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SUMMARY

In this tutorial, we describe regression-based methods for analysing multiple source data arising from
complex sample survey designs. We use the term ‘multiple-source’ data to encompass all cases where
data are simultaneously obtained from multiple informants, or raters (e.g. self-reports, family members,
health care providers, administrators) or via di�erent=parallel instruments, indicators or methods (e.g.
symptom rating scales, standardized diagnostic interviews, or clinical diagnoses). We review regression
models for analysing multiple source risk factors or multiple source outcomes and show that they can
be considered special cases of generalized linear models, albeit with correlated outcomes. We show how
these methods can be extended to handle the common survey features of strati�cation, clustering, and
sampling weights. We describe how to �t regression models with multiple source reports derived from
complex sample surveys using general purpose statistical software. Finally, the methods are illustrated
using data from two studies: the Stirling County Study and the Eastern Connecticut Child Survey.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many epidemiologic studies, information about health outcomes, risk factors, and service use
is obtained from multiple sources (or informants). As an example, in psychiatric epidemiologic
studies of childhood psychopathology, the child’s parent is routinely used as a proxy data
source; other informants (e.g. self-report, peers, teachers, clinicians, or trained observers) may
also be employed, depending on the child’s age and the nature of psychopathology under
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study. Contemporary psychiatric epidemiologic studies of children commonly use two or three
informants as data sources, since assessment of psychopathology is inherently di�cult [1] and
there is often lack of reproducibility.
While multiple sources are almost routinely used in population- and community-based as-

sessments of children’s mental health and behaviour, multiple source data commonly arise in
a wide variety of di�erent �elds of study. Family history studies, where many relatives are
interviewed about the status of the proband and other family members generate similar types
of data [2, 3]. In studies of breast cancer survivors, multiple sources can be used to provide in-
formation on medical comorbidity [4]. For investigations in nutritional epidemiology, multiple
dietary instruments (e.g. food frequency questionnaires, 24-h recalls, food diaries) are used to
assess nutrient intake [5, 6]. In studies that assess the quality of health care it has become rou-
tine to obtain data from both health care service providers and service users, thereby providing
multiple perceptions (i.e. the professionals’ and patients’ perceptions) of the particular aspect
of health care under study [7]. Leape et al. [8] used two physician reviewers to identify and
evaluate adverse medical events. Service utilization studies also feature multiple informants,
where both user and provider(s) are asked to report types of services obtained=provided (e.g.
Reference [9]) or when multiple information sources, such as self-report and administrative
database, are queried [10]. Finally, multiple sources have become increasingly common in
hospital-based and outpatient-based assessments of treatments for mental illness [11–13].
Our use of the general term ‘multiple-source’ data is intended to encompass all cases where

data are simultaneously obtained from multiple informants or raters (e.g. self-reports, family
members, health care providers, administrators) or via di�erent=parallel instruments, indicators
or methods (e.g. symptom rating scales, standardized diagnostic interviews, or clinical diag-
noses). Note, however, that we restrict our use of this term to multiple source data that are
commensurate. That is, multiple source data are thought to provide multiple measures of the
same underlying variable and are measured on a similar scale.
Multiple sources can provide information on either risk factors or outcomes. An example of

the former was reported in a follow-up study of children into adolescence and adulthood, where
a child’s self-report and a parent’s report on anxiety at ages 5 and 9 were used as multiple
source predictors of a diagnosis of depression at age 18 [14]. In an example of the latter,
taken from two parallel community-based surveys of child psychopathology in Connecticut
[15, 16], multiple source data on children’s mental health outcomes were primarily assessed
by a parent’s and a teacher’s report via parallel forms of a standardized symptom checklist.
Irrespective of whether they arise as risk factors or outcomes, one of the key methodological

challenges in analysing multiple source data concerns how they should best be represented in
statistical models. Many of the traditional methods for analysing multiple-source data have not
been completely satisfactory. An approach commonly used in the past is a ‘pooling’ strategy,
where the information from the multiple sources is somehow combined into a single number
summary for each subject. The ‘best estimate’ diagnoses [17, 18], in which clinicians review
all available data and arrive at a diagnosis on a case-by-case basis, is one such pooling method.
Alternatively, a variety of strategies and algorithms for pooling and combining multiple source
data have been introduced. Two examples of some contemporary pooling strategies include the
‘or’ and the ‘and’ algorithms. In the so-called ‘or’ algorithm binary source data are considered
to be positive if any of the source data are positive, and negative otherwise [19]. In the ‘and’
algorithm binary source data are considered to be positive if all of the source data are positive,
and negative otherwise [20]. Another strategy for producing a single number summary is to
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take the arithmetic average of the multiple source data, a strategy that is somewhat more
appealing when the source data are quantitative. There are many reasons why the pooling of
data from multiple sources is not very desirable. These include: (1) the optimal algorithm
for combining multiple source data depends upon the type of measurement error present; (2)
pooling does not permit the examination of di�erences in risk-factor e�ects across sources;
and (3) many pooling algorithms are not clearly de�ned in the presence of missing data from
one or more sources.
The main alternative to pooling has been to conduct separate analyses for each source and

report the results separately. This approach has its own drawbacks, however: (1) separate
analyses yield multiple (and often di�ering) sets of results for the di�erent sources, which
may be di�cult for the consumer of the research �ndings to interpret; (2) separate analyses
provide no formal means of evaluating how similar or di�erent the results are across the
various sources (or to summarize them in a single set of results, if they are su�ciently
similar); and (3) separate analyses may be based on di�erent subsets of the data, if some
subjects are missing data from one source and others are missing data from another source.
In response to the shortcomings of existing analytic methods for multiple-source data,

