Implementing Quantile Selection Models in Stata

Mariel Siravegna

Ercio Munoz Georgetown University The Graduate Center, CUNY

June 7, 2021

Non-random sample selection is a major issue in empirical work

- A simple sample selection model can be written as the latent model

$$Y^* = X'\beta + \mu$$

but Y^* is only observed if S=1

$$S = \mathbf{1}(Z'\gamma + \nu \ge 0)$$

- Since the seminal work of Heckman (1979), much progress has been made in methods that extend the original model or relax some of its assumptions
- Recently Arellano and Bonhomme (2017) proposed a copula-based method to correct for sample selection in quantile regression

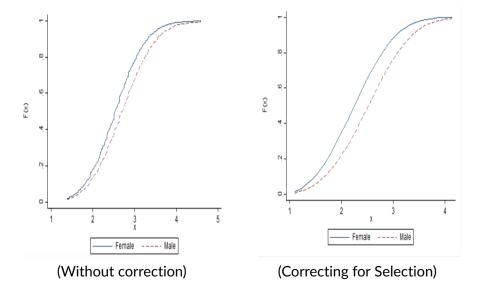
Two Recent Applications

Maasoumi and Wang (JPE 2019)

- In this paper the authors use the CPS between 1976-2013 to see how the gender wage gap vary across the wage distribution

- They assess how selective participation of individuals in the labor market affects the gender gap

Comparison of Female and Male Wage CDF



Bollinger et al. (JPE 2019)

- Survey earnings nonresponse is not random
- In this paper the authors match the survey earnings responses to administrative records to see how response vary across the earnings distribution
- They find that non-response rate follows an U shape across earnings and this produces an underestimation of inequality, which can be corrected using this copula-based approach with survey method as excluded instrument

Bollinger et al. (JPE 2019)

TABLE 7
PERFORMANCE OF SELECTION CORRECTION METHODS
FOR NONRESPONSE IN THE ASEC ON INEQUALITY

Sample	INEQUALITY MEASURES			
	Gini	90-10	90-50	50-10
ASEC	.461	10.099	2.607	3.870
ASEC, only respondents with IPW	.464	10.227	2.641	3.869
ASEC, only respondents with copula ASEC for respondents, DER for	.482	10.521	2.676	3.929
nonrespondents (benchmark)	.477	11.038	2.683	4.112

Sources.—US Census Bureau Current Population Survey, 2006–11 Annual Social and Economic Supplement; Social Security Administration Detailed Earnings Record, 2005–10.

Estimation

Three-step Algorithm of Arellano and Bohnomme (2017)

Given an i.i.d sample (Y_i, Z_i, S_i) , i = 1, ..., N where $Z_i = (X_i, W_i)$ and assuming that quantile functions are linear:

$$q(\tau, x) = x' \beta_{\tau}$$
, for all $\tau \in (0, 1)$ and $x \in X$ (3)

the algorithm is as follows:

- 1. Estimation of the propensity score p(z)
- 2. Estimation of the dependence parameter or degree of selection ρ using this moment restriction:

$$\mathbb{E}[I(Y \leq X'\hat{\beta}_{\tau}) - G(\tau, p(z); \rho) | S = 1, Z = z] = 0$$

Second Step

Taken to the sample by choosing a ρ that minimizes the following objective function:

$$\hat{\rho} = \operatorname{argmin}_{\rho} \| \sum_{i=1}^{N} \sum_{l=1}^{L} S_{i} \varphi_{\tau_{l}}(z_{i}) [\mathbf{I}\{Y_{i} \leq X_{i}' \tilde{\beta}_{\tau_{l}}(\rho)\} - G(\tau_{l}, p(z_{i}'); \rho)] \|$$

where $\|.\|$ is the Euclidean norm, $\tau_1 < \tau_2 < \cdots < \tau_L$ is a finite grid on (0,1), and the instrument functions are defined as $\varphi_{\tau_l}(z_i)$, $G(\tau_l, p(z_i'); \rho)$ is the conditional copula indexed by a parameter ρ , and:

$$ilde{eta}_{ au}(
ho) = \operatorname{argmin}_{eta} \sum_{i=1}^{N} S_i [G_{ au_i}(Y_i - X_i'eta)^+ + (1 - G_{ au,i}(Y_i - X_i'eta)^-]$$

where $a^+ = max\{a, 0\}$, $a^- = max\{-a, 0\}$, and $G_{\tau, i} = G(\tau, p(z); \rho)$.

Third Step

3. Given the estimated $\hat{\rho}$, $\hat{\beta}_{\tau}$ can be estimated by minimizing a rotated check function of the form:

$$\hat{\beta_{\tau}} = \operatorname{argmin}_{\beta} \sum_{i=1}^{N} S_{i} [\hat{G_{\tau,i}} (Y_{i} - X_{i}'\beta)^{+} + (1 - \hat{G_{\tau,i}}) (Y_{i} - X_{i}'\beta)^{-}]$$

where $\hat{\beta}_{\tau}$ will be a consistent estimator of the τ -th quantile regression coefficient.

Note that this step is unnecessary if the researcher is interested on the quantiles included in the finite grid of step 2.

