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Instrumental Variables and GMM: Estimation and Testing

In this paper, which has appeared in the current issue of Stata
Journal, we describe several Stata routines that we have written
to facilitate instrumental variables estimation, going beyond the
capabilities of Stata’s ivreg command. In the presentation today,
I will mention the highlights of this paper, and encourage you
to read it—either from the Stata Journal, or from the RePEc
series set up for these meetings.

These routines—centered around our enhanced estimation rou-
tine ivreg2—implement a form of the Generalised Method of
Moments (GMM) estimator, previously available in ivgmm0, that
generates efficient estimates in the presence of heteroskedastic-
ity of unknown form. In contrast, the conventional IV estimator
with robust standard errors, although consistent, is relatively in-
efficient.
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In the twenty years since it was first introduced, GMM has be-

come a very popular tool among empirical researchers. It is also

a very useful heuristic tool. Many standard estimators, including

IV and OLS, can be seen as special cases of GMM estimators,

and are often presented as such in first–year graduate economet-

rics texts. Most of the diagnostic tests we discuss in this paper

can also be cast in a GMM framework.

We also discuss the problems encountered in the presence of

intra–group correlation or “clustering”. If the error terms in

the regression are correlated within groups, but not correlated

across groups, then the consequences for IV estimation are sim-

ilar to those of heteroskedasticity: the IV coefficient estimates

are consistent, but their standard errors and the usual forms of

the diagnostic tests are not.
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Efficient GMM brings with it the advantage of consistency in the

presence of arbitrary heteroskedasticity, but at a cost of possi-

bly poor finite sample performance. If heteroskedasticity is in

fact not present, then standard IV may be preferable. The usual

Breusch–Pagan/Godfrey/Cook–Weisberg and White/Koenker tests

for the presence of heteroskedasticity in a regression equation

can be applied to an IV regression only under restrictive assump-

tions. We discuss the test of Pagan and Hall (1983) designed

specifically for detecting the presence of heteroskedasticity in IV

estimation, and its relationship to these other heteroskedasticity

tests.
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Even when IV or GMM is judged to be the appropriate estimation
technique, we may still question its validity in a given application:
are our instruments “good instruments”? “Good instruments”
should be both relevant and valid: correlated with the endoge-
nous regressors and at the same time orthogonal to the errors.
Correlation with the endogenous regressors can be assessed by
an examination of the significance of the excluded instruments
in the first–stage IV regressions. We may cast some light on
whether the instruments satisfy the orthogonality conditions in
the context of an overidentified model: that is, one in which a
surfeit of instruments are available. In that context we may test
the overidentifying restrictions in order to provide some evidence
of the instruments’ validity. We present the variants of this test
due to Sargan (1958), Basmann (1960) and, in the GMM con-
text, L. Hansen (1982), and show how the generalization of this
test, the C or “difference–in–Sargan” test, can be used test the
validity of subsets of the instruments.
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Although there may well be reason to suspect non–orthogonality

between regressors and errors, the use of IV estimation to ad-

dress this problem must be balanced against the inevitable loss

of efficiency vis–à–vis OLS. It is therefore very useful to have a

test of whether or not OLS is inconsistent and IV or GMM is

required. This is the Durbin–Wu–Hausman (DWH) test of the

endogeneity of regressors. We discuss how to implement variants

of the DWH test, and how the test can be generalized to test

the endogeneity of subsets of regressors. We then show how the

Hausman form of the test can be applied in the GMM context,

how it can be interpreted as a GMM test, when it will be iden-

tical to the Hansen/Sargan/C-test statistic, and when the two

test statistics will differ.
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We have written four Stata commands—ivreg2, ivhettest, overid,

and ivendog—that, together with Stata’s built-in commands, al-

low the user to implement all of the above estimators and diag-

nostic tests.

They are all meant for application in a cross–sectional data con-

text. In our current research, we are considering the extension

of these routines to a time–series context, and to a panel data

setting.
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The equation to be estimated is, in matrix notation,

y = Xβ + u,E(uu′) = Ω (1)

The matrix of regressors X is n ×K, where n is the number of

observations. Some of the regressors are endogenous, so that

E(Xiui) 6= 0. We partition the set of regressors into [X1 X2],

with the K1 regressors X1 assumed under the null to be en-

dogenous, and the (K − K1) remaining regressors X2 assumed

exogenous.
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The set of instrumental variables is Z and is n × L; this is the

full set of variables that are assumed to be exogenous, i.e.,

E(Ziui) = 0. We partition the instruments into [Z1 Z2], where

the L1 instruments Z1 are excluded instruments, and the re-

maining (L − L1) instruments Z2 ≡ X2 are the included instru-

ments/exogenous regressors:

Regressors X = [X1 X2] = [X1 Z2] = [Endogenous Exogenous]

(2)

