STATA USER’S GUIDE
RELEASE 16

&SN
"™\
[t

=

I

A Stata Press Publication
StataCorp LLC
College Station, Texas

E\?’\ ® Copyright (¢) 1985-2019 StataCorp LLC
:’J"’"\(N[Al rights reserved
A Version 16

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TEX

ISBN-10: 1-59718-301-6
ISBN-13: 978-1-59718-301-7

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright @ 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATQ Stata Press, Mata, MATQ and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2019. Stata: Release 16. Statistical Software. College Station, TX: StataCorp LLC.

Contents

Stata basics

Read this—it will help e
A brief description of Stata
Resources for learning and using Stata i
Stata’s help and search facilities i
Flavors of Stata e
Managing MEMOTY . .o .v vttt ettt et e e e e e e e e e e
—MOTe— CONAItIONS . . o\t ittt ettt e ettt e et e e e e et
Error messages and return codes e

The Break Key

O 00 N9 AN N kA WD =

—_
=)

Keyboard USe

Elements of Stata

11 Language SYNMEAX . ..ottt ettt e et e e e e e e e e e
0 I - - P
13 Functions and eXPresSiOnSt ettt ettt e e
14 MatriX XPIESSIONS .ttt ittt ettt ettt e et e e e e e e e
15 Saving and printing output—Ilog files
16 Do-flles ..o
17 Ado-files ..
18 Programming Statdttt e
19 Immediate commandsttt e e
20 Estimation and postestimation commandsi .t
21 Creating TEPOTES . o v vt v ettt e e e et e e e e e e e e e e e
Advice

22 Entering and importing data
23 Combining datasetSttt e

ii Contents
24 Working with Stringsttt e 319
25 Working with dates and timesonin it 323
26 Working with categorical data and factor variables 332
27 Overview of Stata estimation commandsoouuiiniinninnirnennenn. 350
28 Commands everyone should know L i 383
29 Using the Internet to keep up to datettt 385
GlOSSATY v vttt et e e e e e 392

Subject and author iNdeX it e 397

10

Stata basics

Read this—it will help

A brief description of Stata

Resources for learning and using Stata i

Stata’s help and search facilities i

Flavors of Statat e e e

Managing memOTYttt

—MOTE— CONAILIONS . .\ vttt et e et e et e et et e e e e

Error messages and return codes e

The Break key

Keyboard use

13

24

31

34

36

37

40

42

1 Read this—it will help

Contents
1.1 Getting Started with Stata e
1.2 The User’s Guide and the Reference manuals
1.2.1 PDF manuals e
1.2.1.1 Video examplettt e
1.2.2 Example datasetsioii e
1.2.2.1 Video example it
1.2.3 Cross-referenCingottt e e et e
1.2.4 The INdeX . ..ottt e
1.2.5 The subject table of contents
1.2.6 Typography ..o
1.2.7 VIgNEHE . .ottt e
1.3 What’'s NeW
1.4 RefOIENCES . oottt ettt e e e e

[olele SRR IR e e Nle NNeo Y 0

[U] 1 Read this—it will help

3

The Stata Documentation consists of the following manuals:

[GsM]
[GSU]
[GSW]

[U]

[R]
[BAYES]
[cMm]
[D]
[DSGE]
[ERM]
[FEMM]
[FN]
[G]
[IRT]
[LASSO]
[XT]
[META]
[ME]
[MI]
[MV]
[Pss]
[P]
[RPT]
[sp]
[SEM]
[svY]
[ST]
[Ts]
[TE]

(1]

(M]

Getting Started with Stata for Mac
Getting Started with Stata for Unix
Getting Started with Stata for Windows

Stata User’s Guide

Stata Base Reference Manual

Stata Bayesian Analysis Reference Manual

Stata Choice Models Reference Manual

Stata Data Management Reference Manual

Stata Dynamic Stochastic General Equilibrium Models Reference Manual
Stata Extended Regression Models Reference Manual
Stata Finite Mixture Models Reference Manual

Stata Functions Reference Manual

Stata Graphics Reference Manual

Stata Item Response Theory Reference Manual

Stata Lasso Reference Manual

Stata Longitudinal-Data/Panel-Data Reference Manual
Stata Meta-Analysis Reference Manual

Stata Multilevel Mixed-Effects Reference Manual
Stata Multiple-Imputation Reference Manual

Stata Multivariate Statistics Reference Manual

Stata Power, Precision, and Sample-Size Reference Manual
Stata Programming Reference Manual

Stata Reporting Reference Manual

Stata Spatial Autoregressive Models Reference Manual
Stata Structural Equation Modeling Reference Manual
Stata Survey Data Reference Manual

Stata Survival Analysis Reference Manual

Stata Time-Series Reference Manual

Stata Treatment-Effects Reference Manual:
Potential Outcomes/Counterfactual Outcomes

Stata Glossary and Index

Mata Reterence Manual

In addition, installation instructions may be found in the Installation Guide.

