In-kind transfers in Brazil: household consumption and welfare effects

Bruno Toni Palialol

Instituto de Pesquisas Econômicas - USP 2016 Brazilian Stata Users Group meeting

São Paulo 02/12/2016

In-kind transfers in Brazil: household consumption and welfare effects

Bruno Toni Palialol

A B A A B A

Motivation

- In-kind transfers
- Identification strategy
 - 4 Database
- 5 Results
- 6 Welfare considerations
- Policy considerations

- 4 ⊒ →


Motivation

- 2 In-kind transfers
- 3 Identification strategy
- 🕘 Database
- 5 Results
- 6 Welfare considerations

Policy considerations

• • = • • = •

Figure: Millions of workers receiving benefits from PAT

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ の々で

Programa de Alimentacao dos Trabalhadores (PAT)

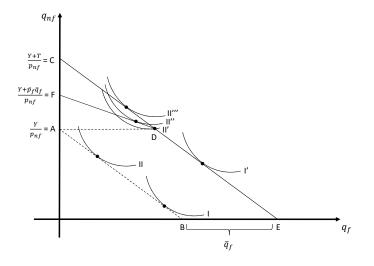
- Created in 1976 aiming to provide nutritionally adequate meals for (low income) workers in order to increase their productivity
- Firms can deduce up to 4% due income tax and benefits are **not salary**
- There are two different ways to implement the program:
 - Self-management: firm provides cooked or non-cooked meals (e.g. restaurants and cesta basica)
 - Outsourcing: firm delegates the above tasks to an specialized firm and/or provides debt cards or coupons that can only be exchanged for food items (vouchers)

Motivation

2 In-kind transfers

3 Identification strategy

🕘 Database

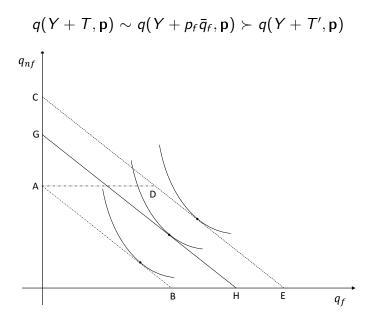

6 Results

6 Welfare considerations

Policy considerations

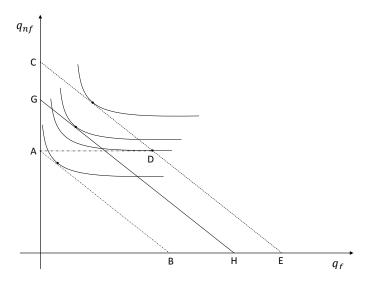
伺い イヨト イヨト

$$D_f(ar{q}_f) = \textit{EM}_f(ar{q}_f) - \textit{NB}_f(ar{q}_f) = q_f^{\textit{In-kind}} - q_f^{\textit{Cash}}$$

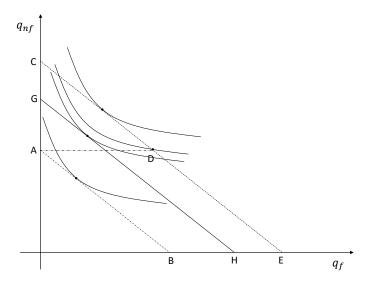

Source: Based on Cunha (2014), own elaboration

≣⇒

æ


Taxes may turn cash transfers worse than in-kind

- For an additional R\$1.00 in salary, firms pay R\$0.48 in taxes
- Workers pay from 8% to 22% in taxes, depending on income level
- So cash transfers are discounted: $T' = (1 \tau)T$
- Discounted cash transfer are not always preferred to in-kind


◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

$$q(Y + T, \mathbf{p}) \succ q(Y + T', \mathbf{p}) \succ q(Y + p_f \bar{q}_f, \mathbf{p})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

$$q(Y + T, \mathbf{p}) \succ q(Y + p_f \bar{q}_f, \mathbf{p}) \succ q(Y + T', \mathbf{p})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Motivation

2 In-kind transfers

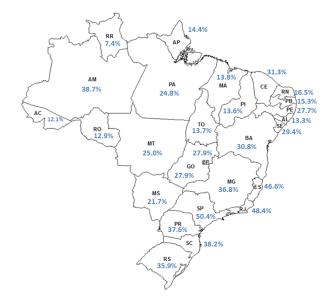
Identification strategy

4 Database

6 Results

6 Welfare considerations

Policy considerations


(B)

Understanding program assignment

$$E[q_{1i}^f - q_{0i}^f | D_i = 1] = E(q_{1i}^f | D_i = 1) - E(q_{0i}^f | D_i = 1)$$