Instruments Z = [Z1 Z2] = [Excluded Included] (3)
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Denote by PZ the projection matrix Z(Z′Z)−1Z′. The instru-

mental variables estimator of β is

β̂IV = (X ′Z(Z′Z)−1Z′X)−1X ′Z(Z′Z)−1Z′y = (X ′PZX)−1X ′PZ y
(4)

This estimator goes under a variety of names: the instrumental

variables (IV) estimator, the generalized instrumental variables

estimator (GIVE), or the two-stage least-squares (2SLS) esti-

mator, the last reflecting the fact that the estimator can be

calculated in a two–step procedure. We follow Davidson and

MacKinnon and refer to it as the IV estimator rather than 2SLS

because the basic idea of instrumenting is central, and because

it can be (and in Stata, is more naturally) calculated in one step

as well as in two.
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The standard IV estimator is a special case of a Generalized

Method of Moments (GMM) estimator. The assumption that

the instruments Z are exogenous can be expressed as E(Ziui) =

0. The L instruments give us a set of L moments,

gi(β̂) = Z′iûi = Z′i(yi −Xiβ̂) (5)

where gi is L×1. The exogeneity of the instruments means that

there are L moment conditions, or orthogonality conditions, that

will be satisfied at the true value of β. Each of the L moment

equations corresponds to a sample moment, and we write these

L sample moments as

g(β̂) =
1

n

n∑
i=1

gi(β̂) =
1

n

n∑
i=1

Z′i(yi −Xiβ̂) =
1

n
Z′û (6)

The intuition behind GMM is to choose an estimator for β that

solves g(β̂) = 0.
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If the equation to be estimated is exactly identified, so that L =

K, then we have as many equations—the L moment conditions—

as we do unknowns—the K coefficients in β̂. In this case it is

possible to find a β̂ that solves g(β) = 0, and this GMM estimator

is in fact the IV estimator.

If the equation is overidentified, however, so that L > K, then

we have more equations than we do unknowns, and in general

it will not be possible to find a β̂ that will set all L sample

moment conditions to exactly zero. In this case, we take an

L × L weighting matrix W and use it to construct a quadratic

form in the moment conditions. This gives us the GMM objective

function:

J(β̂) = ng(β̂)′Wg(β̂) (7)
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A GMM estimator for β is the β̂ that minimizes J(β̂). Deriving

and solving the K first order conditions

∂J(β̂)

∂β̂
= 0 (8)

yields the GMM estimator:

β̂GMM = (X ′ZWZ′X)−1X ′ZWZ′y (9)



What is the optimal choice of weighting matrix? Denote by S

the covariance matrix of the moment conditions g:

S =
1

n
E(Z′uu′Z) =

1

n
E(Z′ΩZ) (10)

where S is an L × L matrix. The general formula for the distri-

bution of a GMM estimator is

V (β̂GMM) =
1

n
(Q′XZWQXZ)−1(Q′XZWSWQXZ)(Q′XZWQXZ)−1

(11)

The efficient GMM estimator is the GMM estimator with an

optimal weighting matrix W , one which minimizes the asymptotic

variance of the estimator. This is achieved by choosing W = S−1.

Substitute this into Equation (9) and Equation (11) and we

obtain the efficient GMM estimator

β̂EGMM = (X ′ZS−1Z′X)−1X ′ZS−1Z′y (12)
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with asymptotic variance

V (β̂EGMM) =
1

n
(Q′XZS

−1QXZ)−1 (13)

Note the generality (the “G” of GMM) of the treatment thus far;

we have not yet made any assumptions about Ω, the covariance

matrix of the disturbance term. But the efficient GMM estimator

is not yet a feasible estimator, because the matrix S is not known.

To be able to implement the estimator, we need to estimate S,

and to do this, we need to make some assumptions about Ω.



If we consider heteroskedasticity of unknown form (but no clus-

tering), the squared IV residuals may be used as consistent es-

timates of the squared errors, and a consistent estimator of S

is

Ŝ =
1

n
(Z′Ω̂Z) (14)

This works because, although we cannot hope to estimate the

n diagonal elements of Ω with only n observations, they are

sufficient to enable us to obtain a consistent estimate of the

L× L matrix S.
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To GMM or not to GMM?

The advantages of GMM over IV are clear: if heteroskedasticity is

present, the GMM estimator is more efficient than the simple IV

estimator, whereas if heteroskedasticity is not present, the GMM

estimator is no worse asymptotically than the IV estimator.

Nevertheless, the use of GMM does come with a price. The prob-

lem, as Hayashi (2000) points out, is that the optimal weighting

matrix Ŝ at the core of efficient GMM is a function of fourth

moments, and obtaining reasonable estimates of fourth moments

may require very large sample sizes. The consequence is that the

efficient GMM estimator can have poor small sample properties.

