From datasets to resultssets in Stata

Roger Newson
King’s College London, London, UK
roger.newson@kcl.ac.uk
http://www.kcl-phs.org.uk/rogernewson/

Distributed at the 10th UK Stata Users’ Group Meeting on 29 June 2004

1 What are resultssets?

A resultsset is a Stata dataset created as output by a Stata command. It may be simply listed to the Stata
log and/or output to a disk file and/or written to the memory, overwriting any pre-existing dataset. If you
are a SAS user converting to Stata, then note that Stata datasets do the job of SAS data sets, and Stata
resultssets do the job of SAS output data sets.

1.1 Why resultssets?

In general, a Stata dataset, or a dataset in any other format, should contain one observation per thing,
and data on attributes_of_things. For instance, in the medical sector, a dataset might have one observation
per patient, and data on the patient’s baseline characteristics. Alternatively, a dataset might have one
observation per visit to a health centre, and data on the state of the patient who made the visit. Usually,
the variables in a dataset are either primary key variables, which identify the things corresponding to the
observations, or non-key variables, which identify interesting attributes of those things. For instance, if
there is one observation per patient, then one of the variables is usually a patient ID number, which identifies
the observation uniquely. Or, if there is one observation per visit, and a patient may only make one visit
per day, then the primary key variables are usually patient ID and visit date.

Statisticians (and other data analysts) are typically provided with (or collect for themselves) a dataset
with one observation per “experimental or observational unit”, where a unit may be a patient, a patient-
day, a country-year, a car model, or some other thing. However, they are typically paid to produce plots
for presentation, or tables for publication. To do this, they really need datasets with one observation per
plotted data point, or per Y-axis label, or per X-axis label, or per table row. Axis labels and table rows do
not often correspond to the original units in the original dataset.

For instance, in the auto data, shipped with official Stata, there is one observation per car model, and
the primary key is the single variable make. Figure [1 gives confidence intervals from a regression model
measuring differences in fuel efficiency (in miles per gallon) in cars from inside and outside the US, with
various 1978 repair records, compared with a “reference car”, made by a US company and with a repair
record of 3. It was created using the eclplot package, which creates confidence interval plots, and requires,
as input, a dataset with one observation per confidence interval to be plotted and data on estimates and
confidence limits. Table [1l gives the same data (plus P-values) as a table. It was created using the listtex
package, which creates tables which can be cut and pasted into a TEX, KTEX, HTML or word processor
document, and requires, as input, a dataset with one observation per table row. Both eclplot and listtex
are downloadable from SSC, but neither can use directly as input the original auto data, with one observation
per car model. Instead, resultsset-generating and resultsset-processing packages are used, taking as input
the original auto data, and creating, as output, datasets that can be input to eclplot and listtex.

This survey explains how to do this, using example do-files distributed with this document on the con-
ference website at http://www.stata.com/support/meeting/10uk/. These do-files will work under Stata 8 if
the user has installed the required unofficial Stata packages, listed at the top of each do-file. These pack-
ages are downloadable from the SSC archive at http://ideas.repec.org/s/boc/bocode.html using the Stata
ssc command. The full list of required packages comprises the resultsset-generating packages descsave,
parmest, xcollapse and xcontract, together with the resultsset-processing packages eclplot, listtex,
dsconcat, sencode, sdecode, factext, factmerg and ingap, and the estimation package somersd.

mailto:roger.newson@kcl.ac.uk�
http://www.kcl-phs.org.uk/rogernewson/�
http://www.stata.com/support/meeting/10uk/�
http://ideas.repec.org/s/boc/bocode.html�

From datasets to resultssets in Stata 2

Figure 1: Differences in mileage in the auto data (compared to US car with rep78==3).

Car type:
Domestic (n=48) ‘
Foreign (n=21) } 2 {
o Repair Record 1978:
> 2| ——e |
S 2 (n=8) ——
3 (n=30) Q
4 (n=18) } 50 |

5 (n=11) | ¢ |

_5.00 0.00 5.00 10.00 15.00
Difference in mileage (mpg)

Table 1: Differences in mileage in the auto data (compared with US car with rep78==3).

