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Synopsis 1

Despite a history now over 30 years long,
the adoption of generalised linear models
(GLMs) remains patchy: they are well-
known in several fields, but used little
if at all in many others. One major
advantage of GLMs is that they return
predictions on the scale of the response.
The use of link functions avoids the need
for prior transformation of the response
for back-transformation of predictions,
and above all for bias corrections to back-
transformations, whether systematic or ad
hoc.



Synopsis 2

Case studies from environmental
applications (suspended sediment
concentrations of rivers, heights of
forest trees) are introduced in which
predictions on the response scale are of
paramount scientific and practical interest.
Heavy use is made of a suite of Stata
programs written by the author producing
graphic and numeric diagnostics after
regression-type models, which extend and
complement commands in official Stata.
Most of these programs have uses beyond
GLMs and they will also be discussed
directly.



Generalised linear models 1

In what ways are these generalised?

The response distribution is from some
exponential family. It could be, but
need not be, normal. Its variance may be
a function of the mean.

A so-called link function of the mean
response µ is taken to be a linear function
of predictors, i.e.
link(µ) = β1X1 + · · · + βkXk = Xβ.

The link function g must be monotone
(invertible) and differentiable. Examples
are identity g(µ) = µ, logarithm ln µ,
reciprocal 1/µ.

E.g. model for C with logarithmic
link is for ln(E(C)); contrast to model
with transformed response, which is for
E(ln C).



Generalised linear models 2

To get predicted values of response, we
estimate β by maximum likelihood and
then invert the link to get g−1(Xβ̂). If g is
ln, g−1 is exp.

Loosely, a link function (other than
identity) plays a role like a transformation
of the response variable, but results are
always produced and presented on the
scale of the response. There is no need
for back-transformation, bias corrections,
etc.

It is still entirely possible to use, among
the predictors X, variables which are on
transformed scales, e.g. ln Q or 1/Q.



Generalised linear models 3

glmcorr (on SSC) calculates
correlation between response and fitted
and also RMSE.
Zheng and Agresti (Statistics in Medicine
2000) discuss this correlation as a general
measure for GLMs.
Advantages:
! refers to response scale
! applicable to all types of GLM
! invariant under location-scale

transformation
! root of fraction of variance explained
Limitations:
! need not match other definitions of R2

! necessarily sensitive to outliers
! for different models and same data
! biased upwards (better jackknifed)



Example 1: Sediment concentrations

We seek, at a river gauging station, to
relate

suspended sediment concentration C

to discharge (flux of water) Q,

(sometimes) time of measurement T
(a handle for hysteresis, seasonality, etc.)

and (rarely) other variables
(e.g. sediment supply).

We also often want to compare stations or
look at long-term changes.

C = C(Q) is known as a rating curve.

The problem could be approached from
physical principles, but apart from several
other difficulties we usually lack data on
sediment supply.



Example 1: existing practice

Generalised linear models offer a
systematic alternative to the
transformation, linear regression and
fudge factor approach which appears to
be the most usual current practice.

Most suspended sediment rating curves
are power functions C = aQb fitted after
logarithmic transformation by standard
linear regression.

This corresponds to a model
C = exp(b0 + b1 ln Q)
in which the error is multiplicative and
lognormal.
(Notation switch: b0 ← ln a, b1 ← b.)



Statistical questions arising

! Back-transforming predictions to
get exp(l̂n C) does not give unbiased
predictions of C. The easiest ways to fix
this are
1. to get variance of residuals s2 and
multiply by exp(s2/2) (here called
lognormal correction)
2. to get individual residuals e and
multiply by mean of exp(e) (example of
smearing).
! Which error distributions are
appropriate?
! Alternative functional forms may be
superior.
! Time series aspect is ignored: problems
with autocorrelation of errors, alternative
models possible.
! Assumes that Q is measured without
error.



Residual plots

In examining any model, it is useful to
look at a variety of extra special plots.

Official Stata supplies commands
originally written for use after regress:
avplot and avplots, cprplot and
acprplot, lvr2plot, rvfplot and
rvpplot. In September 2001, all but the
first two were generalised to work after
anova.

This suite omits some very useful kinds
of plot. None of the commands may be
used after other modelling commands. A
new set of commands (on SSC) is designed
for prediction of continuous responses.
Updating for Stata 8 is in progress and
programs will then be combined in one
package (tentative name modeldiag).



Principles behind this package

! as far as possible, the command name by
itself should produce a useful plot

! predict is used to produce temporary
variables for residuals, fitted values, etc.

! each graph refers to the last model fitted

! each graph has reasonably smart default
axis titles, etc.

! options are provided for key needs, e.g.
lowess smoothing

(Note in contrast that many new graphics
commands in Stata 8 fit models on the
fly, but mostly plot observed and fitted
against one covariate.)



Commands published so far

anovaplot (e.g. interaction plots)
indexplot

ovfplot (observed vs fitted)
qfrplot (quantile plots of fitted − mean
and residuals)
ofrtplot (observed, fitted and residual vs
time)
rdplot (residual distributions)
regplot (data and fitted vs first or named
covariate)
rvfplot2 (generalises rvfplot)
rvlrplot (residual vs lagged residual)
rvpplot2 (generalises rvpplot)



Example 2: Tree heights

Tree height is not only of scientific interest
to foresters but also a key variable in
estimating timber (lumber) yield.

Predicting tree height from reflectance
measures is needed to link field and
satellite data.

Only positive heights make biological and
practical sense, which can be ensured by
using a log transformation. But back-
transforming gives a biased estimate of
height.

Once again, generalised linear models offer
a systematic alternative.



Galloway: some numbers

Smearing correction 1.112
Lognormal correction 1.129

Model Error RMSE R
(m)

exp(b0 + b1ref) normal 0.984 0.904
exp(b0 + b1ref) gamma 1.000 0.905

ref is Landsat reflectance band 7

R is correlation(height, predicted height)



Troutbeck: some numbers

Smearing correction 1.691
Lognormal correction 1.892

Model Error RMSE R
(mg/l)

exp(b0 + b1 ln Q) normal 10.344 0.680
exp(b0 + b1 ln Q) gamma 10.644 0.666
exp(b0 + b1Q) normal 9.759 0.720
exp(b0 + b1Q) gamma 9.760 0.720

R is correlation(C, Ĉ)
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