The influence of categorising survival time on parameter estimates in a Cox model

Anika Buchholz 1,2 , Willi Sauerbrei 2 , Patrick Royston 3

Freiburger Zentrum f
ür Datenanalyse und Modellbildung, Albert-Ludwigs-Universit
ät Freiburg
 Institut f
ür Medizinische Biometrie und Medizinische Informatik, Universit
ätsklinikum Freiburg
 ³ MRC Clinical Trials Unit, London, UK

Funded by Deutsche Forschungsgemeinschaft

Research unit FOR 534

2. April 2007

Standard Cox model and its extension

Introduction

Cox model

Causes for non-PH

MFPT

Categorisation

Results

Summary

• Standard Cox model $\lambda(t|X) = \lambda_0(t) \exp(\beta_1 X_1 + \ldots + \beta_p X_p)$ with unspecified baseline hazard $\lambda_0(t)$

Critical assumptions

Linear effect of continuous covariates

 → allow for non-linear covariate effects
 λ(t|X) = λ₀(t) exp(β₁f₁(X₁) + ... + β_pf_p(X_p))

 Proportional hazards (PH)

 \rightarrow allow for non-proportional hazards (time-varying effects) $\lambda(t|X) = \lambda_0(t) \exp(\beta_1(t)X_1 + \ldots + \beta_p(t)X_p)$

• Extended Cox model relaxing both above assumptions $\lambda(t|X) = \lambda_0(t) \exp(\beta_1(t) f_1(X_1) + \ldots + \beta_p(t) f_p(X_p))$

Causes for non-proportional hazards

Introduction

Cox model

• Causes for non-PH

MFPT

Categorisation

Results

Summary

• Effect changes over time

• Incorrect modelling

• Omission of an important covariate

• Incorrect functional form of a covariate

• Different survival model is appropriate

Model selection strategy

Introduction

MFPT

- Model selection strategy
- MFPT algorithm
- Rotterdam breast
- cancer series
- Kaplan-Meier
- estimate
- Development of the MFPT model

```
Categorisation
```

Results

Summary

Multivariable strategy for model selection needed to

- select variables which have influence on the outcome
- model functional form of the influence of continuous variables
- model time-varying effects in case of non-PH

The Multivariable Fractional Polynomial Time approach combines

- backward elimination of variables
- function selection procedure to select a function from the class of fractional polynomials (non-linear if 'sufficiently' supported by the data)
- investigation of possible time-varying effects for each variable from a multivariable proportional hazards Cox model

Introduction

MFPT

Model selection

strategy

- MFPT algorithm
- Rotterdam breast
- cancer series
- Kaplan-Meier

estimate

• Development of the MFPT model

Categorisation

Results

Summary

Stage 1: Determine time-fixed model M_0

• Select model M_0 using MFP–algorithm assuming PH (full time–period)

Introduction

MFPT

Model selection

strategy

- MFPT algorithm
- Rotterdam breast
- cancer series
- Kaplan-Meier
- estimate
- Development of the MFPT model

Categorisation

Results

Summary

Stage 1: Determine time-fixed model M_0

Stage 2: If necessary, add covariate with short-term effect only

- Start with model M_0 , keep variables and functions from M_0
- Restrict the time period to $(0, \tilde{t})$, e.g. \tilde{t} defined by the first half of events
 - Run the MFP-algorithm for $(0, \tilde{t})$ and add, if necessary, significant covariates to M_0 . This gives a proportional hazards model M_1 .

Introduction

MFPT

Model selection

strategy

- MFPT algorithm
- Rotterdam breast
- cancer series
- Kaplan-Meier
- estimate
- Development of the MFPT model

Categorisation

Results

Summary

Stage 1: Determine time-fixed model M_0

Stage 2: If necessary, add covariate with short-term effect only

- Start with model M_0 , keep variables and functions from M_0
- Restrict the time period to $(0, \tilde{t})$, e.g. \tilde{t} defined by the first half of events
 - Run the MFP-algorithm for $(0, \tilde{t})$ and add, if necessary, significant covariates to M_0 . This gives a proportional hazards model M_1 .

