Model and Working Correlation Structure Selection in GEE Analyses of Longitudinal Data

Dr Jisheng Cui
Public Health Research Cluster
Deakin University

1. Introduction

- GEE method background information
- QIC comparison with AIC
- Stata program description of options
- Examples Longitudinal data analyses
- Summary

2. GEE method

• Generalized Estimating Equations (GEE)

Liang and Zeger 1986; Biometrika Zeger and Liang 1986; Biometrics Zeger, Liang, Albert 1988; Biometrics

• Extension of GLM

Nelder and Wedderburn 1972; JRSS A McCullagh and Nelder 1989; GLM (2nd Ed)

$$S(\beta; R, D) \equiv \sum_{i=1}^{n} D_i' V_i^{-1} (Y_i - \mu_i) = 0$$

• Part I: Working correlation structure R

$$V_i = A_i^{1/2} R(\alpha) A_i^{1/2}$$

Consistent estimates even if R mis-specified

Independent

Exchangeable

Autoregressive

Stationary

Non-stationary

Unstructured

• Do we still need to specify R correctly?

- Under Ind. model, $\widehat{\beta}$ efficient if R not large Zeger 1988; Biometrics
- For time-varying covariates $\widehat{\beta}$ may be inefficient Fitzmaurce 1995; Biometrics
- Population-average model

• Part II: Mean & Variance of mean of outcome

First two orders of moments
Different family variance differs

Table 1: Variance functions

Distribution	$V(\mu)$
Bernoulli	$\mu(1-\mu)$
Normal	1
Poisson	μ
Gamma	μ^2
Negative binomial	$\mu + \alpha \mu^2$
Inverse Gaussian	μ^3

• Part III: Link function between outcome & variables

Different model link function differs

Identity

Log

Logit

Probit

Power

Reciprocal

• Analysis of Longitudinal data

- Subject ID
- Time variable

- Model section in GEE
- No criterion available between 1986 & 2001
- Akaike Information Criterion (AIC) not applicable

No distribution was assumed for GEE No likelihood defined

Quasi-likelihood

$$Q(\mu) = \int_{y}^{\mu} \frac{y - t}{\phi V(t)} dt$$

• Under Independence correlation matrix

$$Q(\beta, \phi; I, D) = \sum_{i=1}^{n} \sum_{j=1}^{n_i} Q(\beta, \phi; (Y_{ij}, X_{ij}))$$

- GEE $S(\beta; I, D)$ equivalent $\partial Q(\beta, \phi; I, D)/\partial \beta$
- Under a general correlation matrix
 - -Quasi-likelihood may not exist

McCullagh and Nelder 1989

- Pan (2001) in Biometrics proposed QIC
- Hardin & Hilbe (2003) Generalized Estimating Equation
- Application was slow

3. QIC method

Quasi-likelihood under Independence model Criterion

Table 2: Quasi-likelihood functions

Distribution	$\phi Q(\mu)$
Bernoulli	$y\ln(\frac{\mu}{1-\mu}) + \ln(1-\mu)$
Normal	$y \ln(\frac{\mu}{1-\mu}) + \ln(1-\mu) - \frac{1}{2}(y-\mu)^2$
Poisson	$y \ln(\mu) - \mu$
Gamma	$-(y/\mu + \ln(\mu))$
Negative binomial	$y \ln(\frac{\alpha\mu}{1+\alpha\mu}) - \frac{1}{\alpha}\ln(1+\alpha\mu)$
Inverse Gaussian	$-\frac{y}{2\mu^2} + \frac{1}{\mu}$

• QIC formula

$$QIC = -2Q(\widehat{\mu}; I) + 2\operatorname{trace}(\widehat{\Omega}_I^{-1}\widehat{V}_R)$$

- $-\widehat{\Omega}_I$ variance estimator under independence correlation structure
- $-\widehat{\Omega}_R$ robust variance estimator under specified working correlation structure
- Select correlation structure & most parsimonious model

$$QIC_{u} = -2Q(\widehat{\mu}; I) + 2p$$

$$AIC = -2LL + 2p$$

4. Stata program

```
qic depvar [indepvars] [if] [in] [, i(varname<sub>i</sub>) t(varname<sub>t</sub>)
family(familyname) link(linkname) corr(correlation)
exposure(varname) offset(varname) noconstant
force eform nodisplay nolog iterate(#) tolerance(#)
trace ]
```

5. An example

- Longitudinal study of lung function decline
 - -Follow-up from 1995 until 2003
 - -322 males participants used for demonstration)
- Variables of interest
 - -FEV₁ Forced Expiratory Volume in one second
 - -Age at each interview
 - -Smoking status current, former, nonsmoker
 - -Age at baseline
 - -Height at baseline

