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Fractional Polynomials

@ Fractional Polynomials are used in regression models to fit
non-linear functions.

@ Often preferable to cut-points.

@ Functions from fractional polynomials more flexible than from
‘standard’ polynomials.

@ See (Royston and Altman, 1994) or (Sauerbrei and Royston,
1999) for more details.

@ Implemented in Stata with fracpoly and mfp commands.
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Powers

@ The linear predictor for a fractional polynomial of order M for
covariate x can be defined as,

M
50 + Z ﬂmxpm

m=1

@ where each power p,, is chosen from a restricted set.

@ The usual set of powers is

{-2,-1,-0.5,0,0.5,1,2,3} ]

o xY is taken as In(x)
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Selecting the Best Fitting Model

@ All combinations of powers are fitted and the 'best’ fitting model
obtained.
@ Using the default set of powers for an FP2 model there are

e 8 FP1 Models
e 36 FP2 Models (including 8 repeated powers)

@ The best fitting model for fractional polynomials of the same
degree can be obtain by minimising the deviance.

@ When comparing models of a different degree, e.g. FP2 and FP1
models, the model can be selected using a formal significance
test or the Akaike Information Criterion (AIC).
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Selecting the Best Fitting Model

@ All combinations of powers are fitted and the 'best’ fitting model
obtained.
@ Using the default set of powers for an FP2 model there are
e 8 FP1 Models
e 36 FP2 Models (including 8 repeated powers)
@ The best fitting model for fractional polynomials of the same
degree can be obtain by minimising the deviance.
@ When comparing models of a different degree, e.g. FP2 and FP1
models, the model can be selected using a formal significance
test or the Akaike Information Criterion (AIC).

@ Model selection uncertainty is ignored.
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German Breast Cancer Study Group Data

@ 686 women with primary node positive breast cancer (Sauerbrei
and Royston, 1999).
e Time to recurrence or death (299 events).
@ Covariates include,
o Age (years)
Menopausal staus
Tumour Size (mm)
Tumour Grade
Number of positive lymph nodes
Progesterone Receptor (fmol)
Oestrogen Receptor (fmol)
Hormonal Therapy
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German Breast Cancer Study Group Data

@ 686 women with primary node positive breast cancer (Sauerbrei
and Royston, 1999).
e Time to recurrence or death (299 events).
@ Covariates include,
o Age (years)
Menopausal staus
Tumour Size (mm)
Tumour Grade
Number of positive lymph nodes
Progesterone Receptor (fmol)
Oestrogen Receptor (fmol)
Hormonal Therapy

@ 5 covariates were selected using mfp command.
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Breast Cancer - Best Fitting Model for Age

Best Fitting Model (=2 -.5), AIC = 3562.73

Log Hazard Ratio

age, years
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Breast Cancer - Best Fitting Model for Age

Best Fitting Model (=2 -.5), AIC = 3562.73

Log Hazard Ratio

age, years

FP2(-2 -0.5): In(h(t)) = In(ho(t)) + B1Age;? + B.Age; *®
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Breast Cancer - The 5 Best Fitting Model for Age

Powers AIC
(-2,-0.5) 3562.73
(-1,-1)  3562.77
(-2,-1) 3562.78
(-2,0)  3562.83
(-2,0.5) 3563.05
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Breast Cancer - Age

Best Fitting Model (-2 -.5), AIC = 3562.73

Log Hazard Ratio
N
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Breast Cancer - Age

Powers (-1 -1), AIC = 3562.77

Log Hazard Ratio
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Breast Cancer - Age

Powers (-2 -1), AIC = 3562.78

Log Hazard Ratio
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Breast Cancer - Age

Powers (-2 0), AIC = 3562.83

Log Hazard Ratio
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Breast Cancer - Age

Powers (-2 .5), AIC = 3563.05

Log Hazard Ratio
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Breast Cancer - No. Positive Lymph Nodes

Best Fitting Model (1 2), AIC = 3498.99

Log Hazard Ratio
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Breast Cancer - No. Positive Lymph Nodes

Powers (-1 -1), AIC = 3499.05
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Breast Cancer - No. Positive Lymph Nodes

Powers (-2 -.5), AIC = 3499.12
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Breast Cancer - No. Positive Lymph Nodes

Powers (-2 —1), AIC = 3499.44
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Breast Cancer - No. Positive Lymph Nodes

Powers (1 3), AIC = 3499.64

Log Hazard Ratio
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Model Averaging 1

@ In FP models the model selection process is usually ignored when
calculating fitted values and their associated confidence intervals.

@ Model Averaging is popular Bayesian research area (Hoeting
et al., 1999), (Congdon, 2007).