Introduction

MFPT

Model selection

strategy

- MFPT algorithm
- Rotterdam breast
- cancer series
- Kaplan-Meier
- estimate
- Development of the MFPT model

Categorisation

Results

Summary

Stage 1: Determine time-fixed model M_0

Stage 2: If necessary, add covariate with short-term effect only

- Start with model M_0 , keep variables and functions from M_0
- Restrict the time period to $(0, \tilde{t})$, e.g. \tilde{t} defined by the first half of events
 - Run the MFP-algorithm for $(0, \tilde{t})$ and add, if necessary, significant covariates to M_0 . This gives a proportional hazards model M_1 .

Introduction

MFPT

Model selection

strategy

- MFPT algorithm
- Rotterdam breast
- cancer series
- Kaplan-Meier
- estimate
- Development of the MFPT model
- Categorisation

Results

- **Stage 1:** Determine time-fixed model M_0
- Stage 2: If necessary, add covariate with short-term effect only
- **Stage 3:** Add possible time–varying effects of variables in M_1
- Use a forward selection procedure to add significant time-varying effects to model M_1 .
- For each covariate of M_1 in turn investigate time-varying effect $\beta(t)$ adjusting for all other covariates of M_1 . This gives the final model M_2 .

Rotterdam breast cancer series

Introduction

MFPT

Model selection

strategy

- MFPT algorithm
- Rotterdam breast
- cancer series
- Kaplan-Meier
- estimate
- Development of the MFPT model
- Categorisation

Results

- Breast cancer survival data with
- 2982 patients
- 1518 events for RFS (recurrence free survival)
- 20 years max. follow-up
- 10 variables
- median uncensored survival time: 2.5 years

Rotterdam breast cancer series

Development of the MFPT model

Introduction

	Variable	Model M_0	Model M_1	Model M_2
MFPT • Model selection	X_1 (age)	•	•	•
strategy	X_2 (menopausal status)	-	-	-
MFPT algorithm	X_{3a} (tumour size > 20mm)	•	•	•
cancer series	X_{3b} (tumour size > 50mm)	-	•	•
Kaplan-Meier	X_4 (tumour grade)	•	•	•
 Development of the 	X_5^2 (no. of pos. lymph nodes)	•	•	•
MFPT model	$log(X_6)$ (progesterone receptor)	-	•	•
Categorisation	X_7 (oestrogen receptor)	-	-	-
Results	X_8 (hormonal therapy)	•	•	•
Summary	X_9 (chemotherapy)	•	•	•
	$ \begin{array}{c} \overline{X_{3a} \cdot (\log(t))} \end{array} $			•
	$\log(X_6) \cdot (\log(t))$			•

Model M_0 : Selected with MFP assuming PH, 4 variables eliminated Model M_1 : Add variables with short-term effect only Model M_2 : Add time-varying effects

Enlargement of the data

Introduction

MFPT

- Categorisation
- Enlargement
- Categorisation
- Example
- Issues under investigation
- Handling ties

```
Results
```

Summary

The analysis of time-varying effects requires

- Iong-term follow-up
- large sample size

Why is enlargement necessary?

$$lnL = \sum_{j=1}^{D} \left[\sum_{k \in D_j} x_k \beta(t_{(j)}) - d_j \ln\left\{ \sum_{i \in R_j} \exp(x_i \beta(t_{(j)})) \right\} \right]$$

Enlargement of such data may cause computational problems: . stsplit, at failures gives about 2.2 million records in Rotterdam data Enlarged data

- may be difficult to manage for the analysis of one data set
- is nearly impossible for simulation studies

Possible solution: categorisation of survival time

Introduction

MFPT

- Categorisation
- Enlargement
- Categorisation
- Example
- Issues under investigation
- Handling ties

Results

- Categorisation scheme
 - Equidistant intervals (e.g. 6 month length)
 - . stsplit period, at(.5(.5)20) results in only 35747 records
 - Other categorisation schemes are possible, e.g. categorisation in quantiles
- How to code categorised survival times
 - Here: represent intervals by integers
 - In clinical investigations e.g. use the mean survival time within each interval

Example for categorised time in the enlarged data

Introduction

MFPT

Categorisation

- Enlargement
- Categorisation
- Example
- Issues under investigation
- Handling ties

Results

- . stsplit period, at(.5(.5)20)
- (32765 observations (episodes) created)
- . egen categorised_EFS = group(period)
- . list categorised_EFS EFS_yrs event Patient_ID if Patient_ID==1

	catego~S	EFS_yrs	event	Patien~D
1.	1	.5		1
2.	2	1		1
3.	3	1.5		1
4.	4	2		1
5.	5	2.5		1
6.	6	3		1
7.	7	3.5		1
8.	8	4		1
9.	9	4.5		1
10.	10	4.925	0	1

