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Introduction

Nonparametric density estimation have been widely applied for
analyzing density of a given data set.

Nonparametric density estimation can be seen as a development
of histogram for density analysis.

Probably the most frequently used nonparametric density
estimation used is based on the kernel method.

The most important parameter in kernel density estimation is the
bandwidth: there exists a large literature on fixed and variable
bandwidth (adaptive kernel).

The kernel density estimation provides a point estimation.
Considering several points along the data range and connecting
them we can provide a picture of the estimated density.

However, not large attention has been paid to performing
inference with kernel density estimation in empirical works.
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Outline of the presentation

Recalling the main results from the literature
quickest rate of convergence for pointwise kernel estimation;
the issue of the asymptotic bias in non smooth functions of
the sample moments;
coping with asymptotic bias;
difference between asymptotic and bootstrap tests or
confidence intervals.

Where are we with Stata?

kerden.ado: a development of kdensity.ado;

bsciker.ado: a new program for bootstrap confidence
intervals for kernel density estimation.

asciker.ado: a new program for asymptotic confidence
intervals for kernel density estimation.
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The kernel methodology for density estimation

The kernel methodology aims to estimate the density f of a
random variable, X, from a random sample Xi, i = 1, 2, ..., n
without assuming that f belongs to a known family of functions.

The (fixed-width) kernel density estimation basically slides a
window of given width along the data range counting and
properly weighting the observation that fall into the window.

Formally, the kernel estimator of f is:

fn(x) =
1

nhn

n
∑

i=1

K

(

x − Xi

hn

)

(1)

K is a kernel functions with given properties; hn, n = 1, 2, ..., n is
a positive sequence of bandwidths; f is assumed to have r ≤ 2
continuous derivatives in NBH of x (Silverman (1986)).
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Performing inference on pointwise density estimation

If nh2r+1 is bounded and n → ∞:

Zn(x) ≡
fn − f(x) − bn(x)

σn(x)
=

fn(x) − E[fn(x)]

σn(x)

d
→ N(0, 1) (2)

We can compute a studentized statistic which is asymptotically
pivotal for testing hypothesis or forming confidence interval for
f(x) with suitable estimator for σn(x) and bn(x).

kerden.ado provides and estimate of the variance of fn(x)
computing:

s2
n(x) =

1

(nhn)2

n
∑

i=1

K

(

x − Xi

hn

)2

−
fn(x)2

n
(3)
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The fastest rate of convergence of fn(x) to f(x)

The fastest possible rate of convergence of fn(x) to f(x) is
obtained with hn ∝ n−1/(2r+1).

With such a bandwidth: (a) fn − f(x) = Op[n
−r/(2r+1)]; (b)

bn(x) ∝ n−r/(2r+1); (c) σn(x) ∝ n−r/(2r+1).

The studentized form of Zn(x) for asymptotic confidence interval
is:

tn(x) =
fn(x) − E[fn(x)]

sn(x)

d
→ N(0, 1) (4)

However, tn is the asymptotic t statistic for testing hypothesis or
forming CI for E[fn(x)] but cannot be used to test hypothesis and
building CI for f(x), unless bn(x) is negligibly small.

The asymptotic bias causes the asymptotic distribution of tn not
to be centered at 0.

Stata User Group - 9th UK meeting - 19/20 May 2003 – p.6/17



Methods for controlling the asymptotic bias

Asymptotic bias is a characteristic of nonparametric estimators
that is not shared by estimators that are not smooth functions of
the sample moments (Horowitz, 1999).

Asymptotic bias does affect the bootstrap as well.

There are mainly two methods for dealing with asymptotic bias:
explicit bias removal;
undersmoothing.

Hall (1992) explains that, nonparametric point estimation and
nonparametric interval estimation (or testing) are different tasks
that require different degrees of smoothing.

Hall (1992) also shows that undersmoothing performs better in
terms of errors in the coverage probability.
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Dealing with the asymptotic bias

The fastest rate of convergence of fn(x), is obtained with
hn ∝ n−1/2r+1

However, fn(x) is asymptotically biased unless the bias is
negligibly small.

With undersmooting, (nhn)1/2bn(x) = op(1) as n → ∞, i.e. the
bias is asymptotically negligible (such a bandwidth minimizes the
bias maximizing the variance).

Horowitz (1999) suggests setting hn ∝ n−κ, with
κ > −1/(2r + 1); Hall (1992) suggests setting hn ∝ γn1/(2r+1),
with 0.1 < γ < 0.3.

kerden.ado can perform both undersmoothing.
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Asymptotic vs. bootstrap CI

Horowitz (1999) demonstrates that the bootstrap provides
asymptotic refinements for tests of hypothesis and CI in
nonparametric density estimation.

With asy. critical values, the difference between the true and
nominal rejection probabilities of a symmetrical t test is
O[(nhn)−1]. This results relies on nhr+1

n → 0. If this does not
happen the ERP > O[(nhn)−1].

With the BS critical values, the difference b/w true and nominal
rejection probabilities of the symmetrical t test is o[(nhn)−1]

Hence, the bootstrap provides asymptotic refinements for
hypothesis tests and confidence intervals based on a kernel
nonparametric density estimator (when the bandwidth hn

converges to zero sufficiently rapidly to make the asymptotic bias
of the density estimator negligibly small).
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Where are we with Stata?

To the best of my knowledge, with Stata we can perform kernel
density estimation but we cannot perform inference on the point
density estimation.

The popular program kdensity.ado has lots of features but
does not compute the variance and allow undersmoothing.
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the kerden.ado: a development of kdensity.ado

kerden.ado is built on kdensity.ado.

On top of what kdensity.ado does, kerden.ado computes
the sample variance of pointwise estimation and allows to save it
as an additional variable.

Why kerden.ado and not kdensity2.ado?
No particular reason, just matter of names.

This program could be of use for hypothesis testing as well as for
confidence interval estimation.
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What about bsciker.ado?

Given the random sample X1, i = 1, 2, ..., n bsciker.ado:
generates B bootstrap samples X∗

i , i = 1, 2, ..., n sampling
Xi with replacement;
computes, with undersmoothing:
f∗

n = (1/nhn)
∑n

i=1 K(x − X∗

i /hn)

computes:
s2∗

n (x) = (1/nh2
n)

∑n
i=1 K(x − X∗

i /hn)2 − f∗

n(x)2/n

defines the bootstrap analog of tn:

t∗n =
f∗

n(x) − fn(x)

s∗n(x)
(5)

Computes the BS critical values (for any given significance
level) and saves fn(x), low/up bound as new variables.
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bsciker.ado: a program for BS CI of kernel density

bsciker.ado develops in three steps:
it generates B bootstrap samples from the data set;
it computes the kernel density and its variance for each
bootstrap data set using kerden.ado with undersmoothing;
it merges results from previous steps, compute the pivotal
statistic, computes the relevant BS critical values, and finally
saves the upper and lower bounds as additional variables to
be plotted together with the kernel density estimation.
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Simple illustration

As simple illustration we generated a random sample of
dimension N = 100 from a N(0, 1).

We than computed the asymptotic CI (for simplicity, bn(x) = 0).

We computed the boostrap CI with oversmoothing

Plotted results together with “zero-bias” CI:
f(x) = fn(x) ± 1.96σn.
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A simple illustration

95% asy CI s.norm., N=100, npt=50
points: pt
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Brief discussion/conclusions

bsciker.ado can be developed/accompanied by a program for
testing hypothesis on f(x).

bsciker.ado can be quite time demanding but some
improvement in programming could be helpful.

bsciker.ado and kerden.ado are useful program for performing
inference on kernel density estimation.
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