2016 Brazilian Stata Users Group meeting São Paulo | December 2

SEM in health sciences:

combining multiscale questionnaires and checking the performance of GOF parameters up to the minimally acceptable sample size

Marcos Antonio Almeida Santos MD, PhD

Tenured Professor at Universidade Tiradentes (UNIT) - Brazil General physician and cardiologist at Clínica & Hospital São Lucas - Aracaju (SE) Senior Teaching Assistant in PPCR Course at Harvard T.H.Chan School of Public Health - USA

Disclosures

- Marcos Antonio Almeida Santos has no relevant conflict of interest related to the content of this presentation;
- The views expressed in this presentation do not necessarily reflect the views of the institutions.

Introduction – 1

- In health sciences, relevant issues are handled with complex questionnaires;
- These questionnaires oftentimes present dozens of indicators under Likert scales;
- However, Likert scales can be challenging to curb with an overarching "regression" approach;
- What is more, ordinal in principle, they usually present a skewed distribution, which may remain after algebraic transformation in 20-point or 100-point scales.

Introduction – 2

- The panoply of scales leads to a plethora of criteria of normality;
- To approach several questionnaires at once and, at the same time, to provide reliable measures of association among them, the analysis may rely on the standardization of the coefficients;
- We present a strategy to work with complex stress and QOL questionnaires assembled into an overarching model.

Case-study "situation" - 1

• Questionnaire WHOQOL-BREF:

- Quality of life Developed by the WHO (1996);
- Number of questions: 26;
- Likert scale: scores from 1 to 5: (1 = not at all; 2 = not much; 3 = moderately; 4 = a great deal; 5 = completely).
- Negatively phrased items (3): Q3, Q4 and Q26;
- Four Domains + Self-appraisal:
- Physical = mean (Q3r, Q4r, Q10, Q15, Q16, Q17, Q18);
- Psychological = mean (Q5,Q6,Q7,Q11,Q19,Q26r);
- Social relationships = mean(Q20,Q21,Q22);
- Environment = mean (Q8,Q9,Q12,Q13,Q14,Q23,Q24,Q25);
- Self-appraisal = mean (Q1,Q2).
- Scores lately *4 (range: 4–20) or a scale 0–100.

Case-study "situation" - 2

- Questionnaire ISSL:
- Inventory of Symptoms of Stress Lipp
- Number of questions: 53;
- Binary variables (0 or 1);
- Physical = 34; psychological 19;
- Results used as: # positive questions;
- Three Domains:
- Alertness (15 Qs): range 0–15; >3 = yes;
- Resistance+near exhaustion (15 Qs): range 0-15; >6 = yes;
- Exhaustion (23 Qs): range 0-23; >8 = yes.

First things, first

- WHOQOL-BREF: QOL
- ▶ 26 Qs;
- Likert scale (1-5) turned into a 4-20 range;
- Negatively phrased Qs recoded.
- Scale 4–20 selected.
- Parceling in five "independent" domains;*
- But...we aggregate the analysis leaving each domain as an "endogenous variable" associated with the latent variable QOL.

- ISSL: STRESS
- ▶ 53 Qs;
- Dichotomous variables
- Sum of + answers;
- Scale of similar range;
- Parceling in three domains;*
- But... instead of categorizing QOL according to scores from each domain (binary "yesno" or prevalent domain), we leave the domains as "reflective indicators" associated with Stress as a latent variable.

*Up to this point, following guidelines of each questionnaire.

7

Building a graphical scheme

Model design:

- CFA under SEM;
- Two latent variables were created as reflective "exogenous" factors: QOL and stress;
- Parceling: questions from the respective questionnaires were used to create an "aggregate" arrangement, according to the specifications;
- Selection of scales of similar range;
- Thence, the number of loadings was decreased by parceling items by similarity and treating these parceled constructs as "endogenous" variables.

