Power analysis and sample-size determination in survival models with the new **stpower** command

Yulia Marchenko

Senior Statistician
StataCorp LP

2007 Boston Stata Users Group Meeting
1. Introduction
 - Theory and terminology
 - Introduction to `stpower` subcommands

2. Sample-size determination for survival studies
 - Log-rank test
 - Cox proportional hazards model
 - Exponential survivor functions

3. Power and effect-size determination

4. Tabulating results
 - Default tables
 - Customized tables

5. Example of using a dialog box

6. Power and other curves
 - Manual generation of power and other curves
 - Automatic generation of power and other curves

7. Conclusion
Terminology

- type I study
 all subjects experience an event (fail) by the end of the study

- type II study
 a study terminates after a fixed time T resulting in censored subjects
Terminology

- **type I study**
 all subjects experience an event (fail) by the end of the study

- **type II study**
 a study terminates after a fixed time \(T \) resulting in censored subjects

- **administrative censoring**
 the right censoring occurring when the study observation period ends

- **loss to follow-up (withdrawal), \(L(t) \)**
 occurs when subjects fail to complete the course of the study for reasons unrelated to the event of interest
Terminology, cont.

- **accrual period, R**
 period during which subjects are being enrolled into a study

- **follow-up period, f**
 period during which subjects are under observation and no new subjects enter a study
Terminology, cont.

- **accrual period,** R
 - period during which subjects are being enrolled into a study

- **follow-up period,** f
 - period during which subjects are under observation and no new subjects enter a study

- **exponential (parametric) test**
 - test on difference or log ratio of (two) exponential hazard rates
Main components of sample-size computation

Choose:

- method of analysis
 - log-rank test, Cox PH model, parametric test
- probability of a type I error (significance level), α
 - usually 0.05, 0.01
- power, $1 - \beta$ (or probability of a type II error, β)
 - usually 80%, 90% (or 20%, 10%)
- effect size, ψ, usually expressed as
 - the hazard ratio, $\Delta = h_2(t)/h_1(t), \forall t$ (PH assumption), or
 - the log of the hazard ratio, $\ln \Delta$, or
 - the coefficient in a Cox regression model,
 $\beta_1 = \ln \{h(t, x_1 + 1|x_2, \ldots, x_p)/h(t, x_1|x_2, \ldots, x_p)\}$
The general formula for the required number of subjects in a survival study may be expressed as

\[N = \frac{E(\alpha, \beta, \psi)}{p_E\{S(t), L(t), R, T\}} \]

where

- \(E() \) is the number of events required to be observed in a study, and
- \(p_E() \) is the probability of observing an event in a study.

Note:
- power, \(1 - \beta \), is directly related to the number of events
- duration of a study \(T \), accrual and loss to follow up patterns affect the probability of a subject to experience an event in a study.
Three subcommands:

- stpower logrank
- stpower cox
- stpower exponential

All subcommands:

- share main common options `alpha()`, `power()`, `beta()`, `n()`, `hratio()`, `onesided`, ...
- accept multiple values (`numlist`) in main options
- facilitate customizable tables of results
- save results in a dataset
Type of test
 two-sample log-rank test

Computation
 sample size (given power and hazard ratio)
 power (given sample size and hazard ratio)
 (log) hazard ratio (given power and sample size)

Capabilities
 unequal group allocation
 uniform accrual
 conservative adjustment for withdrawal

Methodology
 Freedman (1982) (default)
 Schoenfeld (1981) (option schoenfeld)
Sample-size determination for the log-rank test

Objective. Obtain the required sample size to ensure prespecified power of a two-sided log-rank test at level α to detect a $\Delta_a \times 100\%$ reduction in hazard of the experimental group relative to the control group.

Hypothesis. $H_0: S_1(t) = S_2(t)$ vs $H_a: S_1(t) \neq S_2(t)$

Assumptions. Proportional hazards, $S_2(t) = \{S_1(t)\}^\Delta$; large-sample approximation to the test statistic holds

Equivalent hypothesis. $H_0: \Delta = 1$ vs $H_a: \Delta \neq 1$ (default) $H_0: \ln(\Delta) = 0$ vs $H_a: \ln(\Delta) \neq 0$ (schoenfeld)
Example

- Estimate required sample size to achieve 80% power to detect 50% reduction in a hazard of the experimental group by using a two-sided 0.05-level log-rank test under 4 different study designs (A, B, C, and D below).