Car group Difference (mpg) (95% cl) P

Car type:
Domestic (n=48) 0.00 (ref.)
Foreign (n=21) 3.56 (0.32, 6.80) .032
Repair Record 1978:
1 (n=2) 1.92 (-2.78, 6.62) .42
2 (n=8) 0.05 (—2.98, 3.07) .98
3 (n=30) 0.00 (ref.)
4 (n=18) 0.81 (—2.06, 3.68) .57
5 (n=11) 538 (—0.58, 11.33) .076

2 Resultsset-generating programs

Some programs which generate resultssets are summarized in Table[2. The descsave package is an extended
version of describe (see [R] describe), and creates a resultsset with one observation per variable, and data
on variable attributes, which are the names, storage types, display formats, value labels and variable labels
of the variables, and (optionally) characteristics (see [U] 15.8 Characteristics or [P] char). The parmest
package contains two programs, parmest and parmby. parmest creates a resultsset with one observation
per parameter of the most recent set of estimation results (see [U] 29 Estimation and post-estimation
commands or [P] ereturn), and data on general parameter attributes, which include the names, estimates,
standard errors, confidence limits and P-values of the parameters. parmby calls a user-specified estimation
command once for each by-group (or once only, if the by () option is absent), and creates a resultsset with
one observation per parameter (or per parameter per by-group, if the by () option is present), and data on
the same parameter attributes as output by parmest. xcollapse and xcontract are extended versions of
the official Stata programs collapse and contract, respectively (see [R] collapse and [R] contract). SAS
programmers may note that descsave does the job of PROC CONTENTS in SAS, xcontract does the
job of PROC FREQ), xcollapse does the job of PROC MEANS and PROC SUMMARY, and parmest and
parmby do the job of the OUTEST= option of SAS estimation procedures. The other resultsset-generating
programs are part of official Stata, and are documented in [R] statsby, [R] bootstrap, [R] simulate and

From datasets to resultssets in Stata 3

[P] post, respectively. statsby calls a Stata command once for each by-group, and creates a resultsset with
one observation per by-group and data on general statistical results stored by the called Stata command in
its returned results in r() or e() (see [R] Saved results, [P] return and [P] ereturn). The post package
is a general low-level utility, allowing users to write their own resultsset-generating programs.

Table 2: Some resultsset-generating programs available in Stata.

The resultsset contains:

Program one observation per... and data on...
Downloadable from SSC:
descsave variable variable attributes
parmest estimated parameter parameter attributes
parmby parameter per by-group parameter attributes
xcollapse by-group basic summary statistics

xcontract combination of variable values frequencies and percentages
Official Stata:

collapse by-group basic summary statistics
contract combination of variable values frequencies
statsby by-group general statistics
bootstrap bootstrap sample bootstrap sample statistics
simulate simulation replication simulation results
post anything anything

The program in examplel.do demonstrates the generation of resultssets by descsave, parmby, xcollapse
and xcontract, if the user has installed the required packages (listed at the top of the do-file). It uses as
input the auto data, shipped with Stata and accessed using the sysuse command. The user can open it
in the Stata do-file editor, click on the icon labelled “Do current file”, and return to the Stata Command
window. Alternatively, the user can type the command do examplel in the Stata Command window. Each
resultsset-generating program generates a resultsset which is saved to the memory, overwriting the pre-
existing data. In each case, the program lists the variables in the resultsset using describe, and lists the
observations in the resultsset using list. The more command allows the user to look at the variables or
observations before pressing the space bar, which allows the program to continue. Variables in the resultssets
are discussed in the online help for each command, and in Newson (2003) in the case of parmby and parmest.

2.1 Common options for resultsset-generating programs

Different resultsset-generating programs often have options of the same names with the same functions.
Some commonly-used options are listed in Table 3. Their exact syntax is given in the online help for each
program, although only parmby has them all.

Table 3: Common options for resultsset-generating programs.