Steps of the analysis

- 1. Parceling, checking severe departs from normality, selecting estimation method (ML);
- 2. Avoiding identification issues: ideally, at least 3 parcelled endogenous variables for each latent one;
- 3. Modeling "full" data (around 600 individuals):
 - a) From a simple model up to a more complex one;
 - b) Checking GOF parameters up to the "best fit";
 - c) Adding variance-covariance terms according to the rationale as well as the modification indices and convergence isssues.
- A. Re-starting with random sub-samples: checking model's reliability as well as performance of GOF parameters under progressively smaller sample sizes.

Summary statistics data: ssd

- Immediate set of commands that creates a "compact data set":
- Allows Stata users to reproduce original data;
- Data shared between statisticians or sent to reviewers (since it preserves confidentiality);
- May be applied in the modeling strategy;
- Used to perform GOF tests, etc.
- Warning: it applies to *sem*, but not *gsem*.

Reproducing data: ssd

. ssd init d1 d2 d3 d4 d5 d6 d7 d8 . ssd set observations 597 . ssd set means 2.963149 4.396985 4.574539 14.47236 14.2846 /// 13.75366 14.64992 11.93786 . ssd set sd 2.120208 2.820382 3.512665 2.733951 2.422642 /// 2.813333 3.234396 2.25064 . ssd set correlations 1.0 \setminus /// 0.5965 1.0000\ /// 0.5870 1.0000\ /// 0.8156 -0.2583 -0.4770 -0.4415 1.0000\ /// 1.0000\ /// -0.2184-0.4368 -0.4971 0.5983 -0.0994 -0.2326 -0.24060.4364 0.5241 1.0000\ /// -0.1015 -0.2528 -0.2354 0.4823 0.5033 0.4730 1.0000\ /// -0.2141 -0.3555 -0.32990.4878 0.5233 0.3288 0.4641 1.0000

Basic graph: sembuilder

Marcos Almeida – SEM Models in Health Sciences 2016 Brazilian Stata Users Group Meeting 13

Unstandardized results

Marcos Almeida – SEM Models in Health Sciences 2016 Brazilian Stata Users Group Meeting 14

Output

			OIM				_	d7 <-						
		Coef.	Std. Err.	z	₽≻ z	[95% Conf.	Interval]	QOL	1.012757	.0692444	14.63	0.000	.877041	1.148474
Measure	ement							cons	4.64992	.1322641	35.16	0.000	4.390687	4.909153
d1 <-	-													
	Stress	1	(constrain	ed)				d8 <-						
	_cons	2.963149	.0867014	34.18	0.000	2.793217	3.133081	OOL	7061149	0479517	14.73	0.000	6121313	8000985
									11 92796	0920254	129 71	0 000	11 75747	12 11925
a2 <-	Strong	1 966597	1052646	17 72	0 000	1 660096	2 072109		11.93700	.0520334	129.71	0.000	11.75747	12.11025
	cons	4.396985	.1153336	38.12	0.000	4.170935	4.623035							
								var(e.d1)	2.611638	.1629751			2.310975	2.951419
d3 <-	-							var(e.d2)	1.404555	.2112667			1.045935	1.886134
	Stress	2.312083	.1317451	17.55	0.000	2.053867	2.570299	var(e.d3)	2.289031	.3281658			1.728301	3.031682
	_cons	4.574539	.143643	31.85	0.000	4.293004	4.856074	var(e.d4)	3.250656	.2499976			2.795811	3.779499
								var(e.d5)	1.950899	.1805487			1.627268	2.338893
04 **	- 001.	1	(constrain	ed)				var(e.d6)	5.014172	.3244824			4.416877	5.692238
	cons	14.47236	.1117993	129.45	0.000	14.25324	14.69148	var(e.d7)	6.124352	.4092317			5.372575	6.981324
	_							var(e.d8)	2.957146	.1965824			2.595897	3.368668
d5 <-	-							var(Stress)	1.87609	.2198389			1.491112	2.360461
	ÕOT	.9633735	.0538073	17.90	0.000	.8579131	1.068834	var (00L)	4 211301	4221773			3 460066	5 12564
	_cons	14.2846	.099069	144.19	0.000	14.09043	14.47877	Var (%01)	4.211501	. 4221775			5.400000	0.12004
d6 <-	-							com/Strees OOI)	-1 612276	1700700	-9.05	0 000	-1 962695	-1 262066
	QOL	.82803	.0607798	13.62	0.000	.7089038	.9471563	CON (SCLESS, WOL)	-1.013270	.1/02/33	-9.05	0.000	-1.962665	-1.203000
	_cons	13.75366	.1150456	119.55	0.000	13.52817	13.97915	ID test of model	l va asturat	ad: abi2/19) = 1	09 07 Dw	ab > abi2 = 0	n 0000
		I						an sess or mode.	- vs. savulau		- 1	00.07, FI	00 · Chile - (0.0000