- All of these study designs assume $\alpha = 0.05$, $1 - \beta = 0.8$, and $\Delta_a = 0.5$.
Design A: type I study (unlimited follow up); 1:1 randomization.

```
. stpower logrank, power(0.8) hratio(0.5) nratio(1)
```

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:

- alpha = 0.0500 (two sided)
- hratio = 0.5000
- power = 0.8000
- p1 = 0.5000

Estimated number of events and sample sizes:

- E = 72
- N = 72
- N1 = 36
- N2 = 36
Design B: type II study (40% of subjects in the control group survive by the end of the study); 1:1 randomization; no withdrawal.

```
. stpower logrank 0.4

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:
   alpha = 0.0500 (two sided)
   s1 = 0.4000
   s2 = 0.6325
   hratio = 0.5000
   power = 0.8000
   p1 = 0.5000

Estimated number of events and sample sizes:
   E = 72
   N = 148
   N1 = 74
   N2 = 74
```
Design C: type II study (40% of subjects in the control group survive by the end of the study); 1:2 randomization; no withdrawal.

```
. stpower logrank 0.4, nratio(2)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:
  alpha = 0.0500 (two sided)
  s1 = 0.4000
  s2 = 0.6325
  hratio = 0.5000
  power = 0.8000
  p1 = 0.3333

Estimated number of events and sample sizes:
  E = 63
  N = 142
  N1 = 47
  N2 = 95
```
Design D: type II study (40% of subjects in the control group survive by the end of the study); 1:2 randomization; 10% withdrawal.

```
. stpower logrank 0.4, nratio(2) wdprob(0.1)
Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:
   alpha =  0.0500  (two sided)
   s1 =    0.4000
   s2 =    0.6325
   hratio =  0.5000
   power =  0.8000
   p1 =    0.3333
withdrawal =  10.00%

Estimated number of events and sample sizes:
   E =    63
   N =   157
   N1 =    52
   N2 =   105
```
Type of test
Wald test of a covariate in a Cox PH model

Computation
sample size (given power and coefficient)
power (given sample size and coefficient)
coefficient (hazard ratio) (given power and sample size)

Capabilities
binary or continuous covariate
adjustment for other covariates in a model
conservative adjustment for withdrawal

Methodology
Sample-size determination for the Cox PH regression

Objective. Obtain the required sample size to ensure prespecified power of a two-sided α-level Wald test to detect a change of $\beta_{1a} = \ln(\Delta_a)$ in log hazards for a one-unit change in a covariate of interest x_1 adjusted for other factors x_2, \ldots, x_p.

Hypothesis. $H_0: (\beta_1, \beta_2, \ldots, \beta_p) = (0, \beta_2, \ldots, \beta_p)$ vs $H_a: (\beta_1, \beta_2, \ldots, \beta_p) = (\beta_{1a}, \beta_2, \ldots, \beta_p)$

Assumptions. Proportional hazards; large-sample approximation to the test statistic holds.
Example

- Hsieh and Lavori (2000) estimate required sample size for a study of multiple-myeloma patients investigating the effect of the log of the blood urea nitrogen, IBUN, on patients’ survival.
- The significance of the effect is to be determined via a one-sided Wald test on the coefficient of IBUN, β_1, estimated from the Cox model in the presence of other covariates.
- Main study parameters: $\alpha = 0.05$, $1 - \beta = 0.8$, $\beta_{1a} = 1$, $\sigma = 0.3126$.
- We’ll consider several study designs.
Assumptions: IBUN is independent of other covariates ($R^2 = 0$); no censoring ($p_E = 1$).

```
. stpower cox 1, sd(0.3126) onesided

Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]

Input parameters:

alpha = 0.0500 (one sided)
b1 = 1.0000
sd = 0.3126
power = 0.8000

Estimated number of events and sample size:

E = 64
N = 64
```
Assumptions: IBUN is not independent of other covariates ($R^2 = 0.1837$); no censoring ($p_E = 1$).

```
. stpower cox 1, sd(0.3126) onesided r2(0.1837)

Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]

Input parameters:

  alpha = 0.0500 (one sided)
  b1 = 1.0000
  sd = 0.3126
  power = 0.8000
  R2 = 0.1837

Estimated number of events and sample size:

  E = 78
  N = 78
```
Assumptions: BUN is not independent of other covariates ($R^2 = 0.1837$); the overall death rate is $p_E = 0.738$.

```
. stpower cox 1, sd(0.3126) onesided r2(0.1837) failprob(0.738)
```

Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]

Input parameters:

- alpha = 0.0500 (one sided)
- b1 = 1.0000
- sd = 0.3126
- power = 0.8000
- Pr(event) = 0.7380
- R2 = 0.1837

Estimated number of events and sample size:

- E = 78
- N = 106
stpower exponential

- **Type of test**

 two-sample exponential test on difference of hazards or log hazards (option loghazard)

- **Computation**

 sample size (given power and difference (or ratio) of hazards)

 power (given sample size and difference (or ratio) of hazards)

- **Capabilities**

 unequal group allocation

 uniform or truncated exponential accrual

 group-specific exponential loss to follow up hazard rates

 conditional or unconditional approaches

- **Methodology**

 Rubinstein, Gail and Santner (1981) (options loghazard and unconditional)
Objective. Obtain the required sample size to ensure prespecified power of a test of disparity in two exponential survivor functions with hazard rates \(\lambda_1 \) and \(\lambda_2 \).

The disparity may be expressed as a difference between the hazard or log hazard rates, \(\delta = \lambda_2 - \lambda_1 \) or \(\ln(\Delta) = \ln(\lambda_2) - \ln(\lambda_1) \), resp.

Assumptions. Exponential survivor functions, \(S_i(t) = \exp\{-\lambda_i t\}, i = 1, 2; \) large-sample approximation to the test statistic holds.

Equivalent hypothesis. \(H_0: \delta = 0 \) vs \(H_a: \delta \neq 0 \) (default)
\(H_0: \ln(\Delta) = 0 \) vs \(H_a: \ln(\Delta) \neq 0 \) (log hazard)
Two-sample comparison of exponential survivor curves

Example

- Lachin (2000, 412) demonstrates sample-size determination for a study comparing two therapies for lupus nephritis.
- From previous studies control-group survivor function was found to be log-linear with constant yearly hazard rate $\lambda_1 = 0.3$ ($t_{50} \approx 2.31$).
- Study parameters: $\alpha = 0.05$ (one sided), $1 - \beta = 0.9$, $\delta = \lambda_2 - \lambda_1 = -0.15$
Design A: no right censoring (unlimited follow up).

```
. stpower exponential 0.3 0.15, onesided power(0.9)
Note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0

Input parameters:
  alpha = 0.0500 (one sided)
  h1 = 0.3000
  h2 = 0.1500
  h2-h1 = -0.1500
  power = 0.9000
  p1 = 0.5000

Estimated sample sizes:
  N = 82
  N1 = 41
  N2 = 41
```
Design B: fixed-duration study \((R = 4, f = 2)\); uniform accrual.

```
. stpower exponential 0.3 0.15, onesided power(0.9) aperiod(4) fperiod(2)
Note: input parameters are hazard rates.
Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0
Input parameters:
  alpha =  0.0500  (one sided)
  h1 =  0.3000
  h2 =  0.1500
  h2-h1 =  -0.1500
  power =  0.9000
  p1 =  0.5000
Accrual and follow-up information:
  duration =  6.0000
  follow-up =  2.0000
  accrual =  4.0000  (uniform)
Estimated sample sizes:
  N =  136
  N1 =  68
  N2 =  68
```
Design C: fixed-duration study \((R = 4, f = 2)\); truncated exponential accrual with shape \(-2\).
. stpower exponential 0.3 0.15, onesided power(0.9) aperiod(4) fperiod(2)
> ashape(-2)
Note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0

Input parameters:

 (omitted)

Accrual and follow-up information:

 duration = 6.0000
 follow-up = 2.0000
 accrual = 4.0000 (exponential)
 accrued(%) = 50.00 (by time t*)
 t* = 3.6536 (91.34% of accrual)

Estimated sample sizes:

 N = 184
 N1 = 92
 N2 = 92
Design D: fixed-duration study \((R = 4, f = 2)\); truncated exponential accrual with shape \(-2\); exponential yearly loss hazard rates of 0.05.

```
. stpower exponential 0.3 0.15, onesided power(0.9) aperiod(4) fperiod(2)
> ashape(-2) losshaz(0.05 0.05)
Note: input parameters are hazard rates.
Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0
Input parameters:
   (omitted)
Accrual and follow-up information:
   duration = 6.0000
   follow-up = 2.0000
   accrual = 4.0000 (exponential)
   accrued(%) = 50.00 (by time t*)
      t* = 3.6536 (91.34% of accrual)
   lh1 = 0.0500
   lh2 = 0.0500
Estimated sample sizes:
   N = 194
   N1 = 97
   N2 = 97
```
Obtaining estimates of power or effect size