Introduction

MFPT

- Categorisation
- Enlargement
- Categorisation
- Example
- Issues under investigation
- Handling ties

Results

Summary

Categorisation of survival time raises issues as to

- the number and position of cutpoints
- the loss of information
- the increased number of ties

Introduction

MFPT

Categorisation

- Enlargement
- Categorisation
- Example
- Issues under investigation
- Handling ties

Results

Summary

Categorisation of survival time raises issues as to

- the number and position of cutpoints
- the loss of information
- the increased number of ties

We will

• consider interval lengths 1.5, 3, 6, 12 and 24 months

Introduction

MFPT

- Categorisation
- Enlargement
- Categorisation
- Example
- Issues under investigation
- Handling ties

Results

Summary

Categorisation of survival time raises issues as to

- the number and position of cutpoints
- the loss of information
- the increased number of ties

We will

- consider interval lengths 1.5, 3, 6, 12 and 24 months
- compare parameter estimates obtained by *stcox* for the different interval lengths

Introduction

MFPT

- Categorisation
- Enlargement
- Categorisation
- Example
- Issues under investigation
- Handling ties

Results

Summary

Categorisation of survival time raises issues as to

- the number and position of cutpoints
- the loss of information
- the increased number of ties

We will

- consider interval lengths 1.5, 3, 6, 12 and 24 months
- compare parameter estimates obtained by stcox for the different interval lengths
- compare parameter estimates using the four methods of handling ties provided by stcox

Methods for handling ties in Stata

Introduction

MFPT Categorisation • Enlargement • Categorisation	breslow:	approximation of exact marginal log likelihood; fast but least accurate (default)
 Example Issues under investigation Handling ties Results 	efron:	approximation of the exact marginal log likelihood; slower than breslow but more accurate
Summary	exactm:	exact marginal log likelihood; very slow
	exactp:	exact partial log likelihood; very slow

Influence of the length of categorisation interval

Introduction

MFPT

Categorisation

Results

- Length of interval
- Ties (original time)
- Ties (3 months)
- Ties (6 months)
- Run time

• MFP

Summary

 Differences of parameter estimates in percent relative to the original time

Breslow method for handling ties

			Interval	length (m	onths)	
	Original time	1.5	3	6	12	24
No. of records	2982 *	138502	70000	35747	18649	10086
No. of distinct observed times	2183	155	78	39	20	10
X_1 (age)	-0.013	-0.4	-1.1	-1.9	-3.5	-8.5
X_{3a} (tumour size $>$ 20mm)	0.289	-0.5	-1.2	-2.5	-5.0	-11.2
X_4 (tumour grade)	0.390	-0.8	-1.4	-2.5	-6.0	-12.9
X_5^2 (# pos. lymph nodes)	-1.713	-1.0	-2.1	-3.9	-7.8	-15.6
X_8 (hormonal therapy)	-0.386	-1.3	-2.3	-3.4	-7.8	-13.9
X_9 (chemotherapy)	-0.454	-1.3	-2.7	-4.7	-10.1	-22.0

* 2982 is the original number of observations (1419 ties), splitting the data at each event time gives approximately 2.2 million records

Comparison of the methods of handling ties (original time)

Introduction

Categorisation

MFPT

• Parameter estimates using the original time

Results					
 Length of interval Ties (original time) 			Met	hod	
 Ties (3 months) Ties (6 months) 		Breslow	Efron	exactm	exactp
Run timeMFP	X_1 (age) X_2 (tumour size > 20mm)	-0.0132	-0.0132	-0.0132	-0.0132
Summary	X_{3a} (tumour size > 201111) X_4 (tumour grade)	0.2005	0.2000	0.2000	0.2000
	X_5^2 (# pos. lymph nodes)	-1.7128	-1.7132	-1.7132	-1.7136
	X_8 (hormonal therapy)	-0.3857	-0.3859	-0.3858	-0.3859
	X_9 (chemotherapy)	-0.4539	-0.4540	-0.4540	-0.4541

• Method of handling ties has no influence on parameter estimates

Comparison of the methods of handling ties (3 months)

Introduction

MFPT

Categorisation

Results

- Length of interval
- Ties (original time)
- Ties (3 months)
- Ties (6 months)
- Run time

• MFP

- Difference in parameter estimates in percent relative to analysis using original time
- Interval length: 3 months