Standardized results*

. sem (Stress -> d1,) (Stress -> d2,) (Stress -> d3,) (QOL -> d4,) (QOL -> d5,) (QOL -> d6,) (QOL -> d7,) (QOL -> d8,), covstruct(_lexogenous, diagonal) vce(oim) standardized latent(Stress QOL) cov(Stress*QOL) nocapslatent

> Marcos Almeida – SEM Models in Health Sciences 2016 Brazilian Stata Users Group Meeting

Output

		0.71/											
Standardized	Coof	Ctd Frr	-	Dalat	1958 Conf	Intervall	d7 <-						
Standardized		560. SII.	-	22 [2]	[558 65012.	incervarj	QOL	.6431089	.028421	22.63	0.000	.5874048	.698813
Measurement							_cons	1.438853	.0583863	24.64	0.000	1.324418	1.553288
d1 <-													
Stress	. 646567	.026028	24.84	0.000	.595553	.697581	d8 <-						
_cons	1.39875	.0575639	24.30	0.000	1.285927	1.511574	QOL	. 6443793	.0281589	22.88	0.000	.589189	. 6995697
d2 <-							_cons	5.308656	.1589902	33.39	0.000	4.997041	5.620271
Stress	.9072655	.0153471	59.12	0.000	.8771858	.9373451							
_cons	1.560314	.0609429	25.60	0.000	1.440868	1.67976	var(e.d1)	.5819511	.0336577			.5195848	.6518034
							var(e.d2)	.1768694	.0278477			.1299071	.2408089
d3 <-							var(e.d3)	.1858267	.0279719			.13835	.2495956
Stress	.9023155	.0155001	58.21	0.000	.8719359	.9326952	var(e.d4)	.4356305	.0347029			.372658	.5092442
_cons	1.303394	.0556583	23.42	0.000	1.194305	1.412482	var(e.d5)	.3329543	.0327653			.274549	.4037843
d4 <-							var(e.d6)	. 6345782	.0363768			.5671404	.710035
QOL	.7512453	.0230969	32.53	0.000	.7059762	.7965144	var(e.d7)	.5864109	.0365556			.5189674	.6626193
_cons	5.298013	.1586922	33.39	0.000	4.986982	5.609044	var(e.d8)	.5847753	.03629			.5178037	.6604088
							var(Stress)	1					
d5 <-							var(QOL)	1					
QOL	.8167286	.0200589	40.72	0.000	.777414	.8560433							
_cons	5.901237	.175617	33.60	0.000	5.557034	6.24544	cov(Stress, QOL)	5739494	.0338289	-16.97	0.000	6402528	5076461
d6 <-													
QOL	.6045013	.0300883	20.09	0.000	.5455293	.6634732	LR test of mode.	l vs. saturat	ed: chi2(19) = 1	08.07, Pr	ob > chi2 = 0	.0000
_cons	4.892843	.1473947	33.20	0.000	4.603955	5.181731							

Fit parameters

- Chi-square test: null hypothesis = accept the model (covariances between the matrix and the predicted model do not differ). There is no difference between the model and a saturated model. Check p-values and dfs;
- RMSEA :Steiger-Lind Root Mean Square Error of Approximation;
- CFI :Bentler Comparative Fit Index;
- SRMR :Standardized Root Mean Square Residual.