Fitzmaurice and colleagues [21, 22] proposed regression methodology for simultaneously
analysing binary multiple source outcomes, while Daskalakis et al. [23] generalized these
methods to categorical multiple source outcomes. Kuo et al. [24] and Goldwasser and Fitzmau-
rice [25] independently proposed extensions of these methods to continuous multiple source
outcomes. In related work, Kraemer et al. [26] addressed methods to develop consensus
methods for informant reports, in terms of the context and perspective of these sources.
Horton et al. [27] considered the shortcomings of existing methods for analysing multiple

source data when they are used as risk factors or predictor variables. They developed regres-
sion methods for the case where both the multiple source risk factor and the outcome are
binary. These regression-based methods treat the multiple sources as providing either con-
ceptually di�erent information or the same information measured with error. They also make
full use of all available information, even from subjects who have missing data from one or
more sources. A notable feature of these regression-based methodologies for simultaneously
analysing multiple source risk factors and outcomes is that they can be considered special
cases of generalized linear models, albeit with potentially correlated outcomes.
An additional complication for the analysis of multiple source data from many epidemiologic

studies is the use of complex survey designs. Administrative, pragmatic, as well as scienti�c
factors may lead researchers to divide data collection into separate geographic districts, or to
oversample particular groups that are of main interest. In this tutorial, we consider the analysis
of multiple source data arising from complex survey designs. In particular, we demonstrate
how existing regression-based methods for simultaneously analysing multiple source data are
related to generalized linear models for correlated data and indicate how these methods can be
extended to handle complex survey designs, and describe their application in two examples.
The remainder of this tutorial is organized as follows. In Section 2, we review regression-

based methods for simultaneously analysing multiple source data. We consider regression
models for multiple source outcomes and multiple source predictors separately. We empha-
size how these models can be expressed as generalized linear models, albeit with potentially
correlated dependent variables. In Section 3, we consider multiple source data arising from
complex survey samples. We review some basic concepts from the survey sampling literature
and describe how the regression model parameters can be estimated using an approximate
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likelihood that takes account of common survey features of strati�cation, clustering, and
sampling weights. Some close links between this approach and generalized estimating equa-
tions (GEE) are noted. In Section 4, the methods are illustrated using data from two studies:
the Stirling County Study and the Eastern Connecticut Child Survey. We discuss software to
�t these models in Section 5, and conclude with a discussion of other aspects of the analysis
of multiple source reports in this setting.

2. GENERALIZED LINEAR MODELS FOR MULTIPLE SOURCE DATA

2.1. Regression methods for multiple source outcomes

In previous research on methods for analysing outcomes measured by multiple sources,
Fitzmaurice and colleagues [21, 22] and Daskalakis et al. [23] described regression models for
binary, categorical, and ordinal multiple source outcome data. They proposed a multivariate
regression model, where the measures obtained from all sources are analysed simultaneously.
There is an extensive literature relating to the analysis of paired or other multivariate outcomes
(e.g. References [28–30]). Many of these methods for categorical multiple source outcomes
can be readily extended and generalized to the case of continuous or count data. In this sec-
tion, we review these methods, make the connections with generalized linear models more
explicit and show how these methods can handle diverse types of multiple source outcomes.
We �rst establish notation, describe the data typically collected in these settings, and propose

a general modelling strategy. We assume that there are N independent subjects, each with
an outcome obtained from J di�erent sources. The outcome can be binary, ordinal, discrete,
continuous or count data. Let Yij represent the outcome obtained for the ith subject from the
jth source (with i=1; : : : ; N ; j=1; : : : ; J ). In addition, let Xij be a p× 1 vector of covariates,
associated with the outcome obtained for the ith subject from the jth source. Note that each
Xij will, in general, contain both source variables (or indicators for the di�erent sources) and
subject-speci�c risk factors. That is, Xij may include a constant (for the intercept term), a set
of (J − 1) indicator variables indicating the source, various subject-speci�c risk factors, and
possibly source by risk factor product terms. Finally, we let Yi=(Yi1; : : : ; YiJ )′ be the J × 1
outcome vector for the ith subject, and Xi be the associated J ×p matrix of covariates.
Following the approach described in Fitzmaurice et al. [21], regression models relating the

mean of the outcome measured by each source to the vector of covariates or risk factors can
be developed. Speci�cally, we consider multivariate regression models for the mean of Yi,
conditional on both source and risk factors, that are of the following general form:

g(E[Yij |Xij])=X ′
ij� (1)

where g(·) is a known link function. Thus, the conditional mean of Yij may depend on the
source, any other covariates of interest (e.g. risk factors and potential confounders), and
possibly their interactions. When the outcome is continuous, the identity link function is a
natural choice for g(·); with binary or count data, the logit or log link functions are natural
choices, respectively. However, in principle, any suitable link function can be selected.
A feature of the regression model shown in equation (1) is that it can be used to specify

hypotheses about the e�ects of the sources and of risk factors on the outcome (with the
latter usually being the e�ects of primary scienti�c interest), as well as possible source by

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2911–2933



REGRESSION ANALYSIS OF MULTIPLE SOURCE DATA 2915

risk factor interactions. Note that the source by risk factor interactions represent contrasts of
within-subject e�ects. A test of a source by risk factor interaction is equivalent to a test of the
di�erences among the source-speci�c regression coe�cients for the corresponding risk factor.
Because the multiple source reports are expected to be positively correlated, these regression
coe�cients are also positively correlated and we have more power than we usually would
have for testing interactions.
A simple example can help illustrate the potential application of the model shown in equa-

tion (1). Consider the Eastern Connecticut Child Survey, an epidemiologic study of children
that assesses psychopathology using ratings from parents and teachers. Suppose that we are
interested in assessing the association of a binary risk factor, e.g. family stressors, with child
psychopathology. The following bivariate regression allows a single regression model to be
�t to the data from both sources,

g(E[Yij |Xij])=�0 + �1 SOURCEij + �2 STRESSi + �3 (SOURCEij ×STRESSi) (2)

where SOURCE (0=parent, 1=teacher) and STRESS (0=no, 1=yes) are indicator vari-
ables. This model assumes that the e�ect of family stress on the (appropriately transformed)
mean rating may vary by source (parent or teacher). In general, source-related di�erences
in the e�ect of family stress can be evaluated via tests of �1 and=or �3 equaling zero. For
example, the simpli�ed bivariate regression model,

g(E[Yij |Xij])=�0 + �1 SOURCEij + �2 STRESSi (3)

assumes that the e�ect of family stress on the mean rating does not vary by source, but overall
the mean rating reported by parents and teachers may di�er (i.e. �1 �=0).
Note that, so far, no distributional assumptions have been made other than the conditional

mean of the Yij’s is given by equation (1). However, this model is very �exible and actually
represents a broad class of regression models that include as special cases linear regression
models for continuous multiple source data, logistic regression models for binary multiple
source data, and log-linear regression models for multiple source count data. Later, we make
some additional assumptions about the Yij’s and the association among the Yij’s.

