Competing-risks regression

Roberto G. Gutierrez

Director of Statistics StataCorp LP

2009 Australian and New Zealand Stata Users Group Meeting

1. Overview

- 2. Competing-risks events
- 3. Cumulative incidence functions
- 4. The Cox regression approach
- 5. The Fine and Gray approach (stcrreg)
- 6. Concluding remarks

- Competing risks are events that prevent an event of interest from occurring, rather than just prevent you from seeing it happen (censoring)
- When you have competing events, you want to focus on the cumulative incidence function rather than the survival function
- You can use Cox regression with competing risks, but you have to either
 - 1. Modify your interpretations
 - 2. Go through a lot of work to assess covariate effects
- Competing-risks regression by the method of Fine and Gray (1999) is a useful alternative
- Implemented in the stcrreg command, new to Stata 11

- A competing-risk event is an event that impedes what a researcher actually "wants" to see
- For example, if a researcher is interested in recurrence of breast cancer, a heart attack would be competing event
- This is not the same as censoring. With censoring, the event of interest still happens at a later time. You just don't get to see when
- What confuses the matter is that, for some purposes, it is okay to think of competing events as censorings

Competing-risks regression

Cumulative incidence functions

Kaplan-Meier curves

```
. sysuse cancer, clear
(Patient Survival in Drug Trial)
. stset studytime died
  (output omitted)
```

```
. sts graph
```


- If the event of interest is recurrent breast cancer, a Kaplan-Meier curve answers the question "What is the probability of no breast cancer before 5 months?"
- In a competing-risks setting, a Kaplan-Meier curve is inadequate for two reasons
- First, it fails to acknowledge that breast cancer may never occur, i.e. the probability of breast cancer after time zero is not equal to 1.0

- Second, with competing risks it is better to reverse the temporal ordering of the question
- It makes better sense to ask "What is the probability of breast cancer within 5 months?" than to ask "What is the probability that nothing happens for the first five months, but when something does happen I want it to be breast cancer and not a heart attack?"
- As such, you should use the cumulative incidence function (CIF) instead
- A CIF is just the probability that the event of interest occurs before a given time

Cumulative incidence functions

Cumulative incidence curve

L The Cox regression approach

Example

- Geskus (2000) analyzed data from 324 HIV-positive men from the Amsterdam Cohort Studies on HIV infection and AIDS.
- During the course of infection, the syncytium inducing (SI) phenotype appeared in some
- Appearance of SI typically means bad news
- Time to SI appearance in the absence of AIDS is the analysis of interest
- In this context, AIDS with no SI acts as the competing event
- Covariate of interest is variable ccr5 indicating a mutation in the C-C chemokine receptor 5 gene

The Cox regression approach

. webuse hiv_s (HIV and SI as								
. describe								
Contains data from http://www.stata-press.com/data/r11/hiv_si.dta								
obs:	324			HIV and SI as competing risks				
vars:	4			3 Apr 2009 13:40				
size:	5,184 (99.9% of m	emory free)	(_dta has notes)				
variable name	storage type	display format	value label	variable label				
patnr	int	%8.0g		ID				
time	float	%9.0g		Years from HIV infection				
status	byte	%10.0g	stat	1 = AIDS, 2 = SI, 0 = event-free				
ccr5	byte	%9.0g	ccr5	1 if WM (deletion in C-C chemokine receptor 5 gene)				

Sorted by:

Research aim

- The research question is: "How does the ccr5 mutation affect the incidence of SI in the presence of AIDS as a competing risk?"
- Standard Cox regression does not answer that question
- That does not mean it is completely useless, however
- First, you can modify your interpretation if you wish
- Second, you can use more Cox regression to answer our research question, but it is a lot of work. But it is possible

Left The Cox regression approach

Cox regression results

. stset time, (output omitt . stcox ccr5 (output omitt Cox regression	red)	15 == 2)	// S:	I is the e	event of i	ntei	rest
No. of subject		324		Numbe	er of obs	=	324
No. of failure		107					
Time at risk	= 2261.959	9996					
					ni2(1)	=	1.19
Log likelihood	1 = -549.73	3443		Prob	> chi2	=	0.2748
_t	Haz. Ratio	Std. Err.	z	P> z	[95% Co	nf.	Interval]
ccr5	.7755334	.1846031	-1.07	0.286	.486391	4	1.23656

- The previous results may be interpreted as those for a world where the competing event does not occur
- A full CIF analysis with Cox regression would require the following additional steps
 - 1. Predict the hazard contributions from the previous Cox regression
 - 2. Fit a Cox regression with AIDS instead as the event of interest
 - 3. Predict the hazard contributions from that model fit
 - 4. Calculate the estimated CIF manually for both ccr5==0 and ccr5==1; see page 209 of [ST] for details
 - 5. Plot the results
- Moral: Assessing covariate effects on the CIF using Cox regression is a lot of work

The Cox regression approach

Comparative CIF curves

- An easier way to do CIF covariate analysis is with competing risks regression, according to the model of Fine and Gray (1999)
- They posit a model for the hazard of the subdistribution for the failure event of interest, known as the *subhazard*
- Put simply, they model the CIF directly knowing full well it is not a proper distribution function
- Covariates affect the subhazard proportionally, similar to Cox regression
- You do this in Stata 11 using stcrreg. stcurve after stcrreg will plot comparative CIFs for you

The Fine and Gray approach (stcrreg)
Using stcrreg

. stset time, (<i>output omitt</i>	// SI is the event of interest						
. stcrreg ccrs (output omitt	// A:	IDS is the	e competir	ıg et	vent		
Competing-rish		No. of	f obs	=	324		
				No. of	f subjects	; =	324
Failure event		No. fa	ailed	=	107		
Competing even		No. co	ompeting	=	113		
				No. ce	ensored	=	104
				Wald o	chi2(1)	=	0.01
Log pseudolikelihood = -579.06241				Prob 3	> chi2	=	0.9172
t	SHR	Robust Std. Err.	z	P> z	[95% Co	onf.	Interval]
	5111	5001 2111	-	1.121	200% 00		1001(01)
ccr5	1.023865	.2324119	0.10	0.917	.656182	27	1.597574

- The Fine and Gray approach (stcrreg)
 - stcurve after stcrreg
 - . stcurve, cif at1(ccr5=0) at2(ccr5=1) title(SI) range(0 13) yscale(range(0 0.5))

- Competing risks are events that prevent an event of interest from occurring
- If you have competing risks, you want to look at CIFs instead of survival functions
- CIF analysis with Cox regression is possible, but difficult
- stcrreg followed by stcurve is the easier way to go
- Keep in mind, however, that easier does not mean correct. There are model assumptions to be made for either of the two approaches

- Fine, J. and R. Gray. 1999. A proportional hazards model for the subdistribution of a competing risk. *Journal of the American Statistical Association.* **94**: 496–509.
- Geskus, R. B. 2000. On the inclusion of prevalent cases in HIV/AIDS natural history studies through a marker-based estimate of time since seroconversion. *Statistics in Medicine*. **19**: 1753–1769.