GOF tests

. estat gof, stats(all)

"Ideal" values	Fit statistic	Value	Description
Chi2 >0.05	Likelihood ratio chi2_ms(19) p > chi2	108.071 0.000	model vs. saturated
RMSEA < 0.05	chi2_bs(28) p > chi2	2190.168 0.000	baseline vs. saturated
	Population error	0.089	Post man several error of enviration
CFI>=0.95	90% CI, lower bound	0.073	Root mean squared error or approximation
	upper bound	0.105	<
SRMR <= 0.10	pclose	0.000	Probability RMSEA <= 0.05
	Information criteria		
	AIC	21011.622	Akaike's information criterion
	BIC	21121.420	Bayesian information criterion
	Baseline comparison		
	CFI	0.959	Comparative fit index
	TLI	0.939	Tucker-Lewis index
	Size of residuals		
	SRMR	0.048	Standardized root mean squared residual
	CD	0.980	Coefficient of determination

Marcos Almeida – SEM Models in Health Sciences 2016 Brazilian Stata Users Group Meeting 19

Improving it: modification indices

Modification indices

. estat mindices

	МІ	df	P>MI	EPC	Standard EPC
Measurement					
d1 <-					
QOL	14.122	1	0.00	.1784482	.172865
d4 <-					
Stress	13.027	1	0.00	3172042	1590521
d5 <-					
Stress	5.053	1	0.02	1723631	0975318
d6 <-					
Stress	13.264	1	0.00	.3566978	.1738082
d7 ≺-					
Stress	19.616	1	0.00	. 487967	.2068179
cov(e.d1,e.d5)	6.921	1	0.01	.3005715	.1331601
cov(e.d2,e.d3)	14.123	1	0.00	-2.529193	-1.410545
cov(e.d2,e.d4)	13.624	1	0.00	4787569	2240579
cov(e.d2,e.d5)	8.795	1	0.00	.3232729	.1952912
cov(e.d3,e.d5)	32.709	1	0.00	7787271	3685039
cov(e.d3,e.d7)	5.104	1	0.02	. 473602	.1264904
cov(e.d5,e.d6)	5.640	1	0.02	.4469742	.142911
cov(e.d6,e.d7)	15.423	1	0.00	1.036673	.1870734
cov(e.d6,e.d8)	8.050	1	0.00	5208074	1352512
cov(e.d7,e.d8)	6.094	1	0.01	.5118722	.1202805

EPC = expected parameter change

. sem (Stress -> d1,) (Stress -> d2,) (Stress -> d3,) (QOL -> d4,) (QOL -> d5,) (QOL -> d6,) (QOL -> d7,) (QOL -> d8,), covstruct(_lexogenous, diagonal) vce(oim) standardized latent(Stress QOL) cov(Stress*QOL e.d1*e.d2 e.d1*e.d3 e.d4*e.d5 e.d4*e.d6 e.d4*e.d7 e.d4*e.d8 e.d5*e.d6 e.d5*e.d7 e.d5*e.d8 e.d6*e.d7 e.d7*e.d8) nocapslatent

Checking where to improve it

. estat mindices

Modification indices

					Standard
	MI	df	P≻MI	EPC	EPC
cov(e.d2,e.d4)	8.460	1	0.00	4355507	3042226
cov(e.d2,e.d5)	17.523	1	0.00	.535461	.612668
cov(e.d3,e.d4)	11.403	1	0.00	.6573815	.4281969
cov(e.d3,e.d5)	22.835	1	0.00	7946751	8479304