- **Power determination:**
 specify sample size in `n()`

- **Effect-size determination:**
 specify both sample size in `n()` and power in `power()` or,
 specify both `n()` and prob. of a type II error in `beta()`;
 not available with `stpower exponential`

Note that the value of the estimated effect size corresponding to the reduction in a hazard of the experimental group \((\Delta < 1, \ln(\Delta) < 0, \beta < 0) \) is reported.
Recall design B of a study comparing survivor functions using the log-rank test. Compute power for a fixed sample size of 148.

```
. stpower logrank 0.4, n(148)
Estimated power for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)
Input parameters:
    alpha = 0.0500  (two sided)
    s1 = 0.4000
    s2 = 0.6325
    hratio = 0.5000
    N = 148
    p1 = 0.5000
Estimated number of events and power:
    E = 72
    power = 0.8053
```
Example

Compute a minimal detectable value of the hazard ratio given 80% power and a sample size of 148.

```
. stpower logrank 0.4, n(148) power(0.8)
Estimated hazard ratio for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)
Input parameters:
alpa =  0.0500  (two sided)
s1 =  0.4000
s2 =  0.6308
N =  148
power =  0.8000
p1 =  0.5000
Estimated number of events and hazard ratio:
   E =  72
   hratio =  0.5028
```
Using `numlist`

- `stpower` allows obtaining results for multiple values of survival probabilities, hazard rates, and coefficients (must be enclosed in parentheses)

- `stpower` allows obtaining results for multiple values specified in `alpha()`, `power()` or `beta()`, `n()`, and `hratio()`

- `stpower logrank` and `stpower exponential` also allow obtaining results for multiple values specified in `p1()` or `nratio()`

- Multiple values may be directly enumerated or specified as `numlist`

- Results for multiple values of other options may be obtained by using `forvalues`; see example 5 in [ST] `stpower exponential`
Table production

- option `table` displays results in a table with default columns.

- option `columns(colnames)` displays results in a table with `colnames` columns (see help files for the description of `colnames`).

- if multiple values per option are specified results are displayed in a table automatically.

- use `table saving()` to save table data and use `list` to display results or `graph` to produce plots of results.
Display results from example of `stpower exponential` (design A) in a table

```
. stpower exponential 0.3 0.15, onesided power(0.9) table

Note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0

<table>
<thead>
<tr>
<th>Power</th>
<th>N</th>
<th>N1</th>
<th>N2</th>
<th>H1</th>
<th>H2</th>
<th>H2-H1</th>
<th>Alpha*</th>
</tr>
</thead>
<tbody>
<tr>
<td>.9</td>
<td>82</td>
<td>41</td>
<td>41</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
</tr>
</tbody>
</table>

* one sided
```
Example

Compute sample sizes for $\lambda_2 = 0.15$ and $\lambda_2 = 0.18$ from example of stpower exponential (design B)

```
. stpower exponential 0.3 (0.15 0.18), onesided power(0.9) aperiod(4) fperiod(2)
Note: input parameters are hazard rates.
```

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: $h_2-h_1 = 0$

<table>
<thead>
<tr>
<th>Power</th>
<th>N</th>
<th>N1</th>
<th>N2</th>
<th>H1</th>
<th>H2</th>
<th>H2-H1</th>
<th>Alpha*</th>
</tr>
</thead>
<tbody>
<tr>
<td>.9</td>
<td>136</td>
<td>68</td>
<td>68</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
</tr>
<tr>
<td>.9</td>
<td>232</td>
<td>116</td>
<td>116</td>
<td>.3</td>
<td>.18</td>
<td>-.12</td>
<td>.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FP</th>
<th>AP+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

* one sided
+ uniform accrual; 50.00% accrued by 50.00% of AP
Example

Control column width by using option colwidth()

```
. stpower exponential 0.3 (0.15 0.18), onesided power(0.7(0.05)0.9) aperiod(4)
> fperiod(2) colwidth(7)
```