2.2. Regression methods for multiple source predictors

Multiple source reports are also commonly used as predictors of an outcome. Horton et al.
[27] catalogued a variety of methods that have been suggested in the literature, and discussed
the advantages and disadvantages of each type. These methods can be grouped into two
categories: approaches that include all source reports in a single regression, and approaches
that simultaneously estimate separate regression equations, one for each source report. Of note,
both approaches �t within the generalized linear model framework described earlier and can
be expressed in the form of (1).
To illustrate these two general approaches, we consider an example from the Stirling County

Study, where multiple source reports of psychiatric diagnosis (from self-report [SELFDIAG]
or physician-report [GPDIAG]) were used to predict mortality. A regression model can be �t
that includes both source reports:

g(E[Yi|Xi])=�0 + �1 SELFDIAGi + �2 GPDIAGi + �3 (SELFDIAGi ×GPDIAGi) (4)
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where Yi is an indicator of mortality. Horton et al. [27] describe the relationship between
this model and regression models with a single predictor derived from ad hoc combination
rules (such as the ‘or’ and ‘and’ rules). Note that estimation of the parameters in model
(4) is straightforward, since there is only a single observation per subject. While this model
may be particularly attractive if the primary goal is prediction of the outcome, the regression
parameters do not have useful interpretations in terms of the e�ect of the risk factor on the
outcome. Indeed, the association between the risk factor and outcome is likely to be attenu-
ated in model (4) due to the conditioning on all source reports. For example, in the above
model, the regression parameters have interpretation in terms of the e�ect of a positive report
from one source, conditional on the report of the other source. However, in many settings,
the marginal association of each source report with the outcome may be of greater scienti�c
interest. The potential attenuation of covariate e�ects in the case of linear models (assuming
an identity link) can be readily seen by considering the following simple illustration. Suppose
that Xi1 and Xi2 are two source reports, having equal variances �2x , and with common marginal
associations with Yi. The common association with Yi can be expressed in terms of the corre-
lation, Corr(Yi; Xi1)=Corr(Yi; Xi2)=�yx. In addition, the two source reports are assumed to be
positively correlated, Corr(Xi1; Xi2)=�x1x2¿0. Then the regression coe�cient for Xi1 (or Xi2)
in the linear regression of Yi on Xi1 (or Xi2) alone is given by (�y=�x)�xy, where �2y =Var(Yi).
However, note that the regression coe�cient for Xi1 (or Xi2) in the linear regression of Yi on
both Xi1 and Xi2 is given by (�y=�x)�xy=(1+�x1x2), and is always smaller than (�y=�x)�xy when
�x1x2¿0. Furthermore, the degree of attenuation is related to the magnitude of the (positive)
correlation among source reports. Similar attenuation arises also in regression models with
non-linear link functions.
In light of these concerns, an alternate approach, described independently by Horton

et al. [27] and Pepe et al. [31], involves simultaneously �tting separate regression equa-
tions, one for each source. In the Stirling County Study example, this could be represented
by the following model:

g(E[Yi|Xi1]) = �0 + �1 SELFDIAGi

g(E[Yi|Xi2]) = (�0 + �0) + (�1 + �1)GPDIAGi
(5)

where the same outcome appears in each equation, but with di�erent source-dependent predic-
tors. Other predictors may also be included in this model. The �=(�0; �1) parameters denote
the source-related di�erences in the e�ect of psychiatric diagnosis on mortality. For example,
a test of �1 = 0 can be used to determine if the association between diagnosis and mortality
di�ers for the two source reports. When there are no signi�cant source di�erences in (5), a
simpli�ed model may be �t that pools all of the information

g(E[Yi|Xi1]) = �0 + �1 SELFDIAGi

g(E[Yi|Xi2]) = �0 + �1 GPDIAGi
(6)

In model (6) the �1 parameter is interpreted as the association between diagnosis and the
outcome, averaged over source reports.
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2.3. Estimation

So far, no distributional assumptions have been made other than the conditional mean of each
Yij can be expressed in terms of a generalized linear model [32] given by (1). Next, we
assume that the marginal distribution of each Yij belongs to the exponential family,

f(Yij)= exp[{Yij�ij − a(�ij)}=�+ b(Yij ; �)]
where �ij is a ‘location’ parameter, often referred to as the ‘canonical’ parameter, and �
is a ‘scale’ parameter (where � is sometimes known). Note that a(·) and b(·) are simply
speci�c functions that distinguish distributions belonging to the exponential family. The expo-
nential family of distributions include the normal, Bernoulli, and Poisson distributions. Given
that each Yij is assumed to have a distribution from the exponential family, the marginal
expectations of the Yij’s, E(Yij)=�ij , is then modelled as a function of covariates by equa-
tion (1). In addition, the marginal variance of Yij depends on the marginal mean according
to, Var(Yij)= vij = �(�ij)�, where �(�ij) is a known ‘variance function’ (i.e. a known function
of �ij) and � is a scale parameter that may or may not need to be estimated.
Note, however, that multiple source data are usually positively correlated. This correlation

must be accounted for when analysing either multiple sources outcomes or predictors. To
account for the correlation, there are three broad approaches. The �rst is to completely specify
the joint distribution of Yi=(Yi1; : : : ; YiJ )′. The second is to specify a model for the correlation
among the Yij’s; note that the latter does not specify the joint distribution of Yi=(Yi1; : : : ; YiJ )′,
except in the special case where Yi has a multivariate normal distribution. The third approach
is to assume that the Yij’s are independent (and hence uncorrelated) for the purposes of
estimation, but make a suitable adjustment to the standard errors for the correlation among
the Yij’s. Note that the magnitude of the true correlation among the Yij’s does not alter in any
way the interpretation of �. While there are merits to each of these approaches, only the third
approach provides a relatively straightforward extension when multiple source data arise from
complex survey samples.
Estimation of the regression parameters proceeds similarly for models with multiple source