EPC = expected parameter change

"Good fit" model

.35

93

.55

Stress

QOL

.48

-.9

.13

-.089

.sem (Stress -> d1,) (Stress -> d2,) (Stress -> d3,)
(QOL -> d4,) (QOL -> d5,) (QOL -> d6,) (QOL -> d7,)
(QOL -> d8,), covstruct(_lexogenous, diagonal) vce(oim)
standardized latent(Stress QOL) cov(Stress*QOL
e.d1*e.d2 e.d1*e.d3 e.d2*e.d4 e.d2*e.d5 e.d3*e.d4
e.d3*e.d5 e.d4*e.d5 e.d4*e.d6 e.d4*e.d7 e.d4*e.d8
e.d5*e.d6 e.d5*e.d7 e.d5*e.d8 e.d6*e.d7 e.d7*e.d8)
nocapslatent

estat gof, stats(all)

"Ideal" values

RMSFA < 0.05

Upper < 0.10

SRMR <= 0.10

CFI > = 0.95

Chi2 > 0.05

Fit statistic	Value
Likelihood ratio	
chi2_ms(4)	4.845
p ≻ chi2	0.304
chi2_bs(28)	2190.168
p > chi2	0.000
Population error	
RMSEA	0.019
90% CI, lower bound	0.000
upper bound	0.067
pclose	0.818
Information criteria	
AIC	20938.396
BIC	21114.073
Baseline comparison	
CFI	1.000
TLI	0.997
Size of residuals	
SRMR	0.009
CD	1.006

. es	stat	min	dices						
(no	modi	fic	ation	indices	to	report,	all	ΜI	values
less	s tha	in 3	.84145	588206941	L23)				

88

Checking coeffs*, Cls and p-values

Standardized	Coef.	Std. Err.	z	P≻∣z∣	[95% Conf.	Interval]
Measurement						
d1 ≺-						
Stress	.5039137	.0794151	6.35	0.000	.3482629	.6595644
_cons	1.398748	.0575641	24.30	0.000	1.285924	1.511571
d2 <-						
Stress	.9270574	.0295647	31.36	0.000	.8691116	.9850031
_cons	1.560313	.0609429	25.60	0.000	1.440867	1.679758
d3 <-						
Stress	.8797725	.0290332	30.30	0.000	.8228684	.9366766
_cons	1.303392	.0556582	23.42	0.000	1.194304	1.41248
d4 <-						
QOL	.9645465	.1600651	6.03	0.000	.6508247	1.278268
_cons	5.297027	.158697	33.38	0.000	4.985987	5.608068
d5 <-						
QOL	.8255588	.1325769	6.23	0.000	.5657129	1.085405
_cons	5.907942	.1757151	33.62	0.000	5.563547	6.252338
d6 <-						
QOL	. 4798404	.0502703	9.55	0.000	.3813125	.5783683
_cons	4.892846	.1473947	33.20	0.000	4.603958	5.181734
d7 <-						
QOL	.5020461	.0663271	7.57	0.000	.3720473	.6320448
_cons	1.438854	.0583863	24.64	0.000	1.324419	1.553289
d8 <-						
QOL	. 6852245	.0600071	11.42	0.000	.5676127	.8028363
_cons	5.308663	.1589902	33.39	0.000	4.997048	5.620278

* Loadings > 0.40; p < 0.05

From global GOF to equation level

. estat eqgof

Equation-level goodness of fit

depvars	fitted	Variance predicted	residual	R-squared	me	mc2
observed						
d1	4.487744	1.139568	3.348176	.253929	.5039137	.253929
d2	7.94121	6.824957	1.116253	.8594353	.9270574	.8594353
d3	12.31812	9.534221	2.7839	.7739996	.8797725	.7739996
d4	7.464733	6.944814	.5199189	. 93035	.9645465	. 93035
d5	5.846065	3.98437	1.861695	. 6815473	.8255588	.6815473
d6	7.901572	1.819312	6.082261	.2302468	.4798404	.2302468
d7	10.44378	2.632357	7.811422	.2520502	.5020461	.2520502
d8	5.056879	2.37437	2.68251	. 4695326	. 6852245	.4695326
overall				1.006482		

