Spatial Regression Models: Identification strategy using STATA

TATIANE MENEZES – PIMES/UFPE

Intruduction

- Spatial regression models are usually intended to estimate parameters related to the interaction of agents across space
 - Social interactions, agglomeration externalities, technological spillovers, strategic interactions between governments etc.
- In this class we will explore estimation of Social interactions models using STATA
- Methods of estimation
- Identification strategy
- As an example we will use some data on pupils' marks and look at the peer effect.

Data Set

- The paper evaluates the friendship peer effects on student academic performance. The identification comes from the unique student friendship dataset from a Brazilian public institution (FUNDAJ), the strategy considers the architecture of these social networks within classrooms, in addition to group and individual fixed effects
- The file fundaj.dta is a random sample of 1,431 students from 120 schools in Recife city.

General set up: Peer effect at school

$$y_i = x'_i \gamma + m(y, s)\beta + m(x, s)'_i \theta + m(k, s)'_i \delta + m(v, s)'_i \lambda + \varepsilon_i$$

- y is child's math marks
- x is gender, age, parents' education, etc
- m(y,s) is average child marks peer
- m(x,s) is average gender, age, parent's education at school s_i
- m(z,s) is other stuff at school e.g. principal wage
- m(v,s) are unobserved child characteristics (e.g. inteligence)

General set up

• See e.g. Le Sage and Pace Introduction to Spatial Econometrics

$$y_i = x_i' \gamma + m(y,s) \beta + m(x,s)_i' \theta + m(k,s)_i' \delta + m(v,s)_i' \lambda + \varepsilon_i$$

- SAR (spatial autoregressive) effects: captured by β
 - Spillovers from neighbouring region outcome on regional outcome e.g. patents
- SLX (spatially lagged X) effects, captured by θ
 - Influence of neighbouring regions' observable characteristics on regional outcome e.g. R&D expenditure
- SE (spatial error) represents unobserved similarity between neighbours or spillovers between unobservables
 - e.g. the innovative culture

General form of spatial regression

Spatial econometrics:

$$y = X\gamma + Wy\beta + WX\theta + WZ\delta + Wv\lambda + \varepsilon$$

- Social interaction:
 - Outcome for i depends on the expected (average) outcome for the spatial group, average characteristics of the group and average unobservables of the group
 - Or some other sort of dependence (spillover) between group members and the individual

$$y = x\gamma + E[y_i|W_i]\beta + E[x_i|W_i]\theta + E[z_i|W_i]\delta + E[v_i|W_i]\lambda + \varepsilon$$

Endogenous effect/SAR specifications

• These are specifications with a spatially lagged dependendent variable

$$y_i = x'_i \gamma + m(y, s)\beta + u_i$$

$$y = x\gamma + E[y_i | W_i]\beta + \varepsilon$$

- Theory is that children mark depends on peer effect
 - **Outcome** is dependent on the observable **outcome** for peers (neighbours)
 - ρ supposed to represent reaction functions, direct spillovers from peers (neighbours) occurring through observed behaviour.

Mechanical feedback endogeneity

- Unbiased and consistent estimation by OLS requires that error term and regressors are uncorrelated. Does this assumption hold for this model?
- Consider simple i-j case

$$y_{i} = \rho y_{j} + x_{i}\beta + u_{i}$$

$$y_{j} = \rho y_{i} + x_{j}\beta + u_{j}$$

$$\Rightarrow$$

$$y_{i} = \rho \left\{ \rho y_{i} + x_{j}\beta + u_{j} \right\} + x_{i}\beta + u_{i}$$

$$= \rho \left\{ \rho \left(\rho y_{j} + x_{i}\beta + u_{j} \right) + x_{j}\beta + u_{j} \right\} + x_{i}\beta + u_{j}$$

• The 'spatially lagged' or 'average neighbouring' dep. var. y_j is correlated with the unobserved error term:

Instrumental variables

- Good Instrument
 - 1. Correlated with endogenous variable z, conditional on x: 'powerful first stage'
 - 2. Uncorrelated with v: 'satisfies the exclusion restriction'
- Instrument is variable that predicts the endogenous variable y_i but does not affect outcome y_i directly