outcomes or multiple source predictors. Assuming that the Yij’s are independent, the maximum
likelihood estimate of � is obtained by taking the derivative of the log likelihood with respect
to �, and then �nding the values of � that make those derivatives equal to 0. Given

ln L=
N∑
i=1

J∑
j=1
({Yij�ij − a(�ij)}=�+ b(Yij ; �)) (7)

the derivative of the log likelihood with respect to � is,

@ ln L=@�=
N∑
i=1

J∑
j=1
(@�ij=@�){Yij − �ij}=�

In cases where a ‘canonical’ link function, �ij = X ′
ij�, has been assumed,

@ ln L=@�=
N∑
i=1

J∑
j=1
X ′
ij{Yij − �ij}=�

Solving the set of simultaneous equations,
∑N

i=1

∑J
j=1X

′
ij{Yij−�ij}=0, yields an estimate of �.
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The analysis can proceed by naively assuming that the multiple source outcomes for any
given subject, Yi=(Yi1; : : : ; YiJ )′, are independent observations. While this ‘naive’ approach
yields estimates of � that are valid, their nominal standard errors (under the independence
assumption) are not. However, valid standard errors can be obtained using the well-known
empirical variance estimator, �rst proposed by Huber [33]. We defer any further discussion
of estimation of standard errors, with suitable adjustments for the correlation among the Yij’s,
to Section 3.
In summary, the analysis of multiple source outcomes or predictors can proceed in two

stages. In the �rst stage, the correlation among the multiple source data is simply ignored and
standard generalized linear regression is used to obtain estimates of � (and possibly of �).
In the second stage, valid standard errors are obtained using an alternative, but widely imple-
mented, variance estimator that properly accounts for the correlation among multiple source
outcomes. The chief advantage of this approach is that it can be readily implemented using
standard, widely available, statistical software for generalized linear models [34]. Finally, we
note that this approach of using standard regression models intended for a single outcome to
analyse a multivariate outcome is a special case of the generalized estimating equations ap-
proach [35]. Next, we consider how this general approach can be extended to handle multiple
source data arising from complex survey samples.

3. GLMs FOR MULTIPLE SOURCE DATA FROM COMPLEX SURVEY SAMPLES

As mentioned earlier, an additional complication in many epidemiologic studies is that the
multiple source data arise from complex survey samples. For example, the Eastern Connecticut
Child Survey used a complex survey design with strati�cation, multi-stage clustering and
unequal sampling weights. Because of the complex survey designs used, traditional methods
of analysis that assume simple random sampling cannot be applied. In this section, we consider
extensions of the generalized linear models for multiple source data presented in Section 2
to handle complex survey designs. Before doing so, we review the three main features that
need to be accounted for in the analysis of multiple source data from complex surveys:
(i) strati�cation, (ii) clustering, and (iii) sampling weights. A more detailed description of
modern model-based methods for analysing survey data can be found in S�arndal et al. [36]
while the special issue of Statistical Methods in Medical Research featured a number of
accessible review papers [37–42]. Dunn [43] provides a gentle introduction to use of these
methods in psychiatry in the context of two examples in psychiatric morbidity. Pickles et al.
[44] and V�azquez-Barquero et al. [45] have also reported results using this methodology.
It is very common in sample surveys to divide the population of sampling units into dis-

tinct subpopulations, referred to as strata (e.g. geographic regions or administrative units).
A distinctive feature of these strata is that each sampling unit can occur in one, and only one,
stratum. Within each of the strata, a separate sample is selected from among all the sampling
units that comprise that stratum. Of note, the selection of samples is carried out separately
and independently within each stratum. From a purely statistical perspective, strati�cation is
often used to reduce the variances of the sample estimates, with the variance decreasing as
a function of the degree to which any stratum-speci�c statistics diverge and the sampling
units within stratum are homogeneous. More generally, the variance of sample estimates is
reduced to the extent that the variability among sampling units within the strata is less than
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their variance in the entire population. Strati�cation is very common in sample surveys, and
the main motivation for its use is often for logistical rather than statistical reasons. Failure to
account for strati�cation in the analysis has little impact on estimates of population parame-
ters but will, in general, result in an overestimation of the variability (i.e. standard errors are
overestimated and con�dence intervals are too wide).
The second feature that must be accounted for in the analysis of sample survey data is

clustering. Epidemiologic surveys commonly use cluster sampling, where the sampling unit
(or unit of selection), contains more than one population element. That is, clusters are sampling
units containing several elements. For example, the cluster could be a classroom of students.
Alternatively, the cluster could be a subject, with the elements of the cluster being the multiple
source data on that subject. Because the clusters are selected �rst, they are generally referred
to as the primary sampling units or PSUs. Note that there can be more than a single level
of clustering in survey data. In multistage clustering, the clusters selected at the �rst stage
are the PSUs; in the second and later stages, further sample selection occurs within the PSUs
and so on. The �nal or ultimate sample obtained from the selected PSUs are often referred
to as ‘ultimate’ or ‘primary’ clusters. The ultimate clusters represent the aggregation of all
units (or observations) included in the sample from a PSU. In general, failure to account for
clustering in the data has little impact on estimates of population parameters but will result
in underestimation of the variability (i.e. standard errors are underestimated and con�dence
intervals are too narrow). In the statistical analysis of multistage samples, a commonly used
approximation in the survey literature involves the speci�cation of the �rst stage strata and
PSU identi�ers at the highest level only [36, 42]. The lower level clustering is subsumed
within the PSU and the analysis proceeds as if there were a single levels of clustering at
the level of the ‘ultimate’ or ‘primary’ cluster. Essentially this treats the primary clusters as
i.i.d. draws from some superpopulation, where the lower stages are subsumed into the i.i.d.
process.
Finally, the sample selection in many epidemiologic surveys commonly involves unequal

