Visualising and analysing time-to-event data: lifting the veil of censoring

Patrick Royston
Cancer Group, MRC Clinical Trials Unit, London
A poet writes about censored observations:

Last night I saw upon the stair
A little man who wasn't there
He wasn't there again today
Oh, how I wish he'd go away!

From *Antigonish* (1899)

Hughes Mearns (1875-1965)
Outline

- Why is censoring of time-to-event data an issue?
- Example in breast cancer
- Visualisation of censored data using model-based imputation
- Multiple imputation and analysis of survival data with missing covariate observations
- Demonstration with Stata
Why is censoring an issue?

- You can’t picture the raw data easily
- Reliance on Kaplan-Meier plots
 - Exaggerates differences between groups
 - Attracts attention to unreliable survival estimates at extreme times
- Data will be analysed using Cox model
 - Still the almost-automatic choice – although decent alternatives exist
- Time is “forgotten about” in the Cox model
 - Analysis is based on the ranks of failure times
• Results of Cox regression models are usually expressed as (log) hazard ratios
 ▪ Indirect – not dealing directly with time
 ▪ Can be hard to interpret – different effect on survival curves at high and low survival probs
 ▪ Particularly difficult for interactions – ‘ratio of hazard ratios’

• Non-proportional hazards
 ▪ Data with long-term follow-up typically have it
 ▪ Modelling and interpretation may be complex
Example: Primary node-positive breast cancer

- GBSG trial BMFT-2
- 686 patients, 299 events for recurrence-free survival (RFS)
- Patients assigned to hormonal therapy (TAM) or not
- Visualise the effect of TAM on RFS
- Visualise interaction between TAM and ER (estrogen receptor status)
Traditional visualisation: Kaplan-Meier by TAM group

Kaplan-Meier survival estimates, by hormone

Recurrence-free survival time, yr

0.00 0.25 0.50 0.75 1.00

S(t)

hormone = No TAM

hormone = TAM
Dot plot by TAM therapy – unhelpful with censored data

fig2

Recurrence-free survival time, yr

No TAM

Hormone therapy, 1=no, 2=yes

TAM
How better to visualise survival times?

- To make progress with visualisation, aim to impute the “missing” part of censored times
- Assume a parametric distribution of survival time
- Survival times are sometimes approximately lognormally distributed (Royston 2001a)
 - Can check by using modified Normal Q-Q plot
- If lognormal approximation is not good, can consider Box-Cox transformation of time
 - Or another transformation towards normality
Assessing lognormality: modified Normal Q-Q plot

- Simple transformation of Kaplan-Meier survival curve
Normal Q-Q plot by TAM group

Recurrence-free survival time (log scale)

Normal equivalent deviates

No TAM TAM
Visualisation of censored data using imputation

- Create \(m \) (\(\geq 1 \)) copies of the data with censored survival times imputed
- Need an imputation model to reflect
 - Distribution of times (e.g. lognormal)
 - Effects of covariates (prognostic factors)
- Creating an imputation model:
 - Use \texttt{mfp} with \texttt{cnreg} (censored normal regrn.) to model poss. non-linear effects of covariates
 - \texttt{E.g. mfp cnreg lnt x1 x2 x3 x4a x4b x5 x6 x7 hormone, censored(c) select(1) dfdefault(2)}
Creating the imputed dataset(s)

- Can use the `ice` multiple imputation command to create the imputations
 - Royston (2004, 2005a, 2005b) *Stata J*
- `ice varlist using filename[.dta] [if exp] [in range] [weight], [m(#) cmd(cmdlist) cycles(#) boot[(varlist)] seed(#) dryrun eq(eqclist) passive(passivelist) substitute(sublist) dropmissing interval(intlist) other_options]`
Interval censoring with `ice`

- `gen ll = lnt`
- `gen ul = cond(_d==1, lnt, ln(50))`
 // chose upper limit of 50 years for RFS: can use . for $+\infty$
- (generate FP transformations of x_1, x_5, x_6)
- `ice x1_1 x2 x3 x4a x4b x5_1 x6_1 x7 hormone ll ul lnt using imputed.dta, interval(lnt:ll ul) m(10)`
How `interval()` works

- Sample randomly from truncated normal distribution (shaded)
`cmd' `yvarlist' `xvars' `wgt',
`options'

...

if "`cmd'"=="intreg" {
 tempvar PhiA PhiB
 gen `PhiA' = cond(missing(`ll'), 0, norm((`ll'-'xb')/`rmsestar'))
 gen `PhiB' = cond(missing(`ul'), 1, norm((`ul'-'xb')/`rmsestar'))
 replace `yimp' = `xb'
 +`rmsestar'*invnorm(`u'*(`PhiB'-'PhiA')+'PhiA'))
}
Uses of the `interval()` option

- Impute right-, left- or interval-censored outcomes
 - Response variable in time-to-event studies
- Impute when a covariate is sometimes partly observed, sometimes complete
 - Some observations recorded exactly
 - Others known to be below or above a cutoff
 - E.g. D-dimer in DVT, PgR/ER in breast cancer
- Interval censored covariates
 - Income in surveys recorded as ranges only
Breast cancer data: visualisation of time to recurrence

Recurrence-free survival time, yr

imputation number

fig_response
Visualisation: some plots using the first imputed sample

Recurrence-free survival time (log scale)

No TAM TAM

Hormone therapy

x5 - number of positive lymph nodes
Visualisation: treatment by covariate interaction
Limitations

- Imputed times to event are helpful for visualisation, but less so for analysis
 - Effectively, such imputations are extrapolations into the future
 - We don’t know the future distribution
 - Estimates of means, SD’s, regression coeffs etc. are heavily dependent on the distributional assumptions
 - Potential for bias if assumed distr’n is wrong

- Imputed times may be unrealistic
 - E.g. survival time 150 years!
Other approaches

- A reasonably large literature exists.
- Buckley-James estimation (Buckley & James 1979)
 - Estimates the mean of the censored part
 - Not so good for visualisation
- Wei & Tanner (1991)
 - Two algorithms which give multiple imputations of the censored part
 - Relaxes the normality assumption – samples taken from the distribution of the residuals
- `stpm` (Royston 2001b, Royston & Parmar 2002)
 - More flexible distributions of survival time available
Imputation of survival data with missing covariate observations

- So far, have assumed covariates have complete data
- If covariates have **missing data**, need a suitable algorithm for multiple imputation of all missing values
 - e.g. MICE (ice)
- To reduce bias, must include the response (time-to-event) in the imputation model
 - How?
- “Standard” approach is to include (censored) **log time** and the **censoring indicator** in the imputation model
 - No theoretical justification
- May be better to
 - Include covariates as usual
 - Impute right-censored times using `ice with interval()` option
- Can also use imputed data for visualisation
Analysis of survival data with missing covariate observations

- Disregard the imputed times in the MI dataset
 - Except for visualisation purposes
- Use original time and censoring indicator
- Can analyse the MI dataset using
 - `stcox` (Cox regression)
 - `streg` (several models available)
 - `stpm` (flexible parametric survival models)
- `micombine` supports such models
Conclusions

• Use of familiar graphical tools with imputed times to event can give greater insight into censored survival data
 ▪ Scatter plots, smoothers, etc

• Treatment or prognostic effects may be depressingly small when displayed as scatter plots of times
 ▪ Much overlap between groups
 ▪ Weak regression relationships

• Imputation of times may be helpful in multiple imputation with missing covariate values
Some references