1 Introduction

1.1 Goals

Goals

- Learn a little about Bayesian analysis
- Learn the core of how Bayesian analysis are implemented in Stata 14

1.2 Brief Glimpse into Bayesian Analysis

Uncertainty as Probability

- In the frequentist world, probabilities are long-run proportions of repeated identical experiments
 - In some ways, this means we never know any probabilities of any events
- In the Bayesian world, probabilities are an expression of uncertainty
 - The advantage of the Bayesian viewpoint is that it allows talking about probabilities for events which cannot be repeated
 - What is the chance of a major earthquake in Alaska this year?
 - What is the chance that Australia takes the 2015 Rugby World Cup?
 - The disadvantage is that these probabilities become subjective
Bayesian Analysis

- Uncertainty about parameters is expressed via a prior distribution \(p(\theta) \)
 - The prior distribution is necessarily subjective
 - If there is little knowledge about possible values, vague or non-informative priors get used
- The dataset \(y \) is used to update these priors into posterior distributions via Bayes rule
 \[
p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}
\]
 - \(p(y|\theta) \) is the likelihood
 - \(p(y) \) is the marginal density of the data

\[
p(y) = \int_\theta p(y|\theta)p(\theta)
\]

* This last integral has been the bugaboo

Advantages and Disadvantages of Bayesian Analysis

- Advantages
 - Theoretically should allow updating knowledge with past experience
 - Can speak directly about probabilities instead of applying long-run proportions to a single event
 - Think of confidence intervals: have long-run chance of catching the parameter value, but know nothing about the current estimate
 - Can choose among multiple competing hypotheses

- Disadvantages
 - Could be worried about subjectivity

Why Has Bayesian Analysis Become More Popular

- Computational speed allows rapid but good approximations of the marginal density of the data
 - Before computational horsepower could be used, only a small set of models could be estimated
- All the magic comes from Markov Chain Monte Carlo (MCMC) methods
 - These sample points from the not-fully-specified density in such a way that if left running forever, the density of simulation points would equal the target density

Implementation in Stata 14

- In Stata 14, the estimation portion of Bayesian analysis is implemented by the `bayesmh` command
 - `mh` for Metropolis-Hastings
- We will see how this works, both via point-and-click and syntactically
- We will look at some diagnostics and other post-estimation tools
2 Bayesian Analysis in Stata 14

