LINEAR MIXED MODELS IN STATA

Roberto G. Gutierrez

StataCorp LP

OUTLINE

I. THE LINEAR MIXED MODEL

- A. Definition
- B. Panel representation

II. ONE-LEVEL MODELS

- A. Data on math scores
- B. Adding a random slope
- C. Predict
- D. Covariance structures
- E. ML or REML?

III. TWO-LEVEL MODELS

- A. Productivity data
- B. Constraints on variance components

IV. FACTOR NOTATION

- A. Motivation
- B. Fitting the model
- C. Alternate ways to fit models
- V. A GLIMPSE AT THE FUTURE

THE LINEAR MIXED MODEL

Definition

$$y = X\beta + Zu + \epsilon$$

where

y is the $n \times 1$ vector of responses

X is the $n \times p$ fixed-effects design matrix

 $oldsymbol{eta}$ are the fixed effects

Z is the $n \times q$ random-effects design matrix

u are the random effects

 $\pmb{\epsilon}$ is the $n \times 1$ vector of errors such that

$$\begin{bmatrix} \mathbf{u} \\ \boldsymbol{\epsilon} \end{bmatrix} \sim N\left(\mathbf{0}, \begin{bmatrix} \mathbf{G} & \mathbf{0} \\ \mathbf{0} & \sigma_{\epsilon}^{2}\mathbf{I}_{n} \end{bmatrix}\right)$$

Random effects are not directly estimated, but instead characterized by the elements of \mathbf{G} , known as variance components

As such, you fit a mixed model by estimating $\boldsymbol{\beta}$, σ_{ϵ}^2 , and the variance components.

Panel representation

Classical representation has roots in the design literature, but can make it hard to specify the right model

When the data can be thought of as M independent panels, it is more convenient to express the mixed model as (for i = 1, ..., M)

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{u}_i + \boldsymbol{\epsilon}_i$$

where $\mathbf{u}_i \sim N(\mathbf{0}, \mathbf{S})$, for $q \times q$ variance \mathbf{S} , and

$$\mathbf{Z} = \begin{bmatrix} \mathbf{Z}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{Z}_M \end{bmatrix}; \quad \mathbf{u} = \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_M \end{bmatrix}; \quad \mathbf{G} = \mathbf{I}_M \otimes \mathbf{S}$$

For example, take a random intercept model. In the classical framework, the random intercepts are random coefficients on indicator variables identifying each panel

It is better to just think at the panel level and consider ${\cal M}$ realizations of a random intercept

This generalizes to more than one level of nested panels

Issue of terminology for multi-level models

ONE-LEVEL MODELS

Data on math scores

Consider the Junior School Project data which compares math scores of various schools in the third and fifth years

Data on n = 887 pupils in M = 48 schools

Let's fit the model

 $math5_{ij} = \beta_0 + \beta_1 math3_{ij} + u_i + \epsilon_{ij}$

for i = 1, ..., 48 schools and $j = 1, ..., n_i$ pupils. u_i is a random effect (intercept) at the school level

. xtmixed math5 math3 school:										
Performing EM optimization:										
Performing gra	Performing gradient-based optimization:									
Iteration 0: log restricted-likelihood = -2770.5233 Iteration 1: log restricted-likelihood = -2770.5233										
Computing star	Computing standard errors:									
	Mixed-effects REML regressionNumber of obs=Group variable: schoolNumber of groups=									
				Obs per g	roup:	min = avg = max =	5 18.5 62			
Log restricted	Log restricted-likelihood = -2770.5233						347.21 0.0000			
math5	Coef. St	td. Err.	z	P> z	[95%	Conf.	Interval]			
math3 _cons			8.63 5.98	0.000 0.000		3137 7287	.6728978 31.05724			
		1								
Random-effe	cts Parameters	Estimate	Std	. Err.	[95%	Conf.	Interval]			
school: Ident:	ity sd(_cons)	2.038896	. 30	17985	1.52	5456	2.72515			
	sd(Residual)	5.306476	.12	95751	5.058	3495	5.566614			
LR test vs. linear regression: chibar2(01) = 57.59 Prob >= chibar2 = 0.0000										

