On Pearson's X^2 for categorical response variables

Jeroen Weesie

Department of Sociology University of Utrecht The Netherlands

email J.Weesie@fss.uu.nl tel +31-30-2531922 fax +31-30-2534405

Prepared for

Belgian/Dutch/German Stata User's Meeting Maastricht May 23, 2002

- embedd model in larger model
 - constructive method: suggests model improvement

but: often violation of some assumption leads to rejections for other forms of misspecification e.g.: White test for heteroscedasticity in regression is also very sensitive to misspecification of mean

• may require estimating more complicated models (LR, Wald), though sometimes score testing may be feasible

Check testomit

- sometimes saturated model can be estimated, e.g., regression models with categorical covariates
- goodness of fit statistics
 - derive distribution of d(obs,fit) under Ho
 - example with categorical response $d(obs,fit) = sum (obs-exp)^2/exp$
 - d() can often be seen as an aggregate of residuals
 - See Cressie-Read (1984) for details
- All models are wrong ...

Pearson X^2 measure for goodness of fit after binary regression models

$$\pi_i = F(x_i'\beta)$$

With **replication** of the x_i (HL: "m-asymptotics")

$$X^2 = \sum_{\text{pattern}} \frac{(\text{obs} - \exp)^2}{\exp}$$

With large number of obs per pattern, X^2 is approximately χ^2 (with df = #patterns - #parameters).

Stata's lfit command provides this test for logistic regression

lfit also allows essentially unique covariates, i.e., with small number of replications per pattern. The manual warns that this is "not necessarily incorrect."

Pearson's X2 3/15

With **unique covariates**, the unaggregated Pearson's statistic T_n is

$$T_n = \sum_{i=1}^n \frac{(y_i - \hat{\pi}_i)^2}{\hat{\pi}_i (1 - \hat{\pi}_i)}$$

With replicated data, T_n does not equal X^2 , but usually is close.

Claim: T_n is not χ^2 distributed ("n-asymptotics").

Correct Theory: Subject to regularity conditions (Windmeijer '90; McCullagh '86)

$$\frac{T_n - n}{\sqrt{n} \sigma_n} \to N(0, 1)$$

$$\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n \frac{(1 - 2\pi_i)^2}{\pi_i (1 - \pi_i)} - v'_n \Omega_n^{-1} v_n$$

$$v_n = \frac{1}{n} \sum_{i=1}^n \frac{1 - \pi_i}{\pi_i (1 - \pi_i)} F'(x'_i \beta) x_i$$

$$\Omega_n = \frac{1}{n} \sum_{i=1}^n \frac{F'(x'_i \beta)}{\pi_i (1 - \pi_i)}$$
Fisher information

Condition for T_n to be χ^2 distributed: $\sigma^2 = 2$.

Counter example: logistic regression with 1 x-var

$$\begin{aligned} x_i \sim U[-1,2] \qquad \beta = 1\\ \sigma_n^2 \to 0.034 \end{aligned}$$

Extensions available for (Windmeijer 1995)

- multinomial logit (Stata: mlogit)
- conditional logistic regression (one success/group; = Luce-McFadden choice model) (Stata: clogit).

Conditional logistic regression (k alternatives)

$$\pi_{ij} = \frac{\exp x_{ij}\beta}{\sum_{h=1}^{k} \exp x_{ih}\beta}$$

Asymptotic result for

$$T_{n} = \sum_{i=1}^{n} \sum_{j=1}^{k} \frac{(Y_{ij} - \hat{\pi}_{ij})^{2}}{\hat{\pi}_{ij}(1 - \hat{\pi}_{ij})}$$

$$\frac{T_{n} - nk}{\sqrt{n\sigma_{n}}} \rightarrow N(0, 1)$$

$$\sigma_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \left\{ \frac{1 - 2\pi_{ij}}{\pi_{ij}} q_{ij} - \sum_{h \neq j}^{k} q_{ij} q_{ih} \right\} - \nu_{n}' \Omega_{n}^{-1} \nu_{n}$$

$$\nu_{n} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{ij}(x_{ij} - \sum_{h=1}^{k} \pi_{ih} x_{ih})$$

$$q_{ij} = \frac{1 - 2\pi_{ij}}{1 - \pi_{ij}}$$

(1) Sensitivity with respect to observations with large residuals (small π_i for observed response)

Ad hoc modifications of test statistics

- \bullet ignore observations with some $\pi < \epsilon$
- \bullet "round-up" probabilities to ϵ
- or: "leave as is"

See also Hosmer & Lemeshow - 2nd edition.

(2) Quality of asymptotic approximation unknown

(3) Power against meaningfull misspecifications unknown

```
Post-estimation command
    pearsonx2 [, eps(#) table]
available after the following commands
    logit / logistic
    probit
    cloglog
    mlogit
    clogit -- one positive response per groups
```

Options

- eps(#) specifies that only observations for which the estimated probability for all possible outcomes are greater than # are used in computing the test. # defaults to 1E-2.
- table specifies that Windmeijer's test is conducted for various eps (.1,.01,.001,etc) in order to assess the sensitivity of the test to very small probabilities of some outcomes.