@ Increasing interest from frequentist perspective (Burnham and
Anderson, 2004) (Buckland et al., 2007) (Congdon, 2007) (Faes
et al., 2007)

@ Usually interest lies in model averaging for a parameter.

@ Here we are interested in averaging over the functional form
obtained from different models.
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Model Averaging 2

o If there are K contending models, M,k =1,... K with
weights, wy, which are scaled so that > wy = 1, then the
estimate of a parameter or quantity, 6 (assumed to be common

to all models) is taken to be,

@ The variance of 4, is,

war () =

K
k=

w? (var (é\kll\/lk) + (é\k — 53)2)

1

Stockholm, 7th September 2007
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Obtaining the Weights, wy

@ In a Bayesian context we want, wy = P(Mj|Data)
@ These probabilities are not trivial to calculate and various
approximations are available.

@ One such approximation is to use the Bayesian Information
Criterion (BIC)

BIC, = In(Ly) — %pln(n) J

@ The AIC can also be used to derive the model weights (Buckland
et al., 2007)

AIC, = In(Ly) — 2p ]

@ Recently Faes used the AIC to derive model weights for
fractional polynomial models (Faes et al., 2007).
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Obtaining the Weights, wy

o Let

Ay = BIC, — BICin or Ay = AIG, — AlCwi J

@ The weights, wy, are then defined as,

exp (2A4)
Zszl €xp (%AJ')

Wi =
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Using Bootstrapping to Obtain the Weights, wy

@ An alternative to using the AIC or BIC for the model weights,
Wk, is to use bootstrapping (Hollander et al., 2006).

@ For each bootstrap sample the best fitting fractional polynomial
model is selected.

@ The weights wy, are simply obtained using the frequencies of the
models selected over the B bootstrap samples.

o If comparing fractional polynomial models of different degrees
then some selection process is needed. This is usually done by
setting a value for a.
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Using fpma

. fpma x1, ic(aic) xpredict: stcox x1
Models Included (in order of weight)
Powers AIC deltaAIC weight cum. weight

1 =2 =B 3562.73 0.00 0.0802 0.0802

2| -1 =il 3562.77 0.03 0.0789 0.1591

3| -2 -1 3562.78 0.04 0.0785 0.2376

4 -2 0 3562.83 0.09 0.0766 0.3142

5 =2 .5 3563.05 0.31 0.0686 0.3827

6 =il =B 3563.05 0.32 0.0685 0.4512

7 -2 -2 3563.26 0.53 0.0616 0.5128

8 | -2 1 3563.38 0.65 0.0580 0.5709

9 | -1 0 3563.50 0.77 0.0546 0.6255

10 | -.5 -.5 3563.52 0.79 0.0540 0.6795

(output omitted)
43 | 2 3578.18 15.44 0.0000 1.0000
44 3 3578.32 15.58 0.0000 1.0000

@ New variables created xb_ma xb_ma_se xbma_lci xb_ma_uci
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Using fpma - Bootstrapping (o = 0.05)

Using fpma with bootstrappin

. fpma x1, ic(bootstrap) xpredict xpredname(xl_ma_bootl) reps(1000): stcox x1
Running 1000 bootstrap samples to determine model weights
(bootstrap: maboot)
Powers Freq. weight cum. weight
1 -2 -2 252 0.2520 0.2520
2 -2 =il 167 0.1670 0.4190
3 =il =il 163 0.1630 0.5820
4 =il =0 88 0.0880 0.6700
5 1 71 0.0710 0.7410
6 -2 67 0.0670 0.8080
7 =B =B 63 0.0630 0.8710
8 -2 =ol® 51 0.0510 0.9220
9 -.5 0 30 0.0300 0.9520
10 0 0 19 0.0190 0.9710
11 0 5 6 0.0060 0.9770
(output omitted)
22 =il 0 1 0.0010 0.9990
23 =& B 1 0.0010 1.0000
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Breast Cancer - Age

Log Hazard Ratio
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Model Average - BIC
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Breast Cancer - Age

Log Hazard Ratio
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Breast Cancer - Age

Model Average - Bootstrap (alpha = 0.05)

Log Hazard Ratio
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Breast Cancer - Age

Model Average - Bootstrap (alpha = 1)

Log Hazard Ratio
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Breast Cancer - No. of Positive Lymph Nodes

Log Hazard Ratio

Model Average - BIC
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Breast Cancer - No. of Positive Lymph Nodes

Log Hazard Ratio

Model Average - AIC
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Breast Cancer - No. of Positive Lymph Nodes

Log Hazard Ratio

Model Average - Bootstrap (alpha = 0.05)
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Breast Cancer - No. of Positive Lymph Nodes

Log Hazard Ratio

Model Average - Bootstrap (alpha = 1)
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Breast Cancer - No. of Positive Lymph Nodesj20

Model Average - BIC
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Breast Cancer - No. of Positive Lymph Nodesj20

Model Average - AIC
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Breast Cancer - No. of Positive Lymph Nodesj20

Model Average - Bootstrap (alpha = 0.05)
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Breast Cancer - No. of Positive Lymph Nodesj20

Model Average - Bootstrap (alpha = 1)
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Multivariable Fractional Polynomials

@ The above only really applies when using fractional polynomials
for only one of the covariates in the model.

