How to face lists with fortitude

Nicholas J. Cox
University of Durham, UK

n.j.cox@durham.ac.uk

expanded version forthcoming in
Stata Journal 2(2), 2002

1

Synopsis

Three commands in official Stata
foreach

forvalues

and for

provide structures for cycling through
lists of values — variable names, numbers,
arbitrary text — and repeating commands
using members of those lists in turn.

All may be used interactively.

The aim here is to explain and compare
them, giving a variety of examples.

Why learn these commands?

Have you ever typed a series of very
similar Stata commands and wondered
whether there was a quicker way?

Working your way through a list is
very common in data management and
analysis.

We want to do that with speed and
system.

Stata has structures for defining problems
in which you cycle through lists.

They can be used interactively, as well as
In programs.

There is just one hill to climb first,

the idea of a local macro.

Local macros

A character string given a special name

A macro in Stata is just a character string
given a special name.

local rhsvars "trunk weight length
turn displacement”

assigns the name rhsvars to the character
string

"trunk weight length turn
displacement"”

The quotes here, " ", delimit the string:
i.e. they are not part of the string.

" " often are not necessary, but they are
recommended for beginners.

(If you did want to include " in string, you
need so-called compound double quotes.)

The most obvious reason for defining
a macro is to refer to it later and save
yourself typing.

In this example, we have names of
variables from the auto data.

Refer to macro by using single quotes
say

regress mpg ‘rhsvars’

N.B. ¢ differs from °’.

4

)

)

How Stata processes macro names:
substitution first

We need to understand a little of how
Stata interprets a command line.

All macro names are substituted by their
contents before Stata attempts to execute
any command.

Call this the substitution first rule.

Whenever you type a command, Stata has
two main things to do.

1. To receive your command and to
translate into its own terms.

2. To try to execute your command.

1. includes substitution (expansion) of any
macro names used.

In this example, Stata substitutes the
macro name and now sees

regress mpg trunk weight length turn
displacement

2. should now be straightforward with
auto data in memory.

The main pitfall is getting the local macro
name slightly wrong.

¢ Stata is case-sensitive: compare
‘RHSVARS’ and ‘rhsvars’.

¢ Stata makes no attempt to correct your
spelling.

¢ Stata does not allow you to abbreviate
macro names.

¢ Referring to a non-existent macro is not,
in itself, an error. A macro name which
refers to nothing is substituted by nothing,
that is, the empty string "".

regress mpg ‘rhsvar’
would be seen by Stata as

regress mpg

Macros will fade away at the end of a
session.

You can re-define macros at will. Suppose
you wanted to add the variable name
gear_ratio to rhsvars.

Over-write the old definition:

local rhsvars "trunk weight length
turn displacement gear_ratio"

or (better) amend the old definition by
adding to it:
local rhsvars " ‘rhsvars’ gear ratio"

This is another example of the
substitution first rule. Stata first sees

local rhsvars "trunk weight length
turn displacement gear_ratio"

and then executes the command, which
happens to re-define the macro.

The second way is better because

¢ Stata will be far faster than you and less
error-prone.

¢ It is a natural and helpful way of writing
any operation in which we accumulate
results step by step.

A key type of example is

local results "‘results’ ‘new’ "

10

What does ‘local’ mean?

Local macros are visible only within the
Stata program in which they are defined:
within

¢ an Interactive session,

¢ a program defined as such,

¢ a do file, or

¢ a set of commands in Stata’s do file
editor.

Your local macro rhsvars and some other
program’s rhsvars are different entities.

Otherwise you would need to look inside
every program you used and check for
possible incompatibilities!

11

Global macros

There are macros in Stata which are
visible everywhere, irrespective of what
program is running. These are called
global and defined similarly:

global rhsvars "trunk weight length
turn displacement gear_ratio"

They are referred to in a slightly different
way:
regress mpg $rhsvars

What we are discussing needs only local
mMacros.

12

Macros can contain numeric characters

Although we have defined macros as
character strings, when those strings in
Stata are numeric characters, we can think
of such macros as having numeric values.

Macros really are just strings: it is just
that the rest of Stata is happy to treat
their contents as numeric whenever that
makes sense.

For example, given

local i "1"

Stata sets the local macro i to the
character "1", which happens to be
numeric.