2.1 Starting Simple

A Simple Story

- We'll work with a very simple dataset measuring counts
- Here is our simulated story:
 - We've collected data from 70 people in Canberra about the number of parking tickets they've gotten in the last year
 - We would like to get some concept of the rate the people get the tickets
 - We will do this based on the rumor that Canberra is particularly finicky about parking
- We'll simulate a dataset as though the true number of parking fines per year per person is 1.3

```
do makepois
  set more off
clear
  * pick a seed for reproducibility
  set seed 1800
  * set the number of observations
  set obs 70
  number of observations (_N) was 0, now 70
  * create the observations
  gen y = rpoisson(1.3)
  label var y "Parking tickets in Canberra"
  label data "The IKEA of datasets: one variable of counts"
  save pois
end of do-file
```
- Let's see the mean count for this simulation

```
  sum y
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>70</td>
<td>1.2571</td>
<td>1.0992</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Starting a Bayesian Analysis: the Prior

- We would now like to do a Bayesian investigation of the rate \(\lambda \) of getting fined
 - Suppose we are truly interested whether the rate of fines is over one per year per person
- To start out, we need to specify a prior distribution
• How would this possibly be done?
 ◦ We could try to use a vague prior which has very little information in it
 ◦ We could try to elicit the opinions of experts

• We’ll start with a vague prior

Choosing a Vague Prior

• Vague priors are only vaguely defined: they ought to cover all remotely plausible values without favoring any values
• We will choose a flat prior, meaning that all possible ticketing rates have the same probability
 ◦ Because this means that we need a probability density proportional to 1 over the interval 0 to ∞, this is an improper prior
 ◦ Improper priors should typically be avoided, but this will help the exposition here
• So, for us, $p(\lambda) \propto 1$ for $0 < \lambda < \infty$
 ◦ Clearly, like continuous-time white noise, this is impossible but helpful

Specifying our Model: the Interface

• We will start by using the point-and-click interface
• There are two ways to access this
 ◦ Either select Statistics > Bayesian analysis > Estimation
 ◦ Or type `db bayesmh` in the command window
• We will choose what we would like to do now, and then come back to the full range of possible models

Choosing the Likelihood Model

• We would like a univariate linear model
• Clicking the drop-down menu for the Dependent variable and choose y
• We have no independent variables
• Choose Poisson regression as the Likelihood model
• We can leave the Exposure variable blank
• Tick the Do not exponentiate linear predictor
 ◦ This will cause our output to report rates instead of the natural log of rates
Specifying the Prior

- Click on the Create... button for the *Priors of model parameters*
- From the *Parameters specification* dropdown, choose \{y:_cons\}
 - This is because we are modeling only the constant term without any covariates
- We will choose the *Flat prior* item
- Click OK to dismiss the subdialog

Making Our Computations Reproducible

- We should set a random seed for this MCMC
 - This will make sure that we can show our result in the future
- Click on the *Simulation* tab
- We’ll put 7434 as the random seed
 - This is an arbitrary non-negative integer

Computing the Posterior

- We are already done specifying this simple model, so click the Submit button
- The command gets issued

 . bayesmh y, likelihood(poisson, noglmtransform) ///
 prior({y:_cons}, flat) rseed(7434)

 Burn-in ...
 Simulation ...

 Model summary
 --
 Likelihood: y ~ poisson({y:_cons})
 Prior: {y:_cons} ~ 1 (flat)
 --

 Bayesian Poisson regression MCMC iterations = 12,500
 Random-walk Metropolis-Hastings sampling Burn-in = 2,500
 MCMC sample size = 10,000
 Number of obs = 70
 Acceptance rate = .4271
 Log marginal likelihood = -102.22367 Efficiency = .2315

 | Equal-tailed
 | y | Mean Std. Dev. MCSE Median [95% Cred. Interval]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>1.274535</td>
<td>.1358713</td>
<td>.002824</td>
<td>1.274437</td>
<td>1.020925</td>
</tr>
</tbody>
</table>

- Stata churns through the MCMC computations to find the posterior distribution
- Stata reports the results
General Notes about the Output

- At the top, you see Burn In ... followed by Simulation ... as notifications
 - These would be for seeing progress in very computationally intensive models
- We see the two elements we need to specify for any Bayesian analysis: the Likelihood model and the Prior distribution
- There is information about how the MCMC sampling was done
- There is information about summary statistics of the posterior distribution
 - Recall that we are not specifically trying to estimate mean values; we are finding a posterior distribution

Output Specifics: MCMC

- By default, Stata uses a burn-in of 2,500 iterations
 - This is used to tune the adaptive model and to give time for the simulation to reach the main part of the posterior distribution
- By default, Stata runs the MCMC chain for 10,000 iterations
- The acceptance rate is the rate that new picks from the distribution are accepted
- The efficiency is relative to independent samples from the posterior distribution

Output Specifics: Regression Table

- The mean of our posterior distribution for the arrival rate is 1.27
- The standard deviation of the posterior distribution is 0.136
- The MCSE of 0.0028 is the standard error of estimation of the mean due to our using MCMC to find the posterior distribution
 - How much the posterior mean would vary from run to run if we used different random seeds
- The median is the median of the posterior distribution
- The probability that the arrival rate is between 1.021 and and 1.548 is 95%
 - Note this is not a trapping probability for unknown future samples

Starting with Postestimation

- We can see what postestimation commands are available by typing `. db postest`
- Now click on the disclosure control next to Bayesian analysis
- Select the Graphical summaries and convergence diagnostics item
- Click on the Launch button
Investigating the Posterior

- We can draw a picture of the posterior distribution in a couple of ways
- To make a histogram, select the *Histograms* graph type
- To make life simple select the *Graphs for all model parameters* radio button
- Click on the **Submit** button

Histogram of the Posterior

- Here is the histogram version of the posterior distribution

 . bayesgraph histogram _all

Density Plot of the Posterior

- To get a density plot, select the *Density plots* graph type
- Click on the **Submit** button

 . bayesgraph kdensity _all
Finding the Probability the Rate is Larger than 1

- Navigate back to the Postestimation Selector dialog box
- Select the Interval hypothesis testing menu item
- Choose \{y:_cons\} parameter from the Test model parameter list
- Enter 1 as the Lower bound and leave . as the Upper bound
- Click the Submit button

```
  . bayestest interval (y:_cons), lower(1)  
Interval tests     MCMC sample size =    10,000
prob1 : y:_cons > 1