selection probabilities. That is, each PSU does not have an equal probability of selection. As a
result, the data analysis must take account of the sampling weights. The intuition for why an
adjustment is required is that the sampling weights can be considered a measure of how many
units in the population the sampled PSU represents. That is, if the sampled PSU’s probability
of selection was small, say 	, then the analysis must in�ate that PSU’s contribution by a
factor of 1=	 so that the PSU represents itself and those that were not selected. In general,
failure to account for the weights in the analysis will yield estimates of population parameters
that are biased and can result in underestimation of the variability (i.e. standard errors are
underestimated and con�dence intervals are too narrow).
Thus, when multiple source data arise from a complex survey, strati�cation, clustering, and

unequal selection probabilities must all be taken into account in the analysis in order to avoid
misleading inferences concerning the population parameters of interest. Next, we consider
estimation of the regression model parameters in (1) when the multiple source data arise
from a complex sample survey design. To do so, we need to modify the notation used in
Section 2. Here, we assume that the population can be divided into S distinct subpopulations
or strata (s=1; : : : ; S). We assume that our sample is comprised of Ns PSUs from strata
s (i=1; : : : ; Ns) and that the ultimate cluster is comprised of nsi units (j=1; : : : ; nsi). The
response and covariates for the sijth unit are denoted by Ysij and Xsij, respectively. Finally,
the (known) sampling weight for the sijth unit is wsij.
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The regression parameters in (1) can be estimated using the following approximate log
likelihood in place of (7),

S∑
s=1

Ns∑
i=1

nsi∑
j=1
wsij({Ysij�sij − a(�sij)}=�+ b(Ysij; �)) (8)

In cases where a ‘canonical’ link function, �sij=X ′
sij�, has been assumed this involves solving

the following set of estimating equations:

Z(�)=
S∑
s=1

Ns∑
i=1

nsi∑
j=1

Zsij=
S∑
s=1

Ns∑
i=1

nsi∑
j=1
X ′
sijwsij{Ysij − �sij}=0 (9)

Note that this is simply a weighted version of the usual score equations for a generalized
linear model and an estimate of � can be obtained using any of the widely available software
for generalized linear models that allow for the inclusion of weights in the analysis.
While the solution to (9) provides a valid estimate of �, say �̂, for inferences about � we

need an estimator of the variance of �̂ that takes accounts of the strati�cation, clustering, and
unequal selection probabilities. A valid estimator is provided by

Ĉov(�̂)= V̂
−1
K̂V̂

−1
(10)

where

V =
S∑
s=1

Ns∑
i=1

nsi∑
j=1
wsijvsij(X ′

sijXsij)

K =
S∑
s=1
Ks; Ks=

Ns
Ns − 1

Ns∑
i=1
(Zsi − �Zs)(Zsi − �Zs)′

Zsi=
nsi∑
j=1

Zsij; �Zs=
1
Ns

Ns∑
i=1

Zsi

and vsij is the known variance function. Note that (10) has exactly the same form as the
empirical variance estimator proposed by Huber [33] and also advocated by Liang and Zeger
[35] for the special case of the ‘independence’ estimating equations approach, except that (10)
accounts for unequal selection probabilities and uses K , a pooled within-stratum estimator of
the covariance of Z(�). An interesting discussion of the relation between these two variance
estimators can be found in Williams [46]. Finally, for non-canonical link functions, there are
very similar expressions for Z(�) and V .

4. APPLICATIONS

4.1. Eastern Connecticut Child Survey

The Eastern Connecticut Child Survey (ECCS) [16], was designed to estimate the prevalence
of mental health problems in children, in a three-county non-metropolitan planning region.
The study sample was drawn from class enrolment data from public, private and institutional
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schools nested within di�ering geographic areas: small cities, suburban areas, and rural town-
ships. We will use the 7 strata (3 small cities, 3 suburban, and 1 rural) in our analysis. The
mean of the sampling weights was 24.8, and the weights ranged from 4.4 to 79.5. Here the
ultimate cluster was schools, with children nested within schools, and multiple source reports
nested within children.
Researchers solicited multiple source reports of psychopathology from the parents and

teachers of this sample of school children. In particular, each child’s parent (or primary
caregiver) and teacher completed parallel versions of a standardized psychiatric symptom
checklist, namely the Child Behavioral Checklist [47] and the Teacher’s Report Form [48],
which were completed by parents (Y1) and teachers (Y2) respectively. In the study, 44 per cent
of teacher ratings on children were unobserved. Missingness of this magnitude is not uncom-
mon: a similar rate was reported in their Ontario Child Health Study [49]. There were a variety
of causes of missingness for the teacher reports, including school district non-participation,
parental refusal to give consent, and teacher nonresponse. Fitzmaurice et al. [22] considered
the question of whether the missingness in this data set is related to the unobserved teacher’s
rating, and found little evidence for this hypothesis. The raw scores were dichotomized at
the cutpoint for borderline=clinical internalizing problems. A score of 1 indicates internalizing
problems, and a score of 0 indicates normal range.
One of the primary research questions concerned estimation of prevalence of internalizing

problems, measured from parent and teacher reports, and how prevalence estimates di�ered
according to characteristics of the child. To illustrate the methods, we consider the model
described by Fitzmaurice et al. [21], for a sample of n=1688 subjects with a total of 2636
multiple source reports of internalizing problems. Predictors of psychopathology in this model
include: gender of the child (BOY: 1=boy, 0=otherwise), area of residence (rural, suburban,
or small city), social class (low, middle or high), single parent (MOMSING: 1=yes, 0=no),
maternal stress and dissatisfaction with family life (MATSTRS: 1=yes, 0=no), child’s health
(HLTHPRO: 1=yes, 0=no), grade repetition (GRADEREP: 1= the child had repeated a
grade, 0=otherwise), and family stress (e.g. divorce or death, FAMSTRS: 1=yes, 0=no).
The model �t by Fitzmaurice et al. [21], using data from both the Eastern Connecticut Child
Survey and the New Haven Child Survey, tested for potential interactions of gender with
selected risk factors and source-risk factor interactions. Their �nal model, which was �t using
maximum likelihood methods [22], incorporated source-speci�c e�ects for maternal stress,
child’s health and family stress, as well as an interaction between family stress and gender. We
replicated this general model, accounting for the survey design using the svylogit command
in Stata [50]. For this type of model, an interaction between a predictor (such as child’s
health) and source is equivalent to the model given by (2) for that term. For a predictor
(such as grade repetition) where no source interaction is included, the model is equivalent
to that given by (3). In preliminary analyses, the interaction between maternal distress and
source was found to be not signi�cant, and the interaction term was dropped.
The results from the �nal model, displayed in Table I, are interpreted as log odds ratios.

