
SUGUK 2005 invited lecture:
A little bit of Stata programming goes a

long way...

Christopher F Baum1

Boston College
baum@bc.edu

http://ideas.repec.org/e/pba1.html

June 8, 2005

1I am deeply indebted to Nicholas J. Cox for his lucid treatment of many of
these topics in his Speaking Stata columns in Vol. 1–3 of the Stata Journal. I
am grateful to Petia Petrova, William Gould and Roberto Gutierrez for useful
comments.

2

Abstract

This tutorial will discuss a number of elementary Stata programming constructs
and discuss how they may be used to automate and robustify common data manip-
ulation, estimation and graphics tasks. Those used to the syntax of other statistical
packages or programming languages must adopt a different mindset when working
with Stata to take full advantage of its capabilities. Some of Stata’s most useful
commands for handling repetitive tasks: forvalues, foreach, egen, local,

scalar, estimates and matrix are commonly underutilized by users unacquainted
with their power and ease of use. While relatively few users may develop ado-files
for circulation to the user community, nearly all will benefit from learning the
rudiments of use of the program, syntax and return statements when they are
faced with the need to perform repetitive analyses. Worked examples making use
of these commands will be presented and discussed in the tutorial.

Overview

Users of Stata often do more work—in some cases much more work—
than necessary. Those familiar with other statistical packages’ syntax or
with computing in a procedural language in which loops and subscripts play
a key role will often transfer their understanding to Stata. In most (but not
all) cases, you can do it that way in Stata: but it is far from efficient in
terms of computer time, and above all is wasteful of both the user’s time
and gray matter. If the program can do the housekeeping work for you, and
permit you to specify merely the pattern of the necessary effort, why not let
it do so? I have titled this talk A little bit of Stata programming goes a long
way... to emphasize the sizable return on investment to human capital of this
nature. Learn how to use Stata effectively, and you will save yourself time
and avoid the grief of retracing many steps through a less well-constructed
research procedure.

First, an important caveat. What I have to say here will be of little use
to those who rely on Stata’s menu system and the point-and-click interface,
unless it convinces them that they should learn to use do-files. There are
many good things to be said for a menu-driven interface when one is learning
to use a package: it is perhaps easier to examine a command’s many options
in a dialog rather than trying to assimilate the on-line help. But ultimately a

3

menu-driven interface is a far slower way to get your work done if you know
what you’re doing. It also runs counter to the basic principle here: every
time you use Stata to perform a non-trivial task, you should be building up
your stock of human capital in terms of knowing how to use the package most
effectively. If you eschew the menu-driven interface and even the interactive
command line in favor of the do-file approach to Stata programming, you
will construct a script to solve today’s problem. When you next need to
solve that problem, no need to reinvent the wheel: just haul out the script
and tweak it a bit. Eventually, after you alter the script a few times, you
may recognize that it would be easier to turn it into a very simple program
to perform the variations in that research task. And voila! Soon you will be
saying “yesterday, I couldn’t spell programmer, and today I are one.”

A second caveat: many tasks with Stata are made all the easier with the
by: prefix. In Stata 8, considerable effort could be saved with the use of
[R] statsby. In Stata 9, this notion has been extended with the [R] rolling
command. The particulars of by: usage, particularly in a panel context, has
been exposited in Cox (2001), and for brevity will not be discussed here.

The outline of the talk: we will first discuss the use of the local macro,
its cousin global, scalar and their interaction with Stata’s up-to-date con-
structs for repetitive work: foreach and forvalues. Stata 9’s Mata notwith-
standing, we will consider how Stata’s existing matrix constructs may be
used not only for linear algebra, but rather to organize results for analy-
sis and tabular presentation. The use of estimates to minimize retyping
of estimated results, coupled with Ben Jann’s estout suite, provide fur-
ther labor-saving and error-minimizing opportunities. Finally, for those who
might take the plunge and package their sequences of commands in a slightly
more general form: that of the Stata program, or ado-file, we will consider
rudimentary use of that command and its sisters syntax and return.

Local and global macros

Those familiar with lower-level programming languages such as FOR-
TRAN, C or Pascal may find Stata’s terminology for various objects rather
confusing. In those languages, one refers to a variable with statements such
as x = 2. Although one may have to declare x before its use (for instance,
as integer or float), the notion of a “variable” in those languages refers to
an entity which can take on a single value (numeric or string). In contrast,
the Stata variable refers to one column of the data matrix, and it may take

4

on maxobs values, one per observation.

So what corresponds to a FORTRAN or C variable in Stata’s lingo? Ei-
ther a Stata macro or a scalar (to be discussed below).1 But that correspon-
dence is not one-to-one, since a Stata macro may contain multiple elements:
in fact, it may contain any combination of alphanumeric characters. The
Stata macro is really an alias which has both a name and a value: when its
name is dereferenced, it returns its value. That operation may be carried out
at any time, or its value may be modified by an additional command. For
an example of the first concept:

Exhibit 1

. local country US UK DE FR

. local ctycode 111 112 136 134

. display "‘country’"
US UK DE FR

. display "‘ctycode’"
111 112 136 134

The Stata command to define the macro is local (see [P] macro). A
macro may be either local or global, which refers to its scope: where its
existence will be recognized. A local macro is created in a do-file (or ado-file)
and ceases to exist when that do-file terminates (normally or abnormally).
A global macro exists for the duration of the Stata program or interactive
session. There are good reasons to use global macros, but like any global
definition, they may have unintended consequences. Consequently we will
discuss local macros in most of the examples below.

Notice that the local command names the macro—as country—and
defines its value to be the list of four biliteral country codes. The following
statement does the same for macro ctycode. To bring forth the contents
of the macro, we dereference it: the expression ‘macroname’ refers to the
value of the macro. Notice that the macro’s name is preceded by the left
tick character (‘) and followed by the apostrophe (’). Most errors in the
use of macros are caused by failure to adhere to this rule: to dereference the
macro, the correct punctuation is vital. In the [P] display statement, we
must wrap the dereferenced macro in double quotes, since display expects a

1Stata’s scalars were purely numeric through version 8.0, as described in [P] scalar.
The ability to store strings in scalars was added in the executable update of 1 July 2004.

5

string argument or the value of a scalar expression (e.g., display log(14)).

Notice that in both cases the local statement is written without an
equals sign (=). It is acceptable syntax to use an equals sign following the
macro’s name, but it is a very bad idea to get in the habit of using it unless
it is required. Why? Because the equals sign causes the remainder of the
expression to be evaluated, rather than merely aliased to the macro’s name.
This is a common cause of head-scratching, where a user will complain “the
do-file worked when I had eight regressors, but not when I had nine...” Defin-
ing a macro with an equals sign will cause evaluation of the remainder of the
command as a character string, and in Intercooled Stata a character string
(i.e., the contents of a string variable) cannot have more than 80 characters.
In evaluating local mybadstring = "This is an example of a string

that will not all end up in the macro that it was intended to populate"

(with the quotation marks now required) the string will be truncated at 80
characters without error or warning.

