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Introduction

There are a number of reasonable approaches to analysing an ordinal outcome variable.
One common approach, known as the Proportional Odds (PO) Model, is implemented
in Stata as ologit. If the assumptions of the PO model are not satisfied, an alter-
native is to treat the outcome as categorical, rather than ordinal, and use multinomial
logistic regression (mlogit) in Stata. This insert describes an alternative form of or-
dinal regression model, the Stereotype Ordinal Regression (SOR) Model, which can
be thought of as imposing ordering constraints on a multinomial model. The multino-
mial model provides the best possible fit to the data, at the cost of a large number of
parameters which can be difficult to interpret. Stereotype regression aims to reduce the
number of parameters by imposing constraints, without reducing the adequacy of the
fit.

Distinguishability & Dimensionality

In introducing his Stereotype Ordinal Regression Model, Anderson ([1]) justified it in
terms of the concepts of distinguishability and dimensionality.

Dimensionality A fundamental assumption of the Grouped Continuous Model is that
given a set of predictor variables xij , where i indexes the subject 1 : : : n and j

indexes the variable, 1 : : : p, the same combination of variables,
Pp

j=0 (xij�j),
can be used to distinguish between all levels of the outcome variable. If, how-
ever, one combination can distinguish between levels 1 and 2, but a different
one is required to distinguish between levels 2 and 3, the relationship is two-
dimensional.

Distinguishability Two outcome categories are indistinguishable with respect to a
variable xj if xj is not predictive between the two categories.

The PO model, implemented in ologit assumes that the association between the
predictor variables xj and the outcome variable y is one-dimensional. In addition, if
there are k possible outcome categories, it assumes that the odds ratio for being in
group s or higher, relative to the odds of being in group s� 1 or lower, associated with
each variable xj is the same for all s; 2 � s � k. If either of these assumptions are
untrue, the PO model is inappropriate.
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The Stereotype Ordinal Regression Model

A full multinomial model model is of the form

pr(yi = sjxi1 : : : xip) =
exp

�
�0s +

Pp

j=1 xij�sj

�
Pk

t=1 exp
�
�0t +

Pp

j=1 xij�tj

�

As it stands, this model is not identified: adding a fixed constant to every � will
give exactly the same predicted probabilities. To identify the model, constraints need
to be placed on the parameters. Commonly �k and �0k are constrained to be 0. If the
xj variables are all categorical, this model is then saturated.

The multinomial model assumes that different linear combinations of the predictor
variables are required to discriminate between different pairs of levels of the outcome
variable. All of these combinations need to be estimated separately. However, if the
outcome is ordinal, rather than categorical, it may be that a single linear combination
can discriminate between all levels. If this is the case, the above model can be simpli-
fied to

pr(yi = sjxi1 : : : xip) =
exp

�
�0s + �s

Pp

j=1 xij�j

�
Pk

t=1 exp
�
�0t + �t

Pp

j=1 xij�j

�

This is a one-dimensional stereotype model. In this model, the � parameters no
longer differ between the different levels of the outcome. The combination that best
discriminates between the outcome variables is given by

Pp

j=1 xij�j and the dis-
tance between the outcome levels in terms of this linear predictor is given by the �j

parameters. If the relationship between the predictors and outcome is ordinal, then
�1 � �2 � : : : � �k.

Again, constraints are needed to make the model identifiable. Anderson recom-
mended setting �k = 0 and �1 = 1, but other constraints are possible.

The stereotype model can be considered as a constrained multinomial model, in
which the ratios �sj=�tj are constant for all variables xj . In fact, if there is only
one predictor, the stereotype model is simply a re-parameterisation of the multinomial
model: the goodness of fit, predicted values etc. are all identical. If there is more
than one predictor variable, there are two comparisons to be made when deciding if a
stereotype model is adequate: it should be compared to the null (intercept only model)
to see if its ability to predict outcome is greater than would be expected by chance.
This is equivalent to the �-squared test supplied by most regression routines in stata1.
Secondly, it should be compared to the full (multinomial) model, to see if there has been
a significant loss of predictive ability when the simplifying constraints of the stereotype
model were imposed. This can be thought of as a ‘goodness of fit’ test, analogous to
the Pearson of Hosmer-Lemeshow test after logistic regression (lfit) or the poisson
goodness of fit test (poisgof) after poisson regression.