There was a signi�cant interaction between source and health problems (p=0:03), indicating
that the association between health problems and internalizing behaviour was larger when the
outcome was reported by the parent. There was weak evidence that the relationship between
internalizing behaviour and family stress varied by source (p¿0:10). There was little associ-
ation between internalizing problems and area of residence (F2;61 = 1:16; p=0:32) or single
parent status (p¿0:70). There was a borderline signi�cant association between social class
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Table I. Regression parameter estimates (representing log OR for internalizing problems)
from a logistic regression model with source e�ects.

Estimate∗ (Standard error)

Parameter Teacher Parent

Intercept −2:28 (0:28) −3:08 (0:26)

Area of residence
Suburban 0.01 (0.18)
Small city 0.15 (0.11)

Social class
Middle 0.19 (0.14)
Low 0.56 (0.31)

Momsing −0:08 (0:25)
Matstrs 0.80 (0.13)
Hlthpro 0.06 (0.31) 0.87 (0.16)
Graderep 0.40 (0.16)
Boy 0.78 (0.24)
Famstrs 0.38 (0.29) 0.86 (0.25)
Boy×famstrs −0:73 (0:27)
Girls, family stress 0.38 (0.29) 0.86 (0.25)
Boys, family stress −0:36 (0:23) 0.13 (0.24)

∗Single estimates indicate common e�ects for teachers and parents; separate estimates are shown
for e�ects that vary by source.

and the outcome (F2;61 = 2:78; p=0:07), with low SES subjects more likely to have internal-
izing problems. Maternal satisfaction, health problems (using parent report), grade repetition,
and family stress (using parent report) were all associated with more internalizing problems.
Finally, the association between family stress and the outcome di�ered by sex (p=0:01).

4.2. Stirling County Study

The Stirling County Study is a long-term investigation in psychiatric epidemiology conducted
among adult residents of an area in Atlantic Canada. The �ctitious name of ‘Stirling’ is used
to protect identity [51]. The study began in 1952 and involves repeated cross-sectional surveys
as well as cohort follow-up investigations extending to 1992. We consider the 953 subjects
with complete data from the 1952 sample.
The study collected multiple source reports (self- and physician-report) about psychiatric

disorders. Here, we are interested in using these reports as predictors of mortality over a
16-year follow-up period (approximately one quarter of the sample died during this time).
These multiple reports of psychiatric disorders have been used in conjunction with information
on follow-up to understand the association between psychiatric disorders and mortality in a
community population.
In earlier reports of the Stirling County Study, psychiatric cases were identi�ed by having

psychiatrists review the materials assembled from both sources [52]. Later work focusing on
the common theme of the relationships between psychiatric disorders and mortality analysed
the sources separately [53, 54]. Horton et al. [55] jointly analysed these data using multiple
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source methods and found little evidence that relationships varied according to the sources.
They concluded that psychiatric disorders were signi�cantly associated with mortality; in par-
ticular, subjects who died before reaching the age of 50 were especially likely to have had a
psychiatric disorder. However, their analysis did not account for the survey design.
The county was divided into 9 strata for purposes of sampling. Samples from each of the

strata included between 33 and 255 subjects, with varying sampling weights. Overall, the
sampling weights ranged from 1 to 19.7, with a mean of 8.2. Several districts were oversam-
pled to incorporate additional information about economically advantaged and disadvantaged
communities: the mean weight per district ranged from 1.8 (district 1) to 16.6 (district 9).
Here, subjects are the PSUs and districts are the strata.
To examine the relationship between mortality and psychiatric diagnosis we utilize discrete

time survival models [56] to assess the magnitude and signi�cance of the relationship between
independent variables and mortality. These regression methods specify a piecewise exponential
survival distribution and approximate the proportional hazards model but have the distinct
advantage that they �t within the framework of model (1).
More formally, we partition the 16-year follow-up period in the study into four mutually

exclusive, exhaustive intervals �1; : : : ;�4, with a constant hazard function within each interval.
We observe (Yik ; Tik) for i=1; : : : ; N and k=1; : : : ; 4, where Yik denotes whether the ith subject
died during the kth period, and Tik denotes the time at risk for the ith subject during the kth
period. Here Yik =1 for some i and k implies that Tik′ =0 for k ′= k+1; : : : ; 4. The model for
the mortality rate (expected number of events per year) is given by the Poisson regression
model

logE[Yik |Ti ;Xi]= log(Tik) +Xi�
Table II displays part of the observed data for two hypothetical subjects A and B. Because
subject A was observed for all 16 years, the analysis data set includes 8 records, one for
each source report (self and physician) for each of the 4 time intervals. The same outcome
is repeated for each source report. Subject B died after 6.5 years, so this subject contributes
4 years to interval 1 and 2.5 years to interval 2, for each of the self- and physician-reports.
In addition to using the case assessments from the two sources (SELFDIAG and GPDIAG),

other predictors included in the regression model were gender, age and time interval. Age in
1952 was divided into three categories: ¡50, 50–69, and 70+. The last time interval was
used as the reference group. We �t a model for mortality rate that included main e�ects
of age, diagnosis, gender and interval, along with the interaction between age (2 df ) and
diagnosis. Other predictors were assumed to be constant over time (i.e. no interaction with
interval).
The piecewise exponential model was �t using svypoisson in Stata and the parameter es-

timates (log annual mortality rate ratios) are displayed in Table III. In a preliminary analysis,
we �t a model that allowed the association between risk factor and outcome to vary by source
(main e�ects of source and risk factor plus their interactions). There was no evidence of any
signi�cant interaction between source and the risk factors (all p-values ¿0:10; omnibus or
overall test, F5;1066 = 0:96; p=0:44), so these terms were dropped, yielding a model similar
to (6). Dropping the interaction with source implies that the association between each risk
factor and mortality did not di�er by source, and yields a simple model that combines in-
formation from the sources. The �nal model is similar to that described by previous reports
[55], though this analysis accounts for the survey design. Overall, the force of mortality tends
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Table II. Data set framework for Stirling County Study Poisson regression example.