When is it appropriate to use an equals sign in a local statement? When
we require the macro’s value to be evaluated. In this example, we show a
macro used as a counter which fails to do exactly what we had in mind:

Exhibit 2

. local count 0

. local country US UK DE FR

. foreach c of local country {
2. local count ‘count’+1
3. display "Country ‘count’ : ‘c’"
4. }

Country 0+1 : US
Country 0+1+1 : UK
Country 0+1+1+1 : DE
Country 0+1+1+1+1 : FR

In this case, we must use the equals sign to request evaluation (rather than
concatenation):

Exhibit 3

. local count 0

. local country US UK DE FR

. foreach c of local country {
2. local count = ‘count’+1
3. display "Country ‘count’ : ‘c’"
4. }

Country 1 : US

6

Country 2 : UK
Country 3 : DE
Country 4 : FR

Notice that the local statement contains the name of the macro twice: with-
out punctuation, which defines its name, and on the right hand side of the
equals, with its current value dereferenced via ‘count’. It is crucial to un-
derstand why the statement is written this way: (re-)defining the object in
the first instance, and referencing its current value in the second.

As nonsensical as the flawed example above might be, there are instances
where we wish to construct a macro within a loop (i.e., repeatedly redefining
its value), and decidedly must avoid the equals sign:

Exhibit 4

. local count 0

. local country US UK DE FR

. foreach c of local country {
2. local count = ‘count’+1
3. local newlist "‘newlist’ ‘count’ ‘c’"
4. }

. display "‘newlist’"
1 US 2 UK 3 DE 4 FR

The local newlist statement is curious: it defines the local macro newlist

as a string containing its own current contents, space, value-of-count, space,
value-of-c. Without fully explaining the [P] foreach statement at this point,
understand that it creates the local macro c with the value of each biliteral
country code in turn. The first time through the loop, newlist does not
exist: so how may we refer to its current value? Easily: every Stata macro
has a null value unless it has explicitly been given a non-null value. Thus, it
takes on the string " 1 US" the first time, and then the second time through
concatenates that string with the new string " 2 UK", and so on. In this
example, use of the equals sign would be inappropriate in the local newlist

statement, since it would cause truncation of newlist at 80 characters: a
problem with a longer list of countries.

From these examples, we might conclude that Stata’s macros are useful
in constructing lists, or as counters and loop indices. They are that: but
they play a much larger role in Stata do-files and ado-files, and indeed in the
return values of virtually all Stata commands, as we discuss below. Macros

7

are the one of the key elements which allow the Stata user to avoid repetitive
commands and the retyping of computed results. For instance, the macro
defined by local country US UK DE FR may be used to generate a set of
graphs with country-specific content and labels:

Exhibit 5

. local country US UK DE FR

. foreach c of local country {
2. tsline gdp if cty=="‘c’", title("GDP for ‘c’")
3. }

or even to produce a single graph with panels for each country:

Exhibit 6

. local country US UK DE FR

. foreach c of local country {
2. tsline gdp if cty=="‘c’", title("GDP for ‘c’") ///

> nodraw name(‘c’,replace)
3. }

. graph combine ‘country’, ti("Gross Domestic Product, 1971Q1-1995Q4")

A particular benefit of this use of macros is the ability to change the perfor-
mance of the do-file by merely altering the contents of the local macro. To
produce these graphs for a different set of countries, we need merely to alter
one command: the list of codes. In this manner, our do-file can be made
quite general, and that set of Stata commands may be reused or adapted for
use in similar tasks with a minimum of effort.

Global macros

Global macros are distinguished from local macros by their manner of
creation (via the global statement) and means of reference. We may refer
to global macro george as $george, with the dollar sign taking the place of
the punctuation surrounding the local macro’s name when it is dereferenced.
Global macros are often used to store items parametric to a program, such as
a character string with today’s date that is to be embedded in all filenames
created by the program, or the name of a default directory.

Generally, unless there is an explicit need for a global macro (that is, a
symbol with global scope), it is preferable to use a local macro. It is easy
to forget that a particular symbol was defined in do-file A, and having that

8

definition still operative in do-file G or H may wreak havoc—and be quite
difficult to track down. The same good programming practices that authors
of FORTRAN or C programs are exhorted to follow: “keep definitions local
unless they must be visible outside the module” is good advice for Stata
programmers as well.

Extended macro functions and list functions

Stata contains a versatile library of functions that may be applied to
macros: the extended functions (help extended fcn, or [P] macro). These
functions allow the contents of macros to be readily manipulated:

Exhibit 7

. local country US UK DE FR

. local wds: word count ‘country’

. display "There are ‘wds’ countries:"
There are 4 countries:

. forvalues i = 1/‘wds’ {
2. local wd: word ‘i’ of ‘country’
3. display "Country ‘i’ is ‘wd’"
4. }

Country 1 is US
Country 2 is UK
Country 3 is DE
Country 4 is FR

In this example, we use the word count and word # of extended functions,
both of which operate on strings. Note that we do not enclose the macro’s
value (‘country’) in double quotes, for it then would be considered a single
“word”.

A wide variety of extended functions perform useful tasks such as extract-
ing the variable label or value label from a variable, or determining its data
type or display format; extracting the row or column names from a Stata
matrix; or generating a list of the files in a particular directory that match
a particular pattern (e.g., *.dta). The handy subinstr function allows a
particular pattern to be substituted in a macro, either the first time it is
encountered or in all instances.

Another very useful set of functions support the manipulation of lists
held in local macros. These functions, described in help macrolists or
[P] macro lists, may be used to identify the unique elements of a list, or the
duplicate entries; to sort a list; and to combine lists with Boolean operators

9

such as AND, OR. A set of handy list functions allow one list’s contents
to be “subtracted” from another, identifying the elements of list A that are
not duplicated in list B, and to test lists for “equality” (defined for lists
as containing the identical elements in the same order; an alternate form
tests for “weak equality”, which does not consider ordering). A list function
(posof) may be used to determine whether a particular entry exists in a list.
An excellent discussion of many of these issues may be found in Cox (2003).