Note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions

Exponential test, hazard difference, conditional

Ho: $h_2-h_1 = 0$

<table>
<thead>
<tr>
<th>Power</th>
<th>N</th>
<th>N1</th>
<th>N2</th>
<th>H1</th>
<th>H2</th>
<th>H2-H1</th>
<th>Alpha*</th>
<th>FP</th>
<th>AP+</th>
</tr>
</thead>
<tbody>
<tr>
<td>.7</td>
<td>74</td>
<td>37</td>
<td>37</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>.75</td>
<td>86</td>
<td>43</td>
<td>43</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>.8</td>
<td>98</td>
<td>49</td>
<td>49</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>.85</td>
<td>114</td>
<td>57</td>
<td>57</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>.9</td>
<td>136</td>
<td>68</td>
<td>68</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>.75</td>
<td>126</td>
<td>63</td>
<td>63</td>
<td>.3</td>
<td>.18</td>
<td>-.12</td>
<td>.05</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>.8</td>
<td>146</td>
<td>73</td>
<td>73</td>
<td>.3</td>
<td>.18</td>
<td>-.12</td>
<td>.05</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>.85</td>
<td>166</td>
<td>83</td>
<td>83</td>
<td>.3</td>
<td>.18</td>
<td>-.12</td>
<td>.05</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>.9</td>
<td>194</td>
<td>97</td>
<td>97</td>
<td>.3</td>
<td>.18</td>
<td>-.12</td>
<td>.05</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

* one sided
+ uniform accrual; 50.00% accrued by 50.00% of AP
Example

Use option `columns()` to select specific columns to be displayed in a table.

```
.local columns power n ea eo la lo h1 h2 aperiod fperiod alpha
.stpower exponential 0.3 (0.15 0.18), onesided power(0.8 0.9) aperiod(4) fperiod(2)
> losshaz(0.05 0.05) colw(7 6 6 6 6 6 7) columns('columns')
```

Note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0

| Power | N | E|Ha | E|Ho | L|Ha | L|Ho | H1 | H2 | AP+ | FP | Alpha* |
|-------|----|----|----|----|----|----|----|----|-----|-----|-----|-----|--------|
| .8 | 108| 56 | 58 | 13 | 12 | .3 | .15 | 4 | 2 | .05 |
| .9 | 148| 76 | 78 | 18 | 18 | .3 | .15 | 4 | 2 | .05 |
| .8 | 182| 99 | 100| 22 | 20 | .3 | .18 | 4 | 2 | .05 |
| .9 | 252| 137| 140| 29 | 30 | .3 | .18 | 4 | 2 | .05 |

* one sided
+ uniform accrual; 50.00% accrued by 50.00% of AP
Example

Use option `parallel` to request results to be computed for pairs of values rather than for all possible combinations of values.

```
. stpower exponential 0.3 (0.15 0.18), onesided power(0.8 0.9) aperiod(4) fperiod(2) > losshaz(0.05 0.05) colw(7 6 6 6 6 6 7) columns('columns') parallel
Note: input parameters are hazard rates.
```

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0

| Power | N | E|Ha | E|Ho | L|Ha | L|Ho | H1 | H2 | AP+ | FP | Alpha* |
|-------|-----|----|----|----|----|----|----|----|-----|-----|-----|-----|-------|
| .8 | 108 | 56 | 58 | 13 | 12 | .3 | .15 | 4 | 2 | .05 |
| .9 | 252 | 137| 140| 29 | 30 | .3 | .18 | 4 | 2 | .05 |

* one sided
+ uniform accrual; 50.00% accrued by 50.00% of AP

Note: options with multiple values must contain the same numbers of values if `parallel` is specified.
Example

Display results sorted on values of power first and then on values of the experimental group hazard rate h_2

```
. qui stpower exponential 0.3 (0.15 0.18), onesided power(0.7(0.05)0.9) aperiod(4)
> fperiod(2) colwidth(7) saving(mydata, replace)
. use mydata
. sort power h2
. list
```