1.1

4 [U] 1 Read this—it will help

Getting Started with Stata

There are three Getting Started manuals:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

1. Learn how to use Stata—read the Getting Started (GSM, GSU, or GSW) manual.

2. Now turn to the other manuals; see [U] 1.2 The User’s Guide and the Reference manuals.

1.2 The User’s Guide and the Reference manuals

1.2.

The User’s Guide is divided into three sections: Stata basics, Elements of Stata, and Advice. The
table of contents lists the chapters within each of these sections. Click on the chapter titles to see the
detailed contents of each chapter.

The Guide is full of a lot of useful information about Stata; we recommend that you read it. If
you only have time, however, to read one or two chapters, then read [U] 11 Language syntax and
[U] 12 Data.

The other manuals are the Reference manuals. The Stata Reference manuals are each arranged
like an encyclopedia—alphabetically. Look at the Base Reference Manual. Look under the name of
a command. If you do not find the command, look in the subject index in [I] Stata Glossary and
Index. A few commands are so closely related that they are documented together, such as ranksum
and median, which are both documented in [R] ranksum.

Not all the entries in the Base Reference Manual are Stata commands; some contain technical
information, such as [R] Maximize, which details Stata’s iterative maximization process, or [R] Error
messages, which provides information on error messages and return codes.

Like an encyclopedia, the Reference manuals are not designed to be read from cover to cover.
When you want to know what a command does, complete with all the details, qualifications, and
pitfalls, or when a command produces an unexpected result, read its description. Each entry is written
at the level of the command. The descriptions assume that you have little knowledge of Stata’s
features when they are explaining simple commands, such as those for using and saving data. For
more complicated commands, they assume that you have a firm grasp of Stata’s other features.

If a Stata command is not in the Base Reference Manual, you can find it in one of the other
Reference manuals. The titles of the manuals indicate the types of commands that they contain. The
Programming Reference Manual, however, contains commands not only for programming Stata but
also for manipulating matrices (not to be confused with the matrix programming language described
in the Mata Reference Manual).

1 PDF manuals
Every copy of Stata comes with Stata’s complete PDF documentation.

The PDF documentation may be accessed from within Stata by selecting Help > PDF documentation.
Even more convenient, every help file in Stata links to the equivalent manual entry. If you are reading
help regress, simply click on (View complete PDF manual entry) below the title of the help file
to go directly to the [R] regress manual entry.

We provide some tips for viewing Stata’s PDF documentation at https://www.stata.com/support/
fags/resources/pdf-documentation-tips/.

https://www.stata.com/support/faqs/resources/pdf-documentation-tips/
https://www.stata.com/support/faqs/resources/pdf-documentation-tips/

1.2.1.1

[U] 1 Read this—it will help 5

Video example

PDF documentation in Stata

1.2.2 Example datasets

Various examples in this manual use what is referred to as the automobile dataset, auto.dta. We
have created a dataset on the prices, mileages, weights, and other characteristics of 74 automobiles
and have saved it in a file called auto.dta. (These data originally came from the April 1979 issue
of Consumer Reports and from the United States Government EPA statistics on fuel consumption;
they were compiled and published by Chambers et al. [1983].)

In our examples, you will often see us type

. use https://www.stata-press.com/data/ri6/auto

We include the auto.dta file with Stata. If you want to use it from your own computer rather than
via the Internet, you can type

. sysuse auto

See [D] sysuse.

You can also access auto.dta by selecting File > Example datasets..., clicking on Example
datasets installed with Stata, and clicking on use beside the auto.dta filename.

