		
Treatment	0.019	0.396**	-0.122	0.516**	-0.012		
	(0.174)	(0.193)	(0.244)	(0.232)	(0.317)		
SEL Treatment	0.056*	-0.025	-0.012	-0.011	0.036		
	(0.032)	(0.037)	(0.049)	(0.031)	(0.050)		
R^2	0.129	0.127	0.153	0.207	0.042		
Observations	3222	2556	1993	2573	1917		

Covariates: School Pairs Fixed Effects, Strata Fixed Effects, Assessors Fixed Effects, Grade Fixed Effects,

Violence, Students's age, gender and SSE.

Conclusions

T₁ (information Intervention) has an impact of 0.1 on teacher's expectations.

 \Rightarrow Taking a teacher from the 2nd decil of baseline expectation to the median expectation.

Increased expectations get teachers to increase their socioemotional effort in 6%.

 \Rightarrow Taking a teacher from the 1st decil of investment-ranking correlation to the mean/median.

- Treatment has direct impact on students' outcomes:
 - \Rightarrow Executive Function (BDS):from the 1st to the 4th decil.
 - \Rightarrow Non Cognitive Skills (ACES): from the 1st to the 2nd decil.
 - \Rightarrow More violent areas: reduced angry bias from mean to 1st decil.

Data-set Construction

```
57
         * Juntando a base de professores limpa na Co-working
58
         /*
59
         use "$cow\y2 t 0.dta", clear
         save "$base\v2 t 0.dta", replace
60
61
         use "$cow\y2 t 1.dta", clear
62
         save "base\sqrt{y2} t 1.dta", replace
63
         */
64
65
         use "$base\y2 t 0.dta", clear
         merge 1:1 cdschool class using "$base\y2 t 1.dta"
66
67
         rename merge merge 0 1
68
```

```
70
         * Criando um código para cada professor
71
         egen teachercode = concat(cdschool class), punct(" ")
72
         gen grade 3=(class=="3° ano")
73
         gen treat real=(treat&grade 3)
74
75
     /* Parte 3 do questinário: quanta renda o professor acha que alunos
     diferentes combinações de habidades
76
     coq e ncoq receberão no futuro em dois casos: professores que focam
     professores que focam em não cognitivo.*/
77
78
     forvalues num=0(1)1
79
     **Prof Coq
80
     gen xc `num'=belief p3 1 m1 `num' //alto cog alto ncog
     gen zc `num'=belief p3 2 m1 `num' //alto cog baixo ncog
81
82
     gen yc `num'=belief p3 3 m1 `num' //baixo cog alto ncog
     gen wc `num'=belief p3 4 m1 `num' //baixo cog baixo ncog
83
84
85
     **Prof Não- Cog
86
     gen xn_`num'=belief_p3_1_m2_`num' //alto cog alto ncog
     gen zn `num'=belief p3 2 m2 `num' //alto cog baixo ncog
87
88
     gen yn `num'=belief p3 3 m2 `num' //baixo cog alto ncog
     gen wn `num'=belief p3 4 m2 `num' //baixo cog baixo ncog
89
90
91
92
```

```
* Passando o log
108
      forvalues num=0(1)1{
109
      foreach var in xc `num' zc `num' yc `num' wc `num' xn `num' zn `num' yn `num' wn `num'{
110
      qui sum `var'
      gen tag_`var'_`num'=1 if `var'==r(min)
replace `var'=(`var'-r(min))/(r(max)-r(min))
111
112
113
      replace `var'=`var'+1
114
      replace `var'=ln(`var')
115
116
117
      /* Funcão objetivo: y = A(h) (\theta^N) ^\alpha(\theta^C)^{1-\alpha}
118
119
      Resolvendo o modelo temos: dv dthetaN + dv dthetaC = \langle gamma \rangle (1)
120
                                    dy dIC = (1 - \gamma mma) (1 - \gamma) (2)
121
      */
122
123
      * dy dthetaN = prêmio financeiro médio dado para o não cognitivo (considerando os dois
      tipos de professores)
      qen dy dthetaN `num'=1/4*(xc `num'-zc `num'+yc `num'-wc `num'+xn `num'-zn `num'+yn `num'-
124
      wn `num')
125
126
      * dv dthetaC = prêmio financeiro médio dado para o cognitivo (considerando os dois tipos
      de professores)
      gen dy_dthetaC_`num'=1/4*(xc_`num'-yc_`num'+zc_`num'-wc_`num'+xn_`num'-yn `num'+zn `num'-
127
      wn `num')
```

```
143
      * Seria o \gamma^\tau
144
      gen gamma t `num'=dv dthetaN `num'+dv dthetaC `num'
      qui sum gamma t `num'
145
146
147
148
      * Padronizando \gamma para ficar entre 0 e 1
149
      replace gamma t `num'=(gamma t `num'-r(min))/(r(max)-r(min))
150
151
      * dy dIC = prêmio financeiro médio dado para o professor que foca no cognitivo
      gen dy dIC `num'=-1/4*(xn `num'-xc `num'+yn `num'-yc `num'+zn `num'-zc `num'+wn `num'-wc
152
      `num')
153
      gen dy_dIN_`num'=1/4*(xn_`num'-xc_`num'+yn_`num'-yc_`num'+zn_`num'-zc_`num'+wn_`num'-wc_
      ັກum')ີ
154
155
      * Isolando phi em (2) temos:
156
      gen phi t aux `num'=1-(dv dIN `num'/(1-gamma t `num'))
157
      gen phi_t_aux2_`num'= phi_t_aux_`num'
158
159
```

```
384
      forvalues num=0(1)1{
385