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>.9837</td>
<td>0.12663</td>
<td>.0024803</td>
</tr>
</tbody>
</table>
```

- We can read off the probability as 0.98
 - This is a true probability
 - It is a subjective probability based on our flat prior

2.2 Looking More Carefully

How MCMC Can Break

- There are multiple ways that MCMC can give bad answers
 - It can mix poorly, meaning either that
New candidate points for the simulation get rejected too often
The jumps are too small to cover the distribution
 ○ It can have bad initial values
 * These should be irrelevant because of the long burn-in sequence
 * But... if there is poor mixing this might not be the case
 * This leads to what is called ‘drift’

MCMC Diagnostics

* There is a simple tool for looking at the standard diagnostics all at once
* Select Multiple diagnostics in compact form in the bayesgraph dialog, and press Submit
 . bayesgraph diagnostics _all

Looking for Drift

* The cusum (short for cumulative sum) plot is used to look for small step size and drift
* Select Cumulative sum plots and press Submit
 . bayesgraph cusum _all
Simple Diagnostic Conclusion

- Everything looks fine because there is no sign of bad mixing or drift

Playing with Different Priors

- Suppose we talk to people in Sydney, Melbourne, Adalaide, and Brisbane
- They all agree that the rate of fines should be about 1 every 3 years, with little chance of averaging more than 1 fine per year
 - Thus, they are completely incorrect about Canberra
- Based on this, a good prior would be a Gamma(3, 0.1)

Aside: Graph of the Prior

- Here is a graph of the Gamma(3, 0.1) distribution

 . twoway function y = gammaden(3,0.1,x), range(0 1.5)
Specifying a New Prior

- Type `db bayesmh` to get our dialog box back
- Select the `Prior 1` prior
- Click on the `Edit` button
- Choose `Gamma distribution`
- Enter 3 as the `Shape` and 0.1 as the `Scale`
- Click on the `OK` button to dismiss the subdialog

Changing the Seed

- Go to the `Simulation` tab
- Change the random seed to some other number, say 9983
- Click on the `Submit` button to run the analysis

```
.bayesmh y, likelihood(poisson, noglmtransform) ///
prior(y:_cons, gamma(3,0.1)) rseed(9983)
```

Burn-in ...
Simulation ...

Model summary

Likelihood:
 `y ~ poisson(y:_cons)`

Prior:
 `y:_cons ~ gamma(3,0.1)`

Bayesian Poisson regression: MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling: Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 70
Acceptance rate = .4313
Log marginal likelihood = -107.68681
Efficiency = .2345

<table>
<thead>
<tr>
<th>Equal-tailed</th>
<th>y</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
<th>Median</th>
<th>[95% Cred. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>_cons</td>
<td>1.136429</td>
<td>.1181007</td>
<td>.002439</td>
<td>1.130957</td>
<td>.9216155</td>
<td>1.380885</td>
</tr>
</tbody>
</table>

What Happened?

- We can see that the mean of the posterior distribution is smaller
 - We should, however, be encouraged that the mean is only somewhat smaller despite the very-different prior
- If we now compute our probability that the rate is larger than 1, though: 0.88

  ```stata
  . bayestest interval (y:_cons), lower(1)
  Interval tests: MCMC sample size = 10,000
  prob1: {y:_cons} > 1
  | Mean | Std. Dev. | MCSE |
  prob1 | .8814 | 0.32333 | .0062655 |
  ```

2.3 Changing the Problem

Specifying Our Own Likelihood

- What if we wanted a likelihood which is not one of the 10 built-in likelihoods?
- We can specify this by using the `likelihood()` option with the `llf()` suboption
- We just need an example to show this...

Changing the Problem

- Suppose now that our sample came just from those who had had a ticket in the last year

