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Abstract

This paper extends the LSDV bias approximations in Bun and Kiviet
(2003) to unbalanced panels. The approximations are obtained by modify-
ing the within operator to accommodate the dynamic selection rule. They
are accurate, with higher order terms bringing only decreasing improve-
ments. This removes an important cause for limited applicability of bias
corrected LSDV estimators.
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1. Introduction

It is well known that the LSDV estimator for dynamic panel data models is not

consistent for N large and finite T . Nickell (1981) derives an expression for the

inconsistency for N → ∞, which is O (T−1). Kiviet (1995) uses asymptotic ex-

pansion techniques to approximate the small sample bias of the LSDV estimator

to also include terms of at most order N−1T−1, so offering a method to correct

the LSDV estimator for samples where N is small or only moderately large. In

Kiviet (1999) the bias approximation is more accurate, including also terms of

at most order N−1T−2. Bun and Kiviet (2003) analyze the accuracy of Kiviet’s

(1999) approximation using simpler formulas.

Monte Carlo evidence in Judson and Owen (1999) strongly supports the cor-

rected LSDV estimator (LSDVC) compared to more traditional GMM estimators

when N is only moderately large. They point out, however, that “a method for

implementing LSDVC for an unbalanced panel has not yet been implemented,”

which is clearly an important cause for their limited applicability.

This paper extends the bias approximation formulas in Bun and Kiviet (2003)

to accommodate unbalanced panels with a strictly exogenous selection rule. Monte

Carlo experiments are carried out to assess how unbalancedness affects the LSDV
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bias and the bias approximations of various order.

2. Bias approximations

Kiviet (1995), (1999) and Kiviet and Bun (2003) consider the standard dynamic

panel data model

yit = γyi,t−1 + x0itβ + ηi + �it, i = 1, ..., N and t = 1, ..., T. (2.1)

where yit is the dependent variable; xit is the ((k − 1)× 1) vector of strictly ex-

ogenous explanatory variables; ηi is an unobserved individual effect; and �it is an

unobserved white noise disturbance. Collecting observations over time and across

individuals gives

y = Dη +Wδ + �,

where y is the (NT × 1) vector of observations for the dependent variable; D =

IN ⊗ ιT is the (NT ×N) matrix of individual dummies, with ιT being the (T × 1)

vector of all unity elements; η is the (N × 1) vector of individual effects; W =∙
y−1
...X

¸
is the (NT × k) matrix of explanatory variables; y−1 is y lagged one time;

X is the (NT × (k − 1)) matrix of strictly exogenous explanatory variables; � is
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the (NT × 1) vector of white noise disturbances; and δ =

∙
γ
...β0
¸0
is the (k × 1)

vector of coefficients.

It has been long recognized that the LSDV estimator for model (2.1) is not

consistent for finite T . Nickell (1981) derives an expression for the inconsistency

for N → +∞, which is O (T−1). The following is the bias approximation obtained

by Kiviet (1999), which contains terms of higher order than T−1 :

E(δLSDV − δ) = E
h
(W 0AW )−1W 0A�

i
= (2.2)

= QE (W 0A�)−QE (W 0AWQW 0A�) +

+QE (W 0AWQW 0AW )QE (W 0A�) + o
¡
N−1T−1

¢
= c1

¡
T−1

¢
+ c2

¡
N−1T−1

¢
+ c3

¡
N−1T−2

¢
+ o

¡
N−1T−1

¢
.

where expectations are to be meant conditional on strictly exogenous regressors,

individual effects and start-up values for y, A = INT −D (D0D)−1D0 is the within

operator and Q = [E (W 0AW )]−1. The bias approximation in (2.2) is more accu-

rate than Kiviet’s (1995), where the remainder is O (N−1T−1). Bun and Kiviet

(2003) consider (2.2) but with simpler formulas for each component.

Consider, now, model (2.1), but with some observation missing in the interval

[0, T ] for some individuals. Define a selection indicator rit such that rit = 1 if
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(yit, xit) is observed and rit = 0 otherwise. From this define the dynamic selection

rule s (rit, ri,t−1) selecting only the observations that are usable for the dynamic

model, namely those for which both current values and one-time lagged values are

observable:

sit =

⎧⎪⎪⎨⎪⎪⎩
1 if (ri,t, ri,t−1) = (1, 1)

0 otherwise

, i = 1, ..., N and t = 1, ..., T

Thus, for any i the number of usable observations is given by Ti =
XT

t=1
sit .