Example logistic regression

. use barcelo	na	a_lbw						
(Hosmer & Lem	(Hosmer & Lemeshow data)							
. xi: logisti	xi: logistic low age lwt i.race smoke ptl ht ui							
i.race		_Irace_1-	-3	(natural]	Ly coded;	_Irace_1	l omi†	tted)
Logit estimates					Numbe	r of obs	=	189
					LR ch	i2(8)	=	33.22
					Prob	> chi2	=	0.0001
Log likelihoo	d	= -100.724	l		Pseud	o R2	=	0.1416
low	I	Odds Ratio	Std. Err.	Z	P> z	[95% (Conf.	Interval]
	+-							
age		.9732636	.0354759	-0.74	0.457	.90615	578	1.045339
lwt	I	.9849634	.0068217	-2.19	0.029	.97168	334	.9984249
_Irace_2		3.534767	1.860737	2.40	0.016	1.2597	736	9.918406
_Irace_3		2.368079	1.039949	1.96	0.050	1.0013	356	5.600207
smoke		2.517698	1.00916	2.30	0.021	1.1476	576	5.523162
ptl		1.719161	.5952579	1.56	0.118	.87214	155	3.388787
ht		6.249602	4.322408	2.65	0.008	1.6111	L52	24.24199
ui		2.1351	.9808153	1.65	0.099	.86775	528	5.2534

. lfit

Logistic model for low, goodness-of-fit test

number of observations =	189
number of covariate patterns =	182
Pearson chi2(173) =	179.24
Prob > chi2 =	0.3567

. lfit, group(10)

Logistic model for low, goodness-of-fit test (Table collapsed on quantiles of estimated probabilities)

number of observations =	189
number of groups =	10
Hosmer-Lemeshow chi2(8) =	9.65
Prob > chi2 =	0.2904

Logistic regression (cont)

```
. pearsonx2
Pearson-Windmeijer goodness-of-fit test after logistic low
      number of observations =
                                 189
    Pearson's X2 (ungrouped) =
                              182.02
   Windmeijer's H = norm(X2) =
                                0.61
             Prob > chi2(1) =
                              0.4334
. pearsonx2, table
Pearson-Windmeijer goodness-of-fit test after logistic low
      number of observations =
                                 189
    Pearson's X2 (ungrouped) =
                              182.02
   Windmeijer's H = norm(X2) =
                                0.61
             Prob > chi2(1) =
                              0.4334
        _____
                                 _____
                              se(X2)
     eps |
             Obs
                       X2
                                            Η
                                                     р
   _____
                       _____
0.10000000 |
             163
                    161.46
                                3.01
                                          0.26
                                                 0.6095
0.01000000 |
             189
                    182.02
                                8.90
                                          0.61
                                                 0.4334
```

All obs with some p<eps are ignored in computing the test

Example conditional logistic regression

clogit choice sexJap incJap japan sexEur incEur europe, group(id) nolog

Conditional (Log likelihoo	fixed-effects) d = -252.72012	logistic	regression	Number LR chi: Prob > Pseudo	of obs 2(6) chi2 R2	= = =	885 142.74 0.0000 0.2202
choice	Coef.	Std. Err	. z F	> z	[95% (Conf.	Interval]
sexJap		.3114939	-1.51 0). 132	-1.0799	 - 997	. 141037

	т ·						
inc	Jap	.0276854	.0123666	2.24	0.025	.0034472	.0519236
jaj	oan	-1.962652	.6216804	-3.16	0.002	-3.181123	7441806
sex	Eur	.5388442	.4525278	1.19	0.234	348094	1.425782
incl	Eur	.0273669	.013787	1.98	0.047	.000345	.0543889
eur	ope	-3.180029	.7546837	-4.21	0.000	-4.659182	-1.700876

. pearsonx2, table

Pearson-Windmeijer goodness-of-fit test after clogit choice

number of observations =	295
Pearson's X2 (ungrouped) =	870.42
Windmeijer's H = norm(X2) =	19.48
Prob > chi2(1) =	0.0000

eps	Obs	X2	se(X2)	Н	р
0.10000000	200	625.43	2.26	126.67	0.0000
0.01000000	295	870.42	3.30	19.48	0.0000

All obs with some p<eps are ignored in computing the test

Design

True : logit
$$(\pi_i) = \gamma x_1 + \gamma x_2$$

 x_{ij} iid $N(0, 1)$
Fitted: logit $(\pi_i) = \beta_1 x_1 + \beta_2 x_2$
probit $(\pi_i) = \beta_1 x_1 + \beta_2 x_2$