For the most part, this is the same as **xtreg**

Adding a random slope

Consider instead the model

$$\mathtt{math5}_{ij} = \beta_0 + \beta_1 \mathtt{math3}_{ij} + u_{0i} + u_{1i} \mathtt{math3}_{ij} + \epsilon_{ij}$$

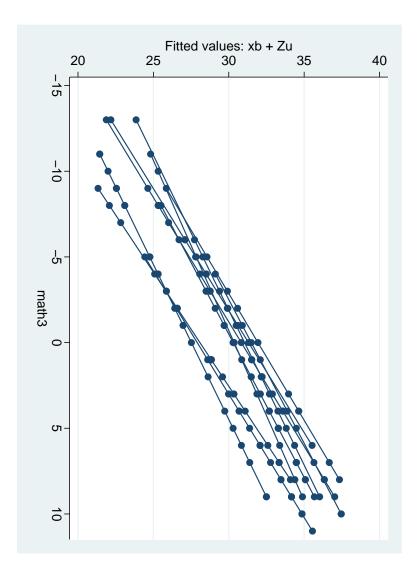
In essence, each school has its own random regression line such that the intercept is $N(\beta_0, \sigma_0^2)$ and the slope on **math3** is $N(\beta_1, \sigma_1^2)$

. xtmixed mat	h5 math3 schoo	ol: math3			
Performing EM	optimization:				
Performing gra	adient-based opt:	imization:			
Iteration 0: Iteration 1: Iteration 2:	log restricted	-likelihood = -: -likelihood = -: -likelihood = -:	2766.6442		
Computing star	ndard errors:				
Mixed-effects Group variable	REML regression e: school		Number o Number o	of obs of groups	= 887 = 48
			Obs per	group: min avg max	= 18.5
Log restricted	d-likelihood = -2	2766.6442	Wald chi Prob > c		= 192.62 = 0.0000
math5	Coef. S ¹	td. Err. z	P> z	[95% Con	f. Interval]
math3 _cons		0442106 13.88 3596906 84.42		.5269377 29.66044	
Random-effe	cts Parameters	Estimate S	Std. Err.	[95% Con:	f. Interval]
school: Indepo	endent sd(math3) sd(_cons)		.0509905 .3078237	.113352 1.550372	
	sd(Residual)	5.203947	. 1309477	4.953521	5.467034
IP tost va li	incor regrossion	r = chi2(2)	- 65.35	Prob > cl	hi2 = 0.0000

LR test vs. linear regression: chi2(2) = 65.35 Prob > chi2 = 0.0000Note: LR test is conservative and provided only for reference

LR test is conservative. What does that mean?

lrtest can compare this model to the previous one


Predict

Random effects are not estimated, but they can be predicted (BLUPs)

. predict r1 r0, reffects . describe r*								
varial	ole name	storage di type fo	splay rmat	value label	variable label			
r1 r0 . gen	b0 = _b[float %9 float %9 _cons] + r0	.0g .0g		BLUP r.e. for school: math3 BLUP r.e. for school: _cons			
. gen	b1 = b[math3] + r1						
. byso	ort schoo	l: gen toli	st = _n==1	1				
. list	t school	b0 b1 if sc	hool<=10 &	k tolist				
				_				
	school	b0	b1	1				
1.	1	27.52259	.5527437	7				
26.	2	30.35573						
36.	3	31.49648	.5962557	7				
44.	4	28.08686	.7505417	7				
68.	5	30.29471	.5983001	1				
93.	6	31.04652	.5532793	-				
106.	7	31.93729	.6756551					
116.	8	30.83009	.6885387					
142.	9	27.90685	.6950143	-				
163.	10	31.31212	.7024184	1				
	1							

We could use these intercepts and slopes to plot the estimated lines for each school. Equivalently, we could just plot the "fitted" values

```
predict math5hat, fitted
sort school math3
twoway connected math5hat math3 if school<=10, connect(L)</li>
```


Covariance structures

In our previous model, it was assumed that u_{0i} and u_{1i} are independent. That is,

$$\mathbf{S} = \begin{bmatrix} \sigma_0^2 & 0\\ 0 & \sigma_1^2 \end{bmatrix}$$

What if we also wanted to estimate a covariance?