There are many other example datasets that ship with Stata or are available over the web. Here is
a partial list of the example datasets included with Stata:

auto.dta
auto2.dta
autornd.dta
bplong.dta
bpwide.dta
cancer.dta
census.dta
citytemp.dta
citytemp4.dta
educ99gdp.dta
gnp96.dta
lifeexp.dta
networkl.dta
networkla.dta
nlsw88.dta
nlswidel.dta
pop2000.dta
sandstone.dta
sp500.dta
surface.dta
tslinel.dta
tsline2.dta
uslifeexp.dta
uslifeexp2.dta
voter.dta
xtlinel.dta

1978 Automobile Data

1978 Automobile Data

Subset of 1978 Automobile Data
fictional blood pressure data
fictional blood pressure data
Patient Survival in Drug Trial
1980 Census data by state
City Temperature Data

City Temperature Data
Education and GDP

U.S. GNP, 1967-2002

Life expectancy, 1998
fictional network diagram data
fictional network diagram data

U.S. National Longitudinal Study of Young Women (NLSW, 1988 extract)
U.S. National Longitudinal Study of Young Women (NLSW, 1988 extract)

U.S. Census, 2000, extract

Subsea elevation of Lamont sandstone in an area of Ohio

S&P 500

NOAA Sea Surface Temperature
simulated time-series data

fictional data on calories consumed
U.S. life expectancy, 1900-1999
U.S. life expectancy, 1900—1940
1992 presidential voter data
fictional data on calories consumed

https://www.stata.com/videos16/pdf-documentation/

6 [U] 1 Read this—it will help

All of these datasets may be used or described from the Example datasets... menu listing.

Even more example datasets, including most of the datasets used in the reference manuals, are
available at the Stata Press website (https://www.stata-press.com/data/). You can download the datasets
with your browser, or you can use them directly from the Stata command line:

. use https://www.stata-press.com/data/r16/nlswork

An alternative to the use command for these example datasets is webuse. For example, typing

. webuse nlswork

is equivalent to the above use command. For more information, see [D] webuse.

1.2.2.1 Video example

Example datasets included with Stata 16

1.2.3 Cross-referencing

The Getting Started manual, the User’s Guide, and the Reference manuals cross-reference each

other.

[R] regress

[D] reshape

[XT] xtreg
The first is a reference to the regress entry in the Base Reference Manual, the second is a reference
to the reshape entry in the Data Management Reference Manual, and the third is a reference to the
xtreg entry in the Longitudinal-Data/Panel-Data Reference Manual.

[GSW] B Advanced Stata usage
[GSM] B Advanced Stata usage
[GSU] B Advanced Stata usage

are instructions to see the appropriate section of the Getting Started with Stata for Windows, Getting
Started with Stata for Mac, or Getting Started with Stata for Unix manual.

1.2.4 The index

The Glossary and Index contains a combined index for all the manuals.

To find information and commands quickly, you can use Stata’s search command; see [R] search.
At the Stata command prompt, type search geometric mean. search searches Stata’s keyword
database and the Internet to find more commands and extensions for Stata written by Stata users.

1.2.5 The subject table of contents

A subject table of contents for the User’s Guide and all the Reference manuals except the Mata
Reference Manual is located in the Glossary and Index. This subject table of contents may also be
accessed by clicking on Contents in the PDF bookmarks.

https://www.stata-press.com/data/
https://www.youtube.com/watch?v=S4UZAf3zXtY

[U] 1 Read this—it will help 7

1.2.6 Typography

We mix the ordinary typeface that you are reading now with a typewriter-style typeface that looks
like this. When something is printed in the typewriter-style typeface, it means that something is a
command or an option—it is something that Stata understands and something that you might actually
type into your computer. Differences in typeface are important. If a sentence reads, “You could list
the result ...”, it is just an English sentence—you could list the result, but the sentence provides
no clue as to how you might actually do that. On the other hand, if the sentence reads, “You could
list the result ...”, it is telling you much more—you could list the result, and you could do that
by using the 1ist command.

We will occasionally lapse into periods of inordinate cuteness and write, “We described the data
and then 1isted the data.” You get the idea. describe and list are Stata commands. We purposely
began the previous sentence with a lowercase letter. Because describe is a Stata command, it must
be typed in lowercase letters. The ordinary rules of capitalization are temporarily suspended in favor
of preciseness.

We also mix in words printed in italic type, such as “To perform the rank-sum test, type ranksum
varname , by (groupvar)”. Italicized words are not supposed to be typed; instead, you are to substitute
another word for them.

We would also like users to note our rule for punctuation of quotes. We follow a rule that is often
used in mathematics books and British literature. The punctuation mark at the end of the quote is
included in the quote only if it is a part of the quote. For instance, the pleased Stata user said she
thought that Stata was a “very powerful program”. Another user simply said, “I love Stata.”