Instrumental variables

- Gibbons, Stephen and Overman, Henry G. (2012) Mostly pointless spatial econometrics. Journal of regional science, 52 (2). pp. 172-191
- So a possible set of 'instruments' (predictors) for Wy are

$$\left[WX,W^2X,W^3X,...\right]$$

• Correlated with peers marks but not with pupils marks

Computer exercise

Data set

- Classes room best friends of each student marques V2-V1432
- The students math marks marks
- Student characteristics popular and boy=1
- School characteristics principal_wage
- . tab idpupil v5 if idpupil<=25

		v5		
idpupil		0	1	Total
	+		+	
10		1	0	1
14		1	0	1
16		0	1	1
18		1	0	1
21		1	0	1
22		0	1	1
23		1	0	1
25		1	0	1
	+		+	
Total		6	2	8

 First we describe situation in which we have the spatial-weighting matrix precomputed and simply want to put it in an spmat object spmat dta peer v2-v1432, id(idchild) replace

> . spmat summarize peer, links Summary of spatial-weighting object peer Matrix | Description Dimensions | 1431×1431 Stored as | 1431 x 1431 Links total 3558 min 2.486373 mean 10 max

• Estimate a regression to look at effect of popular, boy and principal wage on child marks using classical special econometrics model: SAR

$$y = \rho Wy + X\beta + u$$

```
spreg ml mark popular boy principal_wage, id(idpupil) dlmat(peer) nolog

Spatial autoregressive model

(Maximum likelihood estimates)

Wald chi2(3) = 19.8763

Prob > chi2 = 0.0002
```

mark | Coef. Std. Err. z P>|z| [95% Conf. Interval] mark popular | 1.809878 .5849103 3.09 0.002 .6634747 2.95628 .7963501 0.31 0.754 -1.311329 1.81030 boy | .249489 principal wage | -.00121 .0003863 -3.13 0.002 -.0019671 -.000452 35.7578 42.5982 cons | 39.17803 1.745047 22.45 0.000 lambda .0315783 .0055472 5.69 0.000 .020706 .042450 sigma2 cons | 214.8521 8.03456 26.74 0.000 199.1047 230.599

- The estimated ρ coefficient is positive and significant, indicating SAR dependence. In other words, an exogenous shock to one pupil will cause changes in the marks in the class peers.
- The estimated θ and δ vector does not have the same interpretation as in a simple linear model, because including a spatial lag of the dependent variable implies that the outcomes are determined simultaneously.

. spreg gs2sls mark popular boy principal_wage, id(idpupil) dlmat(peer)

Spatial autoregressive model (GS2SLS estimates)

Number of obs = 1431

mark	Coef.	Std. Err.	 Z	P> z	[95% Conf.	Interval]
+ mark						
popular	1.783077	.5856426	3.04	0.002	.6352389	2.93091
boy	.1485575	.8012924	0.19	0.853	-1.421947	1.71906
principal wage	0012348	.000387	-3.19	0.001	0019934	000476
_cons	39.76611	1.815093	21.91	0.000	36.20859	43.3236
lambda						
_cons	.0274628	.0065471	4.19	0.000	.0146307	.040294

There are no apparent differences between the two sets of parameter estimates.

• classical special econometrics model: SARAR

$$y = \rho Wy + X\beta + u$$
$$u = \rho Wu + e$$

. spreg ml mark popular boy principal_wage,id(idpupil) dlmat(peer) elmat(peer) nolog

Spatial autoregressive model Number of obs = 1431 (Maximum likelihood estimates) Wald chi2(3) = 18.3844 Prob > chi2 = 0.0004

mark2	Coef.	Std. Err.	 Z	P> z	[95% Conf.	Interval]
mark	+					
popular boy principal_wage _cons	1.725857 .204751 0012425 39.97857	.5877355 .8264258 .0004083 1.864488	2.94 0.25 -3.04 21.44	0.003 0.804 0.002 0.000	.573917 -1.415014 0020429 36.32424	2.87779 1.82451 000442 43.632
lambda _cons	 .0261876	.0066554	3.93	0.000	.0131433	.03923
rhocons	 .0234643	.0129945	1.81	0.071	0020045	.04893
sigma2 cons	214.2306	8.014287	26.73	0.000	198.5229	229.938

