Estimating and Interpreting Effects for Nonlinear and Nonparametric Models

Enrique Pinzón

September 18, 2018

September 18, 2018

1/112

Objective

- Build a unified framework to ask questions about model estimates
- Learn to apply this unified framework using Stata

(4) (5) (4) (5)

< 4 →

A Brief Introduction to Stata and How I Work

- A look at the Stata Interface
- From dialog boxes to do-files
- Loading your data
 - Excel
 - Delimited (comma, tab, or other)
 - ODBC (open data base connectivity)
 - Fred, SAS, Haver
- "Big data"
 - 120,000 variables 20 billion observations (MP)
 - 32,767 variables 2.14 billion observations (SE)
- Stata resources https://www.stata.com/links/resources-for-learning-stata/

4 **A** N A **B** N A **B** N

A Brief Introduction to Stata and How I Work

- A look at the Stata Interface
- From dialog boxes to do-files
- Loading your data
 - Excel
 - Delimited (comma, tab, or other)
 - ODBC (open data base connectivity)
 - Fred, SAS, Haver
- "Big data"
 - 120,000 variables 20 billion observations (MP)
 - 32,767 variables 2.14 billion observations (SE)
- Stata resources

https://www.stata.com/links/resources-for-learning-stata/

- A TE N - A TE N

Factor variables

- Distinguish between discrete and continuous variables
- Way to create "dummy-variables", interactions, and powers
- Works with most Stata commands

- . import excel apsa, firstrow
- . tabulate d1

. summarize 1.dl

. summarize i.dl

- . import excel apsa, firstrow
- . tabulate d1

d1	Freq.	Percent	Cum.
0 1 2 3 4	2,000 2,000 2,044 2,037 1,919	20.00 20.00 20.44 20.37 19.19	20.00 40.00 60.44 80.81 100.00
Total	10,000	100.00	

. summarize 1.dl

. summarize i.dl

- . import excel apsa, firstrow
- . tabulate d1

d1	Freq.	Percent	Cum.
0 1 2 3 4	2,000 2,000 2,044 2,037 1,919	20.00 20.00 20.44 20.37 19.19	20.00 40.00 60.44 80.81 100.00
Total	10,000	100.00	

. summarize 1.dl

Variable	Obs	Mean	Std. Dev.	Min	Max
 1.d1	10,000	.2	.40002	0	1

. summarize i.dl

- . import excel apsa, firstrow
- . tabulate d1

d1	Freq.	Percent	Cum.
0 1 2 3 4	2,000 2,000 2,044 2,037 1,919	20.00 20.00 20.44 20.37 19.19	20.00 40.00 60.44 80.81 100.00
Total	10,000	100.00	

. summarize 1.dl

Variable	Obs	Mean	Std. Dev.	Min	Max
1.d1	10,000	.2	.40002	0	1

. summarize i.dl

Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1

•	summa	rıze	ıbn.	dΤ

Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
0	10,000	.2	.40002	0	1
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1

. summarize ib2.d1

<ロト <回 > < 回 > < 回 > < 回 > … 回

•	summa	rıze	ıbn.	dΤ

Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
0	10,000	.2	.40002	0	1
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1

. summarize ib2.d1

Variable	Obs	Mean	Std. Dev.	Min	Max
d1 0 1 3	10,000 10,000 10,000	.2 .2 .2037	.40002 .40002 .4027686	0 0 0	1 1 1 1
4	10,000	.1919	.3938145	0	1

2

イロト イヨト イヨト イヨト

. summarize d1##d2

Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1
1.d2	10,000	.4986	.500023	0	1
d1#d2					
1 1	10,000	.1009	.3012113	0	1
2 1	10,000	.1007	.3009461	0	1
3 1	10,000	.1035	.304626	0	1
4 1	10,000	.0922	.2893225	0	1

2

イロト イヨト イヨト イヨト

. summarize c.x1##c.x1 c.x1#c.x2 c.x1#i.d1, separator(4)

Variable	Obs	Mean	Std. Dev.	Min	Max
x1	10,000	.0110258	.9938621	-4.095795	3.714316
c.x1#c.x1	10,000	.9877847	1.416602	4.18e-09	16.77553
c.x1#c.x2	10,000	.000208	1.325283	-7.469295	6.45778
dl#c.xl 1 2 3 4	10,000 10,000 10,000 10,000	.0044334 .0008424 .0025783 0014739	.4516058 .4432188 .4533505 .4379122	-3.021819 -4.095795 -3.374062 -3.161604	3.286315 3.178586 3.428311 3.714316

э

イロト イポト イヨト イヨト

- We usually model an outcome of interest, *Y*, conditional on covariates of interest *X*:
 - $E(Y|X) = X\beta$ (regression)
 - $E(Y|X) = \exp(X\beta)$ (poisson)
 - $E(Y|X) = P(Y|X) = \Phi(X\beta)$ (probit)
 - $E(Y|X) = P(Y|X) = [\exp(X\beta)][1\iota + \exp(X\beta)]^{-1}$ (logit)
 - E(Y|X) = g(X) (nonparametric regression)

A (10) A (10)

- We usually model an outcome of interest, *Y*, conditional on covariates of interest *X*:
 - $E(Y|X) = X\beta$ (regression)
 - $E(Y|X) = \exp(X\beta)$ (poisson)
 - $E(Y|X) = P(Y|X) = \Phi(X\beta)$ (probit)
 - $E(Y|X) = P(Y|X) = [\exp(X\beta)][1\iota + \exp(X\beta)]^{-1}$ (logit)
 - E(Y|X) = g(X) (nonparametric regression)

A (10) A (10)

- We usually model an outcome of interest, *Y*, conditional on covariates of interest *X*:
 - $E(Y|X) = X\beta$ (regression)
 - $E(Y|X) = \exp(X\beta)$ (poisson)
 - $E(Y|X) = P(Y|X) = \Phi(X\beta)$ (probit)
 - $E(Y|X) = P(Y|X) = [\exp(X\beta)] [1\iota + \exp(X\beta)]^{-1} (\text{logit})$
 - E(Y|X) = g(X) (nonparametric regression)

A (10) A (10)

- We usually model an outcome of interest, *Y*, conditional on covariates of interest *X*:
 - $E(Y|X) = X\beta$ (regression)
 - $E(Y|X) = \exp(X\beta)$ (poisson)
 - $E(Y|X) = P(Y|X) = \Phi(X\beta)$ (probit)
 - $E(Y|X) = P(Y|X) = [\exp(X\beta)][1\iota + \exp(X\beta)]^{-1}$ (logit)
 - E(Y|X) = g(X) (nonparametric regression)

イベト イモト イモト

Questions

Population averaged

- Does a medicaid expansion improve health outcomes ?
- What is the effect of a minimum wage increase on employment ?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew ?

At a point

- What is the effect of loosing weight for a 36 year, overweight hispanic man?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew, for a large city, in the southwest of the United States ?

< 回 > < 三 > < 三 >

Questions

Population averaged

- Does a medicaid expansion improve health outcomes ?
- What is the effect of a minimum wage increase on employment ?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew ?

At a point

- What is the effect of loosing weight for a 36 year, overweight hispanic man?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew, for a large city, in the southwest of the United States ?

< 回 > < 回 > < 回 >

Questions

Population averaged

- Does a medicaid expansion improve health outcomes ?
- What is the effect of a minimum wage increase on employment ?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew ?

At a point

- What is the effect of loosing weight for a 36 year, overweight hispanic man?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew, for a large city, in the southwest of the United States ?

A B b 4 B b

What are the answers?