		Met	thod	
	Breslow	Efron	exactm	exactp
X_1 (age)	-1.1	+1.4	+2.3	+3.4
X_{3a} (tumour size $>$ 20mm)	-1.2	+0.4	+1.1	+1.6
X_4 (tumour grade)	-1.4	-0.2	+0.2	+1.7
X_5^2 (# pos. lymph nodes)	-2.1	0.0	+0.7	+2.2
X_8 (hormonal therapy)	-2.3	+0.4	+1.7	+3.4
X_9 (chemotherapy)	-2.7	0.0	+1.1	+2.6

Comparison of the methods of handling ties (6 months)

Introduction

MFPT

Categorisation

Results

- Length of interval
- Ties (original time)
- Ties (3 months)
- Ties (6 months)
- Run time
- MFP

- Difference in parameter estimates in percent relative to analysis using original time
- Interval length: 6 months

		Met	thod	
	Breslow	Efron	exactm	exactp
X_1 (age)	-1.9	+3.1	-79.2	_
X_{3a} (tumour size $>$ 20mm)	-2.5	+0.7	-86.9	—
X_4 (tumour grade)	-2.5	-0.1	-84.1	—
X_5^2 (# pos. lymph nodes)	-3.9	0.0	-76.9	—
X_8 (hormonal therapy)	-3.4	+1.9	-79.5	_
X_9 (chemotherapy)	-4.7	+0.4	-81.1	_

Comparison of run time of the methods of handling ties

Introduction

Categorisation

MFPT

• Run time relative to Breslow using original time

Results					
Length of interval			Run	time	
 Ties (original time) 					
• Ties (3 months)		Breslow	Efron	exactm	exactp
 Ties (6 months) 					
Run time	original time (2982 records)	1	1.11	19.56	1237.85
• MFP	3 month intervals (70000 records)	40.18	44.88	85.80	1675.15
Summary	split at failures (2.2 mio records)	1926.25	1926.26	2067.26	3367.71

- Breslow and Efron similar
- exactm and exactp much more computationally demanding

Selection of model using *mfp*

Introduction

MFPT

Categorisation

Results

- Length of interval
- Ties (original time)
- Ties (3 months)
- Ties (6 months)
- Run time
- MFP
- Summary

Do stage 1 of MFPT algorithm with all 10 candidate variables . *mfp stcox x1 x2 x3a x3b x4b x5e x6 x7 x8 x9, select(0.01)* (breslow and efron only)

Identical model as in original data

- for interval lengths 1.5, 3, and 6 months
- for both breslow and efron method for ties
 - with similar parameter estimates

Summary of results

Introduction

MFPT

Categorisation

Results

- Summary
- Summary
- References

- For a single analysis in one data set categorisation is usually not required
 - Categorisation may be sufficient for computer intensive methods (simulations, bootstrap, cross validation etc.)
- In case of categorisation:
- Categorising long-term survival into 40-100 distinct values seems sensible:
 - Parameter estimates nearly identical
 - Loss of information seems negligible
- Handling ties:
 - Many distinct values: nearly identical results
 - Small(er) number of distinct values:
 - Exact methods break down
 - Breslow and Efron give acceptable results
 - Breslow and Efron suitable for simulation studies, Efron slightly preferable

References

r	\tr	\sim	111	ot	10	n
	I U I	υ	JU	ιcι	IU	
		_				

- MFPT
- Categorisation
- Results
- Summary
- Summary
- References

- Sauerbrei, W., Royston, P. and Look, M. (2007). A new proposal for multivariable modelling of time-varying effects in survival data based on fractional polynomial time-transformation. Biometrical Journal, in press
 - Buchholz, A., Sauerbrei, W. and Royston, P. (2006). *Investigation of time-varying effects in survival analysis may require categorisation of time: does it matter?* submitted

Program *stmfpt* available upon request from Patrick Royston (pr@ctu.mrc.ac.uk)

Thanks for your attention.

Introduction

MFPT

Categorisation

Results

Summary

• Summary

• References

Required amount of memory for different interval lengths

Introduction

MFPT

Categorisation

Results

Summary

• Summary

• References

Interval length (months)	No. of records	Amount of memory* (bytes)
Original time	2,982	146,118
Split at failures	2,220,499	115,465,948
1.5	138,502	8,310,120
3	70,000	4,200,000
6	35,747	2,144,820
12	18,649	988,397
24	10,086	534,558

*data only, without overhead