mc = correlation between depvar and its prediction

mc2 = mc^2 is the Bentler-Raykov squared multiple correlation coefficient

Checking residuals

. estat residuals

Residuals of observed variables

Mean residuals

	d1	d2	d3	d4	d5	d6	d7	d8
raw	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Covariance residuals

	d1	d2	d3	d4	d5	d6	d7	d8
d1	0.000							
d2	0.000	0.000						
d3	0.000	0.000	0.000					
d4	0.053	0.013	0.004	-0.003				
d5	0.052	0.017	-0.005	0.003	0.013			
d6	0.200	0.096	-0.083	-0.010	0.042	0.000		
d7	0.258	0.029	0.086	-0.004	0.006	0.000	0.000	
d8	-0.115	-0.038	0.014	0.004	-0.015	0.000	0.000	0.000
	1							

sem (Stress -> d1,) (Stress -> d2,) (Stress -> d3,) (QOL -> d4,) (QOL -> d5,) (QOL -> d6,) (QOL -> d7,) (QOL -> d8,), covstruct(_lexogenous, diagonal) vce(oim) standardized latent(Stress QOL) cov(Stress*QOL e.d1*e.d2 e.d1*e.d3 e.d1*e.d6 e.d1*e.d7 e.d2*e.d4 e.d2*e.d5 e.d3*e.d4 e.d3*e.d5 e.d4*e.d5 _e.d4*e.d6 e.d4*e.d7 e.d4*e.d8 e.d5*e.d6 e.d5*e.d7 e.d5*e.d8 e.d6*e.d7 e.d7*e.d8) nocapslatent

"Near-equivalent" model

(no modification indices to report, all MI values less than 3.841458820694123)