æ

イロト イヨト イヨト イヨト

A linear model

$$y = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_1^2\beta_3 + x_2^2\beta_4 + x_1x_2\beta_5 + d_1\beta_6 + d_2\beta_7 + d_1d_2\beta_8 + x_2d_1\beta_9 + \varepsilon$$

x₁ and x₂ are continuous, d₂ is binary, and d₁ has 5 categories.
There are interactions of continuous and categorical variables
This is simulated data

A linear model

$$y = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_1^2\beta_3 + x_2^2\beta_4 + x_1x_2\beta_5 + d_1\beta_6 + d_2\beta_7 + d_1d_2\beta_8 + x_2d_1\beta_9 + \varepsilon$$

- x₁ and x₂ are continuous, d₂ is binary, and d₁ has 5 categories.
 There are interactions of continuous and categorical variables
- This is simulated data

Regression results

. regress vr c.x1##c.x2 c.x1#c.x1 c.x2#c.x2 i.d1##i.d2 c.x2#i.d1 Source SS df MS Number of obs = 10,000 F(18, 9981) 388.10 = Model 335278.744 18626.5969 Prob > F 0.0000 18 = Residual 479031.227 9,981 47.9943119 R-squared 0.4117 = Adi R-squared 0.4107 = Total 814309.971 9,999 81.439141 Root MSE = 6.9278 yr Coef. Std. Err. P>|t| [95% Conf. Interval] t x1 -1.04884.1525255 -6.88 0.000 -1.347821-.74985930.339 x2 .4749664 .4968878 0.96 -.4990339 1.448967 c.x1#c.x2 1.06966 .1143996 9.35 0.000 .8454139 1.293907 c.x1#c.x1 -1.061312.048992 -21.66 0.000 -1.157346-.9652779 c.x2#c.x2 1.177785 7.04 0.000 .849748 .1673487 1.505822 d1 -1.504705.5254654 -2.86 0.004 -2.534723 -.4746865 -3.727184.5272623 -7.07 0.000 -4.760725-2.693644-6.522121 .5229072 -12.47 0.000 -7.547125 -5.497118 4 -8.80982.5319266 -16.56 0.000 -9.852503-7.767136 1.d2 1.615761 .3099418 5.21 0.000 1.008212 2,223309 d1#d2 1 1 -3.649372 .4383277 -8.33 0.000 -4.508582 -2.790161 2 1 -5.994454.435919 -13.750.000 -6.848943 -5.1399653 1 -8.457034.4364173 -19.38 0.000 -9.3125-7.6015684 1 -11.04842.4430598 -24.940.000 -11.9169-10.17993d1#c.x2 1.11805 .3626989 3.08 0.002 .4070865 1.829013 2 1.918298 5.34 0.000 1.214149 2.622448 3 3.484255 .3594559 9.69 0.000 2.779649 4.188861 4 4.260699 .362315 11.76 0.000 3.550488 4.970909

September 18, 2018

13/112

Effects: x₂

Suppose we want to study the marginal effect of x_2

 $\frac{\partial E\left(y|x_1,x_2,d_1,d_2\right)}{\partial x_2}$

This is given by

$$\frac{\partial E(y|x_1, x_2, d_1, d_2)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- I can compute this effect for every individual in my sample and then average to get a population averaged effect
- I could evaluate this conditional on values of the different covariates, or even values of importance for x₂

< ロ > < 同 > < 回 > < 回 >

Effects: x₂

Suppose we want to study the marginal effect of x_2

 $\frac{\partial E\left(y|x_1,x_2,d_1,d_2\right)}{\partial x_2}$

This is given by

$$\frac{\partial E\left(y|x_1, x_2, d_1, d_2\right)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- I can compute this effect for every individual in my sample and then average to get a population averaged effect
- I could evaluate this conditional on values of the different covariates, or even values of importance for x₂

イベト イモト イモト

. regress, co Source	oeflegend SS	df	MS	Number of obs	=	10,000
Model Residual	335278.744 479031.227	18 9,981	18626.5969 47.9943119	F(18, 9981) Prob > F R-squared	= =	388.10 0.0000 0.4117
Total	814309.971	9,999	81.439141	Adj R-squared Root MSE	=	0.4107 6.9278
yr	Coef.	Legend				
x1 x2	-1.04884 .4749664	_b[x1] _b[x2]				
c.x1#c.x2	1.06966	_b[c.x1#c.	x2]			
c.x1#c.x1	-1.061312	_b[c.x1#c.	x1]			
c.x2#c.x2	1.177785	_b[c.x2#c.	x2]			
d1 1 2 3 4	-1.504705 -3.727184 -6.522121 -8.80982	_b[1.d1] _b[2.d1] _b[3.d1] _b[4.d1]				
1.d2	1.615761	_b[1.d2]				
d1#d2 1 1 2 1 3 1 4 1	-3.649372 -5.994454 -8.457034 -11.04842	_b[1.d1#1. _b[2.d1#1. _b[3.d1#1. _b[4.d1#1.	d2] d2]			
d1#c.x2 1 2 3 4	1.11805 1.918298 3.484255 4.260699	_b[1.d1#c. _b[2.d1#c. _b[3.d1#c. _b[4.d1#c.	x2] x2]	< • • • < 6	₽ ► ∢	문 (문)

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

. list dydx2 in 1/10, sep(0)

	dydx2
1.	4.6587219
2.	4.3782089
3.	7.8509027
4.	10.018247
5.	7.4219045
6.	7.2065007
7.	3.6052012
8.	5.4846114
9.	6.3144353
10.	5.9827419

[.] summarize dydx2

æ

イロト イポト イヨト イヨト

. list dydx2 in 1/10, sep(0)

	dydx2
1.	4.6587219
2. 3. 4.	7.8509027 10.018247
5. 6.	7.4219045
7. 8.	3.6052012
9. 10.	6.3144353 5.9827419

[.] summarize dydx2

Variable	Obs	Mean	Std. Dev.	Min	Max
dydx2	10,000	5.43906	2.347479	-2.075498	12.90448

æ

イロト イポト イヨト イヨト

margins

- A way to compute effects of interest and their standard errors
- Fundamental to construct our unified framework
- Consumes factor variable notation
- Operates over Stata predict, $\widehat{E(Y|X)} = X\widehat{\beta}$

margins, dydx(*)

. margins,	dydx(x2)			
Average marg Model VCE		Number of obs	=	10,000
Expression dy/dx w.r.t.	: Linear prediction, predict() : x2			
	Delta-method			

	dy/dx	Std. Err.	t	P> t	[95% Conf.	Interval]
x2	5.43906	.1188069	45.78	0.000	5.206174	5.671945

• Expression, default prediction $E(Y|X) = X\beta$

- This means you could access other Stata predictions
- Or any function of the coefficients
- Delta method is the way the standard errors are computed

- A TE N - A TE N

Expression

<pre>> _b[c.x1#c.x2 > _b[1.d1#c.x2 > _b[3.d1#c.x2 Warning: expression</pre>	2]*1.d1 + _b[: 2]*3.d1 + _b[: ession() does	p[c.x2#c.x2] 2.d1#c.x2]*2 4.d1#c.x2]*4	.d1 + .d1)			Í.	
Predictive margins Model VCE : OLS				Number	of obs =	10,000	
Expression : _b[c.x2] + _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + _b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1							
		Delta-method Std. Err.		₽> z	[95% Conf	. Interval]	
_cons	5.43906	.1188069	45.78	0.000	5.206202	5.671917	

2

<ロ> <四> <ヨ> <ヨ>

Delta Method and Standard Errors

We get our standard errors from the central limit theorem.

$$\widehat{\beta} - \beta \xrightarrow{d} N(0, V)$$

We can get standard errors for any smooth function g() of $\hat{\beta}$ with

$$g\left(\widehat{eta}
ight)-g\left(eta
ight)\stackrel{d}{
ightarrow}N\left(0,g'\left(eta
ight)'Vg'\left(eta
ight)
ight)$$

Effect of x₂: revisited

$$\frac{\partial \mathcal{E}\left(y|x_1, x_2, d_1, d_2\right)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- We averaged this function but could evaluate it at different values of the covariates for example:
 - What is the average marginal effect of x₂ for different values of d₁
 - What is the average marginal effect of x₂ for different values of d₁ and x₁

4 3 5 4 3 5

Effect of x_2 : revisited

$$\frac{\partial E(y|x_1, x_2, d_1, d_2)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- We averaged this function but could evaluate it at different values of the covariates for example:
 - ▶ What is the average marginal effect of x₂ for different values of d₁
- Counterfactual: What if everyone in the population had a level of $d_1 = 0$. What if $d_1 = 1, ...$
Effect of x₂: revisited

$$\frac{\partial E(y|x_1, x_2, d_1, d_2)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- We averaged this function but could evaluate it at different values of the covariates for example:
 - ▶ What is the average marginal effect of x₂ for different values of d₁
- Counterfactual: What if everyone in the population had a level of d₁ = 0. What if d₁ = 1, ...