Scalars

The distinction between macros and Stata’s scalars is no longer numeric
content, since both macros and scalars may now contain string values. How-
ever, the length of a string scalar is limited to the length of a string variable
(80 in Intercooled Stata, 244 in Stata/SE: [R] limits), whereas a macro’s
length is for most purposes unlimited (actually a finite 67,784 characters in
Intercooled Stata, and over one million in Stata/SE). For most purposes, the
real relevance of Stata’s scalars is in their use in a numeric context. When
a numeric quantity is stored in a macro, it must be converted from its inter-
nal (binary) representation into a printable form. That conversion is done
with maximum accuracy, but incurs an overhead, particularly if the numeric
quantity is non-integer. By storing the result of a computation (e.g., the
mean or standard deviation of a variable) in a scalar, no conversion of its
value need take place, and the result is held in Stata’s full numeric precision.
For this reason, most of Stata’s statistical and estimation commands return
various numeric results as scalars (as we discuss below). A scalar may be
referred to in any Stata command by its name:

Exhibit 8

. scalar root2 = sqrt(2.0)

. gen rootGDP = gdp*root2

Thus, the distinction between a macro and a scalar appears when it is refer-
enced: the macro must be dereferenced to refer to its value, while the scalar
is merely named.2 However, a scalar can only appear in an expression where
a Stata variable could be used. For instance, one cannot specify a scalar as
part of an in range qualifier, since its value will not be extracted. It may

2Stata is capable of working with scalars of the same name as Stata variables. As the
manual suggests, Stata will not become confused, but you well may. Avoid using the same
names for both entities!

10

be used in an if exp qualifier, since that contains a numeric expression.

Stata’s scalars may play a useful role in a complicated do-file. By defin-
ing scalars at the beginning of the program and referring to them throughout
the code, one may make the program parametric, and avoid the difficulties of
changing various constants in the program’s statements in each of the lines in
which they appear. A researcher often needs to repeat a complex data gen-
eration task for a different category: e.g. 18-24 year old subjects rather than
25-39 year old subjects, with the qualifiers for minimum and maximum age
appearing throughout the program. By defining those age limits as scalars at
the program’s outset, altering its function is greatly simplified, and reliability
is enhanced.

Loop constructs

One of Stata’s most powerful features is the ability to write a versa-
tile Stata program without a large number of repetitive statements. Many
Stata commands contribute to this parsimony of expression: for instance,
the features of [R] egen, particularly with a by option, make it possible to
avoid many explicit statements such as (in pseudo-code) compute mean of

age for race==1; compute mean of age for race==2; etc. But two of
Stata’s most useful commands are not to be found in the Reference Manual:
[P] forvalues and [P] foreach. Even in the Stata 9 documentation, these
commands’ full descriptions are to be found in the Programming Manual, so
if you’re going to make heavy use of the constructs discussed in this talk,
that manual is well worth acquiring. These versatile tools have essentially
supplanted other mechanisms in Stata for looping. One may use [P] while
to construct a loop, but you must furnish the counter yourself (presumably
with a local macro). The command for is now deprecated and is no longer
described in the manuals: for good reason, as for only allowed a single
command to be included in a loop structure (or multiple commands with a
tortured syntax) and rendered nested loops almost impossible.

In contrast, the [P] forvalues and [P] foreach commands use a syntax
familiar to users of C or other modern programming languages: the command
is followed by a left brace ({), one or more following command lines, and a
terminating line containing only a right brace (}). In Stata 8 and 9, that
separation of the braces from the “body” of the loop is mandatory. You may
place as many lines in the “loop body” as are needed. A simple numeric loop
may thus be constructed as:

11

Exhibit 9

. forvalues i = 1/4 {
2. gen double lngdp‘i’ = log(gdp‘i’)
3. summ lngdp‘i’
4. }

Variable Obs Mean Std. Dev. Min Max

lngdp1 400 7.931661 .59451 5.794211 8.768936

Variable Obs Mean Std. Dev. Min Max

lngdp2 400 7.942132 .5828793 4.892062 8.760156

Variable Obs Mean Std. Dev. Min Max

lngdp3 400 7.987095 .537941 6.327221 8.736859

Variable Obs Mean Std. Dev. Min Max

lngdp4 400 7.886774 .5983831 5.665983 8.729272

In this example, we define the local macro i as the loop index; following
an equals sign, we give the range of values that i is to take on. A range
may be as simple as 1/4, or 10(5)50, indicating 10 to 50 in steps of 5; or
100(-10)20, from 100 to 20 counting down by tens. Other syntaxes for the
range are available; see [P] forvalues for details.

This example provides one of the most important uses of [P] forvalues:
looping over variables where the variables have been given names with an
integer component, which avoids the need for separate statements for each
of the variables. The integer component need not be a suffix; we could
loop over variables named ctyNgdp just as readily given our understanding
of local macros. Or, say that we have variable names with more than one
integer component:

Exhibit 10

. forvalues y = 1995(2)1999 {
2. forvalues i = 1/4 {
3. summ gdp‘i’_‘y’
4. }
5. }

Variable Obs Mean Std. Dev. Min Max

gdp1_1995 400 3226.703 1532.497 328.393 6431.328

Variable Obs Mean Std. Dev. Min Max

gdp2_1995 400 3242.162 1525.788 133.2281 6375.105

Variable Obs Mean Std. Dev. Min Max

gdp3_1995 400 3328.577 1457.716 559.5993 6228.302

12

Variable Obs Mean Std. Dev. Min Max

gdp4_1995 400 3093.778 1490.646 288.8719 6181.229

Variable Obs Mean Std. Dev. Min Max

gdp1_1997 400 3597.038 1686.571 438.5756 7083.191

Variable Obs Mean Std. Dev. Min Max

gdp2_1997 400 3616.478 1677.353 153.0657 7053.826

Variable Obs Mean Std. Dev. Min Max

gdp3_1997 400 3710.242 1603.25 667.2679 6948.194

Variable Obs Mean Std. Dev. Min Max

gdp4_1997 400 3454.322 1639.356 348.2078 6825.981

Variable Obs Mean Std. Dev. Min Max

gdp1_1999 400 3388.038 1609.122 344.8127 6752.894

Variable Obs Mean Std. Dev. Min Max

gdp2_1999 400 3404.27 1602.077 139.8895 6693.86

Variable Obs Mean Std. Dev. Min Max

gdp3_1999 400 3495.006 1530.602 587.5793 6539.717

Variable Obs Mean Std. Dev. Min Max

gdp4_1999 400 3248.467 1565.178 303.3155 6490.291

As we see here, a nested loop is readily constructed with two [P] forvalues
statements.

foreach

As useful as [P] forvalues may be, the [P] foreach statement is even
more generally useful in constructing efficient do-files. This command inter-
acts perfectly with some of Stata’s most common constructs: the macro, the
varlist and the numlist. Like [P] forvalues, a local macro is defined as the
loop index, but rather than cycling through a set of numeric values, [P] fore-
ach specifies that the loop index iterates through the elements of a local
(or global) macro, or the variable names of a varlist, or the elements of a
numlist. The list can also be an arbitrary list of elements on the command
line or a newvarlist, the elements of which must be valid names for variables
not present in the data set.