Now suppose we want to increment

by 1. Most natural to us, and perfectly
acceptable to Stata, is to write this as an
evaluation:

local i= ‘i’ + 1

13

This is a new syntax compared
with examples so far. Following the
substitution first rule, Stata sees

locali=1+1

It then evaluates the expression and re-
defines the macro i as its result, namely
the number 2, which it treats as the
numeric character "2".

The evaluation is nothing to do with the
macro: it is part of the rest of Stata. That
from context takes you to want + to be
addition.

Within a different example
local i —_ lllll + ll1l|

the " " insist to Stata that the macros are
to be treated as strings. From context + is
taken to mean concatenation.

i will now contain "11".

14

local i "‘i’> + 1"

is different again. Given i of "1",
i becomes "1 + 1". Without the equals
sign, no evaluation will take place.

Similarly in
local i="" + 1"

+ is treated as just another character,
not an operator. Evaluation makes no
difference to the contents of the string.

15

foreach, forvalues, for

The Stata commands foreach, forvalues
and for make up a trio.

for was introduced in Stata 3.1 (1993),
with redesigns in 5.0 (1997) and 6.0
(1999).

Begin with foreach and forvalues,

introduced in 7.0 (2001).

16

foreach: first syntax

Suppose that we wish to generate a series
of powers of a variable. The slow but sure
way

gen y_.2 =y 2
geny 3=y 3
geny 4=y 4

cries out for a simpler structure.

foreach i in2 34 {
geny ‘i’ =y~

ci;

+

This is an example of a first syntax with
foreach.

foreach macro in list_of_values {
one or more statements defined
wn terms of that macro name

17

The structure encapsulates several
features:

¢ A macro name must be given in the
first part.

¢ A list must be specified immediately
after. The keyword in specifies that you
are going to spell out all the individual
elements of the list. (!!!)

¢ One or more statements, at least one of
which refers to the macro name, must be
given within braces. Spacing is at choice,
so long as statements are on separate

lines.

¢ The structure automatically defines the
macro in turn as each member of the list
and then substitutes the contents in the
commands within braces.

¢ The controlling macro disappears at
the end of the structure.

18

Another problem is producing various
transformations of several variables.

foreach x in [list_of_variables {
gen log‘x’ = log(‘x’)
gen sqrt‘x’ =sqrt(‘x’)
genrec'x’ =1/ ‘x’

However, Stata allows several ways of
giving abbreviated variable lists. Such
features can be exploited within foreach
by using the second syntax.

19

foreach: second syntax

foreach macro of listtype list_of-values {
one or more statements defined
in terms of that macro name

+

The keyword of specifies that you are
going to give a list of the type to be
named. (!!!)

In last example, listtype is varlist:

foreach x of varlist * {
cap gen log‘x’ = log(‘x’)
cap gen sqrt‘x’ = sqrt(‘x’)
cap genrec‘x’ =1/ ‘x’
by
capture (abbreviation cap) is a device to
catch the occasions when a command will
not work: digest the output (including the
error) and carry on regardless.

20

Why might generate commands not
work?

¢ Any attempt to transform string
variables will fail.

¢ Variable names near the 32 character
limit are problematic.

We might want to carry on regardless, but
still get an informative message:

foreach x of varlist * {
cap gen log‘x’ = log(‘x’)
if re{di"‘x’: " rc}

+

capture puts return code in _rc.
Here we use the command if and the fact
that if _rc is equivalent to if _rc "= 0.

21

foreach allows other types of list: within
a local or a global, a newlist (list of
new variable names) or a numlist (a list
of numbers).

An earlier example could be written in
terms of a numlist:

foreach i of num 2/4 {
geny_ ‘i’ =y~

(i)

+

Three-letter abbreviations (TLAs) like num
are permissible for listtype.

The second syntax is much more powerful
and more useful than the first.

22

One very common application of foreach
is producing univariate results for each of
several variables.

foreach can be used as a wrapper to cycle
through a wvarlist whenever only a single
varname is acceptable.

For example, take normal probability
plots:
foreach x of var wvarlist {

qnorm ‘x’

more

+

more ensures that each graph remains
visible.