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2

generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]

generate double dydx2_d12 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[2.d1#c.x2]

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2

generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]

generate double dydx2_d12 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[2.d1#c.x2]

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2

generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]

generate double dydx2_d12 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[2.d1#c.x2]

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2

generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]

generate double dydx2_d12 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[2.d1#c.x2]

Average marginal effect of x_2 at counterfactuals: manually

summarize	

Variable	Obs	Mean	Std. Dev.	Min	Max
dydx2_d10 dydx2_d11 dydx2_d12 dydx2_d13 dydx2_d14	10,000 10,000 10,000 10,000 10,000	3.295979 4.414028 5.214277 6.780233 7.556677	1.7597 1.7597 1.7597 1.7597 1.7597 1.7597	-2.411066 -1.293017 4927681 1.073188 1.849632	9.288564 10.40661 11.20686 12.77282 13.54926

크

Average marginal effect of x₂ at counterfactuals: margins

. margins dl, dydx(x2)			
Average marginal effects	Number of obs	=	10,000
Model VCE : OLS			
Expression : Linear prediction, predict()			
dy/dx w.r.t. : x2			

		I dy/dx	Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
x2							
	d1						
	0	3.295979	.2548412	12.93	0.000	2.796439	3.795519
	1	4.414028	.2607174	16.93	0.000	3.90297	4.925087
	2	5.214277	.2575936	20.24	0.000	4.709342	5.719212
	3	6.780233	.2569613	26.39	0.000	6.276537	7.283929
	4	7.556677	.2609514	28.96	0.000	7.04516	8.068195

Graphically: marginsplot

September 18, 2018 27/112

2

3 > 4 3

Thou shalt not be fooled by overlapping confidence intervals

$$Var(a-b) = Var(a) + Var(b) - 2Cov(a,b)$$

- You have Var (a) and Var (b)
- You do not have 2*Cov*(*a*, *b*)

э

The Sec. 74

Thou shalt not be fooled by overlapping confidence intervals

```
. margins ar.dl, dydx(x2) contrast(nowald)
Contrasts of average marginal effects
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2
```

	Contrast l dy/dx	Delta-method Std. Err.	[95% Conf.	Interval]
x2				
d1				
(1 vs 0)	1.11805	.3626989	.4070865	1.829013
(2 vs 1)	.8002487	.3638556	.0870184	1.513479
(3 vs 2)	1.565956	.3603585	.859581	2.272332
(4 vs 3)	.7764441	.3634048	.0640974	1.488791

3

(日)

Thou shalt not be fooled by overlapping confidence intervals

September 18, 2018 30/112

3 × 4 3

Effect of x₂: revisited

$$\frac{\partial E\left(y|x_1, x_2, d_1, d_2\right)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- We averaged this function but could evaluate it at different values of the covariates for example:
 - What is the average marginal effect of x₂ for different values of d₁ and x₁

Effect of x₂: revisited

margins d1, dydx(x2) at (x1=(-3(.5)4))

3

A B b 4 B b

$$\frac{\partial E(y|.)}{\partial x_2}$$

- This is our object of interest
- By definition it is the change in *E*(*y*|.) for an infinitesimal change in *x*₂
- Sometimes people talk about this as a unit change in x₂

$$\frac{\partial E(y|.)}{\partial x_2}$$

- This is our object of interest
- By definition it is the change in *E*(*y*|.) for an infinitesimal change in *x*₂
- Sometimes people talk about this as a unit change in x₂

. margins, dydx(x2)
Average marginal effects Number of obs = 10,000
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2

		Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
x2	5.43906	.1188069	45.78	0.000	5.206174	5.671945

- . quietly predict double xb0
- . quietly replace $x^2 = x^2 + 1$
- . quietly predict double xb1
- . generate double diff = xb1 xb0
- . summarize diff

э.

(日)

. margins, dydx(x2)
Average marginal effects Number of obs = 10,000
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2

		Delta-method Std. Err.		P> t	[95% Conf.	Interval]
x2	5.43906	.1188069	45.78	0.000	5.206174	5.671945

- . quietly predict double xb0
- . quietly replace $x^2 = x^2 + 1$
- . quietly predict double xb1
- . generate double diff = xb1 xb0
- . summarize diff

Variable	Obs	Mean	Std. Dev.	Min	Max
diff	10,000	6.616845	2.347479	8977125	14.08226

э.

< 日 > < 同 > < 回 > < 回 > < □ > <

Predictive man Model VCE Expression 1at	: (x2 = generat rgins : OLS : Linear pred: : x2 : x2		-	te(x2+1)) Number		10,000
		Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
_at 1 2	599745 6.0171	.0692779	-8.66 31.52	0.000	7355437 5.642859	4639463 6.39134

. margins, at (x2 = generate(x2)) at (x2=generate(x2+1)) contrast(at(r) nowald) Contrasts of predictive margins

. summarize diff

Predictive man Model VCE Expression 1at	(x2 = generat rgins : OLS : Linear pred: : x2 : x2		2	te(x2+1)) Number	of obs =	10,000
		Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
_at 1 2	599745 6.0171	.0692779	-8.66 31.52	0.000	7355437 5.642859	4639463 6.39134

. margins, at (x2 = generate(x2)) at (x2=generate(x2+1)) contrast(at(r) nowald) Contrasts of predictive margins Model VCE : OLS Expression : Linear prediction, predict() 1_at : x2 = x2 2_at : x2 = x2+1

		Delta-method Std. Err.	[95% Conf.	Interval]
(2 vs 1)	6.616845	.1779068	6.268111	6.965578

Predictive man Model VCE Expression 1at	(x2 = genera rgins : OLS : Linear pred : x2 : x2		2	ce(x2+1)) Number		10,000
		Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
_at 1 2	599745 6.0171	.0692779	-8.66 31.52	0.000	7355437 5.642859	4639463 6.39134

. margins, at(x2 = generate(x2)) at(x2=generate(x2+1)) contrast(at(r) nowald) Contrasts of predictive margins Model VCE : OLS Expression : Linear prediction, predict() 1. at : x2 = x2 2._at : x2 $= x^{2+1}$ Delta-method [95% Conf. Interval] Contrast Std. Err.

a.t				
_au				
(2 179 1)	6 616845	.1779068	6 269111	6 965578
(Z VS I)	0.010040	.1//5000	0.200111	0.903370

. summarize diff

Variable	Obs	Mean	Std. Dev.	Min	Max
diff	10,000	6.616845	2.347479	8977125	14.08226

Ask a different question

- Marginal effects have a meaning in some contexts but are misused
- It is difficult to interpret infinitesimal changes but we do not need to
- We can ask about meaningful questions by talking in units that mean something to the problem we care about

A 10 percent increase in x₂

```
. margins, at (x2 = generate(x2)) at (x2=generate(x2*1.1)) ///
                  contrast(at(r) nowald)
>
Contrasts of predictive margins
Model VCE
            : OLS
Expression : Linear prediction, predict()
1. at
            : x2
                              = x2
2. at
             : x2
                              = x2 \times 1.1
                         Delta-method
                Contrast Std. Err.
                                         [95% Conf. Interval]
        at
   (2 vs 1)
                .7562394 .0178679
                                         .7212147
                                                      .791264
```

э.