In this manual, however, there is little dialogue, and we follow this rule to precisely clarify what
you are to type, as in, type “cd c:”. The period is outside the quotation mark because you should not
type the period. If we had wanted you to type the period, we would have included two periods at the
end of the sentence: one inside the quotation and one outside, as in, type “the orthogonal polynomial
operator, p.”.

We have tried not to violate the other rules of English. If you find such violations, they were
unintentional and resulted from our own ignorance or carelessness. We would appreciate hearing
about them.

We have heard from Nicholas J. Cox of the Department of Geography at Durham University, UK,
and express our appreciation. His efforts have gone far beyond dropping us a note, and there is no
way with words that we can fully express our gratitude.

1.2.7 Vignette

If you look, for example, at the entry [R] brier, you will see a brief biographical vignette of Glenn
Wilson Brier (1913-1998), who did pioneering work on the measures described in that entry. A few
such vignettes were added without fanfare in the Stata 8§ manuals, just for interest, and many more
were added in Stata 9, and even more have been added in each subsequent release. A vignette could
often appropriately go in several entries. For example, George E. P. Box deserves to be mentioned
in entries other than [TS] arima, such as [R] boxcox. However, to save space, each vignette is given
once only, and an index of all vignettes is given in the Glossary and Index.

Most of the vignettes were written by Nicholas J. Cox, Durham University, and were compiled
using a wide range of reference books, articles in the literature, Internet sources, and information
from individuals. Especially useful were the dictionaries of Upton and Cook (2014) and Everitt and
Skrondal (2010) and the compilations of statistical biographies edited by Heyde and Seneta (2001)
and Johnson and Kotz (1997). Of these, only the first provides information on people living at the
time of publication.

8 [U] 1 Read this—it will help

1.3 What’s new

There are a lot of new features in Stata 16.
For a thorough overview of the most important new features, visit
https://www.stata.com/new-in-stata/
For a brief overview of all the new features that were added with the release of Stata 16, in Stata
type
. help whatsnewl5tol6

Stata is continually being updated. For a list of new features that have been added since the release
of Stata 16, in Stata type

. help whatsnewl6

1.4 References

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical Methods for Data Analysis. Belmont,
CA: Wadsworth.

Everitt, B. S., and A. Skrondal. 2010. The Cambridge Dictionary of Statistics. 4th ed. Cambridge: Cambridge
University Press.

Gould, W. W. 2014. Putting the Stata Manuals on your iPad. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2014/10/28/putting-the-stata-manuals-on-your-ipad/.

Heyde, C. C., and E. Seneta, ed. 2001. Statisticians of the Centuries. New York: Springer.

Johnson, N. L., and S. Kotz, ed. 1997. Leading Personalities in Statistical Sciences: From the Seventeenth Century
to the Present. New York: Wiley.

Pinzon, E., ed. 2015. Thirty Years with Stata: A Retrospective. College Station, TX: Stata Press.
Upton, G. J. G., and I. T. Cook. 2014. A Dictionary of Statistics. 3rd ed. Oxford: Oxford University Press.

https://www.stata.com/new-in-stata/
http://blog.stata.com/2014/10/28/putting-the-stata-manuals-on-your-ipad/
http://blog.stata.com/2014/10/28/putting-the-stata-manuals-on-your-ipad/
http://www.stata-press.com/books/thirty-years-with-stata/

A brief description of Stata

Stata is a statistical package for managing, analyzing, and graphing data.

Stata is available for a variety of platforms. Stata may be used either as a point-and-click application
or as a command-driven package.

Stata’s GUI provides an easy interface for those new to Stata and for experienced Stata users who
wish to execute a command that they seldom use.

The command language provides a fast way to communicate with Stata and to communicate more
complex ideas.

Here is an extract of a Stata session using the GUI:

(Throughout the Stata manuals, we will refer to various datasets. These datasets are all avail-
able from https://www.stata-press.com/data/r16/. For easy access to them within Stata, type webuse
dataset_name, or select File > Example datasets... and click on Stata 16 manual datasets.)

