
1

The influence of categorising survival time on parameter est imates in a
Cox model

Anika Buchholz1,2, Willi Sauerbrei2, Patrick Royston3

1 Freiburger Zentrum für Datenanalyse und Modellbildung, Albert-Ludwigs-Universität Freiburg

2 Institut für Medizinische Biometrie und Medizinische Informatik, Universitätsklinikum Freiburg
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• Standard Cox model

λ(t|X) = λ0(t) exp(β1X1 + . . . + βpXp)
with unspecified baseline hazard λ0(t)

• Critical assumptions

◦ Linear effect of continuous covariates

→ allow for non-linear covariate effects

λ(t|X) = λ0(t) exp(β1f1(X1) + . . . + βpfp(Xp))
◦ Proportional hazards (PH)

→ allow for non-proportional hazards (time-varying effects)
λ(t|X) = λ0(t) exp(β1(t)X1 + . . . + βp(t)Xp)

• Extended Cox model relaxing both above assumptions

λ(t|X) = λ0(t) exp(β1(t)f1(X1) + . . . + βp(t)fp(Xp))
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• Effect changes over time

• Incorrect modelling

◦ Omission of an important covariate

◦ Incorrect functional form of a covariate

◦ Different survival model is appropriate
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Multivariable strategy for model selection needed to

• select variables which have influence on the outcome

• model functional form of the influence of continuous variables

• model time–varying effects in case of non-PH

The Multivariable Fractional Polynomial Time approach combines

• backward elimination of variables
• function selection procedure to select a function from the class of

fractional polynomials (non-linear if ’sufficiently’ supported by the

data)

• investigation of possible time–varying effects for each variable

from a multivariable proportional hazards Cox model
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Stage 1: Determine time–fixed model M0

• Select model M0 using MFP–algorithm assuming PH (full

time–period)



Multivariable Fractional Polynomial Time (MFPT) algorith m

Introduction

MFPT
• Model selection
strategy

• MFPT algorithm

• Rotterdam breast
cancer series
• Kaplan-Meier
estimate
• Development of the
MFPT model

Categorisation

Results

Summary

5

Stage 1: Determine time–fixed model M0

Stage 2: If necessary, add covariate with short–term effect only

• Start with model M0, keep variables and functions from M0

• Restrict the time period to (0, t̃), e.g. t̃ defined by the first half of

events
• Run the MFP-algorithm for (0, t̃) and add, if necessary,

significant covariates to M0. This gives a proportional hazards

model M1.
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Stage 1: Determine time–fixed model M0

Stage 2: If necessary, add covariate with short–term effect only

Stage 3: Add possible time–varying effects of variables in M1

• Use a forward selection procedure to add significant time–varying

effects to model M1.

• For each covariate of M1 in turn investigate time–varying effect
β(t) adjusting for all other covariates of M1. This gives the final

model M2.
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Breast cancer survival data with

• 2982 patients

• 1518 events for RFS (recurrence free survival)

• 20 years max. follow–up

• 10 variables

• median uncensored survival time: 2.5 years
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No. at risk: 2982 2319 1805 1340 920 481 171 55 11 3
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Variable Model M0 Model M1 Model M2

X1 (age) • • •

X2 (menopausal status) - - -

X3a (tumour size > 20mm) • • •

X3b (tumour size > 50mm) - • •

X4 (tumour grade) • • •

X5
2 (no. of pos. lymph nodes) • • •

log(X6) (progesterone receptor) - • •

X7 (oestrogen receptor) - - -

X8 (hormonal therapy) • • •

X9 (chemotherapy) • • •

X3a·(log(t)) •

log(X6)·(log(t)) •

Model M0: Selected with MFP assuming PH, 4 variables eliminated
Model M1: Add variables with short-term effect only
Model M2: Add time-varying effects
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The analysis of time-varying effects requires

• long-term follow-up

• large sample size

Why is enlargement necessary?

lnL =

D
∑

j=1

[

∑

k∈Dj

xkβ(t(j)) − dj ln
{

∑

i∈Rj

exp(xiβ(t(j)))
}

]

Enlargement of such data may cause computational problems:

. stsplit, at failures gives about 2.2 million records in Rotterdam data
Enlarged data

• may be difficult to manage for the analysis of one data set

• is nearly impossible for simulation studies
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• Categorisation scheme

◦ Equidistant intervals (e.g. 6 month length)

. stsplit period, at(.5(.5)20) results in only 35747 records

◦ Other categorisation schemes are possible, e.g.

categorisation in quantiles

• How to code categorised survival times

◦ Here: represent intervals by integers

◦ In clinical investigations e.g. use the mean survival time within

each interval
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. stsplit period, at(.5(.5)20)

(32765 observations (episodes) created)

. egen categorised EFS = group(period)

. list categorised EFS EFS yrs event Patient ID if Patient ID==1

catego∼S EFS yrs event Patien∼D
1. 1 .5 . 1

2. 2 1 . 1

3. 3 1.5 . 1

4. 4 2 . 1

5. 5 2.5 . 1

6. 6 3 . 1
7. 7 3.5 . 1

8. 8 4 . 1

9. 9 4.5 . 1

10. 10 4.925 0 1
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Categorisation of survival time raises issues as to

