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Overview
§ Machine learning methods dominant for 

classification/prediction problems.

§ Prediction is useful for causal inference if one is 
trying to predict propensity scores (probability of 
treatment conditional on observables);

§ But sometimes better predictions lead to worse 
causal inference: greater bias or mean squared error 
(MSE).

§ Simulation shows some machine learning methods 
are more robust to specification error when not all 
confounders are observed (the real world case).
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Why propensity scores?
§ With nonrandom selection of treatment status A, can estimate 

average treatment effect b by conditioning on all possible 
confounders W (if we observe all of them).

§ Even if we observe all W, do we know the right functional form? 

§ Propensity score matching or weighting solves the functional 
form problem (not the incomplete observation problem).
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Why propensity score weights?
§ Where potential outcomes are conditionally 

independent of A given W, they are also conditionally 
independent given the conditional probability of A, 
E(A|W), a.k.a. the propensity score. 

§ We can condition on the propensity score to 
eliminate bias due to confounders (Rosenbaum and 
Rubin, 1983); 

§ We can improve efficiency by using estimated
E(A|W) to reweight the data (Hirano, Imbens, & 
Ridder 2003), even if we know the true propensity 
score (i.e. we throw away that information). 
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How should we estimate E(A|W)?

§ This is a prediction problem, and one at which 
machine learning algorithms have been shown 
to excel

§ A few papers explore the use of machine 
learning approaches, but with full set of 
confounders

– Zador, Judkins, and Das (2001): MART for survey nonresponse adjustment

– McCaffrey, Ridgeway & Morral (2004): Generalized boosted model for PSW

– Setoguchi et al. (2008): Neural networks, CART for PSM

– Lee, Lessler & Stuart (2009): CART, Pruned CART, Bagged CART, Random Forest, 
Boosted CART for PSW

– Diamond & Sekhon (2013): Genetic Matching, Random Forest, Boosting for PSM
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Simulations
§ To ascertain finite-sample performance, we run a 

large set of simulations (each one 10,000 
iterations)

§ Each simulation imposes a causal diagram with 
binary treatment A and 10 potential confounders 
W, of which only 4 are actually confounders

§ Vary the functional form for E(A|W): base case is 
logit with no interactions, but allow 
nonlinearity/interactions

§ Estimation default as in teffects ipwra (outcome 
model is linear, treatment model is logit)
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Simulation causal diagram
§ Simulation structure follows Setoguchi et al. (2008) and Lee, 

Lessler, and Stuart (2009). Shaded boxes binary, orange 
excluded instruments (Z), blue controls (X).
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Variation across 7 scenarios
§ x x (base case) means no interactions in true model: non-

additivity means e.g. coef on W2W4 is zero; nonlinearity means 
e.g. coef on W2W2 is zero.
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Simulations
§ Can assume we know the true functional forms 

(unrealistic), or there is some specification error (i.e. 
unmodeled interactions in a logit).

§ Can assume we observe all confounders W1, W2, 
W3, W4 (unrealistic) or some subset.

§ Conditioning on a proper subset of confounders can 
decrease bias or amplify bias: useful figures in 
Steiner and Kim (2016).

§ We compare mean-squared error (MSE) and bias 
reduction.
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Not every confounder can be 
observed
§ This means we should not assume we can see W1, 

W2, W3, W4.

§ Where there are omitted variables (i.e., absent full 
ignorability), including an excluded instrument in 
propensity score estimation increases the 
inconsistency (Heckman and Navarro-Lozano 2004, 
Battacharya and Vogt 2007) and bias (Pearl 2011, 
Wooldridge 2009) of the estimator.

§ We report results for simulations with and without 
conditioning on the excluded instruments W5, W6, 
W7.



Abt Associates | pg 11

Methods to estimate E(A|W)
§ Logit: Generalized linear model with log odds linear in 

parameters

§ Regression tree (RT): Algorithm recursively partitions a feature 
space to minimize distance between mean and predicted 
outcomes within each partition; implemented with rpart in R

§ Pruned regression tree (PRT): Prunes back RTs to prevent 
overfitting; rpart

§ Regression forest (RF): Produces many low bias RTs from 
random subsets of the data and then averages across those 
trees to reduce variance of predictor; randomForest

§ Boosted regression tree (BRT): Builds out trees on residuals of 
prior bifurcations in the feature space; gbm

§ Least absolute shrinkage and selection operator (LASSO): 
Penalized regression; glmnet
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Scenario a
§ Logit is the “right” model but underperforms RF when 

we improperly condition on excluded instruments:

Conditioning	set	
includes	excluded	

instruments	
W5,	W6,	W7

Lower	MSE	is	better;	
logit	wins	when	no	
excluded	instruments	
are	in	treatment	model

But	RF	wins,	even	
when	logit	is	the	right	
model,	with	excluded	
instruments	in	tmodel
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RF more robust to spec. error

RF	similar	to	
logit	in	easy	
cases,	but	
substantially	
better	than	logit	
when	some	
specification	
error	is	
introduced
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RF best in class on bias, MSE

Distribution	of	RF-
based	propensity-score-
weighting	estimator	
centered	on	truth,	with	
higher	peak	and	
narrower	spread,	in	the	
worst	case	scenario	g.
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Conclusions
§ We offer guidance on selection of variables and 

methods for the estimation of propensity scores 
when measuring average treatment effects (ATE) or 
ATE on the treated (ATT) under different scenarios.

§ Machine learning estimators, especially regression 
forest (RF), perform well where the treatment 
assignment mechanism is unknown and can offer 
better protection against improper conditioning on 
excluded instruments when not all confounders are 
included (the realistic case).
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Conclusions
§ No statistical test can distinguish confounders and 

excluded instruments.

§ Theory and assumptions (i.e. a good causal 
diagram) play an outsized role in which variables to 
include and which estimation approaches to use in 
which settings; 

§ However, propensity score reweighting using 
regression forest dominates several alternatives in a 
realistic class of settings.

§ MSE for IV is largest in all simulations.



Abt Associates | pg 17

Next steps
§ Still more variations on this theme to be explored.

§ But.

§ Current generation of machine learning algorithms 
targets quality of predictions, not quality of causal 
inference using those predictions.

§ In process: improved stochastic ensemble methods 
(along the lines of regression forests) as a Stata 
package.
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