

Abstract:

At last year’s Stata conference, I presented projects that facilitate the combined

use of Stata and Python. One project provides the ability to use Python within

Stata via a C plugin. The other project provides a custom Python class that can be

used to open, modify, and save Stata datasets. In this talk, I will begin by

describing some modifications and extensions to these projects. I will then

present a few new ideas for useful combinations of Stata with other tools. Some

of these ideas can be realized using last year’s Python projects, some using

JavaScript and a web browser.

The past couple years I’ve been playing with the idea of combining Stata with

other software to extend its functionality. I’ve mostly been using the Python

programming language and third-party Python modules.

Last year I demonstrated two Stata/Python projects.

The first project from last year is a plugin for using Python directly in Stata. As

shown here, the python command puts the user in an interactive Python

session.

The second project from last year is a Python package stata_dta, for opening,

modifying, and saving dta files in Python.

Here I use the interactive Python session to demonstrate stata_dta. First I

import the function open_dta, then use that function to create a Python variable

dta containing the information in auto_copy.dta, and then finally call the

describe method on dta. All of this is being done in Python. The variables

panel shows that there is no dataset loaded in Stata.

I’ve made a few changes to last year’s projects. Most of these changes are in line

with making these projects more convenient.

I will demonstrate the new st_mirror() function on the next page.

The Python plugin includes a function st_view, which, like Mata’s st_view,

provides a static view of the Stata dataset. The plugin now includes a function

st_mirror to provide a dynamic view. Here I will demonstrate the difference

In the picture above, no dataset is loaded in Stata. I create Python variable v

using st_view and Python variable m using st_mirror. I query the rows in

each, and for both there are no rows.

Continuing from the last page, here I exit Python, load the auto dataset, and re-

enter Python.

I again query the rows in v and m. Again the view v contains no rows, but m

contains all the rows in the loaded dataset. This is the main difference between

st_view and st_mirror. The number of rows and columns in v is fixed based

on what was loaded when it was created. The number of rows and columns in m

always reflects what is current in Stata.

The last major addition to mention here is the stata_math module.

Documentation for the Python plugin can be found at

https://github.com/jrfiedler/python-in-stata/raw/master/python_plugin.pdf

Now for a few new ideas about extending Stata functionality.

First idea: Add functionality for recording and converting physical units.

To explore this idea, I added on to the stata_dta module described earlier to

create the module units_dta.

Here I import UDta from units_dta, use UDta to open auto_copy.dta, and

call the describe method. (So far, this demonstration matches the

demonstration for stata_dta.)

Notice that in the auto dataset units have been recorded in the variable label.

I will move units out of the variable label and into a dedicated place. One part of

the added functionality is the units_set method. Here (continuing from the

describe on the previous page) I use units_set to say that headroom is

measured in inches and mpg is measured in mpg.

Predicting that I might convert the mpg variable to other units, I change its name

to efficiency.

I could continue setting units on the other variables, but instead I will load a

dataset where that has already been done. Also, I have removed the units

information from the variable labels.

To see what units have been defined, I use the units_list method.

If we go to the trouble of recording units, it might be helpful to be reminded of

them when we use common Stata commands. The units_dta module has a

modified version of summarize that displays units in the second column, as

demonstrated above.

Now suppose you give this dataset to someone outside of the US. They might

prefer that headroom be measured in something other than inches, and they

might prefer efficiency to be measured in something other than mpg.

In the picture above I first called summarize on just headroom and efficiency

(this will be useful in a moment). I then used the units_convert method to

convert the units on headroom from inch to cm and the units on efficiency

from mpg to lp100km (my abbreviation for liters per 100 km). Finally, I called

summarize again to compare to the previous summarize. The labeled units have

changed, but the values in the dataset have also been converted.

Side note: I predefined lp100km in units_dta. If I hadn’t I would first have to

use the method units_define to define it.

As I said earlier, this example was built on top of my stata_dta module. Most of

the work to convert units is done by the Sympy module.

Second idea: A multimedia spreadsheet that allows us to view embedded images

as images, hear embedded audio, etc, in the same spreadsheet as the other

values of our dataset.

In fact, all of us have a rich multimedia viewer on our computers: our web

browsers.

So, to explore this idea I use an html page and a third-party spreadsheet library.

The html page is pictured above.

I click on the “Browse” button, and choose birds.dta, a Stata dataset with

embedded photos and audio.

When the dataset first opens it looks like this. Most of the columns contain plain

text. Notice the third column, photo, which contains binary data. At the moment

the spreadsheet only knows that it’s binary data (Blob = binary large object).

In the header, next to “photo”, I can click to open a menu. The menu includes the

options to decode “as image” or “as audio”.

When I choose to decode as image, the decoded images appear. The images are

small, so I put my mouse over one to show it larger (the cursor is invisible here).

Likewise, the third-from-last column, audio_sample, contains audio, and can be

decoded using the same menu.

When audio_sample is decoded as audio, audio controls appear.

Let’s take this a step further. Here I again clicked on the “Browse” button and

will open another dta file, birds_formatted.dta. This is the exact same

dataset, except that some formatting information has been added.

When birds_formatted.dta is opened, it looks like this. The big changes here

are in the layout and in the fact that images and audio were decoded as such

without the user having to inform the spreadsheet.

The formatting information has specified

1. that photo should be decoded as image and audio_sample as audio

2. layout information

3. text size and formatting

4. links be created from data URLs

5. which data appear in the display and which do not

This kind of functionality opens up the possibility of making automatic,

multimedia slideshow presentations of the Stata dataset.

This example uses the SlickGrid library for its spreadsheet (the vast majority of

the functionality comes from this library), and some custom JavaScript code for

opening dta files (available on my GitHub page, see last slide for URL).

Third and final idea: A new kind of interface for Stata. As a kind of preface, the

benefit I see for this kind of interface is that notebook interfaces are a kind of

editable history of a session. They are simultaneously a log file and a shareable

presentation.

Here is the interface I will be using. Rather than try to define “notebook

interface”, I will demonstrate some of the features of this particular notebook

interface.

Input and output are organized in cells. Above you see the input half of a cell,

waiting for the user’s input.

Here I’ve entered two inputs. The output appears immediately below. So far this

is not much different from Stata’s default interface.

Here we see the first difference. Typically, with notebook interfaces all of the

output appears in the same window. In Stata’s default interface, help files open

in another window. Here the help file appears inline. In a sense, the notebook

interfaces provides a more complete log of a session. In a Stata log you will see

the command for help scatter, but the help file itself will not be there.

Here we see a few more differences. On the last page we opened a help file. If we

plan on sharing this session later, we probably don’t want to advertise that we

forgot how to use the scatter command. Since the interface is an editable

history, we just edit that out.

Here we write over that input with our new input, in this case scatter mpg

weight (notice that the help file began right after the describe output, which is

where our new scatter command is). The new output replaces the old output.

Just like the help file, the graph shows up inline rather than in a new window.

And again, by including the output of the scatter command, this interface is, in

a sense, providing a more complete log of the session.

There are many other features that help this notebook interface be an editable,

shareable history of your session. Cells can be rearranged or removed (in

addition to being written over). You can insert markdown cells for notes or

explanations, and you can include LaTeX.

The majority of the functionality shown here comes from the IPython notebook.

The modified version of log2html was used for converting the help file to html.