- Factors that affect program assignment must be controlled:
- Firms:
 - 1 Fiscal incentives limit eligibility to big corporations
 - 2 Labor unions pressure for benefits, so sector influence participation
 - Or Providing food may be a firm strategy to raise labor productivity and attract workers in low skilled sectors
- Individuals: preferences towards food may affect job seeking, which is translated in socioeconomic variables

Figure: % of eligible workers receiving benefits from PAT (2014)

Source: MTE (RAIS), own elaboration () (RAIS), own elaboration ()

Table: Percentage of beneficiaries and non-beneficiaries by economic activity

Economic activity	Beneficiaries	Non-Beneficiaries
Services	27%	20%
Industry	25%	16%
Commerce	16%	19%
Education and Health	11%	8%
Construction	10%	12%
Transportation	8%	6%
Agriculture	2%	19%

Table shows percentage of beneficiaries and non-beneficiaries by economic sector. 27% of beneficiaries work with services, while only 20% of non-beneficiaries participate in this sector. Other sectors present a similar tendency, showing their importance in explaining benefit provision.

• Regional, sectoral and socioeconomic variables correct for selection bias:

$$E[q_{1i}^f - q_{0i}^f | D_i = 1, X] = E(q_{1i}^f | D_i = 1, X) - E(q_{0i}^f | D_i = 1, X)$$

And according to Rosenbaum and Rubin (1983):

$$E[q_{1i}^f - q_{0i}^f | D_i = 1, P(X)] = E(q_{1i}^f | D_i = 1, P(X)) - E(q_{0i}^f | D_i = 1, P(X))$$

글 에 에 글 어

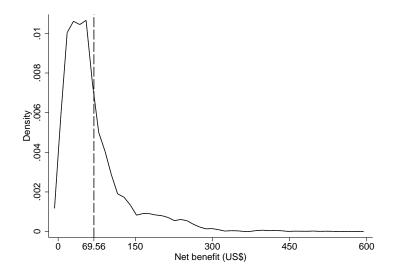
- Distortion is estimated using PSM
- Preferred to other methods because does not require specific functional form, adapts better to nonlinearities and presents strong internal validity
- If X is well specified, balancing is achieved and common support holds, estimates are causal effects of PAT

17/41

Motivation

- In-kind transfers
- 3 Identification strategy
- 4 Database
- 6 Results
- 6 Welfare considerations

Policy considerations

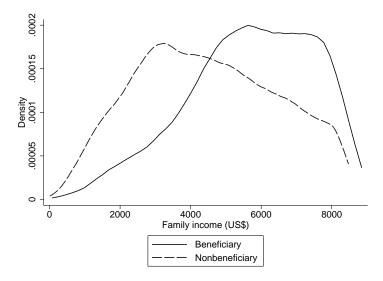

伺い イヨト イヨト

Pesquisa de Orcamentos Familiares - POF

- Household Budget Survey 2008-09
- Provide income, expenses and socioeconomic information for 56,000 Brazilian families
- Conversion: all food items calculated in kg
- All values annualized (annualization factor) and corrected for 2009 R\$ (monetary correction).
- Exchange rate R\$/US\$2.38

A B M A B M

Figure: Family monthly average net benefit (2009 US\$)



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Characteristics	B mean	NB mean	Difference
# dwellers	3.46	3.39	0.06***
Man (%)	70.85	70.50	0.35
Caucasian (%)	54.89	46.09	8.80***
Married (%)	73.10	68.74	4.36***
Literate (%)	97.55	88.34	9.21***
Health insurance (%)	48.17	22.99	25.18***
Age (years)	41.98	43.09	-1.11***
Education (years)	9.15	6.94	2.21***
Annual income (US\$)	1,775.88	978.66	797.22***
Annual per capita income (US\$)	606.84	363.33	243.5***

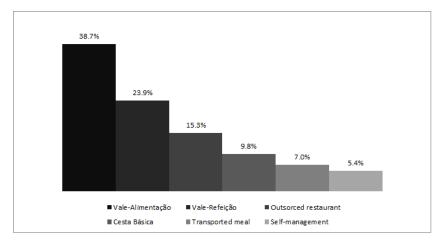

*p<0.1; **p<0.05; ***p<0.01

Table presents beneficiary (B) and nonbeneficiary (NB) mean samples for selected variables. Traditional mean difference test is applied to verify differences among groups. Where (%), difference is in percentual points. Otherwise, it follows variable measure. Figure: Annual income distribution of beneficiary and nonbeneficiary families (2009 US\$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ●

