

3 Methods

Monte Car Study

Simulation results

Conclusions

Alfonso Miranda

Keele University and IZA (A.Miranda@econ.keele.ac.uk)

2007 UK Stata Users Group meeting

September 10.

- 3 Methods
- Monte Carl Study
- Simulation results
- Conclusions

- In a number of contexts researchers have to model a dummy variable y_{it} that is function of y_{i,t-1} (unemployment, migration, health).
- A dynamic probit/logit model is needed.
- ► In the dynamic setup y_{i0} is likely to be correlated with unobserved heterogeneity u_i affecting y_{it}.
- If y_{i0} is taken as exogenous inconsistent estimators are obtained. This is know as the initial conditions problem.

Motivation

- 3 Methods
- Monte Carl Study
- Simulatior results
- Conclusions

- Three methods of estimation have been suggested: Heckman (1981), Orme (1996), and Wooldridge (2002).
- Heckman's method is computer expensive not anymore really – while the other two methods are computer inexpensive and easy to implement in conventional econometric software.
- No study has compared the relative performance of such methods with small and large samples, and with low and high correlation between unobservables affecting initial conditions and dynamic equations.

Heckman (1981) method

Motivation

3 Methods

Monte Carlo Study

Simulation results

Conclusions

Heckman suggests to approximate the reduced form of the marginal probability of y_{i0} given u_i with a Probit model and to allow free correlation ρ between y_{i0} and y_{it} .

$$\mathbf{y}_{it}^* = \mathbf{z}_{it}\boldsymbol{\beta} + \gamma \mathbf{y}_{i,t-1} + u_i + \varepsilon_{it}$$
(1)

$$y_{i0}^* = \mathbf{x}_{it}\boldsymbol{\theta} + \delta u_i + \eta_{it}$$
(2)

with $y_{it} = 1$ if $y_{it}^* > 0$ and zero otherwise. u_i , η_{it} and ε_{it} are all iid N(0,1). Neither ε_{it} nor η_{it} are serially correlated.

- equations (1) and (2) are estimated as a system.
- Need to integrate out u_i against the density $\phi(u_i)$.
- May use ML + Gauss-Hermite quadrature or Maximum Simulated Likelihood.

$$\bullet \ \rho = \frac{\delta}{\sqrt{(2(\delta^2 + 1))}}$$

Orme (1996) methoc

Motivation

3 Methods

Monte Carlo Study

Simulation results

Conclusions

Orme suggests a two-step bias corrected procedure that is locally valid when ρ approximates to zero. Define,

$$y_{it}^* = \mathbf{z}_{it}\boldsymbol{\beta} + \gamma y_{i,t-1} + u_i + \varepsilon_{it}$$
(3)

$$y_{i0}^* = \mathbf{x}_{it}\boldsymbol{\theta} + \delta u_i + \eta_{it}$$
(4)

Notice that in eq. (3) $E[u_i] = 0$ but $E[u_i|y_{i0}] \neq 0$ when $\delta \neq 0$ (that is, when $\rho \neq 0$).

▶ Correlation between *u_i* and *y_{i0}* can be removed by writing:

$$u_i = E[u_i|y_{i0}] + u_i^*$$

so that $E[u_i^*|y_{i0}] = 0$ by construction.

3 Methods

Monte Carlo Study

Simulatior results

Conclusions

 Can use, in a first step, a simple probit model for y_{i0} to estimate,

$$E[u|y_{i0}] = E[u_i|\delta u_i + \eta_{it} \ge -\mathbf{x_{it}}\theta] = \frac{\phi(\mathbf{x_{it}}\theta)}{\Phi(\mathbf{x_{it}}\theta)}$$

And in a second step estimate the dynamic equation using a standard RE probit that includes E[u_i^{*}|y_{i0}] as a regressor,

$$y_{it}^* = \mathbf{x}_{it}\boldsymbol{\beta} + \gamma y_{i,t-1} + \sigma E[u_i|y_{i0}] + u_i^* + \varepsilon_{it}$$
(5)

Orme shows that this two-step procedure is locally valid if ρ approximates to zero and argues that the method can perform well even if ρ is 'high'.