Results (proportion of rejections in 1000 replications)

			pearsonx2			li	nkte	st
γ	n	fitted	0.10	0.05	0.01	0.10	0.05	0.01
1	100	logit	.048	.027	.015	.105	.049	.005
1	400	logit	.070	.045	.021	.100	.050	.008
1	1600	logit	.064	.046	.027	.119	.062	.013
1	100	probit	.046	.032	.018	.112	.055	.010
1	400	probit	.096	.076	.047	.120	.059	.009
1	1600	probit	.102	.080	.058	.147	.085	.021
3	100	logit	.105	.063	.028	.100	.064	.017
3	400	logit	.127	.071	.021	.142	.116	.058
3	1600	logit	.133	.074	.023	.103	.062	.014
3	100	probit	.160	.119	.055	.194	.112	.037
3	400	probit	.248	.178	.066	.253	.204	.134
3	1600	probit	.269	.201	.080	.254	.164	.078

Design

true logit
$$\pi_i = x_{i1} + x_{i2} + \gamma x_{i1} x_{i2}$$

 x_{ij} iid $N(0, 1)$
fitted logit $\pi_i = \beta_1 x_{i1} + \beta_2 x_{i2}$

Results (proportion of rejections in 1000 replications)

n	γ	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.01$
100	0	.037	.028	.020
400	0	.085	.053	.026
1600	0	.076	.037	.010
100	1/3	.087	.070	.053
400	1/3	.112	.089	.036
1600	1/3	.248	.181	.092
100	2/3	.230	.201	.161
400	2/3	.273	.194	.113
1600	2/3	.847	.781	.641
100	1	.488	.459	.394
400	1	.621	.536	.348
1600	1	.999	.999	.995

Simulation: Omitted variables in clogit

Design -k alternatives

True
$$LP_{ij} = x_{1ij} + x_{2ij} + \gamma x_{1ij} x_{2ij}$$

 x_{hij} iid $N(0, 1)$

Fitted
$$LP_{ij} = \beta_1 x_{1ij} + \beta_2 x_{2ij}$$

and

$$\pi_{ij} = \frac{\exp \mathrm{LP}_{ij}}{\sum_{l=1}^{k} \exp \mathrm{LP}_{il}}$$

Results (proportion of rejections in 1000 replications)

			$\gamma = 0$			$\gamma = 1$	
k	n	.100	.050	.010	.100	.050	.010
3	100	.031	.023	.017	.378	.352	.284
3	200	.040	.030	.017	.267	.211	.106
3	400	.046	.033	.024	.506	.475	.436
3	400	.057	.035	.021	.268	.194	.103
4	100	.061	.044	.026	.261	.229	.192
4	200	.022	.019	.006	.813	.747	.619
4	400	.051	.030	.017	.714	.636	.473
4	800	.059	.035	.019	.995	.920	.817
5	100	.052	.046	.024	.180	.133	.071
5	200	.028	.019	.007	.920	.905	.881
5	400	.061	.046	.022	.771	.722	.594
5	800	.046	.030	.014	.996	.994	.990

(Based on many more simulations than reported here)

Dedicated tests (eg omitted vars test) have more power than the omnibus gof test (surprise?)

Asymptotic results for binary cases (logit, probit) seem adequate

I am not sure yet about cloglog

Asymptotic results for mlogit / clogit are reasonably accurate only for LARGE n. For small and moderate n, tests are severely biased. Turn to higher order asymptotics?

The methods of Windmeijer (1994) and Weesie (199) for reducing the sensitivity of the tests to very small probabilities are not ambiguous improvements.

Consider other statistics from the power family suggested by Cressie-Read.

• Read, T.R.C. and N.A.C. Cressie. 1988. Goodness-of-Fit Statistics for Discrete Multivariate Data. New York: Springer Verlag.

See also Stata command **multgof**, a revision of **gof** published in STB 36 1997.

- Hosmer, D.W. and S. Lemeshow. 1989. Applied logistic regression. 2nd edition. Wiley: New York.
- McCullagh, P. 1986. "The conditional distribution of goodness-of-fit statistics for discrete data." Journal of the American Statistical Association 81: 104–107.
- Weesie, J. 1998. "Windmeijer's goodness-of-fit test for logistic regression." Stata Technical Bulletin Reprints Vol 8, 153–160.
- Weesie, J. 1999 (2001). Tests for omitted variables. Utrecht, memeo.

Describes the command **testomittedvars** that performs LR, Wald, and three forms of score tests for omitted variables.

- Windmeijer, F.A.G. 1990. "The asymptotic distribution of the sum of weighted squared residuals in binary choice models." *Statistica Neerlandica* 44, 2: 69–78.
- Windmeijer, F.A.G. 1994. "A goodness-of-fit test in the multinomial logit model based on weighted squared residuals." *Statistica Neerlandica* 48, 3: 271–283.