Figure: % of workers receiving each type of benefit (2015). Source: mte.gov.br

◆□> ◆□> ◆三> ◆三> ● 三 のへで

Motivation

- In-kind transfers
- 3 Identification strategy
- 4 Database

6 Welfare considerations

Policy considerations

伺い イヨト イヨト

э

Methodology to estimate benefit distortion

• We need to estimate the following difference:

$$D_f(\bar{q}_f) = q_f^{in-kind} - q_f^{cash} \tag{1}$$

- We do not observe q_f^{cash}
- <u>Strategy</u>: run PSM to control for observables and compare matches in income. Those who not received the benefit but received a higher income that equals the benefit value will be used to estimate \hat{q}_f^{cash}

$$Y_{D=0} = Y_{D=1} + T \Leftrightarrow T = \Delta Y 2 Y_{D=0} = Y_{D=1} + T[1 - \tau\%] \Leftrightarrow T = \Delta Y[1 - \tau\%]$$

- Variables used: regional, sectoral and socioeconomic.
- Favorite specification: #dwellers, education, race, transportation, services, south and north.
- Only formal workers of the private sector were considered for the analysis
- Mahalanobis matching (King and Nielsen (2015)) with replacement and bias correction (Abadie and Imbens (2002)).
- As for Abadie and Imbens (2008), bootstrap estimation of S.E. are usually not valid for matching procedures, so we use the estimator proposed by Abadie and Imbens (2006).

・ 伊 ト ・ ヨ ト ・ ヨ ト …

Table: Estimated distortion effects of PAT benefits on food consumption (in kilograms) with bias correction

	(1)	(2)	(3)	(4)	(5)	(6)
	Full sample	Poor	Rich	Full Sample	Poor	Rich
Benefit	11.23*	30.40**	14.33	14.95**	30.40**	28.34*
	(6.74)	(14.67)	(16.36)	(6.72)	(13.93)	(16.73)
Observations	18,235	3,648	3,625	18,235	3,647	3,625
Controls	YES	YES	YES	YES	YES	YES
Income	1	1	1	2	2	2

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table presents effects of treatment on food consumption in kilograms.

Income 1:
$$Y_{D=0} = Y_{D=1} + T \Leftrightarrow T = \Delta Y$$
.

Income 2: $Y_{D=0} = Y_{D=1} + T[1 - \tau\%] \Leftrightarrow T = \Delta Y[1 - \tau\%].$

Other controls are #dwellers, education, race, transportation, services, south and north. Poor and Rich samples represent, respectively, 20 percent bottom and 20 percent top of income distribution.

- Slight mispecification of the propensity score model can result in substantial bias of estimated treatment effects (Kang and Schafer (2007), Smith and Todd (2005)).
- Idea of an iterative (non discretionary) method inspired in Imai and Ratkovic (2014).
- First step: probit regression indicates which variables will be used for matching (significance used: 1%).
- Second step: eliminate iteratively those variables that we were unable to balance.
- <u>Iterative method</u>: #dwellers, industry, construction, commerce, northeast, southeast.

(長) (モン・モン・

- Consumption excess vary from 5.3% to 8.1% in full sample and from 15.7% to 25.0% for poor. Rich did not present any distortion.
- Poor families welfare depend on their preferences
- Rich are in first-best situation, so program is innocuous for them

	Favorite Specification		Iterative Method						
Benefit	23.21***	12.03	29.05***	10.78					
	(8.89)	(10.32)	(10.08)	(11.54)					
Observations	Observations 10,876 7,359 9,426 6,433								
Controls	YES	YES	YES	YES					
Education	Education 0-8 years 9-15+ years 0-8 years 9-15+ years								
Standard erro	rs in parentl	neses							
*** p<0.01, ** p<0.05, * p<0.1									
Table presents effects of treatment on food									
consumption in kilograms.									
Controls for Favorite Specification: income, education, race,									
#dwellers, transportation, services, south and north.									
Controls for Iterative Method: income, #dwellers, industry,									
construction, commerce, northeast and southeast.									
	《曰》《圖》《圖》《圖》 《圖》 []								

	Favorite Specification		Iterative Method	
Benefit	14.09*	-4.57	26.48**	12.85
	(7.89)	(12.05)	(11.09)	(8.55)
Observations	10,873	6,864	7,030	12,687
Controls	YES	YES	YES	YES
Sector set	A	B	A	B

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table presents effects of treatment on food

consumption in kilograms.

Controls for Favorite Specification: income, education, race, #dwellers, transportation, services, south and north.

Controls for Iterative Method: income, #dwellers, industry,

construction, commerce, northeast and southeast.

Sector set A: services, industry and commerce.

Sector set B education and health, construction,

transportation and agriculture.