. xtmixed math	h5 math3 schoo	ol: math3, co	ov(uns	tructure	1) variance	mle				
Performing EM	optimization:									
Performing gra	adient-based opt:	imization:								
Iteration 0: Iteration 1: Iteration 2:	0									
Iteration 3:	log likelihood									
Computing star	ndard errors:									
Mixed-effects ML regressionNumber of obs=Group variable: schoolNumber of groups=										
	Obs per group: min = avg = max =									
Log likelihood = -2757.0803Wald chi2(1)Prob > chi2						= 204.24 = 0.0000				
math5	Coef. S ¹	td. Err.	z	P> z	[95% Conf	. Interval]				
math3 _cons			4.29 0.95	0.000	.5284104 29.61323	.696385 31.08274				
Random-effe	cts Parameters	Estimate	Std	. Err.	[95% Conf	. Interval]				
school: Unstru	uctured									
	var(math3)	.0343031	.01	76068	.012544	.0938058				
	<pre>var(_cons)</pre>	4.872801		84916	2.791615	8.505537				
CC	ov(math3,_cons)	3743092	.12	73684	6239466	1246718				
	var(Residual)	26.96459	1.3	46082	24.45127	29.73624				

LR test vs. linear regression: chi2(3) = 78.01 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference

We also added options **variance** and **mle** to fully reproduce the results found in the **gllamm** manual

Again, we can compare this model with previous using lrtest

Available covariance structures are Independent (default), Identity, Exchangeable, and Unstructured

ML or REML?

ML is based on standard normal theory

With REML, the likelihood is that of a set of linear constrasts of \mathbf{y} that do not depend on the fixed effects

REML variance components are less biased in small samples, since they incorporate degrees of freedom used to estimated fixed effects

REML estimates are unbiased in balanced data

LR tests are always valid with ML, not so with REML

Very much a matter of personal taste

The EM algorithm can be applied to maximize both ML and REML criterions

TWO-LEVEL MODELS

Productivity Data

Baltagi et al. (2001) estimate a Cobb-Douglas production function examining the productivity of public capital in each state's private output.

For \mathbf{y} equal to the log of the gross state product measured each year from 1970-1986, the model is

$$\mathbf{y}_{ij} = \mathbf{X}_{ij}\boldsymbol{\beta} + u_i + v_{j(i)} + \boldsymbol{\epsilon}_{ij}$$

for $j = 1, ..., M_i$ states nested within i = 1, ..., 9 regions. **X** consists of various economic factors treated as fixed effects.

lixed-effects REML regression						Number	of ob	os	=	816	
Group Variab	le	No. of Groups		Observ Minimum		ons p verag	er Grou e Ma	P ximum			
1											
regi sta		9 48		51 17		90. 17.		136 17			
Log restricte	d-1 :	ikelihood =	1	404.7101			Wald c Prob >)	=	18382.39 0.0000
gsp		Coef.	St	d. Err.		z	P> z	[9	95%	Conf.	Interval]
private		.2660308	.0	215471	12	.35	0.000	.2	223	7993	.3082624
emp		.7555059	.0	264556	28	.56	0.000	.7	7036	3539	.8073579
hwy		.0718857	.0	233478	3	.08	0.002	. (026	1249	.1176464
water		.0761552	.0	139952	5	.44	0.000	.0	048	7251	.1035853
other	-	1005396	.0	170173	-5	.91	0.000	1	1338	3929	0671862
unemp	-	0058815	.0	009093	-6	.47	0.000	0	0076	636	0040994
_cons		2.126995	.1	574864	13	.51	0.000	1.	.818	3327	2.435663
Random-effe	cts	Parameters		Estima	te	Std	. Err.	[9	95%	Conf.	Interval]
region: Ident	ity										
		sd(_cons)	.04354	171	.01	86292	.()188	3287	.1007161
state: Identi	ty	sd(_cons))	.08027	37	.00	95512	.(063	5762	.1013567
	5	sd(Residual))	.03680	008	.00	09442		. 034	1996	.0386987
IP tost vs 1	inci			-1		- -	1162 /	0 D-	ack	> ah - (2 - 0 0000