Wooldridge (2002) method

Motivation

- 3 Methods
- Monte Carl Study
- Simulatior results
- Conclusions

$$y_{it}^{*} = \mathbf{x}_{it}\boldsymbol{\beta} + \gamma y_{i,t-1} + u_{i} + \varepsilon_{it}$$
(6)
$$y_{i0}^{*} = \mathbf{z}_{it}\boldsymbol{\theta} + \delta u_{i} + \eta_{it}$$
(7)

Heckman does the following:

$$f(y_{i0}, \dots, y_{iT}) = \int f(y_{i1}, \dots, y_{iT} | y_{i0}, \mathbf{w_{it}}, u_i) h(y_{i0} | \mathbf{w_{it}}, u_i) g(u_i | \mathbf{w_{it}}) du_i$$

with $\mathbf{w_{it}} = (\mathbf{x_{it}}, \mathbf{z_{it}})$ and use ML.

- ▶ Wooldridge suggests to model the distribution of {y_{i1}, · · · , y_{iT}} given y_{i0} and to use conditional ML.
- To do so one needs to specify the distribution for u_i given y_{i0} and other exog. variables:

$$f(y_{i1}, \cdots, y_{iT} | y_{i0}) = \int f(y_{i1}, \cdots, y_{iT} | y_{i0}, \mathbf{w_{it}}, u_i) g(u_i | y_{i0}, \mathbf{w_{it}}) du_i$$

3 Methods

Monte Carl Study

Simulatior results

Conclusions

It is suggested the following approximation

$$g(u_i|y_{i0}, \mathbf{w_{it}}) \sim N(\alpha_0 + \alpha_1 y_{i0} + \alpha_2 \bar{w}_i, \sigma_v^2)$$

In other words, we can write

$$u_i = \alpha_0 + \alpha_1 y_{i0} + \alpha_2 \bar{w}_i + v_i \tag{8}$$

$$v_i \sim N(0, \sigma_v^2)$$
 and independent of y_{i0}, w_i (9)

substituting (8) in (6)

$$y_{it}^* = \mathbf{z_{it}}\boldsymbol{\beta} + \gamma y_{i,t-1} + \alpha_1 y_{i0} + \alpha_2 \bar{w}_i + v_i + \varepsilon_{it}$$
(10)

and estimate (9) by standard RE probit.

Monte Carlo Study

The following model is specified:

Motivatio

3 Methods

Monte Carlo Study

Simulatior results

Conclusions

$$y_{it}^* = 0.5 + 0.5z_{it} - 0.5y_{i,t-1} + u_i + \varepsilon_{it}$$
 (11)

$$y_{i0}^* = 1x_{i0} - 1z_{i0} + \delta u_i + \eta_{it}$$
(12)

- Random draws from independent standard normal distributions are taken to generate z_{it} and x_{i0}. These variables remain fixed during all simulations.
 - At each replication step random draws from independent standard normal distributions are taken to generate u_i, ε_{it} and η_{it}.
 - At each iteration the model is estimated using Heckman (MSL with 400 halton draws), Wooldridge, and Orme methods. Estimates for the dynamic equation are kept.

3 Methods

- Monte Car Study
- Simulatior results
- Conclusions

- ▶ 1000 replications are taken.
- Various experiments are done comparing the performance of all these three methods using small, medium, and large samples and low and high ρ.
- At the end simulation statistics are calculated:
 - Average estimator (AE)
 - Percentage bias (PB)
 - Average standard error (ASE)
 - Standard error (SDE)
 - Mean square error (MSE)
 - ▶ Nominal coverage of 95% confidence intervals (Ncov).