- Higher food consumption does not imply better nutrition
- Food is broken into the following categories: cereal and pasta; fuits and vegetables; sugar and candies; meats; nonalcoholic beverages; alcoholic beverages; and industrialized
- Same analysis apply

A = A = A

		Favorite specification	lterative method
	Cereal and pasta	-5.09**	-4.42*
e	Fruits and vegetables	-3.90**	-3.28
npl	Sugar and candies	-1.71*	-1.63
⁻ ull sample	Meat/Chicken/Fish	-1.47	-1.77
In I	Nonalcoholic beverages	2.06	0.78
ш	Alcoholic beverages	1.14	1.56
	Industrialized	1.35	1.56
	Cereal and pasta	7.80	12.63**
	Fruits and vegetables	1.29	3.90
20% poor	Sugar and candies	-1.16	-0.91
фр	Meat/Chicken/Fish	-3.19	-2.29
20,	Nonalcoholic beverages	6.86*	8.01*
••	Alcoholic beverages	0.15	0.14
	Industrialized	5.51	6.61*
	Cereal and pasta	-9.89**	-10.25**
	Fruits and vegetables	-2.41	-4.90
ich	Sugar and candies	-1.11	-1.47
20% rich	Meat/Chicken/Fish	-4.96	-6.95*
20	Nonalcoholic beverages	9.87	2.21
	Alcoholic beverages	4.96*	4.83
	Industrialized	4.92	3.49

*p<0.1; **p<0.05; ***p<0.01

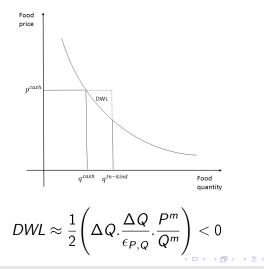
Table measures treatment effect on treated (in kilograms) considering bias correction for seven food categories. Favorite specification includes # dwellers, education, race, transportation, services, south and north dummies. Variables of iterative method are #dwellers industry, construction, commerce, northeast and southeast.

э

- All results are robust to both specifications and types of income
- Method was capable to balance all covariates in all specifications
- Common support holds

Motivation

- In-kind transfers
- 3 Identification strategy
- 🕘 Database
- 6 Results


6 Welfare considerations

Policy considerations

э

Welfare considerations

Figure: Deadweight Loss

In-kind transfers in Brazil: household consumption and welfare effects

Bruno Toni Palialo

Estimating compensated elasticities

• Demand estimation through QUAIDS, augmented to consider demographic variables:

$$w_{i} = \alpha_{i} + \sum_{j=1}^{k} \gamma_{ij} ln p_{j} + (\beta_{i} + \eta_{i}^{'} z) ln \left[\frac{m}{\bar{m}_{0}(z) a(\mathbf{p})} \right] + \frac{\lambda_{i}}{b(\mathbf{p}) c(\mathbf{p}, z)} \left\{ ln \left[\frac{m}{\bar{m}_{0}(z) a(\mathbf{p})} \right] \right\}^{2}$$

- Ray(1983) introduced demographics in AIDS and Poi(2002) extended his work to QUAIDS
- z represents a vector of s characteristics

A = A = A

Table: Deadweight loss associated with distortion in food consumption (US\$)

Sample	Full		20% Poor		
Model specification	Favorite specification	lterative method	Favorite specification	lterative method	
Quantity (Control)	366.1	365.8	233.3	233.8	
Quantity (Treated)	387.0	395.5	282.7	292.3	
Price (US\$ 2015)	2.64	2.65	2.30	2.29	
Comp. price-elasticity	0.385	0.385	0.357	0.357	
DWL per family (US\$)	3.97	7.96	30.50	41.66	
# of families	7,926,638	7,926,638	139,885	139,885	
DWL (US\$ million 2015)	31.46	63.07	4.27	5.83	

Table calculates deadweight associated with distortion in food consumption. For each sample, both favorite and iterative model specifications are considered. Analysis focus in two subsamples: full; and 20% bottom of income distribution. Compensated price-elasticities are calculated for each sample.

Motivation

- In-kind transfers
- 3 Identification strategy
- 🕘 Database
- 5 Results
- 6 Welfare considerations

Policy considerations

伺い イヨト イヨト

э

Results and policy considerations

- Low income families consume more food than desired while rich families are not affected
- Policy alternatives:
 - Allow poor workers decide whether to receive benefits in cash or in-kind
 - 2 Remove benefits from rich and reallocate resources
- Although further analysis is needed, there is no evidence that transfers improve worker's nutritional status
- <u>Conclusion</u>: PAT may be not reaching its objectives
- Deadweight loss associated with distortions reach US\$63.1 (R\$150.2) million annually

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- To the best of our knowledge: first work to evaluate PAT using microeconomic theory and robust impact evaluation framework
- Discuss program impacts on economic welfare, allowing cost-benefit analysis
- Raise evidences to discuss in which extent PAT benefits Brazilian workers
- Policy suggestions for discussion
- State foundations for further research: nutrients, impacts in other economic sectors and government budget