< 日 > < 同 > < 回 > < 回 > < □ > <

What we learned

$$\frac{\partial E(y|x_1, x_2, d_1, d_2)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

September 18, 2018

38/112

- Population averaged
- Counterfactual values of d₁
- Counterfactual values for d₁ and x₁
- Exploring a fourth dimensional surface

What we learned

$$\frac{\partial E(y|x_1, x_2, d_1, d_2)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

September 18, 2018

38/112

- Population averaged
- Counterfactual values of d₁
- Counterfactual values for d₁ and x₁
- Exploring a fourth dimensional surface

Discrete covariates

$$E(Y|d = d_1,...) - E(Y|d = d_0,...)$$

...
 $E(Y|d = d_k,...) - E(Y|d = d_0,...)$

- The effect is the difference of the object of interest evaluated at the different levels of the discrete covariate relative to a base level
- It can be interpreted as a treatment effect

A B b 4 B b

. margins d1

Predictive margins Model VCE : OLS Number of obs = 10,000

LIOUCT VCH	•	010		
Expression	:	Linear	prediction,	predict()

	Margin	Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
d1 0 1 2 3 4	3.77553 1.784618 6527544 -2.807997 -5.461784	.1550097 .1550841 .1533701 .1535468 .1583201	24.36 11.51 -4.26 -18.29 -34.50	0.000 0.000 0.000 0.000 0.000	3.47168 1.480622 9533906 -3.10898 -5.772123	4.079381 2.088614 3521181 -2.507014 -5.151445

. margins r.dl, contrast(nowald)

- Contrasts of predictive margins
- Model VCE : OLS

Expression : Linear prediction, predict()

. margins dl

Predictive margins

Number of obs = 10,000

Expression	:	Linear	prediction,	predict()
MODEL VCE	•	OT2		

	Margin	Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
d1 0 1 2 3 4	3.77553 1.784618 6527544 -2.807997 -5.461784	.1550097 .1550841 .1533701 .1535468 .1583201	24.36 11.51 -4.26 -18.29 -34.50	0.000 0.000 0.000 0.000 0.000	3.47168 1.480622 9533906 -3.10898 -5.772123	4.079381 2.088614 3521181 -2.507014 -5.151445

. margins r.dl, contrast(nowald)

- Contrasts of predictive margins
- Model VCE : OLS

Expression : Linear prediction, predict()

	I Contrast	Delta-method Std. Err.	[95% Conf.	Interval]
d1 (1 vs 0) (2 vs 0) (3 vs 0) (4 vs 0)	-1.990912 -4.428285 -6.583527 -9.237314	.2193128 .2180388 .2182232 .2215769	-2.420809 -4.855685 -7.011289 -9.671649	-1.561015 -4.000884 -6.155766 -8.802979

. margins r.dl, contrast(nowald) Contrasts of predictive margins Model VCE : OLS Expression : Linear prediction, predict()

	Contrast	Delta-method Std. Err.	[95% Conf.	Interval]
d1 (1 vs 0) (2 vs 0) (3 vs 0) (4 vs 0)	-1.990912 -4.428285 -6.583527 -9.237314	.2193128 .2180388 .2182232 .2215769	-2.420809 -4.855685 -7.011289 -9.671649	-1.561015 -4.000884 -6.155766 -8.802979

. margins, dydx(dl) Average marginal effects Number of obs = 10,000 Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : 1.dl 2.dl 3.dl 4.dl

	dy/dx	Delta-method Std. Err.	t	P> t	[95% Conf.	. Interval]
d1 1 2 3 4	-1.990912 -4.428285 -6.583527 -9.237314	.2193128 .2180388 .2182232 .2215769	-9.08 -20.31 -30.17 -41.69	0.000 0.000 0.000 0.000	-2.420809 -4.855685 -7.011289 -9.671649	-1.561015 -4.000884 -6.155766 -8.802979

Note: dy/dx for factor levels is the discrete change from the base level.

. margins r.dl, contrast(nowald) Contrasts of predictive margins Model VCE : OLS Expression : Linear prediction, predict()

	Contrast	Delta-method Std. Err.	[95% Conf.	Interval]
d1 (1 vs 0) (2 vs 0) (3 vs 0) (4 vs 0)	-1.990912 -4.428285 -6.583527 -9.237314	.2193128 .2180388 .2182232 .2215769	-2.420809 -4.855685 -7.011289 -9.671649	-1.561015 -4.000884 -6.155766 -8.802979

. margins, dydx(dl) Average marginal effects Number of obs = 10,000 Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : 1.dl 2.dl 3.dl 4.dl

	dy/dx	Delta-method Std. Err.	t	P> t	[95% Conf.	. Interval]
d1 1 2 3 4	-1.990912 -4.428285 -6.583527 -9.237314	.2193128 .2180388 .2182232 .2215769	-9.08 -20.31 -30.17 -41.69	0.000 0.000 0.000 0.000	-2.420809 -4.855685 -7.011289 -9.671649	-1.561015 -4.000884 -6.155766 -8.802979

Note: dy/dx for factor levels is the discrete change from the base level.

æ

イロト イヨト イヨト イヨト

Effect of d_1 for x_2 counterfactuals

margins, dydx(d1) at(x2=(0(.5)3))
marginsplot, recastci(rarea) ciopts(fcolor(%30))

3 > 4 3

Effect of d_1 for x_2 and d_2 counterfactuals

margins 0.d2, dydx(d1) at(x2=(0(.5)3))
margins 1.d2, dydx(d1) at(x2=(0(.5)3))
marginsplot, recastci(rarea) ciopts(fcolor(%30))

September 18, 2018 44/112

Effect of x_2 and d_1 or x_2 and x_1

- We can think about changes of two variables at a time
- This is a bit trickier to interpret and a bit trickier to compute
- margins allows us to solve this problem elegantly

A change in x_2 and d_1

. margins r.dl, dydx(x2) contrast(nowald) Contrasts of average marginal effects Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : x2

	Contrast 1 dy/dx	Delta-method Std. Err.	[95% Conf.	Interval]
x2				
d1				
(1 vs 0)	1.11805	.3626989	.4070865	1.829013
(2 vs 0)	1.918298	.3592232	1.214149	2.622448
(3 vs 0)	3.484255	.3594559	2.779649	4.188861
(4 vs 0)	4.260699	.362315	3.550488	4.970909

э

イロン イ理 とく ヨン イヨン

A change in d_1 and d_2

. margins r.dl, dydx(d2) contrast(nowald) Contrasts of average marginal effects Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : 1.d2

		elta-method Std. Err.	[95% Conf.	[Interval]
0.d2	(base outco	ome)		
1.d2 d1 (1 vs 0) (2 vs 0) (3 vs 0) (4 vs 0)	-3.649372 -5.994454 -8.457034 -11.04842	.4383277 .435919 .4364173 .4430598	-4.508582 -6.848943 -9.3125 -11.9169	-2.790161 -5.139965 -7.601568 -10.17993

Note: dy/dx for factor levels is the discrete change from the base level.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A change in x_2 and x_1

. margins, expression(_b[c.x2] + > _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + 111 > b[1.d1#c.x2]*1.d1 + b[2.d1#c.x2]*2.d1 + 111 > _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1) > dydx(x1) Warning: expression() does not contain predict() or xb(). Number of obs Average marginal effects 10,000 = Model VCE : OLS Expression : _b[c.x2] + _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + _b[1.d1#c.x2]*1.d1 + b[2.d1#c.x2]*2.d1 + b[3.d1#c.x2]*3.d1 + b[4.d1#c.x2]*4.d1 dy/dx w.r.t. : x1

		Delta-method Std. Err.		₽> z	[95% Conf.	Interval]
x1	1.06966	.1143996	9.35	0.000	.8454411	1.293879
Framework

• An object of interest, E(Y|X)

- Questions
 - $\blacktriangleright \quad \frac{\partial E(Y|X)}{\partial x_i}$
 - $= E(Y|d = d_{level}) E(Y|d = d_{base})$
 - Both
 - Second order terms, double derivatives
- Explore the surface
 - Population averaged
 - Effects at fixed values of covariates (counterfactuals)