<table>
<thead>
<tr>
<th>power</th>
<th>n</th>
<th>n1</th>
<th>n2</th>
<th>h1</th>
<th>h2</th>
<th>diff</th>
<th>alpha</th>
<th>fperiod</th>
<th>aperiod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>.7</td>
<td>74</td>
<td>37</td>
<td>37</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>.7</td>
<td>126</td>
<td>63</td>
<td>63</td>
<td>.3</td>
<td>.18</td>
<td>-.12</td>
<td>.05</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>.75</td>
<td>86</td>
<td>43</td>
<td>43</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>.75</td>
<td>146</td>
<td>73</td>
<td>73</td>
<td>.3</td>
<td>.18</td>
<td>-.12</td>
<td>.05</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>.8</td>
<td>98</td>
<td>49</td>
<td>49</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>.8</td>
<td>166</td>
<td>83</td>
<td>83</td>
<td>.3</td>
<td>.18</td>
<td>-.12</td>
<td>.05</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>.85</td>
<td>114</td>
<td>57</td>
<td>57</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>.85</td>
<td>194</td>
<td>97</td>
<td>97</td>
<td>.3</td>
<td>.18</td>
<td>-.12</td>
<td>.05</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>.9</td>
<td>136</td>
<td>68</td>
<td>68</td>
<td>.3</td>
<td>.15</td>
<td>-.15</td>
<td>.05</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>.9</td>
<td>232</td>
<td>116</td>
<td>116</td>
<td>.3</td>
<td>.18</td>
<td>-.12</td>
<td>.05</td>
<td>2</td>
</tr>
</tbody>
</table>

Yulia Marchenko (StataCorp)
Recall the following example:

```bash
. stpower exponential 0.3 (0.15 0.18), onesided power(0.8 0.9) aperiod(4)
> fperiod(2) losshaz(0.05 0.05) colw(7 6 6 6 6 6 7)
> columns(power n ea eo la lo h1 h2 aperiod fperiod alpha) parallel
```
Building a table using stpower exponential dialog box

- Recall the following example:

```
. stpower exponential 0.3 (0.15 0.18), onesided power(0.8 0.9) aperiod(4)
> fperiod(2) losshaz(0.05 0.05) colw(7 6 6 6 6 6 7)
> columns(power n ea eo la lo h1 h2 aperiod fperiod alpha) parallel
```

- Go to **Statistics** > **Power and sample size** > **Exponential test**
- Main tab: fill in values for power and hazard rates, check “Treat *list as parallel” box and choose type of test to be one sided
- Accrual/Follow-up tab: fill in values for accrual and follow-up periods, and for loss to follow-up hazard rates
- Reporting tab: select columns to be displayed in the table and optionally fill in values for column widths
- Click **Submit** or **OK**

Yulia Marchenko (StataCorp) Power analysis using stpower August 13, 2007
Length of the follow-up period, \(f \)

Accrual specification

Length of the accrual period, \(R \)

Exponential accrual

Specify accrual pattern under truncated exponential accrual

Proportion of subjects accrued by time \(t^* \), \(G(t^*) \)

Proportion of the accrual period, \(t^*/R \)

Reference accrual time, \(t^* \)

Specify shape of the truncated exponential accrual distribution

Shape parameter

Loss to follow-up specification

Proportion of subjects lost to follow-up in the control and the experimental groups

Reference loss to follow-up time

Loss hazard rates in the control and the experimental groups

0.05 0.05
. stpower exponential 0.3 (0.15 0.18), onesided power(0.8 0.9) aperiod(4) fperiod(2)
> losshaz(0.05 0.05) colw(7 6 6 6 6 6 7)
> columns(power n ea eo la lo h1 h2 aperiod fperiod alpha) parallel

Note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0

| Power | N | E|Ha | E|Ho | L|Ha | L|Ho | H1 | H2 | AP+ | FP | Alpha* |
|-------|-----|---|----|----|----|----|----|----|-----|-----|-----|-----|-------|
| .8 | 108 | 56| 58 | 13 | 12 | .3 | .15| 4 | 2 | .05 |
| .9 | 252 | 137| 140| 29 | 30 | .3 | .18| 4 | 2 | .05 |

* one sided
+ uniform accrual; 50.00% accrued by 50.00% of AP
Producing power curves

Manually:

- specify `numlist` to compute powers for a range of values and use `saving()` to save results in a dataset
- use `graph twoway` to plot results
- use overlaid plots to produce multiple power curves

Automatic:

- use unofficial wrapper `stpowplot` to obtain simple, overlaid and separate graphs of power and other curves
Example

Produce a simple power curve as a function of sample size for a study from example of stpower logrank (design B)

. qui stpower logrank 0.4, n(50(10)200) saving(mypower, replace)

. use mypower

. line power n,
> title("Power vs sample size")
> subtitle("Log-rank test, Freedman method")
> ytitle("Power") xtitle("Number of subjects")
> xlabel(50(20)200, grid) ylabel(#10, grid)
> note("Alpha=.05 (two sided); HR=.5; S1=.4; S2=.63; N2/N1=1")
Power vs sample size

Log–rank test, Freedman method

Alpha=.05 (two sided); HR=.5; S1=.4; S2=.63; N2/N1=1
. stpowers logrank 0.4, n(50(10)200) yaxis(power) xaxis(n)

Estimating power ...