      * Criando a razão dos investimentos = razão do esforco nas práticas 2 a 2
386
387
     gen S 'num' ji=p1 'num' j/p1 'num' i
388
389
      * Criando o ranking (três maneiras distintas) da razão dos investimentos = razão
      esforço nas práticas 2 a 2
390
     bysort cod prof dentro: egen r1 S `num' ji = rank(S `num' ji), field
     bysort cod prof dentro: egen r2 S `num' ji = rank(S `num' ji), track
392
     bysort cod prof dentro: egen r3 5 `num' ji = rank(S `num' ji), unique
394
     bysort cod prof dentro: egen r4 S `num' ji = rank(S `num' ji)
395
396
      gen p2 'num' ji-p2 'num' j-p2 'num' i
398
      la var p2 `num' ji "Diferença entre ranking das práticas 2 a 2 em t=`num'"
400
401
      gen razao p2 `num' ji=p2 `num' j/p2 `num' i
402
      la var p2 'num' ji "Razão ranking das práticas 2 a 2 em t='num'"
403
404
405
      * Deixando os rankings no negativo, só para o maior ter maior número!
406
      foreach var in r1 S 'num' ji r3 S 'num' ji r4 S 'num' ji{
407
      replace 'var' = - 'var'
408
409
```

```
293
      gen dif belief = phi t sample 1 - phi t sample 0
294
295
      twoway (kdensity dif belief if treat belief==1) (kdensity dif belief if treat belief==0),
      legend(lab(1 "Treatment") lab(2 "Control")) graphregion(color(white)) vtitle("") bgcolor(
      none) xtitle("") title("Belief{stSerif}({it:{&phi}{sup:{&tau}})") saving(
      "$grafs/delta belief.gph", replace)
296
      graph export "$grafs/delta belief.png", as(png) replace
297
298
      xi: req phi t sample 1 phi t sample 0 i.pair belief, rob
299
      predict belief res. res
300
301
      twoway (kdensity belief res if treat belief==1) (kdensity belief res if treat belief==0),
      legend(lab(1 "Treatment") lab(2 "Control")) graphregion(color(white)) ytitle("") bgcolor(
      none) xtitle("") title("Belief {stSerif}({it:{&phi}{sup:{&tau}})") saving(
      "Sgrafs/residuo belief.gph", replace)
302
      graph export "$grafs/residuo belief.png", as(png) replace
```

```
293
      gen dif belief = phi t sample 1 - phi t sample 0
294
295
      twoway (kdensity dif belief if treat belief==1) (kdensity dif belief if treat belief==0),
      legend(lab(1 "Treatment") lab(2 "Control")) graphregion(color(white)) vtitle("") bgcolor(
      none) xtitle("") title("Belief{stSerif}({it:{&phi}{sup:{&tau}})") saving(
      "$grafs/delta belief.gph", replace)
296
      graph export "$grafs/delta belief.png", as(png) replace
297
298
      xi: req phi t sample 1 phi t sample 0 i.pair belief, rob
299
      predict belief res. res
300
301
      twoway (kdensity belief res if treat belief==1) (kdensity belief res if treat belief==0),
      legend(lab(1 "Treatment") lab(2 "Control")) graphregion(color(white)) ytitle("") bgcolor(
      none) xtitle("") title("Belief {stSerif}({it:{&phi}{sup:{&tau}})") saving(
      "Sgrafs/residuo belief.gph", replace)
302
      graph export "$grafs/residuo belief.png", as(png) replace
```

```
416
      * Motivação: ranking correlaciona com belief?
417
418
      * Gráfico Correlação vs Prêmios financeiros
419
      twoway (scatter corr 0 ji raw dy dthetaN 0) (lfit corr 0 ji raw dy dthetaN 0), xlabel(,
      grid gmax)leg(off) vtitle("Investment-Ranking") xtitle("Non-Cognitive Wage Premium")
      graphregion(color(white)) bgcolor(none) title("Adherence with Student's Non-Cognitive
      Wage Premium") saving (corr n, replace)
420
421
     graph export "$grafsartigo/corr wagethetan.png", as(png) replace
422
423
424
      twoway (scatter corr 0 ji raw dy dIN 0) (lfit corr 0 ji raw dy dIN 0), xlabel(, grid gmax)
      leg(off) vtitle("Investment-Ranking") xtitle("Non-Cognitive Wage Premium") graphregion(
      color(white)) bgcolor(none) title("Adherence with Teacher's Non-Cognitive Wage Premium")
      saving(corr in, replace)
425
426
      graph export "$grafsartigo/corr wagein.png", as(png) replace
127
```

```
490
     req phi t sample 1 treat belief phi t sample 0 i.pair belief, rob
491
     estimates store itt
492
     reg phi t sample 1 treat belief phi t sample 0 i.pair belief etnial under educ, rob
     estimates store itt2
493
494
     bootstrap, reps(1000): req phi t sample 1 treat belief phi t sample 0 i.pair belief, rob
495
     estimates store itt3
496
     bootstrap, reps(1000): reg phi t sample 1 treat belief phi t sample 0 i.pair belief etnial
      under educ, rob
497
     estimates store itt4
498
499
     estout itt itt2 itt3 itt4. cells(b(fmt(3) star) se(fmt(3) par)) stats(r2 N) starlevels(*
      0.1 ** 0.05 *** 0.01)
500
```