. xtmixed gsp private emp hwy water other unemp || region: || state:, nolog Mixed-effects REML regression Number of obs = 81

LR test vs. linear regression: chi2(2) = 1162.40 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference

Constraints on variance components

We begin by adding some random coefficients at the region level

<pre>. xtmixed gsp private emp hwy > nolog nogroup nofetable</pre>	water other	unemp regio	n: hwy unemp	<pre> state:,</pre>
Mixed-effects REML regression		Number c Wald chi	816 16803.51	
Log restricted-likelihood = 1	1423.3455	Prob > c	:hi2 =	0.0000
Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
region: Independent				
sd(hwy)	.0052752	.0108846	.0000925	.3009897
sd(unemp)	.0052895	.001545	.002984	.0093764
sd(_cons)	.0596008	.0758296	.0049235	.721487
state: Identity				
sd(_cons)	.0807543	.009887	.0635259	.1026551
sd(Residual)	.0353932	.000914	.0336464	.0372307
LR test vs. linear regression	: chi2(4) = 1199.67	Prob > chi	2 = 0.0000

We can constrain the variance components on \mathtt{hwy} and \mathtt{unemp} to be equal with

<pre>. xtmixed gsp private emp hwy water other unemp region: hwy unemp, > cov(identity) region: state:, nolog nogroup nofetable</pre>								
Mixed-effects REML regression		Number o Wald ch:		816 16803.41				
Log restricted-likelihood = :	1423.3455	Prob > o	chi2 =	0.0000				
Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]				
region: Identity sd(hwy unemp)	.0052896	.0015446	.0029844	.0093752				
region: Identity sd(_cons)	.0595029	.0318238	.0208589	.1697401				
state: Identity sd(_cons)	.080752	.0097453	.0637425	.1023006				
sd(Residual)	.0353932	.0009139	.0336465	.0372306				
LR test vs. linear regression	: chi2(3) = 1199.67	Prob > chi	2 = 0.0000				

How does all this work? Blocked-diagonal covariance structures

FACTOR NOTATION

Motivation

Sometimes random effects are crossed rather than nested

Consider a dataset consisting of weight measurements on 48 pigs at each of 9 weeks. We wish to fit the following model

$$\texttt{weight}_{ij} = eta_0 + eta_1 \texttt{week}_{ij} + u_i + v_j + \epsilon_{ij}$$

for i = 1, ..., 48 pigs and j = 1, ..., 9 weeks

Note that the week random effects v_j are not nested within pigs, they are the same for each pig

One approach to fitting this model is to consider the data as a whole and treat the random effects as random coefficients on lots of indicator variables, that is

$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_{48} \\ v_1 \\ \vdots \\ v_9 \end{bmatrix} \sim N(\mathbf{0}, \mathbf{G}); \quad \mathbf{G} = \begin{bmatrix} \sigma_u^2 \mathbf{I}_{48} & \mathbf{0} \\ \mathbf{0} & \sigma_v^2 \mathbf{I}_9 \end{bmatrix}$$