The total number of usable observations is given by n =
XN

i=1
Ti, while T = n/N

denotes the average group size.

The unbalanced dynamic model can then be written as

sityit = sit (γyi,t−1 + x0itβ + ηi + �it) , i = 1, ..., N and t = 1, ..., T (2.3)

with the unbalanced LSDV estimator given by

δLSDV =

Ã
NX
i=1

TX
t=1

sit (wit − wi) (wit − wi)
0
!−1Ã NX

i=1

TX
t=1

sit (wit − wi) (yit − yi)

!
,

(2.4)

where w0it denotes the row of W for individual i at time t, wi = (1/Ti)
TP
t=1

sitwit
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and yi = (1/Ti)
TP
t=1

sityit (see Wooldridge (2001)).

More conveniently, we can derive (2.4) in matrix form. For each i define

the (T × 1)-vector si = [si1..., siT ]
0 and the T × T diagonal matrix Si having

the vector si on its diagonal. Define also the (NT ×NT ) block-diagonal matrix

S = diag (Si). Then, the following formulation is equivalent to model (2.3)

Sy = SDη + SWδ + S�. (2.5)

The LSDV estimator is given by

δLSDV = (W
0AsW )

−1
W 0Asy, (2.6)

where

As = S
³
I −D (D0SD)−1D0

´
S

is the symmetric and idempotent (NT ×NT ) matrix wiping out individual means

and also selecting usable observations.

Initial times may vary across individuals and are given by ti0 = min {t : si,t+1 = 1

and t = 0, 1, ..., T − 1}, so that yi,ti0 indicates the start-up value for i. Then, let

yt0 denote the (N × 1)-vector of start-up values.
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We make the following assumption: a) γ < 1 and for each i the variables in X

are stationary over time; b) �it|X,S, η, yt0 ∼ i.i.d.N (0, σ2�) ∀i, t.

Considering all expectations below as conditional on (X,S, η, yt0), the LSDV

bias is given by

E (δLSDV − δ) = E
h
(W 0AsW )

−1
W 0As�

i
. (2.7)

Under our assumption, S is strictly exogenous, so that all the properties of

normally distributed variables can be used as in Kiviet (1995) and (1999) to

derive the bias approximations. These will differ from expression (2.2) and the

approximation formulas in Bun and Kiviet (2003) only for As replacing A (of

course, the special form of As matters for the order of the approximation terms):

c1
³
T
−1´

= σ2�tr (Π) q1; (2.8)

c2

³
N−1T

−1´
= −σ2�

h
QW

0
ΠAsW + tr

³
QW

0
ΠAsW

´
Ik+1 + 2σ

2
�q11tr (Π

0ΠΠ) Ik+1
i
q1;

c3
³
N−1T

−2´
= σ4�tr (Π)

n
2q11QW

0
ΠΠ0Wq1+h³

q01W
0
ΠΠ0Wq1

´
+ q11tr

³
QW

0
ΠΠ0W

´
+ 2tr (Π0ΠΠ0Π) q211

i
q1
o
;

where Q = [E (W 0AsW )]
−1 =

h
W

0
AsW + σ2�tr (Π

0Π) e1e01
i−1
; W = E (W ); e1 =
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(1, 0, ..., 0)0 is a (k×1) vector; q1 = Qe1; q11 = e01q1; LT is the (T × T ) matrix with

unit first lower subdiagonal and all other elements equal to zero;L = IN ⊗ LT ;

ΓT = (IT − γLT )
−1; Γ = IN ⊗ ΓT ; and Π = AsLΓ.

The following three possible bias approximations emerge

B1 = c1
³
T
−1´

; B2 = B1 + c2
³
N−1T

−1´
; B3 = B2 + c3

³
N−1T

−2´
.

In the next Section we shall evaluate their performance in approximating the

LSDV bias as estimated by Monte Carlo simulations.

3. Monte Carlo Experiments

Our Monte Carlo experiments closely follows Kiviet (1995) and Bun and Kiviet

(2003), with the difference that a strictly exogenous selection rule is included.

