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History

bi pl ot has been available on SSC since Stata 5. After
arrival of Stata 8 | have revisited bi pl ot and made several
changes (old version still works under version control).

Use of the new graph engine
Allowing for weights for JK-Biplots
New option r v for “compositional data”

New option mahal anobi s

New option subpop()

Change of some default settings
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Interpretation

Biplots show the following quantities of a data matrix in one
display:

standard deviations of variables

correlations between variables

values of observations on variables

distances between observations in the
multidimensional space
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Interpretation
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The Math

Let Y be an x k matrix holding the data. One can
decompose Y with a singular value decomposition (SVD)
Into

Y =UL V' (1)
nxk nXxXkkxkkxk

where L contains the Eigenvalues.

From the SVD results the 2 x 2 matrix L 1s formed, which
contains the two elements of L with the highest Eigenval-
ues. The n x 2 matrix U and the k£ x 2 matrix V are formed
by choosing those columns from V and U which correspon-

dent to the highest Eigenvalues.
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The Math

The coordinates for the observations are given by

G =UL" (2)

nx?2

and the coordinates for the variables are given by

H/ _ L(l_C)X' (3)

2xk

Biplot-Types are defined by choosing the value for c.
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Biplot-Types

GH-Biplot: ¢ = 0
JK-Biplot: ¢ =1
SQ-Biplot: ¢ = .5

Note: For ¢ = 1 the coordinates for the observations corre-
spond to the first two principal components, and the coordi-
nates for the variables correspond to the first two Eigenvec-
tors. Therefore bi pl ot calculates a PCA to produce the

JK-Biplot.
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Biplot-Types

SQ-Biplots are sometimes called symmetric biplots. In this
type the coordinates of variables and observations tend to
be more similar than in the two other types. Regardless
of the Biplot-Type, bi pl ot automatically chooses a stretch
factor for the variable-coordinates making SQ biplots more

or less unnecessary.
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Biplot-Types
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Biplot-Types

JK-Biplots are row metric preserving, that is, the distances
between the objects are more closely approximated in the

JK-Biplot than in the other types.
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Biplot-Types
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Biplot-Types

GH-Biplots are column metric preserving, that is, the cor-
relations between the variables are more closely approxi-

mated in the GH-Biplot than in the other types.
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Two new Options

r v is used to produce relative variation diagrams.
Relative variation diagrams are Biplots for
compositional data and compositional data are data
sets with constant row-sums and only positive value
(like, for example the row percentages of two-way
frequency tables). To get a relative variation diagram
the data matrix needs to be transformed before
producing the Biplot,. bi pl ot does this transformation

for you if you specify r v.

mahal anobi s can be used for GH-Biplots to rescale
the graph in a way that the distances between the
observations approximates the Mahalnobis distances.
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