In particular, Wald tests tend to over–reject the null.
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If in fact the error is homoskedastic, IV would be preferable

to efficient GMM. For this reason a test for the presence of

heteroskedasticity when one or more regressors is endogenous

may be useful in deciding whether IV or GMM is called for. Such

a test was proposed by Pagan and Hall (1983), and we have

implemented it in Stata as ivhettest.
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The Breusch–Pagan/Godfrey/Cook–Weisberg and White/Koenker
statistics are standard tests of the presence of heteroskedasticity
in an OLS regression. The principle is to test for a relationship
between the residuals of the regression and p indicator variables
that are hypothesized to be related to the heteroskedasticity.
Koenker (1981) noted that the power of this test is very sen-
sitive to the normality assumption, and presented a version of
the test that relaxed this assumption. Koenker’s test statis-
tic is based on the centered R2 from an auxiliary regression of
the squared residuals from the original regression on the indi-
cator variables. When the indicator variables are the regressors
of the original equation, their squares and their cross-products,
Koenker’s test is identical to White’s (1980) nR2

c general test
for heteroskedasticity. These tests are available in Stata, follow-
ing estimation with regress, using our ivhettest as well as via
hettest and whitetst.
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As Pagan and Hall (1983) point out, the above tests will be

valid tests for heteroskedasticity in an IV regression only if het-

eroskedasticity is present in that equation and nowhere else in

the system. The other structural equations in the system (cor-

responding to the endogenous regressors X1) must also be ho-

moskedastic, even though they are not being explicitly estimated.

Pagan and Hall derive a test which relaxes this requirement,

and we have implemented their simpler test as ivhettest. The

Pagan–Hall statistic has not been widely used in practice, per-

haps because it is not a standard feature of most regression

packages.
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Testing the relevance of instruments

An instrumental variable must satisfy two requirements: it must

be correlated with the included endogenous variable(s), and or-

thogonal to the error process. The former condition may be

readily tested by examining the fit of the first stage regressions.

To illustrate the pitfalls facing empirical researchers here, con-

sider the following simple example.
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The researcher has a model with two endogenous regressors and

two excluded instruments. One of the two excluded instruments

is highly correlated with each of the two endogenous regressors,

but the other excluded instrument is just noise. The model is

therefore basically unidentified: there is one good instrument

but two endogenous regressors. But the Bound–Jaeger–Baker

F−statistics and partial R2 measures from the two first–stage

regressions will not reveal this weakness. When multiple en-

dogenous regressors are used, other statistics are required. One

such statistic has been proposed by Shea (1997): a “partial R2”

measure that takes the intercorrelations among the instruments

into account. We have implemented both the Bound et al. and

Shea statistics as options on the ivreg2 command.
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We turn now to the second requirement for an instrumental

variable. How can the instrument’s independence from an unob-

servable error process be ascertained? If (and only if) we have

a surfeit of instruments—i.e., if the equation is overidentified—

then we can test the corresponding moment conditions: that is,

whether the instruments are uncorrelated with the error process.

In the context of GMM, the overidentifying restrictions may

be tested via the commonly employed J statistic of L. Hansen

(1982). In the IV context, this statistic is known as the Sar-

gan (1958) statistic, or the Basmann (1960) statistic. These

statistics are produced by ivreg2.
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The Hansen–Sargan tests for overidentification presented above
evaluate the entire set of overidentifying restrictions. In a model
containing a very large set of excluded instruments, such a test
may have very little power. Another common problem arises
when the researcher has prior suspicions about the validity of a
subset of instruments, and wishes to test them.

In these contexts, a “difference–in–Sargan” statistic may usefully
be employed. The C test allows us to test a subset of the original
set of orthogonality conditions. The statistic is computed as the
difference between two Sargan statistics (or, for efficient GMM,
two J statistics): that for the (restricted, fully efficient) regres-
sion using the entire set of overidentifying restrictions, versus
that for the (unrestricted, inefficient but consistent) regression
using a smaller set of restrictions, in which a specified set of
instruments are removed from the set. The C test is conducted
in ivreg2 by specifying the orthog option.
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Lastly, we have also implemented a test for the endogeneity of

the regressors, as an alternative to the use of the Hausman test.

Application of the latter test (via hausman) requires estimating the

model both via OLS and IV. The alternative approach involves

estimating the less efficient but consistent model via ivreg, and

using our ivendog routine to evaluate the exogeneity of some or

all of the endogenous regressors. If ivreg2 is employed, the same

test may be calculated with the orthog option. The latter ap-

proach is of particular interest in the context of heteroskedastic-

ity, for which hausman will often generate negative test statistics,

and may miscalculate the degrees of freedom of the test (which

may indeed be unknown; see the paper for the gory details).
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In summary, the ivreg2 suite of programs provide a number of

state–of–the–art techniques for the estimation and testing of

instrumental variables regression models. We appreciate your

feedback on their features and utility.
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