< 回 > < 三 > < 三 >

Framework

- An object of interest, E(Y|X)
- Questions
 - $\blacktriangleright \frac{\partial E(Y|X)}{\partial x_{k}}$
 - $= E(Y|d = d_{level}) E(Y|d = d_{base})$
 - Both
 - Second order terms, double derivatives
- Explore the surface
 - Population averaged
 - Effects at fixed values of covariates (counterfactuals)

(4) (5) (4) (5)

Framework

- An object of interest, E(Y|X)
- Questions
 - $\blacktriangleright \frac{\partial E(Y|X)}{\partial x_{i}}$
 - $= E(Y|d = d_{level}) E(Y|d = d_{base})$
 - Both
 - Second order terms, double derivatives
- Explore the surface
 - Population averaged
 - Effects at fixed values of covariates (counterfactuals)

Binary outcome models

The data generating process is given by:

$$y = \begin{cases} 1 & \text{if } y^* = x\beta + \varepsilon > 0 \\ 0 & \text{otherwise} \end{cases}$$

- We make an assumption on the distribution of ε, f_ε
 - Probit: ɛ follows a standard normal distribution
 - Logit: ε follows a standard logistic distribution
 - By construction $P(y = 1|x) = F(x\beta)$

This gives rise to two models:

If F (.) is the standard normal distribution we have a Probit
 If F (.) is the logistic distribution we have a Logit model

•
$$P(y = 1 | x) = E(y | x)$$

A (10) A (10)

Binary outcome models

The data generating process is given by:

$$y = \begin{cases} 1 & \text{if } y^* = x\beta + \varepsilon > 0 \\ 0 & \text{otherwise} \end{cases}$$

- We make an assumption on the distribution of ε, f_ε
 - Probit: ɛ follows a standard normal distribution
 - Logit: ε follows a standard logistic distribution
 - By construction $P(y = 1|x) = F(x\beta)$
- This gives rise to two models:

If F(.) is the standard normal distribution we have a Probit
 If F(.) is the logistic distribution we have a Logit model

• P(y = 1|x) = E(y|x)

-

・ 同 ト ・ ヨ ト ・ ヨ ト …

Binary outcome models

The data generating process is given by:

$$y = \begin{cases} 1 & \text{if } y^* = x\beta + \varepsilon > 0 \\ 0 & \text{otherwise} \end{cases}$$

- We make an assumption on the distribution of ε, f_ε
 - Probit: ɛ follows a standard normal distribution
 - Logit: ε follows a standard logistic distribution
 - By construction $P(y = 1|x) = F(x\beta)$
- This gives rise to two models:

If F(.) is the standard normal distribution we have a Probit
 If F(.) is the logistic distribution we have a Logit model

•
$$P(y = 1|x) = E(y|x)$$

イベト イモト イモト

Effects

• The change in the conditional probability due to a change in a covariate is given by

$$\frac{\partial P(y|x)}{\partial x_k} = \frac{\partial F(x\beta)}{\partial x_k} \beta_k$$
$$= f(x\beta) \beta_k$$

- This implies that:
 - The value of the object of interest depends on x
 - The β coefficients only tell us the sign of the effect given that f(xβ) > 0 almost surely
- For a categorical variable (factor variables)

$$F(x\beta|d=d_l)-F(x\beta|d=d_0)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Coefficient table

. probit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1, nolog

Probit regression Log likelihood = -5453.1739					of obs = (16) = chi2 = R2 =	10,000 2942.75 0.0000 0.2125
ypr	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
x1 x2	3271742 .3105438	.0423777 .023413	-7.72 13.26	0.000	4102329 .2646551	2441155 .3564325
c.x1#c.x2	.3178514	.0258437	12.30	0.000	.2671987	.3685041
d1 1 2 3 4 1.d2 d1#d2 1 1 2 1 3 1 4 1	2927285 6605838 9137215 -1.27621 .2822199 .2547359 .6621119 .8471544 1.26051	.057665 .0593125 .0647033 .0718132 .057478 .0818174 .0839328 .0893541 .0999602	-5.08 -11.14 -14.12 -17.77 4.91 3.11 7.89 9.48 12.61	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	4057498 7768342 -1.040538 -1.416961 .1695651 .0943767 .4976066 .6720237 1.064592	1797072 544333 7869054 -1.135459 .3948747 .4150951 .8266171 1.022285 1.456429
d1#c.x1 1 2 3 4	2747025 5640486 9452172 -1.220619	.0422351 .0452423 .0512391 .0608755	-6.50 -12.47 -18.45 -20.05	0.000 0.000 0.000 0.000	3574819 6527219 -1.045644 -1.339933	1919232 4753753 8447905 -1.101306

September 18, 2018 52/112

2

Effects of x₂

<pre>. margins, at(x2=generate(x2)) at(x2=generate(x2*1.2))</pre>							
Predictive ma	rgins			Number of	obs	= 10,000	
Model VCE	: OIM						
Expression	: Pr(ypr), pre	edict()					
1at	: x2	= x2					
2at	: x2	= x2*1.	2				
)elta-method Std. Err.	Z	P> z	[95% Con	f. Interval]	
					-		
_at							
1	.4817093	.0043106	111.75	0.000	.4732607		
2	.5039467	.0046489	108.40	0.000	.4948349	.5130585	

ъ.

<ロ> <四> <ヨ> <ヨ>

Effects of x_2 at values of d_1 and d_2

margins d1#d2,

at(x2=generate(x2))at(x2=generate(x2*1.2))

Logit vs. Probit

- . quietly logit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1
- . quietly margins d1#d2, at (x2=generate(x2)) at (x2=generate(x2*1.2)) post
- . estimates store logit
- . quietly probit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1
- . quietly margins dl#d2, at $(x^2=generate(x^2))$ at $(x^2=generate(x^2*1.2))$ post
- . estimates store probit

3

ヘロト ヘロト ヘヨト ヘヨト

Logit vs. Probit

. estimates table probit logit

Variable	probit	logit
at#d1#d2		
1 0 0	.53151657	.53140462
1 0 1	.63756257	.63744731
1 1 0	.42306578	.42322182
1 1 1	.62291206	.62262466
1 2 0	.30922733	.30975991
1 2 1	.62783902	.62775349
1 3 0	.26973385	.26845746
1 3 1	.59004519	.58834989
1 4 0	.21809081	.21827411
1 4 1	.5914183	.59140961
2 0 0	.55723572	.55751404
2 0 1	.66005549	.65979041
2 1 0	.4502963	.45117594
2 1 1	.64854781	.64854287
2 2 0	.33082849	.33120501
2 2 1	.65472273	.65506022
2 3 0	.28400721	.28169093
2 3 1	.61605961	.61442653
2 4 0	.22609365	.22538232
2 4 1	.6154092	.61499622

2

イロン イ理 とく ヨン イヨン

Logit vs. Probit

September 18, 2018 57/112

크

▲圖 ▶ ▲ 臣 ▶ ▲ 臣

Fractional models and quasilikelihood (pseudolikelihood)

- Likelihood models assume we know the unobservable and all it's moments
- Quasilikelihood models are agnostic about anything but the first moment
- Fractional models use the likelihood of a probit or logit to model outcomes in [0, 1]. The unobservable of the probit and logit does not generate values in (0, 1)
- Stata has an implementation for fractional probit and fractional logit models

イロト 不得 トイヨト イヨト 二日

The model

$E(Y|X) = F(X\beta)$

- F(.) is a known c.d.f
- No assumptions are made about the distribution of the unobservable

A (10) A (10) A (10)

Two fractional model examples

. clear

```
. set obs 10000
```

```
number of observations (_N) was 0, now 10,000
```

- . set seed 111
- . generate e = rnormal()
- . generate x = rchi2(5)-3
- . generate xb = .5 * (1 x)
- . generate yp = xb + e > 0
- . generate yf = normal(xb + e)

• In both cases $E(Y|X) = \Phi(X\theta)$

```
• For yp, the probit, \theta = \beta
• For yf, \theta = \frac{\beta}{\sqrt{1+\sigma^2}}
```