23

Do not confuse the two foreach syntaxes

The in and of syntaxes are distinct and
should not be confused. In particular, it
is legal in Stata to have a structure which
begins something like

foreach q in numlist 1/3 {

Any kind of list may follow in, so Stata
will not pick up that this is almost
certainly an attempt at

foreach q of numlist 1/3 {

24

forvalues

forvalues is complementary to foreach.
It can be thought of as an important
special case of foreach, for cycling
through certain types of numlist, but
presented a little more directly.

forval macro = range_of_values {
one or more statements defined
wn terms of that macro name

+

Here range_of_values specifies a sequence
of numbers and takes one of two main
forms, exemplified by 1/9 and 10(10) 80.

1/9 yields 1234567 809.
10(10)80 yields 10 20 30 40 50 60 70 80.

For decreasing sequences, use a form like
25(-1)1.

20

So for cycling over simple integer
sequences, forvalues is an alternative to
foreach. foreach must store the integers,
giving forvalues an edge in speed.

For generating powers of a variable:
forval i =2/4 {
geny-‘i’ =y~

(i)

+

26

One key issue in assessing qnorm plots is
how much variability would be expected
even if parent distribution were normal.
Suppose a normal plot was saved as a gph

file by

qnorm ourvar, saving(ourvar)

We should compare this with a reference
portfolio of plots for normal samples of the
same Slize.

Say we create 24 random samples and
their normal probability plots:

forval i =1/24 {
gen v‘i’ = invnorm(uniform())
gqnorm v‘i’, saving(v¢i’)
local G "‘G’v‘i’"

+

As i goes from 1 to 24, at each step we
get a new sample from N(0, 1).

We then use gnorm to draw a normal
probability plot, and save graph image.

27

We also accumulate names of variables
(and thus gph files) in local macro G.
Then we can redraw the saved graphs:

graph using ourvar ‘G’
1 + 24 graphs will plot nicely as a
b X O array.

This is not the only way to do it. You
might prefer to use foreach:

foreach v of new v1-v24 {
gen ‘v’ = invnorm(uniform())
qnorm ‘v’, saving(‘v’)
local G "G’ ‘v’ "

28

Initialising before foreach or forvalues

In many problems, we need one step more:
to initialise one or more things before we
enter the loop.

For example, we might want to create a
new variable, but the recipe for creation is
too complicated for a single command.

Or we might want to populate a matrix
with entries from separate calculations.

29

Initialising a variable

Such tasks often arise in cleaning up fairly
large data sets containing string variables,
say names of countries or companies or
diseases.

Imagine a string variable indicating
vacation destinations. Initial inspection
reveals many near synonyms for Britain:
Britain, Great Britain, UK, United
Kingdom, and so forth. We decide to
combine these all into Britain.

Constraint: we can only use generate
once; thereafter changes must be through
replace. It is often advisable therefore
to put a generate statement outside the
loop.

30

Simplifying our example a bit, we have
code like
generate strl Dest = ""
replace Dest = dest
foreach c in "Great Britain" "UK" {
replace Dest =
subinstr(Dest,"‘c’","Britain",1)

+

(One linebreak here is made necessary by
the font size chosen.)

Note also how strings with embedded
spaces such as "Great Britain" need
delimiting quotes.

31

Populating a matrix

Many bivariate commands produce single-
number statistics which we might want

to output as a two-way table. Many
commands are not set up to do this
automatically. foreach makes it possible
to overcome that.

ktau takes a pair of variables varnamel
and varname?2, and calculates Kendall’s
tau (here we focus on 7).

To grind through all the possibilities, we
need two foreach loops, one nested inside
the other. Here is our first stab, for an
example with 10 variables:

foreach v of var price-gear {
foreach w of var price-gear {
ktau ‘v’ ‘w’

+

32

The nested loops look like a new idea, but
the new idea is only a little one. Follow
Stata as it goes through the structure.

The crucial rule is that the innermost loop
is completed first.

For p variables in each list, all p?
correlations are calculated. We made
Stata calculate both ktau z y and

ktau y x. This is wasteful by a factor

of ~ 2, but the extra time is usually less
than it would take to modity the code.

A more important detail is treatment of
missing values. Say you prefer the same
observations to be used throughout.
Use egen to count missing values across
variables:

egen nmiss = rmiss(price-gear_ratio)

and then stipulate that 7, is calculated
if nmiss ==

33

To get results in a table, populate a
matrix with correlations, and then matrix
list takes care of displays.