Option Function
Resultsset-destination options:
list() List resultsset to log and/or Results window
saving() Save resultsset to disk file
norestore (or replace) Overwrite any existing data in memory
fast Fast version of norestore for programmers
flist() Global macro accumulating saving() filenames
Resultsset-modifying options:
rename() Rename variables in resultsset from default names
format() Give variables in resultsset nondefault formats
idnum() Value of numeric resultsset ID variable
idstr() Value of string resultsset ID variable
by() Specify by-groups

The first five options specify the destination of the resultsset, and are not mutually exclusive. The 1ist ()
option specifies that the resultsset (or a subset of its variables and/or observations) is listed to the Results

From datasets to resultssets in Stata 4

window and/or the Stata log, in a style that can be customized by the user using suboptions. saving()
specifies that a resultsset is saved to a disk file. norestore, used in examplel.do, specifies that the resultsset
is saved to memory, overwriting any existing dataset. fast is a high-speed version of norestore, mostly for
advanced programmers, which takes no action to restore the existing data if the user presses Break. flist()
is used with saving(), and specifies the name of a global macro, to which the filename of the resultsset file
will be appended, in order to accumulate a list of resultsset filenames.

Resultssets saved to disk can be used as the using dataset by append, merge, joinby and cross, in
the same way as other disk datasets. (See [U] 25 Commands for combining data for more on these
commands.) A particularly useful package is dsconcat, downloadable from SSC. This takes as input a
list of filenames of disk datasets, and concatenates the observations in these datasets, or a subset of these
observations and/or of the variables, into the memory, overwriting any existing data. The input datasets are
often resultssets, especially parmby resultssets. The list of input files may be stored in a global macro specified
by the f1ist () option, and an example of this practice appears in the online help for parmest. dsconcat
is useful if the user estimates parameters for more than one regression model, and wishes to plot or tabulate
all these parameters, or an interesting subset of them, in a single plot or table. This ability is an advantage
of the resultsset method over alternative and complementary methods of creating publication-ready tables
of regression results, using official Stata’s estimates table (see [R] estimates), or using John Gallup’s
outreg or Tony Brady’s reformat, both downloadable from SSC. On the other hand, the complementary
methods are more instant solutions, if the user only wants to tabulate results from one regression model at
a time, does not require plots, and is publishing in a journal which prefers the specific format of estimates
table, outreg or reformat.

The last five options modify the variables in the resultsset. The rename () and format () options specify
nondefault names and formats, respectively, for variables in the resultsset. The idnum() and idstr()
options specify values for a numeric and string resultsset ID variable, respectively, both of which have the
same value for all observations in the resultsset. If we concatenate multiple input resultssets, then it is useful
to know which input resultsset each observation came from, and the idnum() and idstr() options make
this easy. The by () option specifies a list of by-variables, specifying by-groups. The resultsset will then be
concatenated at birth, and contain a “resultssubset” of observations for each by-group.

2.2 Resultssets are often stored in tempfiles

Resultssets on disk are very often stored in temporary files, produced using either the tempfile command or
the tempfile extended macro function. In the Stata world, temporary files are usually viewed as a technical
specialist subject, mostly of interest to advanced programmers, mentioned briefly in [U] 21.7 Temporary
objects, and documented more fully in [P] macro. This is in contrast to the SAS world, where users
typically learn about temporary SAS data sets before learning about permanent SAS data sets. Stata has
the advantage over SAS that it can do much more data handling in memory. However, this advantage is
limited by the fact that it can only do this with one dataset at a time. It is therefore a good idea for Stata
users to know at least enough about macros to be able to handle tempfiles.