. webuse lbw
(Hosmer & Lemeshow data)

We select Data > Describe data > Summary statistics and choose to summarize variables low,
age, and smoke, whose names we obtained from the Variables window. We click on OK.

summarize - Summary statistics — x

Main by/iffin Weights
Variables: (leave empty for all vaniables)
low age smoke ~
Examples: yrr all variables starting with "yr"
wyz-abc all variables between xyz and abc
Options
(®) Standard display

() Display additional statistics
(0 Mo display; just calculate mean

[Use variable's display format
5 = Separator line every M variables (set 0 for none)

Factor-vanable display options

72 C & Cancel Submit

https://www.stata-press.com/data/r16/

10 [U] 2 A brief description of Stata

. summarize low age smoke

Variable Obs Mean Std. Dev. Min Max
low 189 .3121693 .4646093 0 1

age 189 23.2381 5.298678 14 45
smoke 189 .3915344 .4893898 0 1

Stata shows us the command that we could have typed in command mode—summarize low age
smoke—before displaying the results of our request.

Next we fit a logistic regression model of low on age and smoke. We select Statistics > Binary
outcomes > Logistic regression, fill in the fields, and click on OK.

legistic - Legistic regression, reporting odds ratios — *

Model by/iffin Weights SE/Robust Reporting Maximization

Dependent variable: Independent variables:

low ~ age smoke v

O Suppress constant term

Options

Offzet variable:

o

[] Retain perfect predictor variables

Constraints:

| w Manage...

?1C & Cancel Submit

. logistic low age smoke

Logistic regression Number of obs = 189
LR chi2(2) = 7.40

Prob > chi2 = 0.0248

Log likelihood = -113.63815 Pseudo R2 = 0.0315
low | Odds Ratio Std. Err. z P>zl [95% Conf. Intervall]

age .9514394 .0304194 -1.56 0.119 .8936482 1.012968

smoke 1.997405 .642777 2.15 0.032 1.063027 3.753081

_cons 1.062798 .8048781 0.08 0.936 .2408901 4.689025

Note: _cons estimates baseline odds.

Here is an extract of a Stata session using the command language:

[U]2 A brief description of Stata 11

. use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)

. summarize mpg weight

Variable | Obs Mean Std. Dev. Min Max
mpg 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840

The user typed summarize mpg weight and Stata responded with a table of summary statistics.
Other commands would produce different results:

. generate gpl00m = 100/mpg
. label var gpl00m "Gallons per 100 miles"
. format gp100m %5.2f

. correlate gplOOm weight
(obs=74)

gplOOm weight
gp100m 1.0000
weight 0.8544 1.0000
. regress gplOOm weight gear_ratio

Source SS df MS Number of obs = 74
F(2, 71) = 96.65
Model 87.4543721 2 43.7271861 Prob > F = 0.0000
Residual 32.1218886 71 .452420967 R-squared = 0.7314
Adj R-squared = 0.7238
Total 119.576261 73 1.63803097 Root MSE = .67262
gp100m Coef. Std. Err. t P>t [95% Conf. Intervall
weight .0014769 .0001556 9.49 0.000 .0011665 .0017872
gear_ratio .1566091 .2651131 0.59 0.557 -.3720115 .6852297
_cons .0878243 1.198434 0.07 0.942 -2.301786 2.477435

. scatter gplOOm weight, by(foreign)

Domestic Foreign
(1]
8
©
wewe .
8 L] L]
= o e o0
£ S+
o © o o o o
o o LN]
- o
[L] L]
Q °) . .
2 ® o e
O o) *°,°
T 94 ° ® e o
SR ° o °
L] ‘ L] L]
®e
°)
.
8
N

2000 3000 4000 5000 2000 3000 4,000 5000

Weight (Ibs.)
Graphs by Car type

The user-interface model is type a little, get a little, etc., so that the user is always in control.

12 [U] 2 A brief description of Stata

Stata’s model for a dataset is that of a table—the rows are the observations and the columns are
the variables:

. list mpg weight gp1OOm in 1/10

mpg weight gp100m
1. 22 2,930 4.55
2. 17 3,350 5.88
3. 22 2,640 4.55
4. 20 3,250 5.00
5. 15 4,080 6.67
6. 18 3,670 5.56
7. 26 2,230 3.85
8. 20 3,280 5.00
9. 16 3,880 6.25
10. 19 3,400 5.26

Observations are numbered; variables are named.

Stata is fast. That speed is due partly to careful programming, and partly because Stata keeps the
data in memory. Stata’s file model is that of a word processor: a dataset may exist on disk, but the
dataset in memory is a copy. Datasets are loaded into memory, where they are worked on, analyzed,
changed, and then perhaps stored back on disk.

Working on a copy of the data in memory makes Stata safe for interactive use. The only way to
harm the permanent copy of your data on disk is if you explicitly save over it.