This syntax allows [P] foreach to be used in a very flexible manner with
any set of items, irregardless of pattern. In several of the examples above, we
employed [P] foreach with the elements of a local macro defining the list. We

13

illustrate its use with a varlist with the lifeexp Reference Manual data set,
computing summary statistics, correlations with popgrowth and generating
scatterplots for each element of a varlist versus popgrowth:

Exhibit 11

. foreach v of varlist lexp-safewater {
2. summ ‘v’
3. correlate popgrowth ‘v’
4. scatter popgrowth ‘v’
5. }

Variable Obs Mean Std. Dev. Min Max

lexp 68 72.27941 4.715315 54 79
(obs=68)

popgro~h lexp

popgrowth 1.0000
lexp -0.4360 1.0000

Variable Obs Mean Std. Dev. Min Max

gnppc 63 8674.857 10634.68 370 39980
(obs=63)

popgro~h gnppc

popgrowth 1.0000
gnppc -0.3580 1.0000

Variable Obs Mean Std. Dev. Min Max

safewater 40 76.1 17.89112 28 100
(obs=40)

popgro~h safewa~r

popgrowth 1.0000
safewater -0.4280 1.0000

In the following example, we automate the construction of a [R] recode
statement. The resulting statement could just be typed out for four elements,
but imagine its construction if we had 180 country codes! Note the use of
local ++i, a shorthand way of incrementing the counter variable within the
loop.3

3The really serious Stata programmer would avoid that line and write the following
line as local rc "‘rc’ (‘=‘++i’’=‘c’)", but the rest of us may have some trouble
with that.

14

Exhibit 12

. local ctycode 111 112 136 134

. local i 0

. foreach c of local ctycode {
2. local ++i
3. local rc "‘rc’ (‘i’=‘c’)"
4. }

. display "‘rc’"
(1=111) (2=112) (3=136) (4=134)

. recode cc ‘rc’, gen(newcc)
(400 differences between cc and newcc)

. tab newcc

RECODE of
cc Freq. Percent Cum.

111 100 25.00 25.00
112 100 25.00 50.00
134 100 25.00 75.00
136 100 25.00 100.00

Total 400 100.00

The [P] foreach statement can also be used to advantage with nested loops.
One may combine [P] foreach and [P] forvalues in a nested loop structure,
as illustrated here:

Exhibit 13

. local country US UK DE FR

. local yrlist 1995 1999

. forvalues i = 1/4 {
2. local cname: word ‘i’ of ‘country’
3. foreach y of local yrlist {
4. rename gdp‘i’_‘y’ gdp‘cname’_‘y’
5. }
6. }

. summ gdpUS*

Variable Obs Mean Std. Dev. Min Max

gdpUS_1995 400 3226.703 1532.497 328.393 6431.328
gdpUS_1999 400 3388.038 1609.122 344.8127 6752.894

It is a good idea to use indentation (either spaces or tabs) to align the loop
body statements as shown here; although Stata does not care (as long as
the braces appear as required) it makes the do-file much more readable and
easier to revise at a later date.

In summary, the [P] foreach and [P] forvalues statements are essential

15

components of any do-file writer’s toolkit. Whenever you see a set of repeti-
tive statements in a Stata do-file, it is likely to mean that its author did not
understand how one of these loop constructs could have made the program
(and its upkeep) simpler. An excellent discussion of the loop commands is
to be found in Cox (2002).

Matrices

Stata has contained a full-featured matrix language, for the last several
versions, and supports a broad range of matrix operations on real matrices, as
described in [P] matrix. The big news with Stata version 9 is the addition
of Mata, a matrix programming language which puts Stata on a par (or
better!) with matrix languages such as MATLAB, GAUSS or Ox in terms
of both capabilities and speed. Since most of us have yet to experience The
Joy of Mata, I will confine my remarks to Stata 8 matrix functionality, which
remains available in Stata version 9.

For those Stata users who are not developing their own ado-files, Stata
matrices are likely to be useful in two particular contexts: that of saved
results, and as a way of organizing information for presentation. Most of
Stata’s statistical and estimation commands generate one or more matri-
ces “behind the scenes”, For instance, [R] regress (like all Stata estimation
commands) produces matrices e(b) and e(V) as the row vector of estimated
coefficients (a 1× k matrix) and the estimated variance-covariance matrix of
the coefficients (a k × k matrix), respectively. One may examine those ma-
trices with the matrix list command or copy them for use in your program
with the matrix statement: e.g., matrix beta = e(b) will create a matrix
beta in your program as a copy of the last estimation command’s coefficient
vector. Stata matrices are rather unique in that their elements may be ad-
dressed both conventionally, with row and column numbers (counting from
1, not 0) and by their row and column names: mat vv = v["gdp2","gdp3"]

will extract the estimated covariance of the coefficients on gdp2 and gdp3.
Note that references to matrix elements appear in square brackets. All Stata
matrices have two subscripts; there is no vector data type, so that both sub-
scripts must be given in any reference. A range of rows (columns) may be
specified in an expression; see [P] matrix for details.

Stata’s matrices are often useful devices for housekeeping purposes: for
instance, for the accumulation of results that are to be presented in tabular

16

form.4 Just as [R] tabstat may generate descriptive statistics for a set of by-
groups, statsmat (Cox and Baum, available via ssc) can be used to generate
a matrix of descriptive statistics for a set of variables, or a single variable over
by-groups. Stata matrices have row and column labels, and those labels may
be manipulated by matrix rownames, matrix colnames and several macro
extended functions (described previously). This allows control of the row and
column headings on tabular output in a quite flexible way. Stata’s matrix
operators make it possible to assemble a matrix from several submatrices: for
instance, one matrix for each country in a multi-country sample. In summary,
judicious use of Stata’s matrices ease the burden of many housekeeping tasks,
and make it feasible to update material in tabular form without retyping.

return and ereturn

Each of Stata’s commands reports its results: sometimes noisily, as when
a non-zero return code is accompanied by an error message (help rc), but
usually quite silently. The user may be unaware of the breadth and usefulness
of the results made available for further use by Stata commands. Raising
one’s awareness of this facility can greatly simplify one’s work with Stata,
since a do-file may be constructed to use the results of a previous statement
in a computation, title, graph label, or even in a conditional statement.

We must distinguish between r-class and e-class commands. Each Stata
command is classified in a class, which may be r, e, or (less commonly) s. This
applies to both those commands which are built-in (like [R] summarize or
[R] regress) and to the 80% of official Stata commands that are implemented
in the ado-file language.5 The e-class commands are Estimation commands,
all of which must return e(b) and e(V) (the estimated parameter vector
and its variance-covariance matrix, respectively) to the calling program, as
well as other information (help ereturn). Almost all other official Stata
commands are r-class commands which return Results to the calling program
(help return). Let us deal first with the simpler case of r-class commands.