  ```stata
  . drop if y == 0
  (23 observations deleted)
  ```
 - We've lost quite a bit of our sample
- We cannot use the same likelihood model as we had before
- Instead, we have a truncated Poisson, where the probability of 0 fines has become 0
- Truncated Poisson distributions are not a part of Stata’s suite, so we need to do some math
Writing Our New Likelihood Model

- Here is the Poisson distribution with parameter λ is

\[
p(y) = \frac{\lambda^y e^{-\lambda}}{y!}; \quad y = 0, 1, 2 \ldots
\]

- If y cannot be zero, we just need to rescale to get the total probability to be 1:

\[
p(y) = \frac{\lambda^y e^{-\lambda}}{y!(1 - e^{-\lambda})}; \quad y = 1, 2 \ldots
\]

- From this, our log likelihood becomes

\[
y \ln(\lambda) - \lambda - \ln(y!) - \ln(1 - e^{-\lambda})
\]

Substitutable Expressions

- The way we tell Stata to use the log-likelihood function is by using a substitutable expression

- We just need to replace

 - Symbols with the variables that represent them
 - Coefficient names to replace parameters

Specifying Our New Likelihood Model

- In our case

 - y (the variable) replaces y the count symbol
 - `{y:_cons}` replaces λ

- This gives the straightforward but unwieldy expression

\[
y * \ln({y:_cons}) - {y:_cons} - \ln(y!) - \ln(1 - \exp(-{y:_cons}))
\]

Working from Do-files

- Now the commands are becoming complicated enough that typing as we go will be unhelpful

- Let’s open up a project file for this talk

 . projman bayes
Finally: Analyzing the Truncated Gamma

- We can run our analysis with this do-file

 . do trunc_pois

 . ** truncated poisson estimation
 . bayesmh y, prior(y:_cons, flat) ///
 > rseed(3772) saving(trunc_pois) ///
 > likelihood(llf(y*ln({y:_cons})-{y:_cons}-lngamma(y+1)-ln(1-exp(-{y:_cons}))))
 >)

 Burn-in ...
 note: invalid initial state
 Simulation ...

 Model summary
 --
 Likelihood: y ~ logdensity(y*ln({y:_cons})-{y:_cons}-lngamma(y+1)-ln(1-exp(-{y:_cons})))
 Prior: {y:_cons} - 1 (flat)
 --

 Bayesian regression Random-walk Metropolis-Hastings sampling
 MCMC iterations = 12,500
 Burn-in = 2,500
 MCMC sample size = 10,000
 Number of obs = 47
 Acceptance rate = .4315
 Log marginal likelihood = -56.819423 Efficiency = .2378

 | Equal-tailed |
 y | Mean Std. Dev. MCSE Median [95% Cred. Interval]
 -------------+---------------------------------+---------------------------------+---------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
 _cons | 1.444531 .2067589 .00424 1.435181 1.055125 1.881356
 -------------+---------------------------------+---------------------------------+---------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+

 file trunc_pois.dta saved

 . ** storing the model for later
 . est store trunc_pois

 . end of do-file

 ◦ The saving() option has been added because we will need it if we would like to compare this model to another later
 ◦ We stored the model for later comparisons

- The mean from our posterior distribution now overshoots the true mean

 ◦ This could happen because there were too many 0-valued observations in the original dataset
Truncated Gamma Notes

• Notice the note: invalid initial state warning under Burn in ...:
 ◦ This happened here because Stata started \(\lambda \) at 0, which is not a valid rate
 ◦ This should only worry us if the efficiencies are low or if the chain did not converge

• Just as before, we can look at the diagnostics (not shown)

• Here is the probability that the rate of fines is over 1

\[
\text{bayestest interval (} \{y: \text{cons}\}, \text{ lower(1)}\)
\]

\[
\text{Interval tests MCMC sample size = 10,000}
\]

\[
\text{prob1 : } \{y: \text{cons}\} > 1
\]

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>.9894</td>
<td>0.10241</td>
<td>.0017583</td>
</tr>
</tbody>
</table>

A Competing Likelihood

• Suppose we suspect that there could be overdispersion or underdispersion for our model

• We could try specifying a likelihood which accommodates this: the generalized Poisson distribution

• Here is one parameterization

\[
p(y) = \frac{1}{y!} \left(\frac{\mu}{1 + \alpha \mu} \right)^y (1 - \alpha y)^{y-1} \exp \left\{ -\frac{\mu(1 + \alpha y)}{1 + \alpha \mu} \right\}; y = 0, 1, 2, ...
\]

- This distribution has mean \(\mu \) and variance \(\mu(1 + \alpha \mu)^2 \)
 ◦ Thus, if \(\alpha > 0 \) there is overdispersion; if \(\alpha < 0 \) there is underdispersion

Estimating This Competing Likelihood

• We can once again specify our own log likelihood:

\[
llf(y) = -\ln(y!) + y (\ln(\mu) - \ln(1 + \alpha \mu))
