Estimation of Average Causal Effects of Dichotomous Treatments by Propensity Score Weighting and Regression Adjustment

> 1st Italian Stata Users Group Meeting Roma, 25 October 2004

Maurizio Pisati University of Milano Bicocca – Italy maurizio.pisati@unimib.it

• The estimation of average causal effects of treatments is a central goal of many disciplines

• Let:

- T denote the dichotomous treatment of interest (1=treated, 0=control)
- Y_{1i} denote the value taken on by outcome variable Y when subject *i* is treated
- Y_{0i} denote the value taken on by outcome variable Y when subject *i* is not treated

• Researchers are often interested in estimating the average causal effect of treatment *T* in the whole population, defined as:

$$\tau = E(Y_1 - Y_0)$$

- This definition of *τ* makes it difficult to estimate, since for each subject *i* we only observe either
 Y₁ or Y₀, but never both
- To tackle this estimation problem we must be ready to make some assumptions, the most important of which is the unconfoundedness assumption

 The unconfoundedness assumption asserts that the distribution of outcomes Y₁ and Y₀ is independent of treatment *T* conditional on the values taken on by a set of pre-treatment (control) variables *X*. Formally:

 $(Y_1, Y_0) \perp T \mid X$

• If the unconfoundedness assumption holds, then the average causal effect of treatment *T* in the whole population can be defined as:

$$\tau = E_X \Big(E(Y_1 \mid T = 1, X = x) - E(Y_0 \mid T = 0, X = x) \Big)$$

 Contrary to the previous one, this definition of τ has the merit of being based on fully observable quantities

- In Stata, average causal effects of treatments can be estimated by means of several userwritten commands that implement some kind of matching:
 - **nnmatch** (Abadie, Leber Herr, Imbens, Drukker)
 - pscore (Becker, Ichino)
 - psmatch2 (Leuven, Sianesi)

- Here I propose a new Stata command, called treateff, designed to estimate average causal effects of dichotomous treatments by means of a combination of regression adjustment and weighting based on the propensity score
- treateff is a close implementation of the estimators described in Hirano and Imbens (2001)

 Following Robins and Rotnitzky (1995), Hirano and Imbens (2001) have proposed a class of estimators of τ based on weighted estimation of the regression function

$$\eta_i = \beta_0 + \tau \cdot T_i + \beta_1 Z_i + \beta_2 (Z_i - Z) T_i$$

where $\eta_i = (E(Y_i))$ and Z_i denotes a subset of the control variables X_i with sample mean \overline{Z}

• The weights are defined as follows:

$$\hat{\omega}_i = \frac{T_i}{\hat{e}(V_i)} + \frac{1 - T_i}{1 - \hat{e}(V_i)}$$

where $\hat{e}(V_i)$ denotes the estimated propensity score and V_i denotes a subset of the control variables X_i

 Researchers are also often interested in estimating the average causal effect of treatment *T* in the treated subpopulation, defined as:

$$\tau_1 = E(Y_1 - Y_0 \mid T = 1)$$

 In this case, the regression function to be estimated is defined as:

$$\eta_i = \beta_0 + \tau_1 \cdot T_i + \beta_1 Z_i + \beta_2 (Z_i - \overline{Z_1}) T_i$$

and weights are defined as:

$$\hat{\omega}_i = T_i + \frac{(1 - T_i) \cdot \hat{e}(V_i)}{1 - \hat{e}(V_i)}$$

• Finally, one may be interested in estimating the average causal effect of treatment *T* in the control subpopulation, defined as:

$$\tau_0 = E(Y_1 - Y_0 \mid T = 0)$$

 In this case, the regression function to be estimated is defined as:

$$\eta_i = \beta_0 + \tau_0 \cdot T_i + \beta_1 Z_i + \beta_2 (Z_i - \overline{Z_0}) T_i$$

and weights are defined as:

$$\hat{\omega}_i = \frac{T_i \cdot \left(1 - \hat{e}(V_i)\right)}{\hat{e}(V_i)} + (1 - T_i)$$

- Data: NSW-PSID1 (Dehejia and Wahba 1999)
- Outcome: re78 (real earnings in 1978)
- Treatment: t (participation in the National Supported Work Program)
- V variables: age, age², educ, educ², nodegree, black, hisp, married, re74, re74², re75, re75²
- Z variables: same as V
- Goal: estimation of τ_1

treateff re78 t, pscore(age-re75_2)

Number of treated obs. = 185 Number of control obs. = 2490

Effect	Mean	Robust	Robust	
	difference	Std.Err.	95% confidence	ce interval
raw	-1.5e+04	655.914	-1.6e+04	-1.4e+04
adj	1417.821	790.748	-132.017	2967.659
ate	-1.3e+04	2653.015	-1.8e+04	-7.5e+03
att	1214.372	1069.836	-882.469	3311.213
atc	-1.4e+04	2773.994	-1.9e+04	-8.4e+03

Estimates of effects

Number of treated obs. = 185 Number of control obs. = 2490

Effect	Mean	Robust Std.Err.	Robust	
	difference		95% confider	nce interval
raw	-15205	656	-16490	-13919
adj	1418	791	-132	2968
ate	-12706	2653	-17906	-7507
att	1214	1070	-882	3311
atc	-13833	2774	-19270	-8396

Number of treated obs. = 185 Number of control obs. = 2490

Effect	Mean	Robust Std.Err.	Robust	
	difference		95% confider	nce interval
raw	-15205	656	-16490	-13919
adj	1418	791	-132	2968
ate	-10197	2863	-15809	-4586
att	1818	771	306	3329
atc	-12002	3748	-19348	-4656

 treateff is planned to offer the user several options, e.g., estimation of standard errors by bootstrap:

treateff re78 t, pscore(age-re75_2) ///
 adj(_PS_) format(%6.0f) ///
 bootstrap breps(1000) ///
 bstrata(t)

Estimates of effects

Number of treated obs. = 185 Number of control obs. = 2490 Bootstrap replications = 1000

Effect	Mean	Bootstrap Std.Err.	Normal	
	difference		95% confider	nce interval
raw	-15205	664	-16508	-13902
adj	1418	803	-157	2993
ate	-10197	21918	-53208	32814
att	1818	898	55	3580
atc	-12002	26001	-63025	39022

Ackowledgments

 I wish to thank Keisuke Hirano for sharing with me the SUPPORT dataset, which I'm using to test treateff

References

- Hirano, K. and Imbens, G. (2001) "Estimation of Causal Effects using Propensity Score Weighting: An Application to Data on Right Heart Catheterization", *Health Services & Outcomes Research Methodology*, 2, 259-278.
- Robins, J. and Rotnitzky, A. (1995) "Semiparametric Efficiency in Multivariate Regression Models with Missing Data", *Journal of the American Statistical Association*, 90, pp. 122-129.