Virtually every command—including those which you might not think of
as generating results—places items in the return list, which may be displayed
by the command of the same name.6 For instance, consider [R] describe:

4A good discussion of matrices for housekeeping is presented in Watson (2005).
5If this distinction interests you, [R] which will either report that a command is built-in

(i.e., compiled code) or located in a particular ado-file on your disk.
6Significant exceptions: [R] generate and [R] egen.

17

Exhibit 14

. webuse abdata,clear

. describe

Contains data from http://www.stata-press.com/data/r8/abdata.dta
obs: 1,031

vars: 30 3 Sep 2002 12:25
size: 105,162 (99.8% of memory free)

storage display value
variable name type format label variable label

c1 str9 %9s
ind float %9.0g
year float %9.0g
emp float %9.0g
wage float %9.0g
cap float %9.0g
indoutpt float %9.0g
n float %9.0g
w float %9.0g
k float %9.0g
ys float %9.0g
rec float %9.0g
yearm1 float %9.0g
id float %9.0g
nL1 float %9.0g
nL2 float %9.0g
wL1 float %9.0g
kL1 float %9.0g
kL2 float %9.0g
ysL1 float %9.0g
ysL2 float %9.0g
yr1976 byte %8.0g year== 1976.0000
yr1977 byte %8.0g year== 1977.0000
yr1978 byte %8.0g year== 1978.0000
yr1979 byte %8.0g year== 1979.0000
yr1980 byte %8.0g year== 1980.0000
yr1981 byte %8.0g year== 1981.0000
yr1982 byte %8.0g year== 1982.0000
yr1983 byte %8.0g year== 1983.0000
yr1984 byte %8.0g year== 1984.0000

Sorted by: id year

. return list

scalars:
r(N) = 1031
r(k) = 30

r(width) = 98
r(N_max) = 494610
r(k_max) = 5000

r(widthmax) = 50848
r(changed) = 0

. local sb: sortedby

. di "dataset sorted by : ‘sb’"
dataset sorted by : id year

18

The return list contains items of a single type: scalars. Note that r(N) and
r(k) provide the number of observations and variables present in the data
set in memory while r(changed) is an indicator variable that will be set to
1 as soon as a change is made in the data set. We also demonstrate here
how information about the data set’s sort order may be retrieved by one of
the extended macro functions discussed earlier. Any of the scalars defined
in the return list may be used in a following statement: note that the return
list need not be displayed, as every [R] describe command will define this
set of scalars. A subsequent r-class command will replace the contents of the
return list with its return values, so that if one wants to use these items,
they should be saved to local macros or named scalars. For a more practical
example, consider [R] summarize:

Exhibit 15

. summarize emp, detail

emp

Percentiles Smallest
1% .142 .104
5% .431 .122

10% .665 .123 Obs 1031
25% 1.18 .125 Sum of Wgt. 1031

50% 2.287 Mean 7.891677
Largest Std. Dev. 15.93492

75% 7.036 101.04
90% 17.919 103.129 Variance 253.9217
95% 32.4 106.565 Skewness 3.922732
99% 89.2 108.562 Kurtosis 19.46982

. return list

scalars:
r(N) = 1031

r(sum_w) = 1031
r(mean) = 7.891677013539667
r(Var) = 253.9217371514514
r(sd) = 15.93492193741317

r(skewness) = 3.922731923543386
r(kurtosis) = 19.46982480250623

r(sum) = 8136.319000959396
r(min) = .1040000021457672
r(max) = 108.5619964599609
r(p1) = .1420000046491623
r(p5) = .4309999942779541

r(p10) = .6650000214576721
r(p25) = 1.179999947547913
r(p50) = 2.286999940872192
r(p75) = 7.035999774932861
r(p90) = 17.91900062561035
r(p95) = 32.40000152587891
r(p99) = 89.19999694824219

. scalar iqr = r(p75) - r(p25)

19

. di "IQR = " iqr
IQR = 5.8559998

. scalar semean = r(sd)/sqrt(r(N))

. di "Mean = " r(mean) " S.E. = " semean
Mean = 7.891677 S.E. = .49627295

We invoke the detail option to display the full range of results available (in
this case, all in the form of scalars) after the [R] summarize command. We
compute the inter-quartile range of the variable and the standard error of
the mean and display those quantities. We very often need the mean of a
variable for further computations, but do not wish to display the results of
[R] summarize; in this case, the meanonly option of [R] summarize both
suppresses output and does not calculate the variance or standard deviation
of the series, which are more computationally demanding than calculating
the mean. With this option, the scalars r(N), r(mean), r(min), r(max)

are still available.

When working with time series or panel data, it is often useful to know
whether the data have been [TS] tsset, and if so, what variable is serving as
the calendar variable and (if present) the panel variable. For instance:

Exhibit 16

. tsset
panel variable: id, 1 to 140
time variable: year, 1976 to 1984

. return list

scalars:
r(tmax) = 1984
r(tmin) = 1976
r(imax) = 140
r(imin) = 1

macros:
r(panelvar) : "id"
r(timevar) : "year"

r(unit1) : "."
r(tsfmt) : "%9.0g"
r(tmaxs) : "1984"
r(tmins) : "1976"

In this example, we may note that the returned scalars include the first
and last time periods in this panel data set and the range of the id variable,
which is designated as r(panelvar). The macros also include the time series
calendar variable r(timevar) and the range of that variable in a form that
can be readily manipulated (e.g., for graph titles).

20

A number of statistical commands are r-class, since they are not viewed
as estimating a model. For instance, [R] correlate will return one estimated
correlation coefficient, irrespective of the number of variables in the com-
mand’s varlist: the correlation of the last and penultimate variables.7 The
[R] ttest command is also r-class, so that we may access its return list to
retrieve all of the quantities it computes:

Exhibit 17

. g lowind = (ind<6)

. ttest emp, by(lowind)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 434 8.955942 .9540405 19.87521 7.080816 10.83107
1 597 7.11799 .5019414 12.26423 6.132201 8.103779

combined 1031 7.891677 .496273 15.93492 6.917856 8.865498

diff 1.837952 1.004043 -.1322525 3.808157

Degrees of freedom: 1029

Ho: mean(0) - mean(1) = diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
t = 1.8306 t = 1.8306 t = 1.8306

P < t = 0.9663 P > |t| = 0.0675 P > t = 0.0337

. return list

scalars:
r(sd) = 15.93492193741317

r(sd_2) = 12.26422618476487
r(sd_1) = 19.87520847697869

r(se) = 1.004042693732077
r(p_u) = .0337282628926325
r(p_l) = .9662717371073675

r(p) = .067456525785265
r(t) = 1.83055206312211

r(df_t) = 1029
r(mu_2) = 7.117989959978378
r(N_2) = 597

r(mu_1) = 8.955942384452314
r(N_1) = 434

ereturn list

An even broader array of information is provided after any e-class (Esti-
mation) command, displayable via ereturn list. Most e-class commands

7If a whole set of correlations are required for further use, use mat accum C = varlist,
dev nocons followed by mat Corr = corr(C).