+ (y - 1) \ln(1 + \alpha y) - \frac{\mu(1 + \alpha y)}{1 + \alpha \mu}
- \ln \left(1 - \exp \left(-\frac{\mu}{1 + \alpha \mu} \right) \right)
\]

- The last term comes from rescaling because the distribution is truncated

• Luckily, this mess has been put in a do-file

 . do trunc_gpois
** truncated gen'l poisson estimation.
** specified nocons, so that the two parameters \{\mu\} and \{alpha\}
** could both be specified by name.
.
```
bayesmh y, nocons prior({mu}, uniform(0,100)) prior({alpha}, flat) ///
  rseed(40213) saving(trunc_gpois) ///
  likelihood(llf(-lngamma(y+1) + y*(ln({mu}) - ln(1 +{alpha}*{mu})) ///
    + (y-1)*ln(1 + {alpha}*y) - ({mu}*(1 + {alpha}*y))/(1 +{alpha}*{mu}) ///
    - ln(1 - exp(-{mu}/(1+{alpha}*{mu})))))
```

Burn-in ...
note: invalid initial state
Simulation ...

Model summary

Likelihood:
y - logdensity(<expr1>)

Priors:
{\mu} - uniform(0,100)
{\alpha} - 1 (flat)

Expression:
expr1 : -lngamma(y+1)+y*(ln({mu}) - ln(1 +{alpha}*{mu})) +(y-1)*ln(1 +{alpha}*y) - ({mu}*(1 +{alpha}*y))/(1 +{alpha}*{mu}) - ln(1 - exp(-{mu}/(1+{alpha}*{mu}))))

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 47
Acceptance rate = .2366
Efficiency: min = .05308
avg = .08066
max = .1082

Log marginal likelihood = -59.917961

| Equal-tailed
| Mean Std. Dev. MCSE Median [95% Cred. Interval] |
|-------------------|-------------------|-------------------|-------------------|
| \mu | 1.683539 .1867278 .005675 1.693644 1.290789 1.999938 |
| \alpha | -1.1618633 .0711474 .003088 -.17427 -.2490146 -.001503 |

file trunc_gpois.dta saved
.
.
Uh oh! Bad Efficiency

- If we look at the efficiencies, we can see that one of the parameters probably has high autocorrelations
- First, let’s see which parameter had which efficiency by looking at effective sample sizes
. bayesstats ess _all

Efficiency summaries MCMC sample size = 10,000

<table>
<thead>
<tr>
<th></th>
<th>ESS</th>
<th>Corr. time</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>1082.48</td>
<td>9.24</td>
<td>0.1082</td>
</tr>
<tr>
<td>alpha</td>
<td>530.78</td>
<td>18.84</td>
<td>0.0531</td>
</tr>
</tbody>
</table>

- We should investigate this

Plotting Simulations

- We can make a scatterplot matrix of the simulation values
 . bayesgraph matrix {mu} {alpha}

![Scatterplot matrix showing the relation between mu and alpha]

Correlated Simulations

- Correlated MCMC simulation values slow down the MCMC chain, as do possibly illegal values
- One solution we could try here would be to transform the parameters to make their range extend over the whole real line
 - This is hard here, because the range of \(\alpha \) depends on \(\mu \)
- We might also try specifying legal initial values
 . do trunc_gpois2
. ** truncated gen‘l poisson estimation
. ** specified nocons, so that the two parameters \{mu\} and \{alpha\}
. ** could both be specified by name
. bayesmh y, nocons prior({mu}, uniform(0,100)) prior({alpha}, flat) ///
> rseed(40213) saving(trunc_gpois2) ///
> likelihood(llf(-lngamma(y+1) + y*(ln({mu}) - ln(1 + {alpha}*{mu})) ///
> + (y-1)*ln(1 + {alpha}*y) - ({mu}*(1 + {alpha}*y))/(1 +{alpha}*{mu}) ///
> - ln(1 - exp(-{mu}/(1+{alpha}*{mu})))) ///
> initial({mu} 1 {alpha} 0)

Burn-in ...
Simulation ...

Model summary

Likelihood:
y ~ logdensity(<expr1>)

Priors:
{mu} ~ uniform(0,100)
{alpha} ~ 1 (flat)

Expression:
expr1 : -lngamma(y+1)+y*(ln({mu}) - ln(1 +{alpha}*{mu}))) + (y-1)*ln(1 +{alpha}*y) - ({mu}*(1 +{alpha}*y))/(1 +{alpha}*{mu}) - ln(1 - exp(-{mu}/(1+{alpha}*{mu}))))

Bayesian regression
Random-walk Metropolis-Hastings sampling
MCMC iterations = 12,500
Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 47
Acceptance rate = .2634
Efficiency: min = .09876
avg = .1121
Log marginal likelihood = -60.126325

<p>| Equal-tailed |
|--------------|--------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
<th>Median</th>
<th>[95% Cred. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>1.685297</td>
<td>.1746314</td>
<td>.005557</td>
<td>1.694533</td>
</tr>
<tr>
<td>alpha</td>
<td>-.1648068</td>
<td>.0583825</td>
<td>.001648</td>
<td>-.1739788</td>
</tr>
</tbody>
</table>

file trunc_gpois2.dta saved

. ** storing the model for later
. est store trunc_gpois

end of do-file

• This seemed to help
 ○ Try experimenting with other starting values if you like

Extending the Chain
If we would like to get an effective sample size which is close to what we had for the truncated poisson model, we need to extend the chain.

The `mcmcsize(25000)` option does this.