Estimation using IV/2SLS

• Use spmat to creat spatial lag of mark, boy and popular

spmat lag double wmark peer mark spmat lag double wpopular peer popular spmat lag double wboy peer boy

. sum wmark wpop wboy mark2 pop boy

Variable	Obs	Mean	Std. Dev.	Min	Max
	1,431	104.5283	67.11725	0	465
wpopular	1,431	3.259958	2.151483	1	14
wboy	1,431	.9357093	1.225055	0	8
mark	1,431	41.16352	14.95653	0	85
popular	1,431	1.341719	.6647463	1	3
boy	1,431	.4255765	.494603	0	1

• Including the spatial lag of *mark*, *sex* and *popular* in the regressions

. regress mark wmark popular wpopular boy wboy principal_wage, cluster(idesc)

```
Linear regression Number of obs = 1,431 F(6, 110) = 8.87 Prob > F = 0.0000 R-squared = 0.0437 Root MSE = 14.657
```

(Std. Err. adjusted for 111 clusters in idesc)

 mark 	Coef.	Robust Std. Err.	t 	P> t	[95% Conf.	Interval]
wmark	.0527915	.0141398	3.73	0.000	.0247697	.080813
popular	1.828549	.5648417	3.24	0.002	.7091654	2.94793
wpopular	3729638	.3839338	-0.97	0.333	-1.13383	.387902
sex	1.877473	1.0537	1.78	0.078	2107139	3.9656
wsex	9674357	.4718134	-2.05	0.043	-1.902459	032412
principal wage	0010861	.0003935	-2.76	0.007	0018659	000306
cons	37.96964	1.968381	19.29	0.000	34.06877	41.8705

- Estimate the 2SLS/IV regression using wpopular and wboy as instruments for wmark FIRST STAGE
- . reg wmark wpopular wboy boy popular principal wage ,cluster(idesc)

Linear regression Number of obs = 1,431 F(5, 110) = 156.68 Prob > F = 0.0000 R-squared = 0.7154 Prob = 35.868

(Std. Err. adjusted for 111 clusters in idesc)

 wmark	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
wpopular	24.10899	1.15788	20.82	0.000	21.81434	26.4036
wboy	7.565048	2.166797	3.49	0.001	3.270965	11.8591
boy	-16.92019	2.544356	-6.65	0.000	-21.9625	-11.8778
popular	-2.92456	1.723615	-1.70	0.093	-6.340361	.491240
principal wage	003971	.0015175	-2.62	0.010	0069785	000963
_cons	42.61488	7.048311	6.05	0.000	28.64678	56.5829

- . testparm wpopular wboy
- (1) wpopular = 0
- (2) wboy = 0 F(2, 110) = 254.35Prob > F = 0.0000

• Estimate the 2SLS/IV regression using wpopular and wboy as instruments for wmark – IV

. ivreg mark (wmark= wpopular wboy) popular boy principal_wage ,cluster (idesc) Instrumental variables (2SLS) regression Number of obs = 1,431 F(4, 1430) = 9.31Prob > F = 0.0000R-squared = 0.0382Root MSE = 14.689

(Std. Err. adjusted for 1,431 clusters in idesc)

Robust

mark	Coef.	Std. Err.	t	P> t	[95% Conf. Inte	erval]
wmark	.0283833	.0077867	3.65	0.000	.0129518	.04381
popular	1.789071	.587324	3.05	0.003	.6251313	2.95301
boy	.1711308	.8216546	0.21	0.835	-1.457196	1.79945
<pre>principal_wage</pre>	0012293	.00041	-2.96	0.004	0020536	00040
_cons	39.63459	2.199265	18.02	0.000	35.27616	43.99301

Instrumented: wmark

Instruments: popular boy principal_wage

wpopular wboy

Limitations of this approach

- Following Gibbons et. al. (2012):
 - IV/2SLS relies on instruments WX, W²X etc. having no direct effect on y
 - In principle you can use W²X... W³X as instruments, for Wy in the equation assuming W²X... W³X don't belong in this equation:

$$y = \rho W y + X \beta_1 + W X \beta_2 + e$$

- Difficult to justify if W chosen arbitrarily
- Also WX, W²X... W³X are all likely to be very highly correlated (remember these are all averages) so W²X... W³X not likely to be a good predictor of Wy, conditional on WX