Set up, before the foreach loops, a matrix
of the right size:

matrix tau = J(10,10,10)

Here 10 as an impossible result for 7, gives
a check that code cycles through all the
possibilities intended.

We need to pick up each result after ktau:
the manual documents results temporarily
accessible after a command is executed.
In our case, we need r(tau_a).

We need to cycle through rows and
columns: initialise indexes i and j to 0
just before the corresponding foreach
loop, and then increment by 1 every time
we set v or w.

34

Putting the code together:

egen nmiss = rmiss(price-gear)
matrix tau = J(10,10,10)

local i =0

foreach v of var price-gear {
locali= ‘i’ +1
local j =0

foreach w of var price-gear {
local j ="’ +1
ktau ‘v’ ‘w’ if nmiss ==
mat taul‘i’, j’] = r(tau_a)
+

+
matrix list tau, format(%4.3f)

We need intelligible labelling of rows and
columns: unab ‘unabbreviates’ a variable
list into a local macro.

unab vars : price-gear

matrix rownames tau = ‘vars’
matrix colnames tau = ‘vars’
matrix list tau, format(%4.3f)

39

for

for is the third of our commands for
cycling through lists. While very useful
for easy tasks, for can become awkward
for slightly more difficult tasks.

Revisit some of our examples and see how
they would be done with for:

Powers of a variable:

forany 234 :geny X=y X
or (better)

for num 2/4 : gen y X =y~X

Transformations of a variable:

for var wvarlist : gen logX = log(X) \
gen sqrtX = sqrt(X) \ genrecX=1/X

Normal probability plots:
for var wvarlist : qnorm X \ more
or

for var wvarlist, pause : gqnorm X

36

The pattern underlying these examples is,
with more details to come,

for listtype list_of_values : one or more
commands separated by backslashes

Looking at examples shows both
similarities and differences compared with
foreach and forvalues.

¢ for has a notion of listtype, just like
foreach: possible types are varlist,
newlist, numlist and anylist. Specify
arbitrary lists as type anylist. TLAs of
each listtype are allowed.

¢ for does not use local macros: you
indicate by a placeholder (by default X)
where each member of the list belongs.

37

¢ for does not use braces or allow
separate lines in specifying commands to
be executed. Commands follow a colon.
Multiple commands are separated by
backslashes.

¢ for has a few special options of its
own. There are further options and
features, especially the use of multiple
lists, processed in parallel.

38

for divides experienced users into ‘for’
and ‘against’ factions. Many users
appreciate its conciseness, but code can

be difficult to read, and thus difficult to
understand and above all to debug.

One key difference: structures using
foreach and forvalues are best thought
of as a series of commands under the
control of a specified loop. Any local
macros will be substituted just before each
command is executed. Therefore, their
contents may vary through the loop.

In contrast, for is best thought of as a
single command at the time it is issued, no
matter how many command lines follow
the colon. Thus any local macros will be
substituted just once, immediately before
Stata tries to execute the for command as
a whole. Attempting to try to manipulate
local macros within for is thus almost
always problematic.

39

It can be difficult or even impossible to
nest for commands.

The placeholder (by default X) might
occur as part of the command line. When
this happens, or if you want to do it
anyway, you need to specity another
placeholder, as in

for P in num 2/4 : gen y. P =y~P
or

for POWER in num 2/4 : gen y_POWER =
y~POWER

A placeholder need not be a single symbol.

The in syntax here is the reverse of that
of foreach. (!!l)

You will need to protect intended
backslashes by inclusion within quotes.

40

for is implemented as a Stata program
defined in an ado file. foreach and
forvalues are implemented in C code
as part of the Stata executable. The
overhead of interpretation means that
for will be much slower than foreach or
forvalues.

41

Executive summary

¢ The strangest feature of local macros

is their name. Think of them as strings
given names which are always substituted
in a command line by their contents before
Stata tries to execute the command.

¢ If you know for and like it, then stick
with it. But remember that when the
going gets tough, the tough get going.

¢ Check out foreach and forvalues
and add them to your repertoire. They
grow easily as you attempt more difficult
problems.

“The Answer to the Great Question Of Life,
the Universe, and Everything” said Deep
Thought, “is...”

42