= nar

イロト 不得 トイヨト イヨト

Two fractional model examples

. clear

```
. set obs 10000
```

```
number of observations (_N) was 0, now 10,000
```

- . set seed 111
- . generate e = rnormal()
- . generate x = rchi2(5)-3
- . generate xb = .5 * (1 x)
- . generate yp = xb + e > 0
- . generate yf = normal(xb + e)
- In both cases $E(Y|X) = \Phi(X\theta)$
- For yp, the probit, $\theta = \beta$

• For yf,
$$\theta = \frac{\beta}{\sqrt{1+\sigma^2}}$$

э.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Two fractional model estimates

- . quietly fracreg probit yp x
- . estimates store probit
- . quietly fracreg probit yf x
- . estimates store frac
- . estimates table probit frac, eq(1)

Variable	probit	frac		
x	50037834	35759981		
_cons	.48964237	.34998136		

. display .5/sqrt(2)

.35355339

э

Fractional regression output

. fracreg probit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1 Iteration 0: log pseudolikelihood = -7021.8384 Iteration 1: log pseudolikelihood = -515.9431 Iteration 2: log pseudolikelihood = -5453.1743 Iteration 3: log pseudolikelihood = -5453.1743 Iteration 4: log pseudolikelihood = -5453.1739 Fractional probit regression Wald chi2(16) = 1969.26 Prob > chi2 = 0.0000 Log pseudolikelihood = -5453.1739 Pseudo R2 = 0.2125							
ypr	Coef.	Robust Std. Err.	Z	P> z	[95%	Conf.	Interval]
x1 x2	3271742 .3105438	.0421567 .0232016	-7.76 13.38	0.000	4097 .2650		2445486 .356018
c.x1#c.x2	.3178514	.0254263	12.50	0.000	.2680	168	.3676859
d1 1 2 3 4	2927285 6605838 9137215 -1.276209	.0577951 .0593091 .0655808 .0720675	-5.06 -11.14 -13.93 -17.71	0.000 0.000 0.000 0.000	4060 7768 -1.042 -1.417	275 258	1794521 54434 7851855 -1.134959
1.d2	.2822199	.057684	4.89	0.000	.1691	613	.3952784
d1#d2 1 1 2 1 3 1 4 1	.2547359 .6621119 .8471544 1.260509	.0817911 .0839477 .0896528 .0999594	3.11 7.89 9.45 12.61	0.002 0.000 0.000 0.000	.0944 .4975 .6714 1.064	774 382	.4150435 .8266464 1.022871 1.456425
d1#c.x1 1 2 3 4	2747025 5640486 9452172 -1.220618	.041962 .0447828 .0514524 .0615741	-6.55 -12.60 -18.37 -19.82	0.000 0.000 0.000 0.000	3569 6518 -1.046 -1.341	212 062	1924585 4762759 8443723 -1.099935

æ

Robust standard errors

- In general, this means we are agnostic about the *E* (εε'|X), about the conditional variance
- The intuition from linear regression (heteroskedasticity) does not extend
- In nonlinear likelihood-based models like probit and logit this is not the case

Robust standard errors

- In general, this means we are agnostic about the *E* (εε'|X), about the conditional variance
- The intuition from linear regression (heteroskedasticity) does not extend
- In nonlinear likelihood-based models like probit and logit this is not the case

4 3 5 4 3 5 5

Nonlinear likelihood models and heteroskedasticity

```
. clear
. set seed 111
. set obs 10000
number of observations (_N) was 0, now 10,000
. generate x = rbeta(2,3)
. generate e1 = rnormal(0, x)
. generate e2 = rnormal(0, 1)
. generate y1 = .5 - .5*x + e1 >0
. generate y2 = .5 - .5*x + e2 >0
```

э.

(日)

Nonlinear likelihood models and heteroskedasticity

. probit yl > Probit regress	Number of obs LR chi2(1) Prob > chi2		=	10,000 1409.02 0.0000			
Log likelihood = -4465.3713				Prob > 0 Pseudo 1		=	0.1363
у1	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
x cons	-2.86167 2.090816	.0812023	-35.24 50.28			0824 9309	-2.702517 2.172322
. probit y2 x, nolog Probit regression Log likelihood = -6638.0701				Number o LR chi2 Prob > o Pseudo 1	(1) chi2	= = =	10,000 62.36 0.0000 0.0047
y2	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
x _cons	5019177 .4952327	.0636248 .0290706	-7.89 17.04	0.000	6266		3772154

Nonparametric regression

- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

A B b 4 B b

Nonparametric regression

- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

4 3 5 4 3

Nonparametric regression

- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

• Some parametric functional form assumptions.

- regression: $E(Y|X) = X\beta$
- probit: $E(Y|X) = \Phi(X\beta)$
- Poisson: $E(Y|X) = \exp(X\beta)$

• The relationship of interest is also a conditional mean:

$$E\left(y|X\right) = g\left(X\right)$$

• Where the mean function $g(\cdot)$ is unknown

・ 同 ト ・ ヨ ト ・ ヨ ト

• Some parametric functional form assumptions.

- regression: $E(Y|X) = X\beta$
- probit: $E(Y|X) = \Phi(X\beta)$
- Poisson: $E(Y|X) = \exp(X\beta)$

• The relationship of interest is also a conditional mean:

$$E\left(y|X\right) = g\left(X\right)$$

• Where the mean function $g(\cdot)$ is unknown

(4) (5) (4) (5)

- Some parametric functional form assumptions.
 - regression: $E(Y|X) = X\beta$
 - probit: $E(Y|X) = \Phi(X\beta)$
 - Poisson: $E(Y|X) = \exp(X\beta)$
- The relationship of interest is also a conditional mean:

 $E\left(y|X\right) =g\left(X\right)$

• Where the mean function $g(\cdot)$ is unknown

- Some parametric functional form assumptions.
 - regression: $E(Y|X) = X\beta$
 - probit: $E(Y|X) = \Phi(X\beta)$
 - Poisson: $E(Y|X) = \exp(X\beta)$
- The relationship of interest is also a conditional mean:

$$E\left(y|X\right)=g\left(X\right)$$

• Where the mean function $g(\cdot)$ is unknown

4 3 5 4 3

Traditional Approach to Nonparametric Estimation

A cross section of counties

- citations: Number of monthly drunk driving citations
- fines: The value of fines imposed in a county in thousands of dollars if caught drinking and driving.

4 3 5 4 3 5

Traditional Approach to Nonparametric Estimation

- A cross section of counties
- citations: Number of monthly drunk driving citations
- fines: The value of fines imposed in a county in thousands of dollars if caught drinking and driving.

Implicit Relation

æ

Simple linear regression

September 18, 2018 70/112

크

★ E ► < E</p>

Regression with nonlinearities

September 18, 2018 71/112

イロト イ理ト イヨト イヨト

Poisson regression

2

イロト イヨト イヨト イヨト
Nonparametric Estimation of Mean Function

lpoly citations fines

.

→ ∃ > < ∃</p>

Now That We have the Mean Function

• What is the effect on the mean of citations of increasing fines by 10% ?

Traditional Approach Gives Us

크

-

Additional Variables

- I would like to add controls
 - Whether county has a college town college
 - Number of highway patrol patrols units per capita in the county
- With those controls I can ask some new questions

• What is the mean of citations if I increase patrols and fines ?

3 > 4 3

• How does the mean of citations differ for counties where there is a college town, averaging out the effect of patrols and fines?

• What policy has a bigger effect on the mean of citations, an increase in fines, an increase in patrols, or a combination of both?