```stata
.do trunc_gpois3

. ** truncated gen'l poisson estimation
. ** specified nocons, so that the two parameters \{mu\} and \{alpha\}
. ** could both be specified by name
   bayesmh y, nocons prior({mu}, uniform(0,100)) prior({alpha}, flat) ///
   > rseed(40213) saving(trunc_gpois3) ///
   > likelihood(llf(-lngamma(y+1) + y*(ln({mu}) - ln(1 +{alpha}*{mu})) ///
   > + (y-1)*ln(1 + alpha)*y) - ({mu}*1 + {alpha}*{mu}))/1 +(alpha)*{mu}) ///
   > - ln(1 - exp(-{mu}/(1+{alpha}*{mu})))) ///
   > initial({mu} 1 {alpha} 0) ///
   > mcmcsize(25000)

Burn-in ...
Simulation ...

Model summary
--------------------------------------------------------------------------------
Likelihood:
   y ~ logdensity(<expr1>)
Prior:
   {mu} - uniform(0,100)
   {alpha} - 1 (flat)
Expression:
   expr1 : -lngamma(y+1)+y*(ln({mu}) - ln(1 +{alpha}*{mu}))+y*(y-1)*ln(1 +{alpha})*y)/(1 +(alpha)*{mu})-ln(1 - exp(-{mu}/(1+{alpha}*{mu}))))
--------------------------------------------------------------------------------
Bayesian regressio
Random-walk Metropolis-Hastings sampling
MCMC iterations = 27,500
Burn-in = 2,500
MCMC sample size = 25,000
Number of obs = 47
Acceptance rate = .2641
Efficiency: min = .1003
eq avg = .1026
Log marginal likelihood = -60.079039

----------------------------------------------------------
<p>| Equal-tailed |</p>
<table>
<thead>
<tr>
<th>Mean Std. Dev.</th>
<th>MCSE Median [95% Cred. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>1.685861 .1765273 .003525 1.695722 1.304009 1.999089</td>
</tr>
<tr>
<td>alpha</td>
<td>-.1642611 .0613568 .001198 -.1746719 -.2463381 -.0211519</td>
</tr>
</tbody>
</table>
----------------------------------------------------------
file trunc_gpois3.dta saved

. ** storing the model for later
. est store trunc_gpois

end of do-file
Comparing Competing Models

- We can now see which of the two models we prefer
- This is done using the `bayestest model` command
- Being Bayesians, we assign prior probabilities to each of the models, and then compute their posterior probabilities given our data
- We have no reason to think one model is better than the other so we'll use the default of equally likely
  ```
 . bayestest model trunc*

 Bayesian model tests

 +---------------------------------+----------------+----------------+
 | | log(ML) | P(M) | P(M|y) |
 +---------------------------------+----------------+----------------+
 | trunc_pois | -56.8194 | 0.5000 | 0.9630 |
 | trunc_gpois | -60.0790 | 0.5000 | 0.0370 |
 +---------------------------------+----------------+----------------+
 Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

 - We now think that there is a 96% chance that simple truncated poisson is true

Aside: Bayesian Hypothesis Testing

- One wonderful part of the Bayesian world is that more than two models may be compared
- One must take care that hypotheses are plausible
 - No point values for continuous variables, for example, unless they are 0 values for something that might not exist
- Sometimes it makes sense to have prior distributions which are not evenly distributed
 - There can be a decision-theoretic reason for this, for example different costs associated with falsely conclusions
- This is far more flexible than the typical us-versus-them hypothesis testing

Information Criteria

- We can also compare models using the deviance information criterion (DIC) and Bayes factors
  ```
  . bayesstats ic trunc*
  
  Bayesian information criteria
  
  +----------------+----------------+----------------+
  |         | DIC  | log(ML) | log(BF) |
  +----------------+----------------+----------------+
  |  trunc_pois    | 114.3289 | -56.8194 |        |
  |  trunc_gpois   | 109.3351 | -60.0790 | -3.259617 |
  +----------------+----------------+----------------+
  Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.
• The smaller DIC for the `trunc_gpois` model says that it should do a better job producing a similar dataset

• The log(BF) column gives the log of odds that the `trunc_gpois` model is true
  
  ○ Here: \( \ln(0.0370/0.9630) \)

• The Bayes factor will always give the same subjective result as assuming equal prior probabilities for models

### 2.4 Something A Little More Complex

#### Linear Regression

• All we’ve been doing is looking at a dataset of counts

  `. save pois_plus, replace`

• Now let’s try playing with linear regressions

• Open up the `autometric` dataset

  `. use autometric`

  (auto data in metric units)

  ○ Made for all countries except the US, Liberia, and Myanmar

#### Modeling Energy Usage

• We’d like to measure energy usage of these cars

• Perhaps: regressing `lp100km` on `weight`, `displacement` and `foreign`

• Let’s go back to the dialog box for teaching purposes

  ○ Reset the dialog box by clicking the big R button

#### Filling in the Dialog Box

• This will take a little effort, but specify

  ○ `{var}` as the variance for the likelihood

  ○ Normals with large variances for the coefficients

  ○ Jeffries prior for the prior of `{var}`

  ○ A random seed of 142857

• Click on OK to submit and close

  `. do reg `
* using centering
. bayesmh lp100km weight displacement foreign, ///
    likelihood(normal(var)) ///
    prior({weight}, normal(0,1000)) ///
    prior({displacement}, normal(0,1000)) ///
    prior({foreign}, normal(0,1000)) ///
    prior({_cons}, normal(0,1000)) ///
    prior({var}, igamma(0.001,0.001)) ///
    rseed(142857)

Burn-in ...
Simulation ...