@ However, is is common to use models with fractional
polynomials for more than one covariate.

@ A simple approach is to model average over various fractional
polynomial models for the covariate of interest, while keeping
the functional form of the remaining covariates constant.

@ The usemfp option will do this for you.
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Using mfp with Model Averaging

. mfp stcox x1 x2 x3 x4a x4b x5 x6 x7 hormon, nohr alpha(.05) select(0.05)
(output omitted)

Final multivariable fractional polynomial model for _t

Variable Initial Final:
df Select Alpha Status df Powers
x1 4 0.0500 0.0500 in 4 =2) =,
x2 1 0.0500 0.0500 out 0
x3 4 0.0500 0.0500 out 0
x4a 1 0.0500 0.0500 in 1 1
x4b 1 0.0500 0.0500 out 0
x5 4 0.0500 0.0500 in 4 =2) =il
x6 4 0.0500 0.0500 in 2 .5
x7 4 0.0500 0.0500 out 0
hormon 1 0.0500 0.0500 in 1 1
Cox regression -- Breslow method for ties

(output omitted)
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Using fpma after mfp - Age

sing fpma after m

. fpma x1, ic(aic) xpredict: usemfp
Models Included (in order of weight)
Powers AIC deltaAIC weight cum. weight
1 -2 -.5 3434.72 0.00 0.0986 0.0986
2| -2 -1 3434.76 0.03 0.0969 0.1956
3| -1 =i 3434.85 0.13 0.0925 0.2881
4 -2 0 3434.89 0.17 0.0907 0.3788
5 =2 .5 3435.24 0.52 0.0760 0.4548
6 =il =B 3435.30 0.58 0.0740 0.5288
7 -2 -2 3435.43 0.70 0.0695 0.5982
8 | -2 1 3435.75 1.03 0.0590 0.6572
9 | -1 0 3435.96 1.24 0.0531 0.7103
10 | -.5 -.5 3436.00 1.27 0.0522 0.7624
(output omitted)
43 1 3452.04 17.31 0.0000 1.0000
44 .5 3452.05 17.32 0.0000 1.0000
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Model Averaging after mfp - Age

AIC weights

Log Hazard Ratio
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Model Averaging after mfp - No. of Positive Lymph Nodes

Log Hazard Ratio

AIC weights
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Discussion

e Fractional Polynomials very useful for modelling non-linear
functions.

@ Model selection uncertainty is usually ignored after final model is
obtained.

@ Model averaging is easy to implement and incorporates FP
model selection uncertainty.

o Still further work needed. For example,

e Statistical properties (coverage etc).
o Comparison with fully Bayesian model averaging.

Paul C Lambert Fractional Polynomials and Model Averaging Stockholm, 7th September 2007



References |

Buckland, S., Burnham, K., and Augustin, N. (2007). Model selection: An intergral part of inference. Biometrics,
53(2):603-618.

Burnham, K. P. and Anderson, D. R. (2004). Multimodal inference: Understanding AIC and BIC in model selection.
Sociological Methods and Research, 33(2):261-304.

Congdon, P. (2007). Model weights for model choice and averaging. Statistical Methodology, 4:143-157.

Faes, C., Aerts, M., H., G., and Molenberghs, G. (2007). Model averaging using fractional polynomials to estimate a safe level
of exposure. Risk Analysis, 27(1):111-123.

Hoeting, J. A., Madigan, D., E., R. A., and Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science,
14(4):382-417.

Hollander, N., Augustin, N., and Sauerbrei, W. (2006). Investigation on the improvement of prediction by bootstrap model
averaging. Methods of Information in Medicine, 45:44-50.

Royston, P. and Altman, D. (1994). Regression using fractional polynomials of continuous covariates: parsimonious parametric
modelling. JRSSA, 43(3):429-467.

Sauerbrei, W. and Royston, P. (1999). Building multivariable prognostic and diagnostic models: transformation of the
predictors by using fractional polynomials. JRSSA, 162(1):71-94.



	References