The program in example?2.do demonstrates the use of tempfile in combination with dsconcat, descsave
and xcollapse. After loading the auto data, we use the tempfile command to tell Stata that we intend
to create temporary files with macro names t£0 to tf£9, and create the first one as a descsave resultsset,
with one observation for each of 9 quantitative variables, which we might want to compare between US
and non-US cars. This resultsset is sorted by variable name using the gsort () option, and stored on disk
using the saving() option. We then create the other 9 temporary files as xcollapse resultssets, each with
1 observation per car type (US and non-US) and data on the median value of one of the 9 quantitative
variables. Each xcollapse resultsset has a string ID variable named idstr, identifying the quantitative
variable to which the medians in that resultsset belong. We then concatenate the resultssets into the
memory using dsconcat, and describe the variables in the new concatenated dataset in memory, and list
the observations. Finally, we rename the string ID variable idstr to name, sort the dataset by it, merge in
the descsave resultsset, and create a new dataset in memory, with one observation per quantitative variable
per car type, sorted first by car type and second by the order of the quantitative variable in the list. This
dataset is listed, so that we can compare the medians of the 9 quantitative variables between US and non-US
cars. This final listing should look like this:

. by foreign: list order name varlab median, noobs

-> foreign = Domestic

From datasets to resultssets in Stata 5

o +
| order name varlab median |
|-—————m e |
| 1 price Price 4782.5 |
| 2 mpg Mileage (mpg) 19 |
| 3 headroom Headroom (in.) 3.5 |
| 4 trunk Trunk space (cu. ft.) 16 |
| 5 weight Weight (1bs.) 3360 |
|-—=———— e |
| 6 length Length (in.) 200 |
| 7 turn Turn Circle (ft.) 42 |
| 8 displacement Displacement (cu. in.) 231 |
| 9 gear_ratio Gear Ratio 2.75 |
o +

-> foreign = Foreign

o +
| order name varlab median |
e |
| 1 price Price 5759 |
| 2 mpg Mileage (mpg) 24.5 |
I 3 headroom Headroom (in.) 2.5 |
| 4 trunk Trunk space (cu. ft.) 11 |
| 5 weight Weight (1bs.) 2180 |
i |
| 6 length Length (in.) 170 |
I 7 turn Turn Circle (ft.) 36 |
| 8 displacement Displacement (cu. in.) 101 |
I 9 gear_ratio Gear Ratio 3.61 |
e et +

. more

This time, the 9 quantitative variables are identified, not only by their names, but also by their more
informative labels (with units), merged in from the descsave resultsset. Examples of processing multiple
parmby resultssets can be found in Newson (2003), and in the online help for parmest.

3 String-numeric conversion in resultssets

A lot of the work in resultsset processing is converting string variables to numeric variables and/or numeric
variables to string variables. To be plotted, a variable must usually be numeric, even if it corresponds to
string axis labels, such as those on the vertical axis of Figure 1. On the other hand, if we want to perform
string substitutions on a numeric variable and/or add prefixes or suffixes, then the variable must be converted
to string. For instance, we might want to tabulate confidence limits with parentheses and commas (as in
Table [1)), or add stars to P-values, and neither of these is provided by any existing Stata display format. In
practice, it is common to present the same results both as plots (for presentation in meetings) and as tables
(for publication in journals). It is therefore important to be able to convert variables between string and
numeric with a minimum of programming by the user.

Official Stata provides the utilities encode and decode for conversion between string variables and numeric
variables with value labels, and the utilities destring and tostring for conversion between string variables
and numeric variables without value labels. These utilities were discussed by Cox (2002). They all have
limitations, especially encode, which encodes string variables to numeric in an alphanumeric order. For this
reason, | have developed the programs sencode and sdecode for basic conversions between single numeric
variables and single string variables, and the programs factext and factmerg for string-factor conversions,
which often involve multiple string variables and/or multiple numeric variables converted in parallel. These
programs are all downloadable from SSC.