Model summary
------------------------------------------------------------------------------
Likelihood:
   lp100km ~ normal(xb_lp100km,{var})
Priors:
   {lp100km:weight displacement foreign _cons} ~ normal(0,1000) (1)
   {var} ~ igamma(0.001,0.001)
------------------------------------------------------------------------------
(1) Parameters are elements of the linear form xb_lp100km.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3087
Efficiency: min = 0.03667
            avg = 0.04561
Log marginal likelihood = -164.5299
Log marginal likelihood = -164.5299
------------------------------------------------------------------------------

| Equal-tailed
Mean  Std. Dev. MCSE Median [95% Cred. Interval]
lp100km
   weight | 0.007643 0.0010869 0.00053  0.0076434  0.0054059  0.0098129
   displacement | 0.2117928 0.2616287 0.010612  0.2086352  -0.2788908  0.7602025
   foreign | 1.483588 0.490692 0.022521  1.480786  0.4803052  2.441043
   _cons | 0.2130119 0.98965 0.048576  0.2051924  -1.7418  2.230979
------------------------------------------------------------------------------

var | 2.214069 0.3922478 0.020485  2.163138  1.587671  3.160582
------------------------------------------------------------------------------

end of do-file

• The model converges, but not at all efficiently

Looking at the Problem

• Draw a graph matrix to see the problems
  . bayesgraph matrix _all
Partial Fix Number 1

- If we mean center the weight and the displacement, we’ll get rid of some of the correlation between their simulated values and those of the intercept
  
  . sum weight displacement

  Variable | Obs  Mean    Std. Dev.  Min    Max
  ---------|--------|---------------|--------|--------|--------|----------------|
  weight   | 74    1369.527  352.5243  800    2195
  displacement | 74    3.233919  1.505725  1.29    6.96

- While we’re at it, let’s make weight no so big
  
  . gen wt1300 = (weight-1300)/1000
  . gen displacement3 = displacement - 3

- Now let’s see what happened
  
  . do regcent
  . * using centering
  . bayesmh lp100km wt1300 displacement3 foreign, ///
  . likelihood(normal({var})) ///
  . prior({wt1300}, normal(0,1000)) ///
  . prior({displacement3}, normal(0,1000)) ///
  . prior({foreign}, normal(0,1000)) ///
  . prior({_cons}, normal(0,1000)) ///
  . prior({var}, igamma(0.001,0.001)) ///
  . rseed(142857)

  Burn-in ...
  Simulation ...

  Model summary
  ____________________________________________________________
  Likelihood:
  lp100km ~ normal(xb_lp100km,{var})
Priors:
{lp100km:wt1300 displacement3 foreign _cons} ~ normal(0,1000) (1)
{var} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_lp100km.

Bayesian normal regression
Random-walk Metropolis-Hastings sampling
MCMC iterations = 12,500
Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2936
Efficiency: min = .0276
                     avg = .05888
Log marginal likelihood = -157.72151

<p>| Equal-tailed       |</p>
<table>
<thead>
<tr>
<th>Mean   Std. Dev.   MCSE  Median [95% Cred. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>lp100km</td>
</tr>
<tr>
<td>wt1300</td>
</tr>
<tr>
<td>displaceme3</td>
</tr>
<tr>
<td>foreign</td>
</tr>
<tr>
<td>_cons</td>
</tr>
<tr>
<td>var</td>
</tr>
</tbody>
</table>

Partial Fix Number 2

- We’ve chosen very special prior distributions for our model
  - Normal priors for a normal regression are semi conjugate
  - This means that they produce normal posterior distributions
    - This means we know the posterior distribution explicitly

- So... we can use Gibbs sampling here
  - This is a special case of Metropolis-Hastings which exploits knowledge for the closed form

- As a side effect, we will estimate each of the predictors separately
  - The default is to estimate them all at once

Result of Gibbs Sampling

- Here is our Gibbs sampler
  . do reggibbs
. * using centering
. bayesmh lp100km wt1300 displacement3 foreign, ///
   likelihood(normal({var})) ///
   prior({wt1300}, normal(0,1000)) ///
   prior({displacement3}, normal(0,1000)) ///
   prior({foreign}, normal(0,1000)) ///
   prior(_cons, normal(0,1000)) ///
   prior({var}, igamma(.001,.001)) ///
   block({lp100km:wt1300}, gibbs) ///
   block({lp100km:displacement3}, gibbs) ///
   block({lp100km:foreign}, gibbs) ///
   block({lp100km:_cons}, gibbs) ///
   block({var}, gibbs) ///
   rseed(142857)

Burn-in ...
Simulation ...