• Two individuals

+							+
	id	wave	fev	age	smoking	agebase	htbase
	1150024	0	4.58	26.0	0	26.0	1.806
	1150024	1	4.68	26.6	0	26.0	1.806
	1150024	2	4.35	27.5	0	26.0	1.806
	1150024	3	4.58	28.5	0	26.0	1.806
	1150024	4	4.74	29.4	0	26.0	1.806
	1150024	5	4.64	30.4	0	26.0	1.806
	1150024	6	4.68	31.3	0	26.0	1.806
	1150032	0	4.49	17.3	0	17.3	1.72
	1150032	1	4.31	17.6	0	17.3	1.72
	1150032	2	4.36	18.6	1	17.3	1.72
+							+

• Stata Command

. qic fev age smoking2 smoking3 agebase htbase, i(id) t(wave) corr(exchangeable)

			1 0) 0		
GEE population-	-averaged mod	del		Number	of obs =	= 1141
Group variable	:		id	Number	of groups =	322
Link:		ider	ntity	Obs per	group: min =	= 1
Family:		Gaus	ssian	_	avg =	3.5
Correlation:		indeper	ndent		max =	9
				Wald ch	ni2(5) =	701.01
Scale parameter	r:	. 250)5905	Prob >	chi2 =	0.0000
Pearson chi2(1:	141):	28	35.92	Deviand	e =	285.92
Dispersion (Pea	arson):	. 250)5905	Dispers	sion =	. 2505905
	Coef.				[95% Conf.	Interval]
age		. 0080028			0501387	0187682
smoking2	1772179	.0342687	-5.17	0.000	2443834	1100524
smoking3	.0346093	.0540126	0.64	0.522	0712534	. 140472
agebase	.0142697	.0082136	1.74	0.082	0018286	.030368
htbase	5.091886	.2154737	23.63	0.000	4.669566	5.514207
_cons	-3.888907	.3858109	-10.08	0.000	-4.645083	-3.132732

GEE population-averaged model		Number of obs	=	1141
Group variable:	id	Number of groups	=	322
Link:	identity	Obs per group: min	=	1
Family:	Gaussian	avg	=	3.5
Correlation:	exchangeable	max	=	9
		Wald chi2(5)	=	253.13
Scale parameter:	. 2547384	Prob > chi2	=	0.0000

(Std. Err. adjusted for clustering on id)

Semi-robust Coef. Std. Err. z P>|z| [95% Conf. Interval] fev | -.0354697 .0040787 -8.70 0.000 -.0434638 -.0274755 age | smoking2 | -.0483209 .02919 -1.660.098 -.1055323 .0088906 smoking3 | -.0098896 .022714 -0.440.663 -.0544083 .0346291 agebase | .0152248 .0054013 2.82 0.005 .0046385 .0258111 .404878 4.168658 htbase | 4.962204 12.26 0.000 5.75575 -3.702856.717312 -5.160.000 -5.108762 cons -2.29695

QIC

Corr =	exchangeable	
Family =	gau	
Link =	iden	
p =	6	
Trace =	11.535	
QIC =	313.727	

. qic fev age smoking2 smoking3 agebase htbase, i(id) t(wave) nodisplay

QIC

Corr =	exc	
Family =	gau	
Link =	iden	
p =	6	
Trace =	11.535	
QIC =	313.727	

Table 2: QIC for selection of correlation structure

Correlation	Variable	p	QIC
Independent	age, smoking, agebase, htbase	6	324.19
Exchangeable	age, smoking, agebase, htbase	6	313.73
Autoregressive	age, smoking, agebase, htbase	6	321.16
Stationary	age, smoking, agebase, htbase	6	322.66
Non-stationary	age, smoking, agebase, htbase	6	322.49
Unstructured	age, smoking, agebase, htbase	6	322.83

. qic fev age , i(id) t(wave) corr(exchangeable) nolog nodisplay

QIC

Corr = exchangeable
Family = gau
Link = iden
p = 2
Trace = 5.260
QIC = 454.081

Table 3: QIC for selection of the best model

Correlation	Variable	p	QIC
Exchangeable	age	2	454.08
Exchangeable	agebase	2	455.19
Exchangeable	htbase	2	340.47
Exchangeable	smoking	3	469.37
Exchangeable	age, agebase	3	449.41
Exchangeable	age, htbase	3	314.94
Exchangeable	agebase, htbase	3	317.44
Exchangeable	age, smoking	4	452.72
Exchangeable	smoking, agebase	4	455.58
Exchangeable	smoking, htbase	4	342.20
Exchangeable	age, agebase, htbase	4	314.81
Exchangeable	age, smoking, agebase	5	447.22
Exchangeable	age, smoking, htbase	5	314.30
Exchangeable	smoking, agebase, htbase	5	318.51
Exchangeable	age, smoking, agebase, htbase	6	313.73

6. Summary

- Developed a new program qic using Stata software
- Flexible & easy to use
- Include all distribution functions, link functions and correlation structures available in Stata