From datasets to resultssets in Stata 6

3.1 Basic string-numeric conversion using sencode and sdecode

The programs sencode and sdecode are “super” versions of encode and decode, respectively, and convert
string variables to labelled numeric variables and labelled numeric variables to string variables, respectively.
With both programs, the output variable may either be generated as a new variable or replace the in-
put variable, taking over its name, variable label, position in the dataset and characteristics (see [U] 15.8
Characteristics or [P] char).

sencode takes, as input, a string variable, and generates, as output, a numeric variable, whose value label
in each observation is equal to the value of the input string variable in the same observation. It has a gsort ()
option, enabling the user to define numeric codes in ascending or descending order of a user-specified list of
variables, as recognised by the gsort command (see [R] gsort). sencode groups the observations into ordered
groups according to the gsort () option, and then generates an encoded integer value for each combination of
gsort () group and input string value, ordered first by gsort () group and second by alphanumeric order of
input string values within each gsort () group. Usually, each gsort () group contains only one input string
value, so the encoding is in ascending order of gsort () group. If the gsort () option is not specified, then it
is set in default to be equivalent to the Stata expression _n, specifying a gsort () group for each observation,
ordered by the position of that observation in the dataset. There is also a manytol option, allowing the
relation between output numeric values and input string values to be many-to-one. Therefore, it is possible
for multiple observations to have the same output numeric value, and for multiple output numeric values to
have the same input string value. In the simplest case, if gsort() is not specified, an observation has an
output numeric value depending on its position in the dataset (if manytol is specified), or on the position
in the dataset of the first appearance of its input string value (if manytol is not specified).

sdecode takes, as input, a numeric variable, and generates, as output, a string variable. In default, the
value of the output string variable in each observation is equal to the value label of the input numeric value
in that observation (if such a value label exists), or to the formatted string value of the input numeric value
(if the input numeric value is nonmissing and has no label), or to an empty string (if the input numeric value
is missing). sdecode therefore converts numbers to strings in a similar way to tabulate.

The program in example3.do uses the same quantitative variables as the program in example2.do.
However, instead of comparing medians between US and non-US cars, we now compare the quantitative
variables as diagnostic predictors of the “condition” of non-US origin. We do this using the somersd package,
introduced by Newson (2000) and discussed by Newson (2002), which computes confidence intervals for the
Somers’ D parameter of each quantitative predictor with respect to non-US origin. For each quantitative
diagnostic predictor, Somers’ D is related to the area under the specificity-sensitivity or receiver-operating
characteristic (ROC) curve (see [R] roc) by the equation D = 24 — 1, where D is Somers’ D and A is
the ROC area. Somers’ D is therefore a performance indicator equivalent to the ROC area, but has the
advantage that it is negative, positive or zero when the median difference between non-US and US cars is
negative, positive or zero, respectively.

We start by loading the auto data. We then use parmby to call somersd and create in the memory a
resultsset with one observation per Somers’ D parameter and data on parameter attributes such as confidence
intervals and P-values (with sensible display formats). We describe the variables in the resultsset, and 1ist
all observations, selecting the most interesting variables, which include label, a string variable containing,
for each parameter, the variable label of the corresponding predictor variable. We then use sencode to
encode this string variable to a numeric variable predictor, with variable labels, which are listed. The
numeric codes are ordered in ascending order of the Somers’ D estimates themselves by specifying the option
gsort(estimate parmseq), which orders codes first by Somers’ D estimate, and breaks ties by the order of
the predictor in the list. Next, we use eclplot to plot the confidence intervals for the Somers’ D parameters,
and save the plot in an Encapsulated PostScript file to form Figure 2. Negative predictors of non-US origin
appear above the possible non-predictor price, which appears above positive predictors of non-US origin.
Note that eclplot has a reverse default vertical axis scale if the user specifies a horizontal confidence interval
plot.