• the number and position of cutpoints

• the loss of information

• the increased number of ties
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Categorisation of survival time raises issues as to

• the number and position of cutpoints

• the loss of information

• the increased number of ties

We will

• consider interval lengths 1.5, 3, 6, 12 and 24 months
• compare parameter estimates obtained by stcox for the different

interval lengths

• compare parameter estimates using the four methods of handling

ties provided by stcox
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breslow: approximation of exact marginal log likelihood;

fast but least accurate (default)

efron: approximation of the exact marginal log likelihood;

slower than breslow but more accurate

exactm: exact marginal log likelihood; very slow

exactp: exact partial log likelihood; very slow
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• Differences of parameter estimates in percent relative to the

original time

• Breslow method for handling ties

Interval length (months)

Original
time 1.5 3 6 12 24

No. of records 2982∗ 138502 70000 35747 18649 10086
No. of distinct observed times 2183 155 78 39 20 10
X1 (age) -0.013 -0.4 -1.1 -1.9 -3.5 -8.5
X3a (tumour size > 20mm) 0.289 -0.5 -1.2 -2.5 -5.0 -11.2
X4 (tumour grade) 0.390 -0.8 -1.4 -2.5 -6.0 -12.9
X2

5 (# pos. lymph nodes) -1.713 -1.0 -2.1 -3.9 -7.8 -15.6
X8 (hormonal therapy) -0.386 -1.3 -2.3 -3.4 -7.8 -13.9
X9 (chemotherapy) -0.454 -1.3 -2.7 -4.7 -10.1 -22.0

∗ 2982 is the original number of observations (1419 ties), splitting the data
at each event time gives approximately 2.2 million records
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• Parameter estimates using the original time

Method

Breslow Efron exactm exactp

X1 (age) -0.0132 -0.0132 -0.0132 -0.0132
X3a (tumour size > 20mm) 0.2885 0.2886 0.2886 0.2886
X4 (tumour grade) 0.3900 0.3900 0.3900 0.3901
X2

5
(# pos. lymph nodes) -1.7128 -1.7132 -1.7132 -1.7136

X8 (hormonal therapy) -0.3857 -0.3859 -0.3858 -0.3859
X9 (chemotherapy) -0.4539 -0.4540 -0.4540 -0.4541

• Method of handling ties has no influence on parameter estimates
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• Difference in parameter estimates in percent relative to analysis

using original time

• Interval length: 3 months

Method

Breslow Efron exactm exactp

X1 (age) −1.1 +1.4 +2.3 +3.4
X3a (tumour size > 20mm) −1.2 +0.4 +1.1 +1.6
X4 (tumour grade) −1.4 −0.2 +0.2 +1.7
X2

5 (# pos. lymph nodes) −2.1 0.0 +0.7 +2.2
X8 (hormonal therapy) −2.3 +0.4 +1.7 +3.4
X9 (chemotherapy) −2.7 0.0 +1.1 +2.6
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• Difference in parameter estimates in percent relative to analysis

using original time

• Interval length: 6 months

Method

Breslow Efron exactm exactp

X1 (age) −1.9 +3.1 −79.2 −
X3a (tumour size > 20mm) −2.5 +0.7 −86.9 −
X4 (tumour grade) −2.5 −0.1 −84.1 −
X2

5 (# pos. lymph nodes) −3.9 0.0 −76.9 −
X8 (hormonal therapy) −3.4 +1.9 −79.5 −
X9 (chemotherapy) −4.7 +0.4 −81.1 −
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• Run time relative to Breslow using original time

Run time

Breslow Efron exactm exactp

original time (2982 records) 1 1.11 19.56 1237.85
3 month intervals (70000 records) 40.18 44.88 85.80 1675.15
split at failures (2.2 mio records) 1926.25 1926.26 2067.26 3367.71

• Breslow and Efron similar

• exactm and exactp much more computationally demanding
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Do stage 1 of MFPT algorithm with all 10 candidate variables

. mfp stcox x1 x2 x3a x3b x4b x5e x6 x7 x8 x9, select(0.01)

(breslow and efron only)

Identical model as in original data

• for interval lengths 1.5, 3, and 6 months

• for both breslow and efron method for ties
• with similar parameter estimates
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• For a single analysis in one data set categorisation is usually not

required

• Categorisation may be sufficient for computer intensive methods

(simulations, bootstrap, cross validation etc.)

In case of categorisation:

• Categorising long-term survival into 40-100 distinct values seems

sensible:

◦ Parameter estimates nearly identical

◦ Loss of information seems negligible

• Handling ties:

◦ Many distinct values: nearly identical results

◦ Small(er) number of distinct values:

- Exact methods break down

- Breslow and Efron give acceptable results
◦ Breslow and Efron suitable for simulation studies, Efron

slightly preferable
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Program stmfpt available upon request from Patrick Royston

(pr@ctu.mrc.ac.uk)

Thanks for your attention.
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Interval length No. of Amount of
(months) records memory* (bytes)

Original time 2,982 146,118
Split at failures 2,220,499 115,465,948

1.5 138,502 8,310,120
3 70,000 4,200,000
6 35,747 2,144,820

12 18,649 988,397
24 10,086 534,558

*data only, without overhead
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