1regress presents an equivalent F-test, but logit,ologit and poisson, to name a few, present
�-squared tests.
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Two Simple Examples

Consider the nausea data presented by Farewell [2] and re-analysed by Anderson. The
file nausea.dta contains this data, with a single entry for each of the 219 subjects.
Typing

soreg nausea treat

will produce the following output:
. soreg nausea treat
iteration 0: Log Likelihood = -371.4567
iteration 1: Log Likelihood = -371.4567
iteration 2: Log Likelihood = -371.4567

Stereotype Logistic Regression Number of obs = 219

Comparison to null model LR Chi2(5) = 18.01
Prob > chi2 = 0.0029

Comparison to full model LR Chi2(0) = 0.00
Prob > chi2 = .

------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
phi11 | 1 . . . . .
phi21 | .9101804 .5096764 1.786 0.074 -.088767 1.909128
phi31 | .6789914 .6490182 1.046 0.295 -.593061 1.951044
phi41 | -.1123247 .4708013 -0.239 0.811 -1.035078 .810429
phi51 | -.6699209 .6525803 -1.027 0.305 -1.948955 .6091131
phi61 | (dropped)

beta11 | -1.087051 .5215595 -2.084 0.037 -2.109289 -.0648137
------------------------------------------------------------------------------
beta1 = treat

The �i variables are labeled phi11 to phi61 (in a two dimensional model, there
would be two sets of �i variables, phi11 to phi61 and phi12 to phi62). The
predictor variables for the first dimension are labeled beta11 to betak1, for the
second dimension beta12 to betak2 etc.

There are no standard errors for phi11 or phi61, since they are constrained to be 1
and 0 respectively. Compared to the null (intercept only model), the stereotype model
fits significantly better (chi2 = 18.0 on 5 d.f., p = 0.003). However, there is no difference
in the fit when compared to the full (multinomial) model, since the SOR model is
simply a re-parameterisation of the multinomial model.

A more complex example, also analysed by Anderson, concerns the prognosis for
suffers of backpain originally presented by Doran and Newell [3]. In this case, the
outcome was scored from 1 (“worse”) to 6 (“complete relief”), and there were three
predictor variables, x1, x2 and x3. Fitting the stereotype model to this data gives the
following output:
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. soreg pain x1 x2 x3
iteration 0: Log Likelihood = -151.1720
iteration 1: Log Likelihood = -151.4538
iteration 2: Log Likelihood = -151.5506
iteration 3: Log Likelihood = -151.5501
iteration 4: Log Likelihood = -151.5501
iteration 5: Log Likelihood = -151.5501

Stereotype Logistic Regression Number of obs = 101

Comparison to null model LR Chi2(7) = 39.96
Prob > chi2 = 0.0000

Comparison to full model LR Chi2(8) = 4.09
Prob > chi2 = 0.8494

------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
phi11 | 1 . . . . .
phi21 | .3092677 .1294594 2.389 0.017 .0555321 .5630034
phi31 | .3465159 .1308123 2.649 0.008 .0901285 .6029034
phi41 | .5097036 .1608969 3.168 0.002 .1943514 .8250558
phi51 | .1414456 .0933218 1.516 0.130 -.0414618 .324353
phi61 | (dropped)

beta11 | 5.374471 2.000401 2.687 0.007 1.453757 9.295185
beta21 | 3.08102 1.055979 2.918 0.004 1.011339 5.1507
beta31 | 2.712501 1.180846 2.297 0.022 .3980843 5.026917

------------------------------------------------------------------------------
beta1 = x1
beta2 = x2
beta3 = x3

In this case, the stereotype model requires 8 fewer parameters than the full multino-
mial model, although the multinomial model does not fit significantly better (�2 = 4:1

on 8 d.f., p = 0:85). However, the stereotype model does fit significantly better than
the null model (�2 = 40:0 on 7 d.f., p < 0:0001). Thus, the simplification can be
considered successful. However, both of the above models can be simplified further,
using constraints.

Constraints

Constraints play two important roles in Anderson’s ordinal regression strategy. Firstly,
it is necessary to impose constraints on the parameters, in order to make the model
identifiable. In addition, questions of distinguishability can be addressed through con-
straints.