We then produce a table. First, we use sdecode to convert the numeric confidence limits to string
variables of the same names, use replace to add parentheses and commas to these string variables, and
list the reformatted confidence intervals. Next, we use listtex to type the dataset to the Results window
in an alien-looking style as follows:

. listtex predictor estimate min95 max95, headline("Predictor&Somers’ D&(95%&CI)") type
Predictor&Somers’ D&(95%&CI)

Displacement (cu. in.)&-0.84&(-0.96,&-0.72)

Turn Circle (ft.) &-0.79&(-0.94,&-0.64)

Weight (1bs.)&-0.75&(-0.91,&-0.59)

Length (in.)&-0.72&(-0.89,&-0.56)

From datasets to resultssets in Stata 7

Trunk space (cu. ft.)&-0.47&(-0.69,&-0.24)
Headroom (in.)&-0.37&(-0.61,&-0.14)
Price&0.15&(-0.14,&0.45)

Mileage (mpg)&0.46&(0.19,&0.72)

Gear Ratio&0.87&(0.76,&0.98)

. more

The typed output (which appears bright yellow in the Results window) can then be copied from the
Results window, pasted into a Microsoft Word document, selected inside Microsoft Word, and converted to a
Microsoft Word table using the menu sequence Table->Convert->Text to Table. Alternatively, it can be
pasted into a Microsoft Excel document and converted to Microsoft Excel columns using the menu sequence
Data->Text to Columns. Note that 1isttex can also produce tables that can be cut and pasted into TEX,
ITEX or HTML documents, usually with even less work, because Microsoft Word requires users to do their
own table justification, autoformatting and italicizing.

Figure 2: Somers’ D for quantitative diagnostic predictors of non-US origin in the auto data.

Displacement (cu. in.) '—0—'
Turn Circle (ft.) '—H
Weight (Ibs.))| |—€¢—]
Length (in.)| |—€—]
Trunk space (cu. ft.) '—0—'
Headroom (in.) '—0—' .
Price } & {
Mileage (mpg) ——]
Gear Ratio '—0—'

Predictor of non-US origin

_1.00 -0.75 —0.50 -0.25 0.00 0.25 050 0.75 1.00
Somers’ D (95% ClI)

3.2 String-factor conversion using factext and factmerg

Often, the predictor variables in an estimation are dummy variables, indicating membership of a group
defined by a value of a categorical variable. Such categorical variables are known as factors in the classical
Rothamsted terminology, as used by the statistical packages GLIM and Genstat. The dummy variables are
usually produced by xi (see [R] xi), but may also be produced by tabulate (see [R] tabulate), or by the
desmat command of John Hendrickx (introduced in Hendrickx (1999), and updated in Hendrickx (2000,
2001a and 2001b)). Their variable labels are usually of the form

"factor_-name==value" (1)

(where factor_name is a valid Stata variable name and value is a value of the variable), and will be saved in
parmest and parmby resultssets in the variable label, if the 1abel option is specified. To produce plots like
Figure [1, it would be useful to regenerate these categorical variables in the resultssets.

The factext program allows us to do this. It takes, as input, a list of string variables, which defaults to
a single variable named label, as found in a parmby output. It generates, as output, a set of factors, with
names extracted from the left-hand side of input string values of the form (1)), and values extracted from the
right-hand side of the same input string values. These output factors are usually numeric.

From datasets to resultssets in Stata 8

String values of the form (1) do not contain enough information to reconstruct a numeric factor com-
plete with its storage type, display format, value labels, variable labels and characteristics (see [U] 15.8
characteristics or [P] char). However, factext can be helped by descsave, which is not only a resultsset
generator, but also a program generator. descsave has a dofile() option, which allows it to generate a do-
file, which, if run, can reconstruct the variable attributes of the variables described, assuming that variables
of the same name and mode (numeric or string) exist in the current dataset. factext also has a dofile()
option, which allows it to run this do-file after extracting the factor values. The factors in the resultsset
will then have the same storage types, display formats, value labels and variable labels as the factors of the
same names in the input dataset, and also (optionally) the same values of characteristics specified by the
user (such as the omit characteristic mentioned in [R] xi).

The factext program may cause a resultsset to be “wide” and “sparse” by generating a long list of
factors, each of which may have missing values in most observations, because most of the parameters do not
belong to dummies belonging to that factor. In Table [1l and Figure [1, by contrast, there is a single column
of row or axis labels, containing information on both factors (foreign and rep78). The factmerg program
converts in the opposite direction to factext, and can be useful in generating such row label variables. It
takes, as input, a list of factors (usually numeric), and generates, as output, up to three string variables,
containing, in each observation, the name, variable label and string value, respectively, of the first factor in
the list with a nonmissing value. These string variables can be used in further processing to create row label
variables for multi-factor plots and tables, such as Table [1l and Figure (1.