Power vs sample size
Log-rank test, Freedman method

Other study parameters: Alpha = 0.05 (two sided); HR = 0.5; S1 = 0.4; S2 = 0.63; N2/N1 = 1
Example

Overlaid power curves as a function of sample size for the three values of hazard ratio

```
. qui stpower logrank 0.4, n(50(10)200) hratio(0.4 0.5 0.6)
> saving(mypower, replace)
. use mypower
. gr twoway line power n if hr==0.4 || line power n if hr==0.5
> || line power n if hr==0.6,
> title("Power vs sample size")
> subtitle("Log-rank test, Freedman method")
> ytitle("Power") xtitle("Number of subjects")
> xlabel(50(20)200, grid) ylabel(#10, grid)
> note("Alpha = .05 (two sided); S1 = .4; N2/N1 = 1")
> legend(label(1 "HR=0.4") label(2 "HR=0.5") label(3 "HR=0.6") rows(1))
```
Power vs sample size
Log–rank test, Freedman method

Number of subjects

Power

Alpha = .05 (two sided); S1 = .4; N2/N1 = 1

HR=0.4
HR=0.5
HR=0.6

Power analysis using stpower
August 13, 2007 51 / 61
. stpowplot logrank 0.4, n(50(10)200) hratio(0.4 0.5 0.6) yaxis(power) xaxis(n)
> over(hr)
Estimating power ...

Power vs sample size
Log–rank test, Freedman method

Other study parameters: Alpha = .05 (two sided); S1 = .4; N2/N1 = 1
Example

Produce power curves as a function of hazard ratio for four sample-size values

. qui stpower logrank 0.4, n(50(50)200) hratio(0.4(0.05)0.9) saving(mypower, replace)
. use mypower
. gr twoway line power hr if n==50 || line power hr if n==100
> || line power hr if n==150 || line power hr if n==200,
> title("Power vs hazard ratio")
> subtitle("Log-rank test, Freedman method")
> ytitle("Power") xtitle("Hazard ratio")
> xlabel(0.4(0.05)0.9, grid) ylabel(#10, grid)
> note("Alpha = .05 (two sided); S1 = .4; N2/N1 = 1")
> legend(label(1 "N=50") label(2 "N=100") label(3 "N=150") label(4 "N=200"))
Power vs hazard ratio
Log–rank test, Freedman method

Alpha = .05 (two sided); S1 = .4; N2/N1 = 1

Yulia Marchenko (StataCorp)
Power vs hazard ratio
Log–rank test, Freedman method

Power vs hazard ratio

Other study parameters: Alpha = .05 (two sided); S1 = .4; N2/N1 = 1
. stpowplot logrank 0.4, alpha(0.05 0.1) n(50(50)200) hratio(range 0.4 0.9)
> yaxis(power) xaxis(hr) over(n) by(alpha)
Estimating power ...

Power vs hazard ratio
Log–rank test, Freedman method

Other study parameters: S1 = .4; N2/N1 = 1
. stpowplot logrank 0.4, nratio(1 2) alpha(0.05 0.1) n(50(50)200) hratio(r 0.4 0.9) > yaxis(power) xaxis(hr) over(n) by(alpha nratio) ylabel(#5, grid)
Estimating power ...

Power vs hazard ratio
Log–rank test, Freedman method

Other study parameters: S1 = .4
You can use *stpower* to

- estimate sample size, power, or minimal detectable effect size
- perform power analysis for two-sample log-rank tests, parametric (exponential survival) tests, and Cox PH models
- compute results for multiple values of study parameters and display them in a table
- build your own table of results
- save results in a dataset for further production of power and other curves
You can use stpowplot to

- automatically generate plots of power and other curves
- produce overlaid plots using over()
- produce separate plots using by()

You can obtain stpowplot by typing

```
. net from http://www.stata.com/users/ymarchenko/
. net describe stpowplot
. net install stpowplot
```