Data for yit are generated by model (2.1) with k = 2 and for xit by

xit = ρxi,t−1 + ξit, ξit ∼ N
¡
0, σ2ξ

¢
, i = 1, ..., N and t = 1, ..., T

Initial observations yi0 and xi0 are generated following a procedure that avoids

the waste of random numbers and small sample non-stationary problems (see

8



Kiviet (1986)) and are kept fixed across replications. The long-run coefficient

β/ (1− γ) is always kept fixed to unity, so β = 1− γ; σ2� is normalized to unity;

γ and ρ alternate between 0.2 and 0.8 and σ2s alternates between 2 and 9. The

individual effects ηi are generated by assuming ηi ∼ N
¡
0, σ2η

¢
and ση = σ� (1− γ).

Kiviet (1995) finds that the signal to noise ratio of the regression, σ2s, is a key

determinant of the relative bias of estimators and therefore needs to be controlled

in the simulation. Thus, once fixing σ2s (along with γ, β and ρ) σ2ξ gets uniquely

determined by

σ2ξ = β−2
∙
σ2s −

γ2

1− γ2
σ2�

¸"
1 +

(γ + ρ)2

1 + γρ
(γρ− 1)− (γρ)2

#
.

We consider two different sample sizes,
¡
N,T

¢
= (20, 20) and

¡
N, T

¢
= (10, 40).

Then, following Baltagi and Chang (1994), we control for the extent of unbal-

ancedness as measured by the Ahrens and Pincus (1981) index:

ω =
N

T
PN

i=1 (1/Ti)

with 0 < ω ≤ 1 (ω = 1 when the panel is balanced). For each sample size we

analyze a case of mild unbalancedness (ω = 0.96) and a case of severe unbalanced-
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ness (ω = 0.32). Although not strictly required by our formulas, we exclude gaps

and set ti0 = 0 for each i. Individuals are then partitioned into two sets of equal

dimension: one set contains the first N/2 individuals with the last h observations

discarded for each i in the set, so Ti = T − h; the other contains the remaining

N/2 individuals with Ti = T for each i in the set. For each sample size we fix T

and h so that ω takes on the desired value. The details of the four panel designs

are summarized in Table 1.

-Table 1 approximately here-

To carry out the Monte Carlo experiments and calculate the bias approxima-

tions we have developed two codes in Stata, version 8 (available on request). Table

2 presents the results of our simulations for the unbalanced panels. Columns 1

to 5 show the various parametrizations for each panel design. Columns 6 and 10

show the actual LSDV biases for γ and β, respectively, as estimated by 20000

Monte Carlo replications. As expected from results of the preceding section, the

bias for both γ and β is decreasing in T . Interestingly, the bias is also decreasing

in the degree of unbalancedness for given sample size. With respect to the other

parameter of interest, σ2s, γ and ρ, the patterns found by Bun and Kiviet (2003)

are all confirmed.
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Columns 7 to 9 and 11 to 13 in Table 2 present bias approximations for γ and

β, respectively. Regardless of the degree of unabalancedness, they are accurate,

with the approximations including higher order terms being equal to the true bias

in a vast majority of cases. In addition, as it happens for the balanced designs

studied by Bun and Kiviet (2003), the leading term of the approximations already

accounts for a predominant portion of the true bias (90% on average).

-Table 2 approximately here-

4. Conclusion

This paper has derived approximations of various order to the bias of the LSDV

dynamic estimator for unbalanced panel data. The approximations are obtained

by modifying the within operator to accommodate the dynamic selection rule.

Monte Carlo experiments confirm all results by Bun and Kiviet (2003) for balanced

panels. In particular we find that the bias approximations are accurate with a

decreasing contribution to the bias of the higher order terms. We also find that

the bias is decreasing in T and in the degree of unbalancedness. Our results,

therefore, suggest that 1) the derived bias approximations can be used to construct

LSDVC estimators for unbalanced panels, removing an important cause for their
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limited applicability; 2) Bun and Kiviet’s (2003) finding that bias corrections

can be based on the simple leading term of the approximation carries over into

unbalanced panels; 3) while increasing T is always beneficial in reducing the LSDV

bias, reducing unbalancedness at the expenses of time observations, for given N

and T , may instead exacerbate the bias.
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Table 1