id died years selfdiag gpdiag gender

Original (one observation per subject) data set
A 0 16 0 1 F
B 1 6.5 0 0 M

Analysis (transformed) data set
id Interval Died (Y) Years (T) Informant Diag Gender

A 1 0 4 Self 0 F
A 2 0 4 Self 0 F
A 3 0 4 Self 0 F
A 4 0 4 Self 0 F
A 1 0 4 gp 1 F
A 2 0 4 gp 1 F
A 3 0 4 gp 1 F
A 4 0 4 gp 1 F
B 1 0 4 Self 0 M
B 2 1 2.5 Self 0 M
B 1 0 4 gp 0 M
B 2 1 2.5 gp 0 M

Table III. Regression parameter estimates (representing log annual mortality rate
ratios) from a piecewise exponential survival model with no source e�ects.

Parameter Estimate (SE)

Intercept −5:58 (0.29)

Interval (0–4) −0:96 (0.21)
Interval (5–8) −0:57 (0.19)
Interval (9–12) −0:36 (0.20)
Interval (13–16) —

Gender (F) −0:13 (0.15)
Gender (M) —

Age (¡50) —
Age (50–69) 2.48 (0.28)
Age (¿70) 3.53 (0.29)

Diag 1.62 (0.33)

Diag×age (¡50) —
Diag×age (50–69) −1:35 (0.38)
Diag×age (¿70) −1:31 (0.46)

to increase over time (F3;1068 = 7:65; p¡0:0001). Older subjects and those with a psychiatric
diagnosis have a signi�cantly higher rate of mortality, but the association of psychiatric di-
agnosis report and mortality is signi�cantly larger for younger subjects (Incidence rate ratio

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2911–2933



REGRESSION ANALYSIS OF MULTIPLE SOURCE DATA 2925

[IRR]= exp(1:62)=5:1, 95 per cent CI=2:7–9.6) than for middle-aged subjects (IRR=1:3,
95 per cent CI=0:9–1.9) or older subjects (IRR=1:4, 95 per cent CI=0:7–2.6).

5. SOFTWARE FOR IMPLEMENTING REGRESSION MODELS

It is straightforward to �t regression models for multiple source data in Stata 8.0 while
accounting for complex survey designs using the svy commands. We illustrate the commands
required to produce the analysis of the ECCS data presented in Section 4.1. The analysis can
be divided into several parts:

1. specifying the complex survey design,
2. �tting the regression, and
3. calculating contrasts of the regression parameters and testing speci�c hypotheses of
interest.

Figure 1 displays the Stata syntax and output to specify the complex survey design for the
example considered in Section 4.1. The list command can be used to display some or all of
the observations; the values for three selected subjects are shown. The data set consists of two
records per subject, corresponding to observations associated with the two sources (parent and
teacher). For subjects 8 and 15, the source reports from parents and teachers were identical,
however for subject 16, the reports were discordant.
The svyset command allows the speci�cation of the survey design variables. Stata can

incorporate a variety of designs through this mechanism. For example, if the data are weighted,
but not clustered or strati�ed, the strata and psu statements can be left out, and the analysis
can proceed. Multistage sampling designs are also supported. The svydes command provides
a summary of the design including the number of PSU’s per stratum, and distribution of
observations within PSU’s.
Stata supports a number of complex survey estimation commands (a comprehensive list is

provided in Table IV). Figure 2 displays the syntax and output to �t the �nal regression model
for this example (after non-signi�cant source interactions were dropped). The xi command
allows the speci�cation of interactions in a �exible manner, though the names generated by
Stata for the interaction terms are somewhat inelegant. The svylogit model is by default
overparametrized, and redundant terms are dropped before the model is estimated.
To calculate the values reported in Table I, or to determine if non-signi�cant source inter-

actions can be dropped, some post-processing of the regression results is necessary.
Figure 3 displays the Stata code to calculate contrasts of the regression parameters. To

calculate the intercept term for TEACHER in Table I based on the results from the regression
model reported in Figure 2, the CONS and TEACHER terms must be added. The svylc
(or lincom) command can be used to calculate such linear combinations, along with the
associated standard error for this function. In addition to this calculation, examples are given
for the calculation of the log OR and OR for the HLTHPRO predictor for teachers (0.055
and 1.057, respectively).
In addition, there may be interest in performing tests of speci�c hypotheses regarding the

parameters in the model.
Figure 4 displays the Stata code to carry out such tests. The AREA main e�ect was �t

using two indicator variables (one for SUBURB, and one for CITY). To carry out multiple df
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Figure 1. Stata commands and output to specify the complex survey design for the
Eastern Connecticut Child Survey.

tests of an overall AREA e�ect, the svytest command with the accumulate option is used.
As reported earlier, there was no signi�cant AREA e�ect (df =2; p=0:32). For the models
�t to the Stirling County Study example in Section 4.2, similar invocations of the svytest
command were used to conduct multiple df tests of source e�ects, and to estimate IRR’s.

6. DISCUSSION

The methods reviewed in this paper describe a principled approach to the incorporation of
(often discordant) multiple source reports when �tting regression models using data from a
complex sample survey. These methods have advantages over more ad hoc approaches that
combine the reports, and allow formal assessment of whether covariate (e.g. risk factor) e�ects
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Table IV. Stata commands for analysing survey data.

Command Function

svymean Estimation of population (and subpopulation) means
svyprop Estimation of population proportions
svyratio Estimation of population ratios
svytotal Estimation of population totals

svyregress Linear regression (for survey data)
svyivreg Instrumental variables regression
svyintreg Interval and censored regression
svylogit Logistic regression
svymlogit Multinomial logistic regression
svyologit Ordered logistic regression
svyprobit Probit models
svyoprobit Ordered probit models
svypoisson Poisson regression
svynbreg Negative binomial regression
svygnbreg Generalized negative binomial regression
svyheckman Heckman selection model
svyheckprob Probit estimation with selection
svytab Two-way tables for survey data

svylc Calculate estimates of parameters
svytest Test hypotheses regarding parameters

robust Programmer’s command (survey variance estimator)

vary according to the source. In addition, they allow the incorporation of individuals with pos-
sibly missing source reports in the joint analysis. An appealing feature of the proposed methods
is that they can be implemented using existing, general purpose, statistical software. Although
we have focussed on the application of these methods to child and adult psychopathology,
surveys that include multiple source or informant data are commonly conducted in studies of
the elderly and in health services research. Also, in both of the applications considered in
this paper, there were only two sources. The methods described in Sections 2 and 3 can be
extended in a natural and straightforward way to handle three or more source reports. As an
example, Lash et al. [4] analysed �ve multiple source reports of comorbidity as predictors of
tamoxifen usage in a group of women with breast cancer. With more than two source reports
there is the potential for a proliferation of regression parameters if all possible source e�ects
need to be incorporated. As a result, the power to detect source-related di�erences in covariate
e�ects may be somewhat low when the number of sources exceed three or four. However, in
principle, the methodology can be applied in the same fashion as we have described.
Of note, the proposed methods allow for the pooling of information from di�erent sources

when appropriate. For example, in the analysis of the Stirling County Study data, there were
no signi�cant source e�ects, so a single model that pooled information from physician and
self-report was �t to these data. This joint analysis of both source reports resulted in smaller
standard errors than those obtained from separate analyses of each source report. In the Eastern
Connecticut Child Study, some of the covariate e�ects di�ered for the two sources and it
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Figure 2. Stata commands and output to �t multiple source regression models for the
Eastern Connecticut Child Survey.

was possible to quantify the magnitude of these di�erences. In the joint analysis of both
source reports, the model �t to these data pooled information from both source reports to
estimate certain covariate e�ects, while allowing estimation of source-speci�c e�ects for other
covariates.
An alternate approach to the proposed regression methods is to combine the information

across the di�erent source reports prior to the analysis. For example, the arithmetic average
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Figure 3. Stata commands and output to calculate contrasts of regression parameters for the
Eastern Connecticut Child Survey.

Figure 4. Stata commands and output to calculate tests of speci�c hypotheses for the
Eastern Connecticut Child Survey.

of the multiple source reports (Y ∗
i =(Yi1 +Yi2)=2 for multiple source outcomes or X

∗
i =(Xi1 +

Xi2)=2 for multiple source predictors) provides a single number summary that can be used for
subsequent analysis. This strategy will be somewhat more appealing when the source data are
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quantitative. However, we note that regression models for the combined reports (Y ∗
i or X

∗
i )

can be shown to be special cases of the regression models for the joint reports presented in
Section 2 [25]. However, a potential disadvantage of this arithmetic mean pooling approach is
that it must often make a number of a priori assumptions. When the corresponding analysis
is expressed in terms of the regression models for the joint source reports, these assumptions
are testable from the data at hand. In addition, when there are missing source reports the
arithmetic mean pooling approach uses a form of ‘mean imputation’ for the missing source
reports and can yield biased estimates of the regression parameters and standard errors when
the data are missing at random [25]. In contrast, the regression models for the joint source
reports make full use of all available information and likelihood-based methods for multivariate
normal outcomes yield valid estimates of the regression parameters when missing reports are
missing at random. As a result, when the arithmetic mean pooling approach is deemed to be
appropriate we recommend that it should be implemented using the regression models for the
joint source reports presented in Section 2.
We have reviewed one approach for the analysis of multiple source data using marginal re-

gression models. Alternative approaches that may be considered include the use of multilevel
random e�ects (e.g. Rabe-Hesketh et al. [57], or Longford [58]), latent variable [59–61],
or measurement error models [62]. In addition, structural equation models could be uti-
lized to address estimation in this setting [63, 64]. Of note, in many of these alternative
approaches the target of inferences is somewhat di�erent than in the marginal regression
models considered in this article. While each of the alternative methods has merits, it is
beyond the scope of this tutorial article to provide a detailed comparison among alternative
approaches.
One practical di�culty in analysing multiple source reports is that there is often a substantial

amount of missing data. Multiple source reports are commonly missing since, by de�nition,
they are collected from sources other than the primary subject of the study. Multiple stages of
informed consent and willingness to participate often lead to a large proportion of the subjects
having missing data from one or more sources. Neither pooling strategies nor separate analyses
have addressed the potential bias resulting from missing data in this setting. Missingness can
induce bias as well as loss of inferential e�ciency [65, 66]. The methods discussed in this
tutorial can incorporate incomplete observations when missingness is due to a process that is
‘completely at random’ [65]. It is straightforward to incorporate weights into the analysis that
account for missingness that is ‘at random’ (related to observed quantities) [55, 67–69], a less
restrictive assumption. In particular, when missingness is by design (e.g. for two-stage studies
where incomplete observations are due to design decisions in the study) these methods are
particularly attractive. A number of researchers have considered estimation in such settings
[44, 45, 70].
Finally, we note that the methods described in Section 3 could be implemented using the

generalized estimating equations approach [35], where the ‘cluster’ is the PSU and the known
sampling weights are incorporated in the estimating equations. Use of the generalized esti-
mating equations approach, with a working independence correlation structure, will produce
identical estimates of the regression parameters. However, use of the empirical variance esti-
mator, ignoring the strati�cation, will result in a less e�cient estimator of the variances [70].
This increased variability, particularly when the strati�cation is done to reduce the variances
of the sample estimates, may adversely a�ect the coverage probability of con�dence intervals
constructed from the empirical variance estimates.
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