. estat residuals

Residuals of observed variables

Mean residuals

overall

	d1	d2	d3	d4	d5	d6	d7	dß
raw	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Covariance res	iduals							
	d1	d2	d3	d4	d5	d6	d7	d
d1	-0.000							
d2	0.002	0.000						
d3	-0.003	0.000	0.000					
d4	-0.001	0.004 -	-0.008	-0.001				
d5	-0.000	0.008 -	-0.017	0.001	0.008			
- d6	-0.008	0.060 -	-0.127	-0.005	0.031	-0.000		
d7	0.002	-0.015	0.031	0.001	-0.008	-0.000	-0.000	
as	0.002	-0.017	0.037	0.002	-0.009	-0.000	0.000	0.00
		Variance				6		
1						6		
depvars	fitted	predicted	res	idual	R-squared	п	ic mo	-2
observed	fitted	predicted	res	idual	R-squared	п	ac mo	22
observed d1	fitted	predicted	res	idual 60666	R-squared .3180551	л . 563963	nc mo	22 551
observed d1 d2	fitted 4.488142 7.941086	predicted 1.427476 6.830184	res 3.0 1.1	idual 60666 10902	R-squared .3180551 .8601071	. 563963 . 927419	nc ma 17 .3180! 16 .86010	551 071
observed d1 d2 d3	fitted 4.488142 7.941086 12.31794	predicted 1.427476 6.830184 9.526567	res 3.0 1.1 2.7	idual 60666 10902 91372	R-squared .3180551 .8601071 .7733897	.563963 .927419 .879425	ac ma 37 .31805 16 .86010 18 .77335	551 071
bbserved d1 d2 d3 d4	fitted 4.488142 7.941086 12.31794 7.462654	predicted 1.427476 6.830184 9.526567 5.219994	res 3.0 1.1 2.7	idual 60666 10902 91372 24266	R-squared .3180551 .8601071 .7733897 6994823	. 563963 . 927419 . 879425 . 836350	ac ma 37 .31805 36 .86010 38 .77335 16 .69945	22 551 071 397
bbserved d1 d2 d3 d4	fitted 4.488142 7.941086 12.31794 7.462654 5.85112	predicted 1.427476 6.830184 9.526567 5.219994 2.932123	res 3.0 1.1 2.7 2.	idual 60666 10902 91372 24266 18997	R-squared .3180551 .8601071 .7733897 .6994823 5011217	.563963 .927419 .879425 .836350	nc m/ 37 .3180 36 .86010 38 .7733 36 .6994 45 .5011	22 551 071 397 323
observed d1 d2 d3 d4 d5	fitted 4.488142 7.941086 12.31794 7.462654 5.85112 7.901596	predicted 1.427476 6.830184 9.526567 5.219994 2.932123 1.766492	res 3.0 1.1 2.7 2.9	idual 60666 10902 91372 24266 18997 23102	R-squared .3180551 .8601071 .7733897 .6994823 .5011217 .2229127	.563963 .927419 .879425 .836350 .707899	nc mi 7 .31801 96 .8601 18 .7733 16 .6994 15 .5011 16 .2229	22 551 071 397 323 217
observed d1 d2 d3 d4 d5 d6	fitted 4.488142 7.941086 12.31794 7.462654 5.85112 7.901586	predicted 1.427476 6.830184 9.526567 5.219994 2.932123 1.768483 2.57545	res 3.0 1.1 2.7 2.9 6.1	idual 60666 10902 91372 24266 18997 33102	R-squared .3180551 .8601071 .7733897 .6994823 .5011217 .2238137	. 563963 . 927419 . 879425 . 836350 . 707899 . 473089	nc m 7 .3180 96 .8601 16 .8694 15 .5011 16 .2238 16 .2238 17 .338 16 .2238 16 .2238 16 .2238 17 .2238 16 .2238 17 .2238 18 .2388 18 .23888 18 .23888 18 .23888	22 551 071 397 323 217 137
bbserved d1 d2 d3 d4 d5 d6 d7	fitted 4.488142 7.941086 12.31794 7.462654 5.85112 7.901586 10.44379	predicted 1.427476 6.830184 9.526567 5.219994 2.932123 1.768483 2.55716	res 3.0 1.1 2.7 2.9 6.1 7.8	idual 60666 10902 91372 24266 18997 33102 86634	R-squared .3180551 .8601071 .7733897 .6994823 .5011217 .2238137 .2448497	. 563963 .927419 .879425 .836350 .707899 .473089 .494822	nc m 7 .3180 96 .8601 58 .7733 16 .6994 15 .5011 16 .2238 19 .2448 19 .2448	22 551 071 897 823 217 137 497

p ≻ chi2	0.536	
chi2_bs(28)	2190.168	
p ≻ chi2	0.000	
Population error		
RMSEA	0.000	,
90% CI, lower bound	0.000	
upper bound	0.071	
pclose	0.845	
Information criteria		_/
AIC	20938.800	¥
BIC	21123.260	
Baseline comparison		_
CFI	1.000	
TLI	1.005	
Size of residuals		_
SRMR	0.003	
CD	0.988	

Value

1.249

. estat gof, stats(all)

chi2 ms(2)

Fit statistic

Likelihood ratio

.9877224

Comparing models

Full model (OIM):

. sem (Stress -> d1,) (Stress -> d2,) (Stress -> d3,) (QOL -> d4,) (QOL -> d5,) (QOL -> d6,) (QOL -> d7,) (QOL -> d8,), covstruct(_lexogenous, diagonal) latent(Stress QOL) cov(Stress*QOL e.d1*e.d2 e.d1*e.d3 e.d2*e.d4 e.d2*e.d5 e.d3*e.d4 e.d3*e.d5 e.d4*e.d5 e.d4*e.d6 e.d4*e.d7 e.d4*e.d8 e.d5*e.d6 e.d5*e.d7 e.d5*e.d8 e.d6*e.d7 e.d7*e.d8) nocapslatent

- . estat gof, stats(all)
- Models n (random) = 400, 300, 200, 100,75:
- . set seed 12345
- . sample 400, count

(...)

- . estat gof, stats(all)
- Note: when the model fails to converge, start from a simpler model.