Panel designs

N T T Ti ω

20 20 24 16 (i ≤ 10), 24 (i > 10) 0.96
36 4 (i ≤ 10), 36 (i > 10) 0.32

10 40 48 32 (i ≤ 5), 48 (i > 5) 0.96
72 8 (i ≤ 5), 72 (i > 5) 0.32
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Table 2

Actual LSDV bias and bias approximations for unbalanced panels

σ2s T γ ρ ω Bias γ B1,γ B2,γ B3,γ Bias β B1,β B2,β B3,β

2 20 0.2 0.2 0.96 -0.021 -0.020 -0.021 -0.021 0.002 0.002 0.002 0.002

0.36 -0.019 -0.018 -0.018 -0.018 0.003 0.003 0.003 0.003

0.8 0.96 -0.038 -0.036 -0.038 -0.038 0.026 0.024 0.025 0.025

0.36 -0.034 -0.032 -0.034 -0.034 0.024 0.022 0.023 0.024

0.8 0.2 0.96 -0.102 -0.098 -0.100 -0.102 0.003 0.002 0.003 0.003

0.36 -0.072 -0.067 -0.070 -0.072 0.001 0.001 0.001 0.001

0.8 0.96 -0.108 -0.101 -0.105 -0.108 0.022 0.021 0.022 0.022

0.36 -0.076 -0.069 -0.074 -0.076 0.020 0.018 0.020 0.020

40 0.2 0.2 0.96 -0.011 -0.010 -0.011 -0.011 0.002 0.001 0.001 0.001

0.36 -0.011 -0.010 -0.010 -0.010 0.002 0.002 0.002 0.002

0.8 0.96 -0.020 -0.018 -0.019 -0.020 0.014 0.012 0.013 0.013

0.36 -0.019 -0.017 -0.018 -0.019 0.014 0.012 0.014 0.014

0.8 0.2 0.96 -0.051 -0.046 -0.050 -0.051 0.001 0.001 0.001 0.001

0.36 -0.040 -0.036 -0.039 -0.040 0.001 0.000 0.001 0.001

0.8 0.96 -0.054 -0.048 -0.052 -0.054 0.015 0.013 0.015 0.015

0.36 -0.043 -0.036 -0.042 -0.043 0.011 0.010 0.012 0.012

σ2s T γ ρ ω Bias γ B1,γ B2,γ B3,γ Bias β B1,β B2,β B3,β

9 20 0.2 0.2 0.96 -0.004 -0.004 -0.004 -0.004 0.000 0.000 0.000 0.000

0.36 -0.004 -0.004 -0.004 -0.004 0.001 0.001 0.001 0.001

0.8 0.96 -0.013 -0.012 -0.013 -0.013 0.009 0.009 0.009 0.009

0.36 -0.012 -0.011 -0.012 -0.012 0.009 0.008 0.009 0.009

0.8 0.2 0.96 -0.006 -0.006 -0.006 -0.006 0.000 0.000 0.000 0.000

0.36 -0.004 -0.004 -0.004 -0.004 0.000 0.000 0.000 0.000

0.8 0.96 -0.034 -0.032 -0.033 -0.033 0.012 0.011 0.012 0.012

0.36 -0.019 -0.017 -0.019 -0.019 0.008 0.007 0.008 0.008

40 0.2 0.2 0.96 -0.003 -0.003 -0.003 -0.003 0.000 0.000 0.000 0.000

0.36 -0.003 -0.002 -0.002 -0.002 0.000 0.000 0.000 0.000

0.8 0.96 -0.008 -0.007 -0.008 -0.008 0.006 0.005 0.005 0.005

0.36 -0.007 -0.006 -0.007 -0.007 0.005 0.005 0.005 0.005

0.8 0.2 0.96 -0.007 -0.007 -0.007 -0.007 0.000 0.000 0.000 0.000

0.36 -0.004 -0.003 -0.004 -0.004 0.000 0.000 0.000 0.000

0.8 0.96 -0.020 -0.018 -0.020 -0.020 0.007 0.005 0.006 0.006

0.36 -0.014 -0.012 -0.013 -0.014 0.006 0.005 0.006 0.006
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