Results

```
687
688
689
      foreach var in corr b corr 0 b corr 1 b {
690
     ivregress gmm `var'1 ji `var'0 ji phit sample 0 i.pair belief (phit sample 1=
     treat belief)
691
     estimates store iv1`var'
692
693
      ivregress gmm `var'1 ji `var'0 ji phit sample 0 i.pair belief (phit sample 1=
     treat belief) [aw=se `var'1 ji]
694
     estimates store iv2`var'
695
     ivregress gmm `var'1 ji `var'0 ji phi t sample 0 i.pair belief etnial under educ (
696
     phi t sample 1=treat belief)
697
     estimates store iv3`var'
698
699
     ivregress gmm `var'1 ji `var'0 ji phi t sample 0 i.pair belief etnial under educ (
     phi t sample 1=treat belief) [aw=se `var'1 ji]
700
     estimates store iv4`var'
701
     bootstrap, reps(2000): ivregress gmm `var'1 ji `var'0 ji phi t sample 0 i.pair belief (
     phi t sample 1=treat belief)
     estimates store iv5`var'
704
705
     bootstrap, reps(2000):ivregress gmm `var'1 ji `var'0 ji phi t sample 0 i.pair belief
     etnial under educ (phi t sample 1=treat belief)
706
     estimates store iv6 var
707
708
709
     estout iv1corr b iv2corr b iv3corr b iv4corr b iv5corr b iv6corr b , cells(b(fmt
      (3) star) se(fmt(3) par)) stats(r2 N) starlevels(* 0.1 ** 0.05 *** 0.01)
      estout iv1corr 1 b iv2corr 1 b iv3corr 1 b iv4corr 1 b iv5corr 1 b iv6corr 1 b
      . cells(b(fmt(3) star) se(fmt(3) par)) stats(r2 N) starlevels(* 0.1 ** 0.05 *** 0.01)
711
     estout iv1corr 0 b iv3corr 0 b iv2corr 0 b iv4corr 0 b iv5corr 0 b iv6corr 0 b .
      cells(b(fmt(3) star) se(fmt(3) par)) stats(r2 N) starlevels(* 0.1 ** 0.05 *** 0.01)
```