GOF tests - decreasing sample

Test/ n	600	400*	300*	200**	100 **	75****
z: p > 0.05 loadings	-	-	-	-	Stress-d1 (0.074)	-
p for Chi2	0.304	0.193	0.129	0.642	0.336	0.280
RMSEA	0.019	0.037	0.052	<0.001***	0.038	0.047
Upper	0.067	0.091	0.112	0.081	0.162	0.116
CFI	1.000	0.999	0.997	1.000	0.999	0.988
SRMR	0.003	0.010	0.003	0.008	0.022	0.060
Stress- QOL	- 0.55	- 0.65	-0.59	-0.60	-0.73	- 0.56
IC 95%	-0.65 -0.44	-0.80 -0.50	-0.76 -0.42	-0.80 -0.41	-1.11 -0.34	-0.75 -0.38

*Lower n leads to higher RMSEA **Simplified : covariance between d2-d5 excluded due to failure to converge. ***Increase in df leads to lower RMSEA. ****Basic model (slide 13).

Comparing models: loadings (coefficients)

Marcos Almeida – SEM Models in Health Sciences 2016 Brazilian Stata Users Group Meeting 31

Comparing models: covariance between latent variables

A few caveats – I

- Be aware the GOF tests are "global fit" tests;
- Maximum likelihood ml estimation works well under non-severe departs from normality of distribution and provides the widest array of GOF tests and postestimations;
- Under Likert scales, the option vce(robust) shall be taken into consideration;
- With an important fraction of missing values, the option – mlmv – is suggested so as to avoid listwise deletion and decrease of power;

A few caveats – II

- Evaluating p-values from a chi-square test assumes there is an overidentified model (df >0) to "improve";
- The "best" set of GOF parameters as well as the "ideal" values of each one of the GOF statistics, let alone the relevance, are topics under debate;
- Respecification (or overparameterization) of a model shall be fundamentally based on the rationale, rather than on residuals or GOF tests;
- In this case study, some differences between models may be due to the random sampling.

Closing remarks - I

- Complex and combined questionnaries can be parceled and analysed under SEM models;
- Most GOF tests were somewhat "stable" in spite of a decrease in the sample size;
- Researchers are supposed to present the results under unstandardized and standardized ways;
- Do not be "selective" when presenting GOF tests;
- RMSEA and its upper bound "signalled" earlier a potential lack of fit due to small sample size (but "N" is part of the denominators in the formula).

Closing remarks – II

- Point estimates (for example, those related to the covariance between the latent variables) tended to keep a reasonal level of "stability" when decreasing the sample size;
- Confidence intervals increased, accordingly;
- Under small sample sizes, a more simplified model performed better (and loadings were more similar to the "full" model) than a model with a slighly larger sample size, yet still "complex" in terms of the number of covariances;
- This can be one of the strategies to tackle nonconvergence under short sample size.

References

- The WHOQOL Group. World Health Organization. WHOQOL: measuring quality of life. Geneva: WHO; 1997 (MAS/MNH/PSF/97.4). Also in: http://www.who.int/substance_abuse/research_tools/whoqolbref/en/
- Lipp, M. E. N. & Guevara, A. J. H. 1994. Text in portuguese. Validação empírica do Inventário de Sintomas de Stress. Estudos de Psicologia, 11(3), 43-49.
- Acock, Alan C. 2013. Discovering Structural Equation Modeling Using Stata. Revised edition. StataPress.
- Kline, Rex B. 2016. Principles and Practice of Structural Equation Modeling. Fourth edition. Guilford.
- StataCorp. Structural Equation Modeling Reference Manual. Downloadable at: http://www.stata.com/bookstore/structuralequation-modeling-reference-manual/

Thank you!

Contact:

Marcos Almeida, MD PhD

Email: virtual.596@gmail.com

Marcos Almeida – SEM Models in Health Sciences 2016 Brazilian Stata Users Group Meeting 38