Implementing the method in Stata

Syntax

```
\frac{\texttt{qregsel}}{\texttt{quantile(\#)}} \; \begin{array}{l} \textit{depvar} \left[ \; \textit{indepvars} \; \right] \; \left[ \; \textit{if} \; \right] \; , \; \textit{select(} \left[ \; \textit{depvar}_{\mathcal{S}} = \; \right] \; \; \textit{varlist}_{\mathcal{S}}) \\ \\ \texttt{quantile(\#)} \; \left[ \; \; \texttt{copula(} \textit{copula)} \; \; \underline{\texttt{noc}} \\ \\ \texttt{onstant finergrid coarsergrid rescale nodots} \; \; \right] \end{array}
```

Postestimation

```
predict newvarlist [if] [in]
```

1. A counterfactual outcome variable

2. Binary indicator of selection

Empirical Example

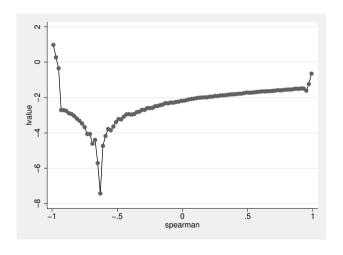
Wages of women used in Heckman command

```
. global wage_eqn wage educ age
. global selegn married children educ age
. qregsel $wage_eqn, select($seleqn) quantile(.1 .5 .9)
Grid for the copula parameter (100)
----t--- 1 ---t--- 2 ---t--- 3 ---t--- 4 ---t--- 5
Quantile selection model
                                                  Number of obs
                                                                            2000
                                                                            1343
                                                  Selected
                                                  Nonselected
                                                                            657
Copula parameter (gaussian):
                                -0.65
        wage
                    Coef.
a10
   education
                 1.112866
                  .204362
         age
       cons
                -8.498507
a50
                 1.017025
   education
         age
                 .2028979
       _cons
                 .5828089
                 .8888879
   education
                 . 2272004
         age
       _cons
                 8.914994
```

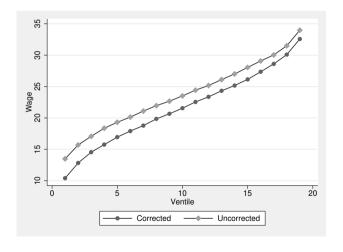
Inference

```
. bootstrap rho=e(rho) _b, reps(100) seed(2) notable: gregsel $wage eqn. ///
          select($selegn) quantile(.1 .5 .9)
(running gregsel on estimation sample)
Bootstrap replications (100)
                                                  Number of obs
                                                                            2,000
Bootstrap results
                                                                              100
                                                  Replications
      command: gregsel wage educ age, select(married children educ age) quantile(.1 .5 .9)
    [ eq4]rho: e(rho)
. estat bootstrap, percentile
Bootstrap results
                                                  Number of obs
                                                                           2,000
                                                                              100
                                                  Replications
      command: gregsel wage educ age, select(married children educ age) quantile(.1 .5 .9)
    [_eq4]rho: e(rho)
                   Observed
                                          Bootstrap
                                          Std. Err. [95% Conf. Interval]
                     Coef.
                                  Riag
q10
   education
                 1.1128663
                             -.0369692
                                          .14707968
                                                       .7483546
                                                                  1.322367
                                                                              (P)
         age
                  .20436202
                             -.0065281
                                          .04903284
                                                       .0912168
                                                                   .2998732
                 -8.4985072
                              .7444134
                                         2.4852059
                                                      -11.27083
                                                                 -2.926636
                                                                              (P)
       _cons
a50
                 1.0170248
                               .009136
                                          .07041415
                                                       .9073696
                                                                  1.155043
   education
                  .20289786
                              .0008091
                                          .02794803
                                                       . 1479627
                                                                   .2588321
                                                                              (P)
         age
                  .58280893
                            -.1804622
                                                      -1.880296
                                                                              (P)
                                         1.3881311
                                                                  2.965075
       cons
q90
                                                       .7735702
   education
                  .88888792
                               .015074
                                          .06247303
                                                                  1.034392
                                                                              (P)
                  .22720039
                             -.0033785
                                          .02609233
                                                       .1670902
                                                                   .2715747
         age
                 8.9149942 -.1022546
                                         1.1223106
                                                      6.964433
                                                                  10.89201
                                                                              (P)
       _cons
_eq4
         rho
                -.64783484 -.0216367
                                         .07354153
                                                     -.8230287 -.5277461
(P)
       percentile confidence interval
```

Grid for minimization



Counterfactual distribution: Corrected versus uncorrected quantiles



Conclusions

Conclusions

- We have introduced a new Stata command that implements a copula-based method to correct for sample selection in quantile regressions proposed in Arellano and Bonhomme (2017)
- This command may be useful for Stata users doing empirical work, as we have illustrated with the case of two recently published papers
- The code is available in our github or within Stata (ssc install gregsel)
- Questions, comments, and suggestions are welcome

References

- Arellano, M., and S. Bonhomme (2017), "Quantile Selection Models with an Application to Understanding Changes in Wage Inequality." Econometrica 85(1)
- Bollinger, C., B. Hirsch, C. Hokayem, and J. Ziliak (2019), "Trouble in the Tails? What We Know about Earnings Nonresponse Thirty Years after Lillard, Smith, and Welch." Journal of Political Economy 127(5).
- Maasoumi, E., and L. Wang (2019), "The Gender Gap between Earnings Distributions." Journal of Political Economy 127(5).
- Munoz, E., and M. Siravegna (2021), "Implementing Quantile Selection Models in Stata."