21

will return four types of Stata objects: scalars such as e(N), summarizing
the estimation process; macros, providing such information as the name of
the response variable (e(depvar) and the estimation method (e(model));
matrices e(b), e(V) as described above; and a Stata function, e(sample),
which will return 1 for each observation included in the estimation sample,
zero otherwise. For example, consider a simple regression:

Exhibit 18

. regress emp wage cap

Source SS df MS Number of obs = 1031
F(2, 1028) = 1160.71

Model 181268.08 2 90634.04 Prob > F = 0.0000
Residual 80271.3092 1028 78.0849311 R-squared = 0.6931

Adj R-squared = 0.6925
Total 261539.389 1030 253.921737 Root MSE = 8.8366

emp Coef. Std. Err. t P>|t| [95% Conf. Interval]

wage -.3238453 .0487472 -6.64 0.000 -.4195008 -.2281899
cap 2.104883 .0440642 47.77 0.000 2.018417 2.191349

_cons 10.35982 1.202309 8.62 0.000 8.000557 12.71908

. ereturn list

scalars:
e(N) = 1031

e(df_m) = 2
e(df_r) = 1028

e(F) = 1160.711019312048
e(r2) = .6930813769821942

e(rmse) = 8.83656783747737
e(mss) = 181268.0800475577
e(rss) = 80271.30921843699

e(r2_a) = .6924842590385798
e(ll) = -3707.867843699609

e(ll_0) = -4316.762338658647

macros:
e(depvar) : "emp"

e(cmd) : "regress"
e(predict) : "regres_p"

e(model) : "ols"

matrices:
e(b) : 1 x 3
e(V) : 3 x 3

functions:
e(sample)

. local regressors: colnames e(b)

. di "Regressors: ‘regressors’"
Regressors: wage cap _cons

Two particularly useful scalars on this list are e(df m), e(df r): the Model

22

and Residual degrees of freedom, respectively (the numerator and denomi-
nator d.f. for e(F)). The e(rmse) allows retrieval of the Root MSE of the
equation. Two of the scalars do not appear in the printed output: e(ll),

e(ll 0), the likelihood function evaluated for the estimated model and for
the “null model”, respectively.8 Although the name of the response variable
is available in macro e(depvar), the names of the regressors are not shown
here. They may be retrieved from the matrix e(b), as illustrated in the
example. Since the estimated parameters are returned in a 1× k row vector,
the variable names are column names of that matrix.

Many official Stata commands—as well as many user-written routines—
make use of the information available via ereturn list. How can a [R] re-
gression diagnostics command like ovtest compute the necessary quan-
tities after [R] regress? Because it can retrieve all relevant information:
the names of the regressors, dependent variable, and the net effect of all if
exp or in range conditions (via e(sample)) from the results left behind as
e-class scalars, macros, matrices or functions by the e-class command. Any
do-file you write can perform the same magic: just use ereturn list to find
the names of each quantity left behind for your use, and store the results you
need in local macros or scalars immediately after the e-class command. As
noted above, retaining scalars as scalars is preferable from the point of view
of precision.

estimates and estout

We should also note that e-class commands, producing estimates, may be
followed by any of the estimates suite of commands: estimates may be saved
in sets, manipulated, and combined in tabular form. The [R] estimates com-
mand that addresses the need to organize several equations’ estimates into
a tabular form for scrutiny and, perhaps, publication is estimates table.
One specifies that a table is to be produced containing several sets’ results,
and Stata automatically handles alignment of the coefficients into the ap-
propriate rows of a table. Options allow the addition of estimated standard
errors (se), t-values (t), p-values (p) or significance stars (star). Each of
these quantities may be given its own display [R] format if the default is not
appropriate, so that the coefficients, standard errors, t- and p-values need not
be rounded by hand. The order of coefficients in the table may be controlled

8In this case of OLS regression, the “null model” is that considered by the ANOVA F :
the intercept-only model with all slope coefficients set equal to zero.

23

by the keep() option (rather than relying on the order in which they ap-
pear in the list of estimates’ contents), and certain variables may be removed
from the coefficient table with drop(). Published results often omit certain
regressors, such as sets of indicator variables; this may be achieved with this
option. Any result left in e() (see [P] ereturn) may be added to the table
with the stat() option, as well as several additional criteria such as the AIC
and BIC model selection criteria. As an example, using several specifications
from the housing price model:

Exhibit 19

. generate rooms2 = rooms^2

. qui reg lprice rooms

. est store model1

. qui reg lprice rooms rooms2 ldist

. est store model2

. qui reg lprice ldist stratio lnox

. est store model3

. qui reg lprice lnox ldist rooms stratio

. est store model4

. est table model1 model2 model3 model4, stat(r2_a rmse) ///
> b(%7.3g) se(%6.3g) p(%4.3f)

Variable model1 model2 model3 model4

rooms .369 -.821 .255
.0201 .183 .0185
0.000 0.000 0.000

rooms2 .0889
.014

0.000
ldist .237 -.157 -.134

.0255 .0505 .0431
0.000 0.002 0.002

stratio -.0775 -.0525
.0066 .0059
0.000 0.000

lnox -1.22 -.954
.135 .117

0.000 0.000
_cons 7.62 11.3 13.6 11.1

.127 .584 .304 .318
0.000 0.000 0.000 0.000

r2_a .399 .5 .424 .581
rmse .317 .289 .311 .265

legend: b/se/p

In this example, we estimate four different models of median housing price

24

and use estimates table to present the coefficients, estimated standard
errors and p-values in tabular form. The stats option is employed to add
summary statistics from the e() results.

After a final set of results are chosen, we will want to move these tables to
a different output format: preferably without requiring manual intervention
in, say, a spreadsheet. A full-featured solution to preparing publication-
quality tables in various output formats has recently been made available
to the Stata user community by Ben Jann: estout. This routine, which
he describes as a wrapper for estimates table, allows the reformatting
of stored estimates in a variety of formats, the combination of summary
statistics from model estimation, and output to several formats, including
tab-delimited (for word processors or spreadsheets, LATEX, and HTML. A
companion program, estadd, allows the addition of user-specified statistics
to the e() arrays accessible by [R] estimates. These useful programs are
available via [R] ssc.

As an example, we format the four models of median housing price for
inclusion in a LATEX document. This rather involved example of the use of
estout places the LATEX headers and footers in the file and ensures that all
items are in proper format for that typesetting language (e.g., the use of
cons would cause a formatting error unless modified).

Exhibit 20

.