Having the data in memory means that the dataset size is limited by the amount of computer
memory. Stata stores the data in memory in an efficient format—you will be surprised how much
data can fit. Nevertheless, if you work with extremely large datasets, you may run into memory
constraints. You will want to learn how to store your data as efficiently as possible; see [D] compress.

3 Resources for learning and using Stata

Contents
3.1 OVEIVIEW .ottt e e e e e e e 13
3.2 Stata on the Internet (www.stata.com and other resources) 14
3.2.1 The Stata website (WWW.Stata.CoOm)vvrt vt i e 14
322 The Stata YouTube Channel iiiiiiinen.. 15
323 The Stata Blog: Not Elsewhere Classified 15
3.2.4 The Stata Forum i 15
3.25 Stata on social media e 15
3.2.6 Other Internet resources on Stataouieniinninnenneen.... 16
33 Stata Press ..ot e 16
34 The Stata Journal e 16
3.5 Updating and adding features from the web 17
3.5.1 Official updatesttt e e 17
352 Unofficial updates 17
3.6 Conferences and traiNingottt ettt et 18
3.6.1 Conferences and users group meetingsc.c.euvenenenennen.. 18
3.6.2 NEtCOUISES .« vttt ettt e e e e e e e e e e e e et e 18
3.6.3 Classroom training COUISES . ..o vvvn vt vttt ee e eeeae e 19
3.6.4 Web-based training COUISES vv vttt ettt 20
3.6.5 On-site training COUISESottt ittt 20
3.6.6 WEbINarst e 20
3.7 Books and other support materials 21
3.7.1 For readerst 21
3.7.2 For authors 21
373 FOr €ditorsottt e 21
3.74 FOr InStructorsttt e 21
3.8 Technical SUPPOITt e e 21
3.8.1 Register your softwaret 22
3.8.2 Before contacting technical support oL 22
3.8.3 Technical support by email 22
3.8.4 Technical support by phone i, 22
3.8.5 Comments and suggestions for our technical staff 23
3.9 REICNCES .ottt ittt e 23

3.1 Overview

The Getting Started manual, User’s Guide, and Reference manuals are the primary tools for learning
about Stata; however, there are many other sources of information. A few are listed below.

e Stata itself. Stata has a search command that makes it easy search a topic to find and to
execute a Stata command. See [U] 4 Stata’s help and search facilities.

e The Stata website. Visit https://www.stata.com. Much of the site is dedicated to user support;
see [U] 3.2.1 The Stata website (www.stata.com).

e The Stata YouTube Channel. Visit https://www.youtube.com/user/statacorp. The site is regularly
updated with video demonstrations of Stata.

13

https://www.stata.com
https://www.youtube.com/user/statacorp

14 [U] 3 Resources for learning and using Stata

e The Stata Blog, Twitter, and Facebook. Visit https://blog.stata.com, https://twitter.com/stata, and
https://www.facebook.com/statacorp. See [U] 3.2.3 The Stata Blog: Not Elsewhere Classified
and [U] 3.2.5 Stata on social media.

e The Stata Press website. Visit https://www.stata-press.com. This site contains the datasets used
throughout the Stata manuals; see [U] 3.3 Stata Press.

e The Stata Forum. An active group of Stata users communicate over an Internet forum; see
[U] 3.2.4 The Stata Forum.

e The Stata Journal and the Stata Technical Bulletin. The Stata Journal contains reviewed papers,
regular columns, book reviews, and other material of interest to researchers applying statistics
in a variety of disciplines. The Stata Technical Bulletin, the predecessor to the Stata Journal,
contains articles and community-contributed commands. See [U] 3.4 The Stata Journal.

e The Stata software distribution site and other user-provided software distribution sites. Stata
itself can download and install updates and additions. We provide official updates to Stata—type
update query or select Help > Check for updates. We also provide community-contributed
additions to Stata and links to other user-provided sites—type net or select Help > SJ and
community-contributed commands; see [U] 3.5 Updating and adding features from the web.

e NetCourses. We offer training via the Internet. Details are in [U] 3.6.2 NetCourses.

e Classroom training courses. We offer in-depth training courses at third-party sites around the
United States. Details are in [U] 3.6.3 Classroom training courses.

e Web-based training courses. We offer the same content from our classroom training over the
web. Details are in [U] 3.6.4 Web-based training courses.

e On-site training courses. We can come to your institution to provide customized training. Details
are in [U] 3.6.5 On-site training courses.

e Webinars. We offer free, short online webinars to learn about Stata from our experts. Details
are in [U] 3.6.6 Webinars.

e Books and support materials. Supplementary Stata materials are available; see [U] 3.7 Books
and other support materials.

e Technical support. We provide technical support by email and telephone; see [U] 3.8 Technical
support.