T=3, n=100, N=300, rho=0

	Number Obs per Total N Delta	of pane. panel umber of	f obs	= 100 = 3 = 300 = 0.00				
e Carlo		 AE	PB	ASE	SDE	MSE	Ncov	-
	 Heckman	Method						-
	z LDV _cons Wooldri LDV _cons Orme Me z	.506 506 .51 dge Metl .5 452 .494 thod .502	1.21 -1.14 1.93 hod .015 9.59 1.13 .461	.14 .261 .221 .168 .36 .332 .148	.136 .25 .22 .171 .369 .352 .151	.019 .063 .048 .029 .138 .124 .023	.958 .958 .948 .956 .93 .926 .952	
	LDV _cons	48 .488	4.08 -2.36	.352 .326	.355 .333	.127 .111	.931 .93	

CENTRE FOR ECONOMIC RESEARCH · RESEARCH INSTITUTE FOR PUBLIC POLICY AND MANAGEMENT

. . .

n 5	Obs per Total Nu Delta	Obs per panel Total Number of obs Delta			= 100 = 3 = 300 = 1 00				
rlo		 AE	 PB	ASE	 SDE	MSE	 Ncov		
1	 Heckman	 Method							
ns	Z	.505	1.04	.136	.13	.017	.966		
	LDV	505	969	.252	.238	.057	.965		
	_cons	.508	1.64	.214	.213	.045	.954		
	Wooldrid	ge Meth	od						
	Z	.417	-16.6	.162	.161	.033	.904		
	LDV	466	6.88	.371	.366	.135	.945		
	_cons	222	-144	.267	.277	.597	.232		
	Orme Met	hod							
	Z	.412	-17.6	.118	.121	.023	.835		
	LDV	.162	132	.276	.334	.549	.362		
	_cons	-7e-3	-101	.266	.302	.348	.44		

100

	Number of	of panel	ls	= 100				
	Obs per	panel		= 3				
ods	Total Nu Delta	umber of	f obs	= 300 = 10.00)			
		AE	PB	ASE	SDE	MSE	Ncov	
	Heckman	Method						
	z	.509	1.78	.131	.123	.015	.962	
	LDV	497	.525	.237	.224	.05	.968	
	_cons	.508	1.58	.191	.199	.04	.942	
	Wooldrie	dge Meth	nod					
	Z	.474	-5.16	.159	.157	.025	.943	
	LDV	564	-12.8	.421	.396	.161	.932	
	_cons	327	-165	.182	.189	.719	.022	
	Orme Me	thod						
	Z	.389	-22.1	.101	.1	.022	.799	
	LDV	.558	212	.19	.223	1.17	3e-3	
	_cons	042	-108	.853	1.2	1.72	.849	

T=3, n=300, N=900, rho=0

tion ods Carlo	Number of panels = 300 Obs per panel = 3 Total Number of obs = 900 Delta = 0.00
cano	AE PB ASE SDE MSE Ncov
tion	
sions	z .505 .941 .077 .078 6e-03 .948 LDV492 1.54 .147 .142 .02 .962 _cons .497587 .126 .12 .014 .961
	woolariage Methoa z .488 -2.49 .09 .088 8e-3 .947 LDV399 20.3 .197 .205 .052 .904 _cons .46 -7.9 .185 .193 .039 .928
	Orme Method z .491 -1.83 .081 .082 7e-3 .931 LDV436 12.8 .195 .198 .043 .922 _cons .452 -9.67 .179 .18 .035 .928

	Number of	of panel	s =	300				
	Obs per	panel	=	3				
	Total N Delta	umber of	obs = =	900 1.00				
Carlo								
		AE	PB	ASE	SDE	MSE	Ncov	
	Heckman	Method						
	z	.504	.88	.075	.076	6e-3	.948	
	LDV	493	1.34	.142	.135	.018	.964	
	_cons	.497	637	.122	.116	.014	.964	
	Wooldrie	lge Meth	od					
	z	.421	-15.9	.088	.089	.014	.823	
	LDV	442	11.6	.21	.231	.057	.938	
	_cons	225	-145	.153	.153	.549	7e-3	
	Orme Me	thod						
	z	.401	-19.9	.068	.07	.015	.62	
	LDV	.209	142	.167	.207	.545	.112	
	_cons	048	-110	.155	.177	.332	.174	