What We Have Is

2

イロト イヨト イヨト イヨト

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean (probability) of low birthweight (lbweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy

- regress lbweight 1.msmoke, noconstant
- *E*(*lbweigth*|*msmoke* = 1), nonparametric estimate

A (10) A (10)

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean (probability) of low birthweight (lbweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy

• regress lbweight 1.msmoke, noconstant

• *E*(*lbweigth*|*msmoke* = 1), nonparametric estimate

A (10) A (10)

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean (probability) of low birthweight (lbweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy

. mean lbweig Mean estimatio	ght if msmoke= on		er of obs =	480
	Mean	Std. Err.	[95% Conf.	Interval]
lbweight	.1125	.0144375	.0841313	.1408687

- regress lbweight 1.msmoke, noconstant
- *E*(*lbweigth*|*msmoke* = 1), nonparametric estimate

A THE A THE

Conditional mean for a continuous covariate

- Iow birthweight conditional on log of family income fincome
- E(lbweight|fincome = 10.819)
- Take observations near the value of 10.819 and then take an average

September 18, 2018

83/112

- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- E(lbweight|fincome = 10.819)
- Take observations **near** the value of 10.819 and then take an average
- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- *E*(*lbweight*|*fincome* = 10.819)
- Take observations near the value of 10.819 and then take an average
- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- E(lbweight|fincome = 10.819)
- Take observations near the value of 10.819 and then take an average
- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

4 3 > 4 3

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- *E*(*lbweight*|*fincome* = 10.819)
- Take observations near the value of 10.819 and then take an average
- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- *E*(*lbweight*|*fincome* = 10.819)
- Take observations near the value of 10.819 and then take an average
- |*fincome_i* 10.819| ≤ *h*
- *h* is a small number referred to as the bandwidth

Graphical representation

September 18, 2018 84/112

Graphical example

2

Graphical example continued

Two concepts

🚺 h !!!!

2 Definition of distance between points, $|x_i - x| \le h$

æ

< ロ > < 同 > < 回 > < 回 >

Kernel weights

• Epanechnikov

Gaussian

- Epanechnikov2
- Rectangular(Uniform)
- Triangular
- Biweight
- Triweight
- Cosine
- Parzen

æ

3 > 4 3

Kernel weights

- Epanechnikov
- Gaussian
- Epanechnikov2
- Rectangular(Uniform)
- Triangular
- Biweight
- Triweight
- Cosine
- Parzen

TH 161

æ

Discrete bandwidths

• Li-Racine Kernel

$$k\left(\cdot\right) = \begin{cases} 1 & \text{if } x_i = x \\ h & \text{otherwise} \end{cases}$$

Cell mean

$$k(\cdot) = \begin{cases} 1 & \text{if } x_i = x \\ 0 & \text{otherwise} \end{cases}$$

 Cell mean was used in the example of discrete covariate estimate E(lbweigth|msmoke = 1)

Discrete bandwidths

• Li-Racine Kernel

$$k\left(\cdot
ight)=\left\{egin{array}{cc} 1 & ext{if} & x_{i}=x\ h & ext{otherwise} \end{array}
ight.$$

• Cell mean $k(\cdot) = \langle$

$$f(\cdot) = \begin{cases} 1 & \text{if } x_i = x \\ 0 & \text{otherwise} \end{cases}$$

 Cell mean was used in the example of discrete covariate estimate *E*(*lbweigth*|*msmoke* = 1)

Selecting The Bandwidth

- A very large bandwidth will give you a biased estimate of the mean function with a small variance
- A very small bandwidth will give you an estimate with small bias and large variance

4 3 5 4 3 5 5

Selecting The Bandwidth

- A very large bandwidth will give you a biased estimate of the mean function with a small variance
- A very small bandwidth will give you an estimate with small bias and large variance

A Large Bandwidth At One Point

A Large Bandwidth At Two Points

September 18, 2018 92/112

No Variance but Huge Bias

A Very Small Bandwidth at a Point

A Very Small Bandwidth at 4 Points

H 16

Small Bias Large Variance

September 18, 2018 96/112

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

< 回 > < 三 > < 三 >

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

< 回 > < 三 > < 三 >

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

A (10) A (10)

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.

• Local-linear regression is the default

A (10) A (10)

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

A B K A B K

Simulated data example for continuous covariate

```
. clear
. set obs 1000
number of observations (_N) was 0, now 1,000
. set seed 111
. generate x = (rchi2(5)-5)/10
. generate a = int(runiform()*3)
. generate e = rnormal(0, .5)
```

. generate $y = 1 - x - a + 4 \cdot x^2 \cdot a + e$

э.

< 日 > < 同 > < 回 > < 回 > < 回 > <

True model unknown to researchers

quietly regress y (c.x##c.x)##i.a margins a, ///
at(x=generate(x)) at(x=generate(x*1.5))
marginsplot, recastci(rarea) ciopts(fcolor(%30))

npregress kernel y x i.a

- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

周レイモレイモ

- npregress kernel y x i.a
- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

- npregress kernel y x i.a
- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

(4) (3) (4) (4) (4)

- npregress kernel y x i.a
- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

- npregress kernel y x i.a
- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Fitting the model with npregress

. npregress kernel y x i.a, nolog Bandwidth

		Mean	Effect			
	x a	.0616294				
Local-linear regression Continuous kernel : epanechnikov Discrete kernel : liracine Bandwidth : cross validation			Number of obs E(Kernel obs) R-squared	= = =	1,000 62 0.8409	
	У	Estimate				
Mean	У	.4071379				
Effect	x	8212713				
(1 vs (2 vs		5820049 -1.179375				

Note: Effect estimates are averages of derivatives for continuous covariates and averages of contrasts for factor covariates.

Note: You may compute standard errors using vce(bootstrap) or reps().

э

・ロット (日本) (日本)

The same effect

quietly regress y (c.x##c.x)##i.a margins a, ///
at(x=generate(x)) at(x=generate(x*1.5))
marginsplot, recastci(rarea) ciopts(fcolor(%30))

э

Longitudinal/Panel Data

- Under large N and fixed asymptotics behaves like cross-sectional models
- The difficulties arise because of time-invariant unobservables, i.e. *α_i* in

$$\mathbf{y}_{it} = \mathbf{G} (\mathbf{X}_{it}\beta + \alpha_i + \varepsilon_{it})$$

• Our framework still works but we need to be careful with what it means to average over the sample.

• Our model gives us:

$$E(\mathbf{y}_{it}|\mathbf{X}_{it},\alpha_i) = g(\mathbf{X}_{it}\beta + \alpha_i)$$

• We cannot consistently estimate α_i so we integrate it out

$$E_{\alpha}E(y_{it}|X_{it},\alpha_i) = E_{\alpha}g(X_{it}\beta + \alpha_i)$$

$$E_{\alpha}E(y_{it}|X_{it},\alpha_i) = h(X_{it}\theta)$$

• Sometimes we know the functional form *h*(.). Sometimes we do not.

3 > 4 3

• Our model gives us:

$$E(\mathbf{y}_{it}|\mathbf{X}_{it},\alpha_i) = g(\mathbf{X}_{it}\beta + \alpha_i)$$

• We cannot consistently estimate α_i so we integrate it out

$$E_{\alpha}E(y_{it}|X_{it},\alpha_i) = E_{\alpha}g(X_{it}\beta + \alpha_i)$$

$$E_{\alpha}E(y_{it}|X_{it},\alpha_i) = h(X_{it}\theta)$$

• Sometimes we know the functional form *h*(.). Sometimes we do not.

3 > 4 3

• Our model gives us:

$$E(\mathbf{y}_{it}|\mathbf{X}_{it},\alpha_i) = g(\mathbf{X}_{it}\beta + \alpha_i)$$

• We cannot consistently estimate α_i so we integrate it out

$$E_{\alpha} E(y_{it} | X_{it}, \alpha_i) = E_{\alpha} g(X_{it} \beta + \alpha_i)$$

$$E_{\alpha} E(y_{it} | X_{it}, \alpha_i) = h(X_{it} \theta)$$

• Sometimes we know the functional form *h*(.). Sometimes we do not.

∃ ► < ∃</p>

• Our model gives us:

$$E(\mathbf{y}_{it}|\mathbf{X}_{it},\alpha_i) = g(\mathbf{X}_{it}\beta + \alpha_i)$$

• We cannot consistently estimate α_i so we integrate it out

$$E_{\alpha} E(y_{it} | X_{it}, \alpha_i) = E_{\alpha} g(X_{it} \beta + \alpha_i)$$

$$E_{\alpha} E(y_{it} | X_{it}, \alpha_i) = h(X_{it} \theta)$$

• Sometimes we know the functional form *h*(.). Sometimes we do not.