The program in example4.do demonstrates the use of descsave, factext and factmerg. After loading
the auto data, we assign reference levels to the factors foreign and rep78 using the omit characteristic,
and use descsave to create a temporary do-file to reconstruct these factors. We then use parmby to replace
the dataset in memory with a resultsset, with one observation per parameter of a regression model and data
including a string variable label. Next, we use factext to extract the factors foreign and rep78 from
this variable, list them, and create a single-factor confidence interval plot for the differences between cars
with non-reference and reference repair records, which is saved as Figure [3l After that, we use factmerg to
merge the two factors and generate string variables faclab and facval, containing the variable label and
value, respectively, of the factor corresponding to each parameter. We can now use generate and sencode
to create a labelled numeric row variable cargp, identifying car groups with non-reference car origin type
or repair record. Finally, we produce a multi-factor confidence interval plot for the differences in mileage
associated with these non-reference car groups as Figure 4.

Figure 3: Differences in miles per gallon by repair record (compared to reference category 3).

L 4

Repair Record 1978
w
|

* |

_5.00 0.00 5.00 10.00 15.00
Difference (miles per gallon)

From datasets to resultssets in Stata 9

Figure 4: Differences in mileage in the auto data (compared to US car with rep78==3).

Car type: Foreign

Repair Record 1978: 1 }

Repair Record 1978: 2 } * |

Car group

Repair Record 1978: 4 ——

Repair Record 1978: 5 }

_5.00 0.00 5.00 10.00 15.00
Difference (miles per gallon)

4 Adding reference and gap observations to resultssets

Figure 4] is not Figure 1. The reference categories are absent. The axis labels contain no group numbers.
Also, there is little space for group numbers, because the labels are very repetitive, repeating factor labels
instead of putting them in gaps on the axis. The first two problems can be solved by merging xcontract
resultssets into the parmby resultsset. The third problem can be solved by adding gap observations to the
resultsset, using the ingap package, downloadable from SSC.

The ingap package is discussed in Newson (2003). It adds gap observations to the dataset in memory,
at a user-specified list of positions within the dataset, or within each by-group if by-groups are specified.
Existing variables in the gap observations (apart from by-variables) are set to missing, unless the user specifies
otherwise. Usually, one string variable is specified as a row or axis label variable by the rowlabel () option,
and its values in the gap observations are specified by the growlabel() option or by the grexpression()
option.

The program in example5.do is a more advanced version of example4.do, and uses xcontract and
ingap to produce Figure [1l and Table [1. After creating the do-file using descsave, and before creating the
parmby resultsset, we create two xcontract resultssets, containing the frequencies of foreign and rep78 in
cars with nonmissing repair record (included in the regression). After extracting the factors from the string
variable label, we merge in these xcontract resultssets, and then set the confidence interval variables
estimate, min95 and max95 to zero in observations with reference values for the two factors. After using
factmerge to create faclab and facval, we generate the row variable cargp, adding gap observations using
ingap in the process. In these gap observations, the value of cargp is set by the grexpression() option
of ingap. We then plot the confidence intervals against cargp as before, this time creating a better-looking
graph (Figure [I). Finally, we use sdecode and replace to convert the confidence limits to strings with
parentheses and commas in the right places, and use listtex to list to the Results window a IXTEX tabular
environment as follows:

. listtex cargp estimate min95 max95 p if !missing(factor), rstyle(tabular) type ///

> headline("\begin{tabular}{rrrrl}" "\hline" ///

> "\textit{Car group}&\textit{Difference (mpg)}&\textit{(95\%}&\textit{CI)}I&\textit{PF\\\\" ///
> "\hline") ///