. estout model1 model2 model3 model4 using ch3.19b_est.tex, ///
> style(tex) replace title("Models of median housing price") ///
> prehead(\\begin{table}[htbp]\\caption{{\sc @title}}\\centering\\medskip ///
> \begin{tabular}{l*{@M}{r}}) ///
> posthead("\hline") prefoot("\hline") ///
> varlabels(rooms2 "rooms2" _cons "constant") legend ///
> stats(N F r2_a rmse, fmt(%6.0f %6.0f %8.3f %6.3f) ///
> labels("N" "F" "\bar{R}^2" "RMS error")) ///
> cells(b(fmt(%8.3f)) se(par format(%6.3f))) ///
> postfoot(\hline\end{tabular}\end{table}) notype

The LATEX fragment produced by this command may now be inserted directly
in a research paper. Virtually every detail of the table may be modified by
estout directives. Since LATEX is a markup language (like HTML), format-
ting changes may be programmed: a flexibility lacking from other estout

output options such as tab-delimited text for inclusion in a word processing
document.

25

Table 1: Models of median housing price

model1 model2 model3 model4
b/se b/se b/se b/se

rooms 0.369 -0.821 0.255
(0.020) (0.183) (0.019)

rooms2 0.089
(0.014)

ldist 0.237 -0.157 -0.134
(0.026) (0.050) (0.043)

stratio -0.077 -0.052
(0.007) (0.006)

lnox -1.215 -0.954
(0.135) (0.117)

constant 7.624 11.263 13.614 11.084
(0.127) (0.584) (0.304) (0.318)

N 506 506 506 506
F 337 169 125 176
R̄2 0.399 0.500 0.424 0.581
RMS error 0.317 0.289 0.311 0.265

26

The program and syntax statements

In this last part of the talk we discuss the rudiments of a more ambitious
task: writing one’s own ado-file, or Stata command. The distinction between
our prior examples of do-file construction and an ado-file is precisely that: if
you have written myprog.do, you may execute it with the Stata command
do myprog. If you have written myrealprog.ado, on the other hand, you
may invoke it as the Stata command myrealprog as long as it is defined on
the [R] adopath. A nice illustration of transforming a do-file into an ado-file
is presented in Watson (2005).

There are more profound differences, to be sure; ado-file programs may
accept arguments in the form of a varlist, if exp or in range conditions, or
options. Nevertheless, one need not go very far beyond the do-file examples
we display above in order to generate a Stata command. Consider our dis-
covery that the [R] summarize command does not compute the standard
error of the mean. We might have need for that quantity for a number of
variables, and despite other ways of computing it with existing commands,
let us write a program to do so. In this example, we define the program in a
do-file. In practice, we would place the program in its own file, semean.ado:

Exhibit 21

. capture program drop semean

. *! semean v1.0.0 CFBaum 16dec2004

. program define semean, rclass
1. version 8.2
2. syntax varlist(max=1 numeric)
3. quietly summarize ‘varlist’
4. scalar semean = r(sd)/sqrt(r(N))
5. di _n "Mean of ‘varlist’ = " r(mean) " S.E. = " semean
6. return scalar semean = semean
7. return scalar mean = r(mean)
8. return local var ‘varlist’
9. end

. semean emp

Mean of emp = 7.891677 S.E. = .49627295

. return list

scalars:
r(mean) = 7.891677013539667

r(semean) = .4962729540865196

macros:
r(var) : "emp"

We start with a capture program drop progname command, since once a
program has been loaded into Stata’s memory, it is retained for the duration

27

of the session. As we may be repeatedly defining our program during its
development, we want to ensure that the latest version is retained. The
following comment line, starting with *!, is a special form that will show
up in the [R] which command. It is always a good idea to document an
ado-file with a sequence number, author name, and date. The [P] program
statement identifies the program name: in this case semean, which we have
ascertained via [R] findit is not the name of an existing Stata command, and
defines the program as rclass. Unless a program is defined as rclass or
eclass, it may not return values. The following [P] version line states that
the ado-file requires Stata 8.2 (or better), and ensures that the program will
obey Stata 8.2 syntax when executed by Stata 9 or Stata 10.

The following line, [P] syntax, provides the ability for a Stata program to
parse its command line and extract the program’s arguments for use within
the program. In this simple example, we only use one element of [P] syntax:
specifying that the program has a mandatory varlist with a maximum of one
element. Stata will enforce the constraint that a single name appears on the
command line, and that that name refers to an existing numeric variable.
The following lines echo those of the do-file example above, computing the
scalar semean as the standard error of the mean. The next lines then use
[P] return to place two scalars, semean and mean, and one macro (the vari-
able name) in the return array. As the example demonstrates, invoking the
program generates one line of output, and return list displays the three
items returned from the program for future use.

All well and good, but a statistical command should accept if exp and
in range qualifiers if it is to be useful. We might also want to use this
program as a calculator, without printed output; we could always invoke it
[R] quietly, but an option to suppress output would be useful. It turns out
that very little work is needed to add these useful features to our program.
The definition of if exp and in range qualifiers and program options is all
handled by the [P] syntax statement. In the improved program, [if] and
[in] denote that each of these qualifiers may be used; the square brackets
[] in [P] syntax signify an optional component of the command. The [,

noPRInt] indicates that the command has a “noprint” option, and that it
is truly optional (paradoxically one may have non-optional or “required”
options on a Stata command). We then illustrate the revised program:

28

Exhibit 22

. capture program drop semean

. *! semean v1.0.1 CFBaum 16dec2004

. program define semean, rclass
1. version 8.2
2. syntax varlist(max=1 numeric) [if] [in] [, noPRInt]
3. marksample touse
4. quietly summarize ‘varlist’ if ‘touse’
5. scalar semean = r(sd)/sqrt(r(N))
6. if ("‘print’" ~= "noprint") {
7. di _n "Mean of ‘varlist’ = " r(mean) " S.E. = " semean
8. }
9. return scalar semean = semean

10. return scalar mean = r(mean)
11. return scalar N = r(N)
12. return local var ‘varlist’
13. end

. semean emp if year < 1982, noprint

. return list

scalars:
r(N) = 778

r(mean) = 8.579679950573757
r(semean) = .6023535944792725

macros:
r(var) : "emp"

Since with an if exp or in range qualifier something less than the full sam-
ple will be analyzed, we have returned r(N) to indicate the sample size used
in the computations. The marksample touse command makes the if exp or
in range qualifier operative if one was given on the command line; the com-
mand “marks” those observations which are to enter the computations in an
indicator variable touse. This variable is a tempvar, or temporary variable,
which (like a local macro) will not survive beyond the program’s scope. One
may explicitly create these temporary variables with the [P] tempvar com-
mand, and when a variable is needed within a program, that is the preferred
style to avoid possible conflicts with the contents of the data set. Since the
variable is temporary, we refer to it as we would a local macro, as ‘touse’,
which is an alias to its internal (arbitrary) name. We must add if ‘touse’

to each statement in the program which works with the input varlist: in this
case, only the [R] summarize statement.