3.2 Stata on the Internet (www.stata.com and other resources)

3.2.1 The Stata website (www.stata.com)

Point your browser to https://www.stata.com and click on Support. More than half our website is
dedicated to providing support to users.

e The website provides answers to FAQs (frequently asked questions) on Windows, Mac, Unix,
statistics, programming, Mata, Internet capabilities, graphics, and data management. These FAQs
run the gamut from “I cannot save/open files” to “What does ‘completely determined’ mean in
my logistic regression output?” Most users will find something of interest.

e The website provides detailed information about NetCourses, along with the current schedule;
see [U] 3.6.2 NetCourses.

e The website provides information about Stata courses and meetings, both in the United States
and elsewhere. See [U] 3.6.1 Conferences and users group meetings, [U] 3.6.3 Classroom
training courses, [U] 3.6.4 Web-based training courses, and [U] 3.6.5 On-site training courses.

https://blog.stata.com
https://twitter.com/stata
https://www.facebook.com/statacorp
https://www.stata-press.com
https://www.stata.com

[U] 3 Resources for learning and using Stata 15

e The website provides an online bookstore for Stata-related books and other supplementary
materials; see [U] 3.7 Books and other support materials.

e The website provides links to information about statistics: other statistical software providers,
book publishers, statistical journals, statistical organizations, and statistical listservers.

e The website provides links to resources for learning Stata at
https://www.stata.com/links/resources-for-learning-stata. Be sure to look at these materials, as
many outstanding resources about Stata are listed here.

In short, the website provides up-to-date information on all support materials and, where possible,
provides the materials themselves. Visit https://www.stata.com if you can.

3.2.2 The Stata YouTube Channel

Visit Stata’s YouTube Channel at https://www.youtube.com/user/statacorp to view video demon-
strations on a wide variety of topics ranging from basic data management and graphics to more
advanced statistical analyses, such as ANOVA, regression, and SEM. New demonstrations are regularly
added.

3.2.3 The Stata Blog: Not Elsewhere Classified

Stata’s official blog can be found at https://blog.stata.com and contains news and advice related
to the use of Stata. The articles appearing in the blog are individually signed and are written by the
same people who develop, support, and sell Stata.

3.2.4 The Stata Forum

Statalist is a forum dedicated to Stata, where thousands of Stata users discuss Stata and statistics.
It is run and moderated by Stata users and maintained by StataCorp. Statalist has a long history of
high-quality discussion dating back to 1994.

Many knowledgeable users are active on the forum, as are the StataCorp technical staff. Any-
one may join, and new-to-Stata members are welcome. Instructions for joining can be found at
https://www.statalist.org. Register and participate, or simply lurk and read the discussions.

Before posting a question to Statalist, you will want to read the Statalist FAQ, which can be found
at https://www.statalist.org/forums/help/.

3.2.5 Stata on social media

StataCorp has an official presence on Twitter, Facebook, Instagram, and LinkedIn. You can
follow us on Twitter at https://twitter.com/stata. You find us on Facebook and Instagram at
https://www.facebook.com/statacorp and https://www.instagram.com/statacorp. Connect with us on
LinkedIn at https://www.linkedin.com/company/statacorp. These are good ways to stay up-to-the-
minute with the latest Stata information.

https://www.stata.com/links/resources-for-learning-stata
https://www.stata.com
https://www.youtube.com/user/statacorp
https://blog.stata.com
https://www.statalist.org
https://www.statalist.org/forums/help/
https://twitter.com/stata/
https://www.facebook.com/statacorp/
https://www.instagram.com/statacorp/
https://www.linkedin.com/company/statacorp/

16 [U] 3 Resources for learning and using Stata

3.2.6 Other Internet resources on Stata

Many other people have published information on the Internet about Stata such as tutorials, examples,
and datasets. Visit https://www.stata.com/links/ to explore other Stata and statistics resources on the
Internet.

3.3 Stata Press

Stata Press is the publishing arm of StataCorp LLC and publishes books, manuals, and journals
about Stata statistical software and about general statistics topics for professional researchers of all
disciplines.