Fitting the model

Luckily there is a shorthand notation for this

. xtmixed weight week _all: R.id _all: R.week										
0	Performing EM optimization:									
00	Performing gradient-based optimization:									
	Iteration 0: log restricted-likelihood = -1015.4214 Iteration 1: log restricted-likelihood = -1015.4214									
Iteration 1:		-11ke11nood = -101	.5.4214							
Computing star	ndard errors:									
	REML regression		Number of		432					
Group variable	e: _all		Number of	0 1	1					
			Obs per g	group: min =	432					
				avg = max =	432.0 432					
				max -	432					
			Wald chi2	• •	11010110					
Log restricted	d-likelihood = -:	1015.4214	Prob > ch	ni2 =	0.0000					
weight	Coef. St	td. Err. z	P> z	[95% Conf.	Interval]					
week	6.209896 .0	0578669 107.31	0.000	6.096479	6.323313					
_cons	19.35561 .0	6493996 29.81	0.000	18.08281	20.62841					
Random-effe	cts Parameters	Estimate Std	l. Err.	[95% Conf.	Interval]					
all. Idontita	-									
_all: Identity	sd(R.id)	3.892648 .41	41707	3.15994	4.795252					
	ba(iii iu)	0.002010 11	11101	0.10001	11100202					
_all: Identity	y									
	<pre>sd(R.week)</pre>	.3337581 .16	511824	.1295268	.8600111					
	sd(Residual)	2.072917 .07	55915	1.929931	2,226496					
	ad(nesidudi)	2.012311 .01	00910	1.323331	2.220490					
LR test vs. li	inear regression	: chi2(2) =	476.10	Prob > chi	2 = 0.0000					

Note: LR test is conservative and provided only for reference

_all tells **xtmixed** to treat the whole data as one big panel

R.varname is the random-effects analog of xi. It creates an (overparameterized) set of indicator variables, but unlike xi, does this behind the scenes

When you use **R**. *varname*, covariance structure reverts to Identity.

Alternate ways to fit models

Consider

. xtmixed weight	week _all	L: R.id w	eek:							
Performing EM opt	imization:									
Performing gradie	Performing gradient-based optimization:									
	og restricted og restricted									
Computing standar	d errors:									
Mixed-effects REM	1L regression	1	1	Number of	obs =	432				
Group Variable	No. of Groups	Observa Minimum	tions per Average	-	m					
_all week	1 9	432 48	432.0 48.0	43 4	2 8					
Log restricted-li	Wald chi2(1) = 11516.16 Log restricted-likelihood = -1015.4214 Prob > chi2 = 0.0000									
weight	Coef. S	Std. Err.	z I	?> z	[95% Conf.	Interval]				
week _cons					6.096479 18.08281	6.323313 20.62841				
Random-effects	Parameters	Estimat	e Std.	Err.	[95% Conf.	Interval]				
_all: Identity	sd(R.id)	3.89264	8.4141	1707	3.15994	4.795252				
week: Identity	sd(_cons)	.333758	1 .161	1824	.1295268	.8600112				
5	sd(Residual)	2.07291	7 .0758	5915	1.929931	2.226496				

LR test vs. linear regression: chi2(2) = 476.10 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference

. xtmixed weight week || _all: R.week || id: Performing EM optimization: Performing gradient-based optimization: Iteration 0: log restricted-likelihood = -1015.4214 Iteration 1: log restricted-likelihood = -1015.4214 Computing standard errors: Mixed-effects REML regression Number of obs 432 No. of Observations per Group Group Variable Groups Minimum Average Maximum _all 1 432 432.0 432 id 48 9 9.0 9 Wald chi2(1) 11516.16 Log restricted-likelihood = -1015.4214 Prob > chi2 0.0000 Std. Err. P>|z| [95% Conf. Interval] weight Coef. z .0578669 6.096479 6.323313 6.209896 107.31 0.000 week 19.35561 .6493996 18.08281 20.62841 _cons 29.81 0.000 Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] _all: Identity sd(R.week) .3337581 .1611824 .1295268 .8600112 id: Identity sd(_cons) 3.892648 .4141707 3.15994 4.795252 2.072917 sd(Residual) .0755915 1.929931 2.226496 LR test vs. linear regression: chi2(2) =476.10 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

Which is preferable? When it matters, the one with the smallest "dimension"

A GLIMPSE AT THE FUTURE

You can welcome Stata to the game. We hope you like the syntax and output

Correlated errors and heteroskedasticity

Exploiting matrix sparsity/very large problems

Factor variables

Degrees of freedom calculations

Generalized linear mixed models. Adding family() and link() options to what we have here

Available as updates to Stata 9 or in a future version of Stata? Too early to tell