A probit example

```
. clear
. set seed 111
. set obs 5000
number of observations (_N) was 0, now 5,000
. generate id = _n
. generate a = rnormal()
. expand 10
(45,000 observations created)
. bysort id: generate year = _n
. generate x = (rchi2(5)-5)/10
. generate x = int(runiform()*3)
. generate b = int(runiform()*3)
. generate xb = .5*(-1-x + b - x*b) + a
. generate dydx = normalden(.5*(-1-x + b - x*b)/(sqrt(2)))*((-.5-.5*b)/sqrt(2))
. generate y = xb + e > 0
```

э.

Panel data estimation

<pre>. xtset id year panel variable: id (strongly balanced) time variable: year, 1 to 10 delta: 1 unit . xtprobit y c.x##i.b, nolog</pre>						
Random-effects probit regression Group variable: id Random effects u i _ Gaussian				Number	of obs = of groups = group:	50,000 5,000
					min = avg = max =	10 10.0 10
Integration method: mvaghermite				Integra Wald ch	tion pts. =	12 5035.63
Log likelihood = -27522.587			Prob >		0.0000	
У	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
х	5212161	.0393606	-13.24	0.000	5983614	4440708
b 1 2	.4859038 1.00774	.0170101 .0179167	28.57 56.25	0.000	.4525647 .9726241	.519243 1.042856
b#c.x 1 2	5454211 -1.059613	.0557341 .0568466	-9.79 -18.64		6546579 -1.17103	4361843 9481958
_cons	506777	.0187516	-27.03	0.000	5435294	4700246
/lnsig2u	.0004287	.0298177			058013	.0588704
sigma_u rho	1.000214 .5001072	.0149121			.9714102 .4855008	1.029873 .5147133
LR test of rho=0: chibar2(01) = 9819.64 Prob >= chibar2 = 0.000						

September 18, 2018

106/112

æ

Effect estimation

Average margin Model VCE Expression dy/dx w.r.t.	: OIM : Pr(y=1), pre			Number	of obs =	50,000
	Delta-method					
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
х						
year 1 2 3 4 5 6 7 8 9 10	2769118 2752501 2745409 2769241 2769241 2731819 2725905 271447 2745909 2734455	.0058397 .0058296 .005857 .0058452 .005833 .005833 .0058577 .0058275 .0058266 .0058435	-47.42 -47.22 -46.87 -47.12 -46.83 -46.54 -46.54 -46.58 -46.58 -46.89 -46.79	$\begin{array}{c} 0.000\\ 0.$	2883573 2866759 2860204 2884433 287923 2846145 2840714 282686 2860697 2848985	2654662 2638242 2630613 2654049 2650102 2617493 2611096 2600253 2631122 2619924
. summarize dy Variable	ydx Obs	Mean	Std. I	Dev.	Min	Max
dydx	50,000	2609633	.10328	37542	2314220394	023

September 18, 2018 107/112

Э.

イロト イヨト イヨト イヨト

Effect estimation

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Effect estimation

September 18, 2018 109/112

æ

イロト イヨト イヨト イヨト

Beware of pu0 or any $\alpha_i = 0$

• The coefficients of population averaged models are useful to compute ATE:

$$ATE = E [F (X_{it}\delta + \delta_{treat} + \alpha_i) - F (X_{it}\delta + \alpha_i)]$$

= $E_X [E_\alpha [F (X_{it}\delta + \delta_{treat} + \alpha_i)]] - E_X [E_\alpha [F (X_{it}\delta + \alpha_i)]]$

- When we use $\alpha_i = 0$ we get it wrong
- The reason is that $E(g(x)) \neq g(E(x))$ when g is not a linear function:

 $E_{x} [F (X_{it}\delta + \delta_{treat} + 0)] - E_{x} [F (X_{it}\delta + 0)] =$ $E_{x} [F (X_{it}\delta + \delta_{treat} + E (\alpha_{i}))] - E_{x} [F (X_{it}\delta + E (\alpha_{i}))] \neq$ $E_{x} [E_{\alpha} [F (X_{it}\delta + \delta_{treat} + \alpha_{i})]] - E_{x} [E_{\alpha} [F (X_{it}\delta + \alpha_{i})]] = ATE$

= nar

< 日 > < 同 > < 回 > < 回 > < □ > <

Beware of pu0 or any $\alpha_i = 0$

 The coefficients of population averaged models are useful to compute ATE:

$$\begin{aligned} \mathsf{ATE} &= \mathsf{E}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \delta_{treat} + \alpha_{i}\right) - \mathsf{F}\left(\mathsf{X}_{it}\delta + \alpha_{i}\right)\right] \\ &= \mathsf{E}_{\mathsf{X}}\left[\mathsf{E}_{\alpha}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \delta_{treat} + \alpha_{i}\right)\right]\right] - \mathsf{E}_{\mathsf{X}}\left[\mathsf{E}_{\alpha}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \alpha_{i}\right)\right]\right] \end{aligned}$$

- When we use $\alpha_i = 0$ we get it wrong
- The reason is that E(g(x)) ≠ g(E(x)) when g is not a linear function:

 $E_{x} \left[F \left(X_{it}\delta + \delta_{treat} + 0 \right) \right] - E_{x} \left[F \left(X_{it}\delta + 0 \right) \right] =$ $E_{x} \left[F \left(X_{it}\delta + \delta_{treat} + E \left(\alpha_{i} \right) \right) \right] - E_{x} \left[F \left(X_{it}\delta + E \left(\alpha_{i} \right) \right) \right] \neq$ $E_{x} \left[E_{\alpha} \left[F \left(X_{it}\delta + \delta_{treat} + \alpha_{i} \right) \right] \right] - E_{x} \left[E_{\alpha} \left[F \left(X_{it}\delta + \alpha_{i} \right) \right] \right] = ATE$

= nar

< 日 > < 同 > < 回 > < 回 > < □ > <

Beware of pu0 or any $\alpha_i = 0$

 The coefficients of population averaged models are useful to compute ATE:

$$\begin{aligned} \mathsf{ATE} &= \mathsf{E}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \delta_{treat} + \alpha_{i}\right) - \mathsf{F}\left(\mathsf{X}_{it}\delta + \alpha_{i}\right)\right] \\ &= \mathsf{E}_{\mathsf{X}}\left[\mathsf{E}_{\alpha}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \delta_{treat} + \alpha_{i}\right)\right]\right] - \mathsf{E}_{\mathsf{X}}\left[\mathsf{E}_{\alpha}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \alpha_{i}\right)\right]\right] \end{aligned}$$

- When we use $\alpha_i = 0$ we get it wrong
- The reason is that E(g(x)) ≠ g(E(x)) when g is not a linear function:

$$E_{X} \left[F \left(X_{it}\delta + \delta_{treat} + 0 \right) \right] - E_{X} \left[F \left(X_{it}\delta + 0 \right) \right] =$$

$$E_{X} \left[F \left(X_{it}\delta + \delta_{treat} + E \left(\alpha_{i} \right) \right) \right] - E_{X} \left[F \left(X_{it}\delta + E \left(\alpha_{i} \right) \right) \right] \neq$$

$$E_{X} \left[E_{\alpha} \left[F \left(X_{it}\delta + \delta_{treat} + \alpha_{i} \right) \right] \right] - E_{X} \left[E_{\alpha} \left[F \left(X_{it}\delta + \alpha_{i} \right) \right] \right] = ATE$$

4 3 5 4 3 5

Concluding Remarks

- Our work is not done after we get the parameters of our model
- After we get the parameters is when our work starts. We can ask interesting questions
- The questions we ask can be placed in a general framework:
 - Define an object of interest E(y|X) or $E(y|X, \alpha)$
 - Explore the multidemensional function
- Use margins and marginsplot