> footline("\hline" "\end{tabularl}")

\begin{tabular}{rrrrl}

\hline

From datasets to resultssets in Stata 10

\textit{Car groupl}&\textit{Difference (mpg)}t&\textit{(95\%}&\textit{CI)}&\textit{PF\\
\hline

Car type:&&&&\\

Domestic (N=48)&0.00&(ref.)&&\\

Foreign (N=21)&3.56&(0.32,&6.80)&.032 \\

Repair Record 1978:&&&&\\

1 (N=2)&1.92&($-$2.78,46.62)&.42 \\

2 (N=8)&0.05&($-$2.98,&3.07)&.98 \\

3 (N=30)&0.00&(ref.)&&\\

4 (N=18)&0.81&($-$2.06,%3.68)&.57 \\
5 (N=11)&5.38%($-$0.58,&11.33)&.076 \\
\hline

\end{tabular}

. mmore

This typed output was cut and pasted into Table [1! of the IATEX version of this document. The large
program in exampleb5.do may seem to be a very complicated way of creating a small plot and a small table.
However, there are often economies of scale if the user needs to create large plots and tables, or a lot of plots
and tables, or multiple versions of the same plot or table.

An alternative approach to drawing plots with gap labels is to use the egen function axis(), which is
part of the egenmore package, written by Nicholas J. Cox and downloadable from SSC (see [R] egen). This
approach has the feature that it does not add gap observations to the resultsset. This feature may or may
not be an advantage, depending mainly on whether or not the user wishes to use the same resultsset as input
both for eclplot and for listtex. It is often a good idea to use the preserve and restore commands (see
[P] preserve) before and after a sequence of resultsset-modifying commands such as those in example5.do.

5 Acknowledgements

I would like to thank Nicholas J. Cox of Durham University, UK, for coining the term “resultsset” and for
many helpful comments on this document; Christopher F. Baum of Boston College, MA, USA for distributing
on SSC the resultsset-generating and resultsset-processing programs demonstrated here (and many more);
and all the members of the Stata community who have given me their constructive advice on developing
these programs.

6 References

Cox, N. J. 2002. Speaking Stata: On numbers and strings. The Stata Journal 2(3): 314-329.

Hendrickx, J. 1999. dm73: Using categorical variables in Stata. Stata Technical Bulletin 52: 2-8. In Stata
Technical Bulletin Reprints, vol. 9, 51-59. College Station, TX: Stata Press.

Hendrickx, J. 2000. dm73.1: Contrasts for categorical variables: update. Stata Technical Bulletin 54: 7. In
Stata Technical Bulletin Reprints, vol. 9, 60-61. College Station, TX: Stata Press.

Hendrickx, J. 2001a. dm73.2: Contrasts for categorical variables: update. Stata Technical Bulletin 59: 2-5.
In Stata Technical Bulletin Reprints, vol. 10, 9-14. College Station, TX: Stata Press.

Hendrickx, J. 2001b. dm73.3: Contrasts for categorical variables: update. Stata Technical Bulletin 61: 5.
In Stata Technical Bulletin Reprints, vol. 10, 14-15. College Station, TX: Stata Press.

Newson, R. 2000. somersd — Confidence intervals for nonparametric statistics and their differences. Stata
Technical Bulletin 55: 47-55. In Stata Technical Bulletin Reprints, vol. 10, 312-322. College Station,
TX: Stata Press. Post-publication update downloadable from |http://www.kcl-phs.org.uk /rogernewson/
as of 20 April 2004.

Newson, R. 2002. Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’ D and median
differences. The Stata Journal 2(1): 45-64. Pre-publication draft downloadable from
http://www.kcl-phs.org.uk/rogernewson/ as of 20 April 2004.

Newson, R. 2003. Confidence intervals and p-values for delivery to the end user. The Stata Journal 3(3): 245
269. Pre-publication draft downloadable from http://www.kcl-phs.org.uk/rogernewson/| as of 20 April
2004.

http://www.kcl-phs.org.uk/rogernewson/�
http://www.kcl-phs.org.uk/rogernewson/�
http://www.kcl-phs.org.uk/rogernewson/�

