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The scatterplot is a powerful and ubiquitous graphic for 
displaying bivariate data.  These plots, however, become 
difficult to read when the density of points in a region 
becomes high and the individual plot symbols are not 
discernible.

The next slide illustrates this problem with data from the 
Framingham Heart Study [1,2].
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Cleveland and McGill [3] introduced the sunflower plot as a 
solution to this problem.  A sunflower is a number of short line
segments, called petals, that radiate from a central point.  In a 
sunflower plot, the x-y plane is divided into a lattice of regular 
square bins; a sunflower is placed in the center of each bin that 
contains one or more observations.  They are drawn so that the 
number of petals of each sunflower equals the number of 
observations in the associated bin.  Sunflower plots are effective 
at dealing with the overstrike problem that arises with high-
density scatter plots.  Unfortunately, information on the precise 
location of points is lost in low-density regions of the graph.  
This is particularly true when the bin size is large. For very 
dense plots the sunflower petals can overlap making the number 
of petals indiscernible.

The next slide shows the original sunflower plot of Cleveland 
and McGill [3].  It is followed by a sunflower plot of the 
Framingham data.  Note that the number of observations in the 
bins near the center of this distribution in indeterminable.  



Cleveland and McGill [3] J Am Stat Assoc 1984; 79: 807-822



D
ia

st
ol

ic
 B

lo
od

 P
re

ss
ur

e

Body Mass Index
15 20 25 30 35 40 45 50

50

70

90

110

130

150

Steichen & Cox [4] 
flower.ado



Carr et al. [5] Proposed using small hexagonal bins and 
coloring the bin background to indicate the order of 
magnitude of the bin density.  For any given order of 
magnitude the size of a darker internal hexagon increased 
with increasing bin density.

This plot, which is illustrated in the next slide, does an 
excellent job of displaying the estimated density function for 
the data.  It does not permit accurate estimation of the number 
of observations in each bin.

A more practical problem is that, to our knowledge, Carr et al. 
have not released software that makes these plots easy to 
generate.



Extensions by Carr et al. [5] J Am Stat Assoc 1987; 82: 424-436



Another alternative is to use a bivariate kernel density 
smoothing algorithm to estimate the probability 
density function (pdf) and then use a contour program 
to generate a contour plot of the pdf.  Such a plot is 
given in the next slide for the Framingham data.  These 
plots do not give any information on the number or 
locations of the data points used to generate the 
contour plot.  We will come back to these plots latter in 
this presentation.

Bivariate kernel density estimation contour plots are 
not currently available in Stata.  The plots shown in 
this presentation were generated by  the bkde2D and 
contour programs from the R statistical software 
package [6]. 



Bivariate Kernel Density Estimation
Contour Plot
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Stem and leaf plots [7] provide a clever way of displaying 
a univariate density distribution.  The next slide shows 
such a plot for gas milage for different makes of 
automobiles using the Stata automotive data set.

Note that from a distance, this plot looks very much like 
a histogram.  However, it is also possible to determine 
the exact values of the gas milage for each make of cars.  
For example, there are four makes with 17 mpg and one 
make with 31 mpg.  These 5 observations are highlighted 
in the next figure.



Stem-and-leaf plot for mpg 
(Mileage (mpg))

1t | 22
1f | 44444455
1s | 66667777
1. | 88888888899999999
2* | 00011111
2t | 22222333
2f | 444455555
2s | 666
2. | 8889
3* | 001
3t | 
3f | 455
3s | 
3. | 
4* | 1

Tukey’s Stem & Leaf Plot [7]
Exploratory Data Analysis

1977



In designing the density distribution sunflower plot [8,9], our goal 
was to come as close as possible to the stem and leaf plot for 
bivariate date.  That is, we wanted a graph that had the overall
appearance of a density plot but that also gave as much 
information as possible about the actual data values in the 
sample. 



The next slide shows a density distribution sunflower plot of baseline diastolic 
blood pressure versus body mass index for subjects in the Framingham Heart 
Study.  This is the same data set displayed previously.  Data points are 
represented in one of three ways: as small circles representing individual data 
points as in a conventional scatterplot, as light sunflowers, and as dark 
sunflowers.  In a light sunflower each petal represents one observation.  In the 
next slide, light sunflowers are drawn in dark brown on a light green 
background.  In a dark sunflower, each petal represents k observations, where 
k is specified by the user.  (A dark sunflower with p petals represents between

and             observations.)  In the next slide, k = 5, and the dark 
sunflowers are drawn in black on a brown background.  The first step in 
producing this graph is to define a lattice of hexagonal bins.  The user 
specifies the bin width in the units of the x-axis.  The bin height is then 
determined by the graphing software in such a way as to produce regular 
hexagonal bins.  The user also specifies two thresholds l and d.  Whenever 
there are less than l data points in a bin the individual data points are depicted 
at their exact location.  When there are at least l but fewer than d data points 
in a bin they are depicted by a light sunflower.  When there are at least d
observations in a bin they are depicted by a dark sunflower. In the next slide, 
the default values of l = 3 and d = 13 are used. The sunflower program 
automatically generates a legend that indicates the dark sunflower petal 
weight.

/ 2pk k- / 2pk k+
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The Stata code and output that generated the preceding slide 
follows.  The command

sunflower dbp bmi

would have generated a reasonable graph.  The following 
command uses standard Stata 8 graph syntax to specify the axis 
labels and locate the figure legend in the lower left corner of the 
plot region [9].  The Stata output is also shown on the next two 
slides.

Default options make reasonable choices of the program’s 
parameters without requiring the user to specify them.







Default Options

Minimum observations in a sunflower
light: 3
dark: 13

Bin width usually chosen to give 40 bins per row

Bin height chosen to make bins regular hexagons

Petal weight chosen so that there are a maximum of 14 dark 
sunflower petals

Individual observations: blue circles

Light sunflowers: brown petals on green background

Dark sunflowers: black petals on orange background



User can explicitly control

Shape, size and color of symbols for individual observations

Minimum observations in light and dark sunflowers

Petal weight for dark sunflowers

Bin width, height and aspect ratio 

Background colors of light and dark sunflower bins

Petal length and width for light and dark sunflowers

Location of bin centers

Standard options for Stata scatter plots 

Details for controlling these features are given in the interactive 
documentation for Stata 8.2.

The following slide shows a sunflower plot with a bin width of 2, 
sunflowers that are 90% of their maximum size, and dark petals that are 
thicker than the light petals.
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The next slide shows how observations are assigned to their 
hexagonal bins.

The x-y plain is tiled with overlapping blue and red rectangular 
bins as shown.

Each observation will lie in exactly one blue and one red 
rectangular bin.  It also must lie in a hexagonal bin that is 
centered in the middle of one of these rectangular bins.  The 
correct hexagonal bin is the one whose center is closest to the 
observation.



(x,y)

Nearest 
red bin 
center

Nearest 
blue bin 
center

Blue 
bins

Red 
bins

/ 3d

/ 3d

/ 3d

d

3
d

/ 2d

2 3
dThe observation (x,y) is 

closer to its nearest red
bin center than its nearest 
blue bin center.  For this 
reason it is assigned to the 
hexagonal bin that is 
centered within this red rectangle



The preceding is easier said than programmed.  This is 
because the bins must be regular measured in inches on 
the graph.  However, we specify the bin width in the units 
of the x-axis.

The program must derive the bin height in units of the       
y-axis in such a way that the bin shape is regular when 
measured in inches on the graph.

The following slide schematically sketches how this is 
done.
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We next use sunflower plots to investigate subtle differences 
in the bivariate distribution of diastolic blood pressure (DBP) 
and body mass index (BMI) between men and women.

The next two slides show these distributions for men and 
women from the Framingham study.  The sunflower program 
permits other graphs to be overlaid on top of the sunflower 
plot.  In this example, lowess regression curves for both men 
and women are plotted.  Note that these curves are very 
similar.

The distribution of diastolic blood pressure is more skewed in 
women than men.  This is particularly true in people whose 
BMI is above the median value of 25.2.
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* The Stata code that generated the preceding two slides is as follows.
*  See the Stata 8.2 interactive documentation for details.
*
use framingham.dta
*
*  Plot for men
*
sunflower dbp bmi if male, binwidth(.85) ///

ylabel(50 (20) 150, angle(0)) ytick(35 (5) 155) ///
xlabel(15 (5) 50) xtick(15 (1) 52) ///
ytitle(Diastolic Blood Pressure) ///
legend(position(5) ring(0) cols(1) symxsize(7) ///

subtitle("Lowess Regression") ///
order( 4 "Men" 5 "Women" 2 3)) ///

title("Men", position(11) ring(0) color(blue)) /// 
plot(lowess dbp bmi if  male, bwidth(.2) clcolor(blue) ///

|| lowess dbp bmi if ~male, bwidth(.2) clcolor(pink))   
*
*  Plot for women
*
use framingham.dta, clear
sunflower dbp bmi if ~male, binwidth(.85) mcolor(pink) ///

ylabel(50 (20) 150, angle(0)) ytick(35 (5) 155) ///
xlabel(15 (5) 50) xtick(15 (1) 52) ///
ytitle(Diastolic Blood Pressure) ///
legend(position(5) ring(0) cols(1) symxsize(7) ///

subtitle("Lowess Regression") ///
order( 4 "Men" 5 "Women" 2 3)) ///

title("Women", position(11) ring(0) color(pink)) ///
plot(lowess dbp bmi if  male, bwidth(.2) clcolor(blue) ///

|| lowess dbp bmi if ~male, bwidth(.2) clcolor(pink)) 



There are many exploratory analyses that we might do in light 
of the preceding two graphs.  For example, we might look at 
how the distribution of DBP differs between men and women 
overall and in subgroups defined by BMIs above and below the 
median value of 25.2.

The next slides show dot plots of means, standard deviations, 
skewness and kurtosis for men and women in these groups.  

The range of the variables in these plots were chosen to span 
the same number of standard errors of these statistics.  These 
standard errors were estimated by bootstrapping.

Note that the mean values for men and women differ more for 
thinner people than thicker folks and that the difference in 
skewness is greater for heavier people.  This suggest testing 
the difference in distribution of DPB between men an women in 
these groups.



Dot plots comparing distribution of DBP in men and women

Mean All patients
BMI < 25.2
BMI > 25.2

78 79 80 81 82 83 84 85 86 87 88

All patients
BMI < 25.2
BMI > 25.2

Std. Dev.

9 10 11 12 13 14 15 16

All patients
BMI < 25.2
BMI > 25.2

Skewness

-0.5 -0.1 0.3 0.7 1.1 1.5 1.9

All patients
BMI < 25.2
BMI > 25.2

Kurtosis

0 1 2 3 4 5 6 7 8 9



Distribution tests of DBP in men compared to women

Kolmogorov-
Smirnov

Permutation Test 
for Skewness

All Patients < 0.0005 0.0037

BMI < median 0.011 0.38

BMI > median 0.535 0.017

* median BMI = 25.2

Body Mass Index 
(BMI) Group

P Value



The preceding analyses indicate that the distribution of DBP differs 
between men and women.  

The Kolmogorov-Smirnov test also suggests a difference in thinner 
subjects.  This is primarily due to the difference in mean DBP for these 
people.

The permutation test for difference in skewness suggests that heavier 
women have a more skewed distribution than heavier men.  This is
consistent with what we saw in the sunflower plots.

The following slides shows the code used to run the permutation test.  
Stata makes it very easy to run such test on almost any imaginable 
statistic.



program define skew_dif, rclass
*
*  Calculate and return the difference in skewness for men
*  and women.  This program is used by the permute command.
*  

version 8.2
args y

quietly summarize `y' if male, detail
local male_skew=r(skewness)
display "male_skew=" `maleskew'

quietly summarize `y' if ~male, detail
local female_skew=r(skewness)
display "female_skew=" `femaleskew'

local skewness_difference="`female_skew' - `male_skew'"

display "skewness_difference=" `skewness_difference'
return scalar skewness_difference = `skewness_difference'

end



. *

. *  Get the framingham data.

. *

. use framingham.dta, clear

. *

. *  Do a permutation test for difference in skewness between men and women

. *

. permute male "skew_dif dbp" skew_dif=r(skewness_difference),    ///
>         reps(10000) saving(skew_dif) replace

command:      skew_dif dbp
statistic:    skew_dif   = r(skewness_difference)
permute var:  male

Monte Carlo permutation statistics                Number of obs    =      4689
Replications  =     10000

------------------------------------------------------------------------------
T            |     T(obs)       c       n   p=c/n   SE(p) [95% Conf. Interval]
-------------+----------------------------------------------------------------
skew_dif     |   .3137402      37   10000  0.0037  0.0006  .0026064   .0050964 
------------------------------------------------------------------------------
Note:  confidence interval is with respect to p=c/n
Note:  c = #{|T| >= |T(obs)|}
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Bivariate Kernel Density Estimation [10]

( )ˆ , ; ,x yf x y h h estimates the bivariate pdf with bandwidths     andxh yh

( ),x y ( ),i ix y

It is a weighted sum of the sample values where the weights are a function of 
the distance and angle of the observation from ( ),x y

where              is itself a known pdf.     ( )
1

1ˆ , ; , ,
n

i i
x y

ix y x y

x x y y
f x y h h K

nh h h h=

Ê ˆ Ê ˆ- -= Á ˜ Á ˜Ë ¯ Ë ¯
Â ( ),K x y

( ) ( ) ( )( )2 2, 1/ 2 exp /2K x y x y= p - +Often

and      are smoothing parameters in the x and y directions.  Note that these 
parameters are specified in units of x and y rather than in inches.  Hence, if the 
ranges of x and y are quite different, specifying the same values of     and     can 
lead to very different degrees of smoothing in the x and y directions.

xh yh

xh yh



Bivariate Kernel Density Estimation

( )ˆ , ; ,x yf x y h h is evaluated at points in a rectangular array.  The pdf is then 
estimated by interpolation.

The appearance of the estimated pdf is affected not only by the value of
and      but also on the grid spacing in both the x and y directions.

The following graphs show estimated pdfs of the Framingham DBP – BMI data 
obtained using different values of the bandwidths and different numbers of grid 
points (Gridsize) in the x and y directions.

Note the dramatic effects of these parameters on the their contour plots.  Sunflower 
plots can be helpful in choosing the most appropriate values of these parameters.

xh yh



Bivariate Kernel Density Estimation
Contour Plot
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Density Distribution Sunflower Plot generalizes the

Set lower bound of bin density
for dark sunflowers sufficiently high to obtain a
traditional sunflower plot.

Scatter Plot
Set lower bound of bin density for light sunflowers 
sufficiently high to obtain a conventional scatter plot.

Cleveland and McGill’s Sunflower Plot
Set lower bound of bin density
for light sunflowers = 1



Conclusions

Density distribution sunflower plots

Plot observations at their exact location in low-density bins

Show the exact number of observations in medium-density bins

Show the approximate number of observations in high-density bins

Provide an overall appearance that is similar to a bivariate 
density plot

Can provide a useful crosscheck when drawing bivariate 
kernel density estimates
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Disclaimer

This paper used data supplied by the National Heart, Lung 
and Blood Institute, NIH, DHHS.  The views expressed in 
this paper are those of the authors and do not necessarily 
reflect the views of the National Heart, Lung and Blood 
Institute.

Copyright

The graphs in slides 5 and 8 are reprinted with permission from 
The Journal of the American Statistical Association.  Copyright 
1984 and 1987 by the American Statistical Association.  All rights 
reserved.

The remainder of this presentation is in the public domain.
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