- na (

	Number o	or paneis	=	300			
	Obs per	panel	=	3			
	Total Nu Delta	mber of					
Carlo							
		AE	PB	ASE	SDE	MSE	Ncov
	Heckman	Method					
sions	z	.506	1.22	.071	.07	5e-3	.957
	LDV	49	2	.133	.127	.016	.955
	_cons	.497	53	.109	.108	.012	.949
	Wooldrid	lge Metho	d				
	Z	.472	-5.58	.088	.086	8e-3	.928
	LDV	517	-3.46	.267	.245	.06	.924
	_cons	33	-166	.103	.1	.699	0
	Orme Met	hod					
	z	.399	-20.1	.058	.06	.014	.567
	LDV	.575	215	.109	.126	1.17	0
	cons	27	-154	.555	.796	1.23	.58
	=						

tion	Number Obs.per	of panel	S	= 3000 = 3			
	Total N Delta	umber of	obs	= 9000 = 0.00			
Carlo		AE	 PB	ASE	SDE	I MSE	Ncov
	 Heckman	Method					
	z LDV _cons Wooldri	.5 501 .501 dge Meth	024 176 .134	.023 .046 .039	.022 .046 .039	5e-4 2e-3 1e-3	.962 .951 .948
	z LDV _cons Orme Me	.493 464 .483 thod	-1.38 7.23 -3.3	.028 .069 .061	.026 .063 .06	7e-4 5e-3 4e-3	.959 .939 .944
	z LDV _cons	.493 469 .477	-1.48 6.12 -4.64	.025 .065 .06	.024 .059 .055	6e-4 4e-3 3e-3	.95 .944 .946

ition 10ds Carlo	Number of panels Obs per panel Total Number of obs Delta			= 3000 = 3 = 9000 = 1.00					
		AE	PB	ASE	SDE	MSE	Ncov		
	 Heckman	Method							
	z LDV _cons Wooldri	.5 5 .5 dge Meth	.059 063 .049	.023 .045 .038	.021 .044 .038	4e-4 2e-3 1e-3	.968 .955 .951		
	z LDV _cons Orme Me	.419 415 218 thod	-16.3 16.9 -144	.026 .062 .047	.03 .101 .047	7e-3 .017 .517	.163 .486 0		
	z LDV _cons	.397 .245 081	-20.7 149 -116	.022 .06 .054	.025 .085 .07	.011 .562 .342	.02 0 0		

n s	Number of panel Obs per panel Total Number of Delta		s obs	= 3000 = 3 = 9000 = 10.00				
		AE	PB	ASE	SDE	MSE	Ncov	
n	 Heckman	 Method						
ons	z LDV cons	.501 499	.156 .294 234	.022 .042 .034	.02 .041 .034	4e-4 2e-3 1e-3	.966 .951 .945	
	Wooldrid	ge Meth	.od					
	z LDV	.472 545	-5.52 -8.93	.027 .095	.026 .084	1e-3 9e-3	.84 .938	
	_cons Orme Met	328 hod	-166	.033	.033	.687	0	
	z LDV	.403 .571	-19.4 214	.018 .034	.017 .04	8e-3 1.15	0 0	
	_cons	353	-171	.149	.157	.753	0	

Conclusions

Motivation

3 Methods

Monte Car Study

Simulatior results

Conclusions

- Heckman's method delivers estimators that are hardly subject to bias and that are estimated with high precision.
- The methods suggested by Wooldridge and Orme (W&O) deliver estimators that can be subject to substantial bias and low precision.
- ► W&O: The bias does not seem to decrease as sample size (number of panels n) increases.
- W&O: The bias increases when ρ gets higher.
- Nominal coverage of confidence intervals is satisfactory in Heckman's method but can be extremely bad in the case of W&O when ρ is high.

- Motivation
- 3 Methods
- Monte Car Study
- Simulation results
- Conclusions

- Evidence suggest that Heckman's method offers substantial advantages.
- Today Heckman's method is not really computer expensive anymore (can use MSL and BHHH algorithm to speed the process).