
ftools: a faster Stata for large datasets

Sergio Correia, Board of Governors of the Federal Reserve

2017 Stata Conference, Baltimore

sergio.correia@gmail.com
http://scorreia.com
https://github.com/sergiocorreia/ftools

mailto:sergio.correia@gmail.com
http://scorreia.com
https://github.com/sergiocorreia/ftools


Outline

1. Motivation: bysort is slow with large datasets
2. Solution: replace it with hash tables
3. Implementation: new Mata object
4. Implementation: new Stata commands
5. Going forward: faster internals and more commands



1. Motivation



Motivation (1/3)

• Stata is fast for small and medium datasets, but gets
increasingly slower as we add more observations

• Writing and debugging do-files is very hard if collapse, merge,
etc. take hours to run

• Example:

set obs `N'
gen int id = ceil(runiform() * 100)
gen double x = runiform()
collapse (sum) x, by(id) fast



Motivation (2/3)

Figure 1: Speed of collapse per observation, by number of obs.



Motivation (3/3)

• collapse gets slower because underneath it lies a sort
command such as:

bysort id: replace x = sum(x)
by id: keep if _n == _N

• Sorting in Stata is probably implemented through quicksort,
which is an 𝑂(n log n) algorithm.

• Thus, collapse is also 𝑂(n log n)
• This goes beyond collapse, as many Stata commands rely on
bysort (egen, merge, reshape, isid, contract, etc.)

• See “Speaking Stata: How to move step by: step” (Cox, SJ 2002)

https://www.statalist.org/forums/forum/general-stata-discussion/general/1345163-how-does-stata-randomize-observations-with-the-same-value-when-using-the-command-sort-without-stable?p=1345266#post1345266


2. Solution



Solution

• When appropiate, replace bysort with a hash table

• Already implemented by Pandas, Julia, Apache Spark, R, etc.
• Also, internally by some Stata users

• A hash function is “any function that can be used to map data
of arbitrary size to data of fixed size”

• Implemented in Stata:

. mata: hash1(”John”, 100)
52

• How does this work? Let’s implement collapse with a hash
table!

http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
https://discourse.julialang.org/t/how-is-the-data-ecosystem-right-now-for-large-datasets/4281/4
https://www.slideshare.net/databricks/optimizing-apache-spark-sql-joins
https://stackoverflow.com/a/4323792/3977107
https://ideas.repec.org/p/boc/usug15/09.html


Solution: collapse with a hash table

// Alternative to: collapse (sum) price, by(turn)
sysuse auto
mata:

id = st_data(., ”turn”)
val = st_data(., ”price”)
index = J(1000, 2, 0) // Create hash table of size 1000
for (i=1; i<=rows(id); i++) {
h = hash1(id[i], 1000) // Compute hash
index[h, 1] = id[i] // Store value of turn
index[h, 2] = index[h, 2] + val[i] // Construct sum

}
index = select(index, index[.,1]) // Select nonempty rows
sort(index, 1) // View results

end



Solution: collision resolution (advanced)

• Sometimes two different values can return the same hash:

. mata: hash1(”William”, 100)
43

. mata: hash1(”Ava”, 100)
43

• To solve this, Mata’s asarray() stores lists of all colliding
values

• Instead , ftools uses linear probing

http://www.algolist.net/Data_structures/Hash_table/Open_addressing#open_addressing_vs_chaining
https://www.wikiwand.com/en/Linear_probing


3. Implementation



Implementation: ftools

ftools is two things:

1. A Mata class that deals with factors or categories (ftools =
factor tools)

2. Several Stata commands based on this class (fcollapse,
fmerge, fegen, etc.)

To install:

• ssc install ftools
• ssc install moremata (used in “collapse (median) …”)
• ssc install boottest (for Stata 11 and 12)
• ftools, compile (if we want to use the Mata functions
directly)



Implementation: Factor class

sysuse auto
mata: F = factor(”turn␣foreign”) // New object
mata: F.num_levels // Number of distinct values
mata: F.keys, F.counts // View values and counts

• help ftools describes in detail the methods and properties
of this class

• These will remain stable, so you can implement your own
commands based on it

• Please do so!