Identifiability

We have already seen that the basic stereotype model is not identified (multiplying all of
the � parameters by a constant c and dividing all the � parameters by the same constant
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would produce exactly the same fitted values). To identify the model, constraints must
be applied. Anderson recommended setting �k to 0 and �1 to 1, and these constraints
are implemented in soreg by default. However, the defaults can be easily overridden
by user-defined constraints. For example, consider the analysis by Greenland [4] of the
pneumoconiosis data from Ashford [5]. Greenland fitted the constraints �1 = 0 and �2

= 1, and estimated �3. The fitting of this model is shown below.
. constraint define 1 phi11 = 0

. constraint define 2 phi21 = 1

. soreg pneum lyears, c(1 2)

( 1) phi11 = 0.0
( 2) phi21 = 1.0

iteration 0: Log Likelihood = -204.4344
iteration 1: Log Likelihood = -204.4344
iteration 2: Log Likelihood = -204.4344

Stereotype Logistic Regression Number of obs = 371

Comparison to null model LR Chi2(2) = 96.29
Prob > chi2 = 0.0000

Comparison to full model LR Chi2(0) = 0.00
Prob > chi2 = .

------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
phi11 | (dropped)
phi21 | 1 . . . . .
phi31 | 1.4166 .3649241 3.882 0.000 .7013616 2.131838

beta11 | 2.165373 .4574869 4.733 0.000 1.268715 3.062031
------------------------------------------------------------------------------
beta1 = lyears

It can be seen that after setting the constraints, phi11 is fixed at 0 (i.e. dropped from
the model) and phi21 is fixed at 1. With these constraints, the estimates for phi31 and
beta11 from soreg match those given by Greenland.

A two-dimensional model requires additional constraints: again defaults are avail-
able, although they can be overridden. However, for models of greater than 2 dimen-
sions, defaults are not provided, since the appropriate constraints will often depend on
the context. If no constraints are defined in such a model, an error message will be
printed and no model estimated.

Distinguishability

The � parameters give a measure of the distinguishability of the various categories
with respect to the predictors: if the � parameters of two categories are similar, it is
likely that the categories are indistinguishable. In this case, the model can be simplified
by constraining the corresponding � parameters to be equal. For example, consider the
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nausea data analysed above. Looking at the phi parameters and their standard errors, he
considered suggested that there were only two distinguishable groups, and that phi11
= phi21 = phi31, and phi41 = phi51 = phi61. We can therefore define the following
constraints.

. constraint define 1 phi11 = phi21

. constraint define 2 phi11 = phi31

. constraint define 3 phi41 = phi51

. constraint define 4 phi41 = phi61

. constraint define 5 phi11 = 1

. constraint define 6 phi61 = 0

Fitting the stereotype model with these constraints applied gives the following out-
put:

. soreg nausea treat, c(1/6)

( 1) phi11 - phi21 = 0.0
( 2) phi11 - phi31 = 0.0
( 3) phi41 - phi51 = 0.0
( 4) phi41 - phi61 = 0.0
( 5) phi11 = 1.0
( 6) phi61 = 0.0

iteration 0: Log Likelihood = -371.4567
iteration 1: Log Likelihood = -372.7759
iteration 2: Log Likelihood = -372.7759

Stereotype Logistic Regression Number of obs = 219

Comparison to null model LR Chi2(1) = 15.37
Prob > chi2 = 0.0001

Comparison to full model LR Chi2(4) = 2.64
Prob > chi2 = 0.6200

------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
phi11 | 1 . . . . .
phi21 | 1 . . . . .
phi31 | 1 . . . . .
phi41 | (dropped)
phi51 | (dropped)
phi61 | (dropped)

beta11 | -1.244581 .3299873 -3.772 0.000 -1.891344 -.5978177
------------------------------------------------------------------------------
beta1 = treat

This model is significantly better than the null model, and not significantly worse
than the full model. Thus, it provides a good fit to the data, despite having only one
parameter. It says that the odds of being in group 1, 2 or 3 rather than 4, 5 or 6
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decrease by a factor of 3.5 (e1:24) for those treated with cisplatinum relative to those
untreated. The interpretation of this model is therefore extremely simple: explaining
the meaning of each of the parameters in the unconstrained model would have been far
more difficult.

Note that the default constraints were redefined: this is necessary since the default
constraints are only applied if no user-defined constraints are given. If insufficient
constraints are given, the model may be estimated and the likelihood ratio tests give
exactly the same results, but the parameters will have arbitrary values, which makes
interpretation difficult.