Two additional features would be useful in the context of this program.
First, we would like it to be byable: to permit its use with a by varlist:
prefix. Since we are not creating any new variables with this program, that
may be accomplished by merely adding byable(recall) to the [P] program

29

statement (see [P] byable for details). We also might like to use time series
operators (L., D., F.) with our program; adding the ts option to the varlist
will enable that. To see these changes in practice:

Exhibit 23

. capture program drop semean

. *! semean v1.0.2 CFBaum 16dec2004

. program define semean, rclass byable(recall)
1. version 8.2
2. syntax varlist(max=1 ts numeric) [if] [in] [, noPRInt]
3. marksample touse
4. quietly summarize ‘varlist’ if ‘touse’
5. scalar semean = r(sd)/sqrt(r(N))
6. if ("‘print’" ~= "noprint") {
7. di _n "Mean of ‘varlist’ = " r(mean) " S.E. = " semean
8. }
9. return scalar semean = semean

10. return scalar mean = r(mean)
11. return scalar N = r(N)
12. return local var ‘varlist’
13. end

. semean D.emp if year == 1982

Mean of D.emp = -.79091424 S.E. = .17187137

. bysort year: semean emp

-> year = 1976

Mean of emp = 9.8449251 S.E. = 2.1021706

-> year = 1977

Mean of emp = 8.5351159 S.E. = 1.393463

-> year = 1978

Mean of emp = 8.6443428 S.E. = 1.3930028

-> year = 1979

Mean of emp = 8.7162357 S.E. = 1.4311206

-> year = 1980

Mean of emp = 8.5576715 S.E. = 1.4611882

-> year = 1981

Mean of emp = 7.7214 S.E. = 1.3467025

-> year = 1982

Mean of emp = 6.9304857 S.E. = 1.2245105

-> year = 1983

Mean of emp = 5.2992564 S.E. = 1.3286027

-> year = 1984

30

Mean of emp = 2.2205143 S.E. = .48380791

Finally, for pedagogical purposes, we demonstrate the addition of an inter-
esting capability to the program: its ability to operate on a transformation
of the varlist without first generating that variable. We make use of the
[P] tempvar statement to allocate a temporary variable target which will
be equated to the varlist, in the absence of the function() argument, or
that function of varlist if specified. The local macro tgt is used to store the
“target” of the command, and used later to display the variable of interest
(and the returned local macro r(var)). We place the if ‘touse’ qualifier
on the [R] generate statement, and [P] capture the result of that statement
to catch any errors: for instance, an attempt to use a function not known to
Stata. The rc (return code) is tested for a non-zero value, which will signify
an error in the [R] generate command.

Exhibit 24

. capture program drop semean

. *! semean v1.1.0 CFBaum 16dec2004

. program define semean, rclass byable(recall)
1. version 8.2
2. syntax varlist(max=1 ts numeric) [if] [in] [, noPRInt FUNCtion(string)]
3. marksample touse
4. tempvar target
5. if "‘function’" == "" {
6. local tgt "‘varlist’"
7. }
8. else {
9. local tgt "‘function’(‘varlist’)"

10. }
11. capture tsset
12. capture gen double ‘target’ = ‘tgt’ if ‘touse’
13. if _rc > 0 {
14. di as err "Error: bad function ‘tgt’"
15. error 198
16. }
17. quietly summarize ‘target’
18. scalar semean = r(sd)/sqrt(r(N))
19. if ("‘print’" ~= "noprint") {
20. di _n "Mean of ‘tgt’ = " r(mean) " S.E. = " semean
21. }
22. return scalar semean = semean
23. return scalar mean = r(mean)
24. return scalar N = r(N)
25. return local var ‘tgt’
26. end

. semean emp

Mean of emp = 7.891677 S.E. = .49627295

. semean emp, func(sqrt)

Mean of sqrt(emp) = 2.1652401 S.E. = .05576835

31

. semean emp if year==1982, func(log)

Mean of log(emp) = .92474464 S.E. = .11333991

. return list

scalars:
r(N) = 140

r(mean) = .9247446421128256
r(semean) = .1133399069800714

macros:
r(var) : "log(emp)"

. semean D.emp if year==1982, func(log)

Mean of log(D.emp) = -2.7743942 S.E. = .39944652

. return list

scalars:
r(N) = 22

r(mean) = -2.774394169773632
r(semean) = .3994465211383764

macros:
r(var) : "log(D.emp)"

As the example demonstrates, the program operates properly in the case of
applying a transformation that reduces the sample size: the log of D.emp is
only defined for positive changes in employment, and most of the 140 firms
in this sample suffered declines in employment in 1982.

The program now is capable of emuiating many of the features of an
official Stata command, and remains a very brief chunk of ado-file code.
We have only scratched the surface of what may be done in your own ado-
file: for instance, many user-written programs will generate new variables,
or perform computations based on the values of options which may have
their own default values. User-written programs may also be used to define
additional [R] egen functions, in which case their name (and the file in which
they reside) will start with g: that is, gzorch.ado will define the zorch()

function to [R] egen. You may also find yourself writing ado-file programs
in order to use [R] ml, [R] nl or [R] simulate.

Although many researchers may become very efficient users of Stata with-
out ever writing an ado-file program, others will find that “quick-and-dirty”
code that gets the job done today must be rewritten incessantly, with minor
variations, to perform a similar task tomorrow. With that epiphany, the
knowledgeable Stata user will recognize that it is a short leap to becoming
more productive by learning how to write their own ado-files, whether or not
those programs are of general use or meant to be shareable with other Stata
users.

32

Final thoughts

I hope that you may be convinced that gaining familiarity with the con-
structs I have described can reduce the likelihood of errors, provide a mech-
anism for retracing any part of your research strategy, and simplify the se-
quence of commands needed to achieve a given task. This adds generality to
your use of Stata even without invoking the added power of ado-file program-
ming. Furthermore, if like myself you are called upon to transfer some of the
technology you have developed to students, co-workers or Statalist posters,
you will have the worked examples to give them at your fingertips. Truly,
then, a little bit of Stata programming goes a long way!

0.1 References

Cox, N. J. 2001. Speaking Stata: How to repeat yourself without going mad.
Stata Journal 1(1): 86–97.

—. 2002. Speaking Stata: How to face lists with fortitude. Stata Journal
2(2): 202–222.

—. 2003. Speaking Stata: Problems with lists. Stata Journal 3(2): 185–202.

Watson, I. 2005. Further processing of estimation results: Basic programming
with matrices. Stata Journal 5(1): 83–91.

	References