Model summary

Likelihood:
lp100km ~ normal(xb_lp100km,{var})

Priors:
{lp100km:wt1300 displacement3 foreign _cons} ~ normal(0,1000) (1)
{var} ~ igamma(.001,.001)

(1) Parameters are elements of the linear form xb_lp100km.

Bayesian normal regression
Gibbs sampling

MCMC iterations = 12,500
Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = 1
Efficiency: min = .07728
               avg = .2942
Log marginal likelihood = -157.63634

| Equal-tailed          |
| Mean  Std. Dev.      |  MCSE  Median | [95% Cred. Interval] |
|--------------------|-----------|------------|---------------------|-----------------|
| lp100km            |
wt1300	7.500904	1.137687	0.040773	7.502938 5.242152 9.722559
displacement3	0.2416701	0.2732162	0.009828	0.238976 -0.2873393 0.7886288
foreign	1.479528	0.4995871	0.009963	1.473448 0.494879 2.487035
_cons	10.78787	0.2489216	0.004643	10.78923 10.2879 11.27402
var	2.231845	0.3881057	0.004403	2.189157 1.596965 3.094858

. end of do-file

• This has helped a bunch with everything except the correlated predictors
• So: collinearity is a problem here, too!
• Our only solution is to run the chain much longer
  . do reggibbs2
. * using centering
. bayesmh lp100km wt1300 displacement3 foreign, ///
    likelihood(normal({var})) ///
    prior({wt1300}, normal(0,1000)) ///
    prior({displacement3}, normal(0,1000)) ///
    prior({foreign}, normal(0,1000)) ///
    prior(_cons, normal(0,1000)) ///
    prior({var}, igamma(.001,.001)) ///
    block({lp100km:wt1300}, gibbs) ///
    block({lp100km:displacement3}, gibbs) ///
    block({lp100km:foreign}, gibbs) ///
    block({lp100km:_cons}, gibbs) ///
    block({var}, gibbs) ///
    mcmcsize(50000) ///
    rseed(142857)

Burn-in ...
Simulation ...

Model summary

================================================================================
Likelihood:  
lp100km ~ normal(xb_lp100km,{var})

Priors:  
{lp100km:wt1300 displacement3 foreign _cons} ~ normal(0,1000) (1)  
{var} ~ igamma(.001,.001)
================================================================================

(1) Parameters are elements of the linear form xb_lp100km.

Bayesian normal regression Gibbs sampling
MCMC iterations = 52,500
Burn-in = 2,500
MCMC sample size = 50,000
Number of obs = 74
Acceptance rate = 1
Efficiency: min = .102
avg = .3223
Log marginal likelihood = -157.64735
max = .8371

--------------------------------------------------------------------------------
| Equal-tailed |
Mean Std. Dev. MCSE Median [95% Cred. Interval]
lp100km |  
wt1300 | 7.504571 1.111813 .015286 7.500416 5.313615 9.693149  
displaceme-3 | 0.2415545 .2662422 .003729 .2390393 -.2807387 .7687533  
foreign | 1.484437 .484902 .004194 1.484105 .5278635 2.43858  
_cons | 10.78488 .2444281 .001997 10.78407 10.30452 11.2654  
--------------------------------------------------------------------------------
var | 2.228945 .3880054 .001897 2.185259 1.592776 3.106856  
--------------------------------------------------------------------------------

end of do-file
3 Conclusion

3.1 Conclusion

What We Have Seen

- Use of part of the GUI for Bayesian analysis in Stata
- Specification of a non-standard likelihood
- Specification of priors
- Basic Bayesian estimation
- Basic Bayesian model comparison
- Gibbs samplers
- Centering

What We Have Not Seen

- Complex models
  - There are many many examples in the manuals
- Writing our own evaluators
  - If you have a likelihood function which is not the sum of the likelihoods for each of the observations, you can write a specially-formed evaluator program
    - This is similar in kind to the `ml` command

Conclusion

- We've just touched on what can be done
- I hope this has been somewhat informative
Index

B
Bayesian
   analysis, 1–26
   diagnostics, 8–12, 16–20
   estimation, see bayesmh
   postestimation, 6–8
bayesmh, 4–6, 11–14, 21–26
   specifying a custom likelihood, 12–14

C
comparing models, 20, 21

G
Gibbs sampling, 24–26

P
prior distributions, 3, 4

S
simulation, 3