Constraints can cause some difficulties. Firstly, the first predictor variable has a spe-
cial role in the model-fitting process. it is therefore not possible to constrain beta11,
beta12 etc to be equal to another variable: these variables can, however, be con-
strained to a constant value. Secondly, constraining parameters to have a fixed value
is better, if possible, than constraining them to be equal. For example, the pair of
constraints

. constraint define 1 phi11 = 1

. constraint define 2 phi21 = phi11

should be equivalent to the constraints
. constraint define 1 phi11 = 1

. constraint define 2 phi21 = 1

However, there can be circumstances in which the model will not converge using
the former constraints but will with the latter. This is a weakness of the constraint
handling code within soreg.

Saved Results

soreg saves in e():
Scalars

e(N) number of observations
e(ll 0) log likelihood, constant only model
e(ll) log likelihood, stereotype model
e(ll full) log likelihood, full model
e(df m) model degrees of freedom
e(df full) model degrees of freedom for multinomial model
e(k cat) number of categories

Macros
e(cmd) soreg
e(chi2type) type of model �2 test (‘‘LR’’)
e(depvar) name of dependent variable

Matrices
e(b) coefficient vector
e(V) variance-covariance matrix of the estimators
e(cat) category values
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Methods and Formulas

Since the stereotype model is non-linear (it contains the product of parameters), it
cannot be fitted by standard generalised linear model methods. The model is fitted
using a technique due to Box and Tidwell [6], described by McCullagh & Nelder [7].
Briefly, a linear model containing a non-linear function, say

� = �+ �g(xj�)

can be estimated by iteratively fitting instead

� = �+ �ui + vi

where

ui = g(xj�i�1)

vi =

�
@g

@�

�
�=�i�1

and �i�1 is the value of � calculated from the (i�1)th iteration. Then �i = �i�1+̂=�̂,
and the process iterates to convergence. A final iteration with v = �̂v gives the variance
of � and its covariances with � and �. Unfortunately, this iteration process is not
guaranteed to converge. Since the first variable in the list has a special role in this
process, it can happen that a model that will not converge can be forced to by changed
the order of the predictor variables.

Further Remarks

There already exist two Stata commands, mclgen and mclest which can be used to
estimate one-dimensional stereotype ordinal regression models. However, soreg has
a number of advantages:

� soreg can estimate models with more than 1 dimension, which mclest can-
not. This was the motivation for writing soreg: I needed to fit a two-dimensional
model.

� soreg allows the use of constraints, which mclest does not.

� mclest does not produce standard errors for the �ij parameters, which are
important when considering distinguishability.

� The standard errors for the �ij parameters produced by mclest are conditional
on the �ij parameters and hence underestimated. The standard errors produced
by soreg allow for the uncertainty in estimating the �ij parameters.

It should be pointed out that whilst there are models that can be estimated with
soreg but not mclest, there are also models that can be estimated with mclest but
not soreg.
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Care needs to be taken in interpreting the results of significance tests on Stereotype
Ordinal Regression models. Unlike generalised linear models, it cannot be shown that
the log likelihood follows a �

2 distribution asymptotically. Hence the likelihood ratio
chi-squared tests and corresponding p-values should be treated with circumspection.

In addition, it should be remembered that when considering the distinguishability
of k groups, there are implicitly k � 1 tests being performed. This multiple testing
should be borne in mind in interpreting the resultant model. However, this is true in
any case in which data-based variable selection takes place.

Finally, the standard errors reported by soreg differ, in some cases, from those
reported by Anderson in his paper. However, the differences are small. In addition, in
some cases the standard errors reported by Anderson are smaller than those reported
by mclest, despite the fact that those reported by mclest are conditional on the
estimated values of the phi parameters and therefore should be underestimated. The
standard errors reported by soreg are always greater than those reported by mclest
and are similar to those reported by Anderson. Where it is possible to constrain a
multinomial model to produce the same parameterisation as a stereotype model, the
standard errors are the same by both methods.

However, the significance of an individual parameter reported by the Wald test (i.e.
using the standard error) may be quite different from that reported by the likelihood
ratio test. This is due to the correlations between the � parameters and the � parame-
ters. The likelihood ratio tests are likely to be a more reliable guide to inference. For
example, the overall test of the model in the first nausea example is highly significant,
but only one of the individual parameters has a p-value of less than 0.05 (beta11 =
0.04).
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