Creating new commands: example 1 - unique

• unique (from SSC) counts the number of unique values but is
very slow on large datasets:

•

• Alternative:

mata: F = factor(”turn”)
mata: F.num_levels, F.num_obs

• 10x faster with 10mm obs.

https://github.com/sergiocorreia/ftools/blob/master/examples/funique.do
https://github.com/sergiocorreia/ftools/blob/master/examples/unique.do


Creating new commands: example 2 - xmiss

• xmiss (from SSC) counts missing values per variable

•
• Alternative (12x faster with 10mm obs.)

mata: F = factor(”race”)
mata: F.panelsetup()
mata: mask = rowmissing(st_data(., ”union”))
mata: missings = panelsum(F.sort(mask), F.info)
mata: missings, F.counts

https://github.com/sergiocorreia/ftools/blob/master/examples/xmiss.do


4. Stata commands included with
ftools



Commands included with ftools

• fcollapse (replaces collapse, contract, and most of
egen)

• fegen group
• fisid
• fmerge and join
• flevelsof
• Also see: reghdfe



fcollapse

• To use it: add f before your existing collapse calls
• Supports all standard functions (mean, median, count, etc.), all
weights, etc.

• Can be extended through Mata functions (see
help fcollapse for an example)

• fcollapse ... , merge merges the collapsed data back
into the original dataset, making it equivalent to egen.

• fcollapse ... , freq is the equivalent to contract
• fcollapse ... , smart checks if the data is already sorted,
in which case it just calls collapse



Performance (back to collapse)

Figure 2: Speed of collapse per observation, by number of obs.



Performance

Figure 3: Speed of collapse and fcollapse by number of observations



Performance

Figure 4: Elapsed time of collapse and fcollapse by num. obs.



4. Going forward



Going forward

• The principles behind ftools allow Stata to work efficiently
with large datasets (1mm obs. and higher)

• Still, there is large room for improvement
• ftools could be significantly speed up through improvements
in Mata (better hash functions, more built-in functions, integer
types, etc.)

• gtools, a very new package by Mauricio Caceres, implements
some commands as a C plugin (gcollapse, gegen):

https://github.com/mcaceresb/stata-gtools


Going forward: gtools

Figure 5: Speed of collapse, fcollapse and gcollapse



Going forward: 28s --> 10s --> 2s

Figure 6: Elapsed time of collapse, fcollapse and gcollapse



Conclusion

• With ftools, working with large datasets is no longer painful
• Still, we can

• Speed it up (builtin functions, gtools)
• Extend it to more commands (reshape, table, distinct, egenmore,
binscatter, etc.)



The End



Additional Slides



References and useful links

• Caceres, M. (2017). gtools
• Cox, NJ. (2002). Speaking Stata: How to move step by: step. Stata
Journal 2(1)

• Gomez, M. (2017). Stata-R benchmark
• Guimaraes, P. (2015). Big Data in Stata
• Maurer, A. (2015). Big Data in Stata
• McKinney, W. (2012). A look inside pandas design and
development

• Stepner, M. (2014). fastxtile

https://github.com/mcaceresb/stata-gtools
http://www.stata-journal.com/sjpdf.html?articlenum=pr0004
http://www.stata-journal.com/sjpdf.html?articlenum=pr0004
https://github.com/matthieugomez/benchmark-stata-r
http://www.stata.com/meeting/portugal15/abstracts/materials/portugal15_guimaraes.pdf
https://ideas.repec.org/p/boc/usug15/09.html
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
https://github.com/michaelstepner/fastxtile


Tricks learned while writing ftools (advanced)

• If you want to write fast Mata code, see these tips
• If you want to distribute Mata code as libraries, but don’t want
to deal with the hassle of compiling the code, see this repo

• If you usually declare your Mata variables, consider including
this file at the beginning of your .mata file

http://scorreia.com/blog/2016/10/06/mata-tips.html
https://github.com/sergiocorreia/stata-foobar
https://github.com/sergiocorreia/ftools/blob/master/src/ftools_type_aliases.mata


Mata Wishlist

Any of the following would significantly speed up ftools:

• Integer types so we can loop faster
• A rowhash1() function that computes hashes in parallel for
every row

• A faster alternative of hash1(), such as SpookyHash, from the
same author

• An optimized version of x[i] = x[i] + 1
• Radix sort function for integer variables (recall that counting
sort is 𝑂(n))

https://www.statalist.org/forums/forum/general-stata-discussion/mata/993-using-mata-operators-efficiently?p=1826#post1826
https://www.wikiwand.com/en/Counting_sort
https://www.wikiwand.com/en/Counting_sort

	1. Motivation
	2. Solution
	3. Implementation
	4. Stata commands included with ftools
	4. Going forward
	Additional Slides