Point your browser to https://www.stata-press.com. This site is devoted to the publications and
activities of Stata Press.

e Datasets that are used in the Stata Reference manuals and other books published by Stata
Press may be downloaded. Visit https://www.stata-press.com/data/. These datasets can be used
in Stata by simply typing use https://www.stata-press.com/data/r16/dataset_name;
for example, type use https://www.stata-press.com/data/ri16/auto. You could also
type webuse auto; see [D] webuse.

e An online catalog of all our books and multimedia products is at
https://www.stata-press.com/books/. We have tried to include enough information, such as table
of contents and preface material, so that you may tell whether the book is appropriate for you.

e Information about forthcoming publications is posted at
https://www.stata-press.com/forthcoming/.

3.4 The Stata Journal

The Stata Journal (SJ) is a printed and electronic journal, published quarterly, containing articles
about statistics, data analysis, teaching methods, and effective use of Stata’s language. The SJ publishes
reviewed papers together with shorter notes and comments, regular columns, tips, book reviews, and
other material of interest to researchers applying statistics in a variety of disciplines. The SJ is a
publication for all Stata users, both novice and experienced, with different levels of expertise in
statistics, research design, data management, graphics, reporting of results, and in Stata, in particular.

The SJ is published by and available from SAGE Publishing. Tables of contents for past issues and
abstracts of the articles are available at https://www.stata-journal.com/archives/. PDF copies of articles
published at least three years ago are available for free from SAGE Publishing’s SJ webpage.

We recommend that all users subscribe to the SJ. Visit https://www.stata-journal.com to learn more
about the SJ. Subscription information is available at https://www.stata-journal.com/subscription.

To obtain any programs associated with articles in the SJ, type
. net from https://www.stata-journal.com/software

or

e Sclect Help > SJ and community-contributed commands
e Click on Stata Journal

https://www.stata.com/links/
https://www.stata-press.com
https://www.stata-press.com/data
https://www.stata-press.com/books/
https://www.stata-press.com/forthcoming/
https://www.stata-journal.com/archives/
https://www.stata-journal.com
https://www.stata-journal.com/subscription

[U] 3 Resources for learning and using Stata 17

The Stata Technical Bulletin

For 10 years, 1991-2001, the Stata Technical Bulletin (STB) served as the means of distributing new
commands and Stata upgrades, both community-contributed and “official”. After 10 years of continual
publication, the STB evolved into the SJ. The Internet provided an alternative delivery mechanism for
community-contributed programs, so the emphasis shifted from community-contributed programs to
more expository articles. Although the STB is no longer published, many of the programs and articles
that appeared in it are still valuable today. PDF copies of all issues of the STB are available for free
at https://www.stata.com/bookstore/stbj/. To obtain the programs that were published in the STB, type

. net from https://www.stata.com
. net cd stb

From time to time, articles on a particular theme in the SJ are collected and reissued, with updating
when needed, as books from Stata Press. Thus tips from the popular series of hints on using and
understanding Stata were collated in Cox and Newton (2014), and articles on graphics in the Speaking
Stata column were collated in Cox (2014).

3.5 Updating and adding features from the web

Stata itself can open files on the Internet. Stata understands http, https, and ftp protocols.
First, try this:

. use https://www.stata.com/manual/oddeven, clear

That will load an uninteresting dataset into your computer from our website. If you have a home
page, you can use this feature to share datasets with coworkers. Save a dataset on your home page,
and researchers worldwide can use it. See [R] net.

3.5.1 Official updates

Although we follow no formal schedule for the release of updates, we typically provide updates
to Stata approximately once a month. Installing the updates is easy. Type

. update query

or select Help > Check for updates. Do not be concerned; nothing will be installed unless and until
you say so. Once you have installed the update, you can type

. help whatsnew

or select Help > What’s new? to find out what has changed. We distribute official updates to fix
bugs and to add new features.

3.5.2 Unofficial updates

There are also “unofficial” updates—additions to Stata written by Stata users, which includes
members of the StataCorp technical staff. Stata is programmable, and even if you never write a Stata
program, you may find these additions useful, some of them spectacularly so. Start by typing

. net from https://www.stata.com

or select Help > SJ and community-contributed commands.

https://www.stata.com/bookstore/stbj/

18 [U] 3 Resources for learning and using Stata

Be sure to visit the Statistical Software Components (SSC) archive, which hosts a large collection
of free additions to Stata. The ssc command makes it easy for you to find, install, and uninstall
packages from the SSC archive. Type

. ssc whatsnew

to find out what’s new at the site. If you find something that interests you, type

. ssc describe pkgname

for more information. If you have already installed a package, you can check for and optionally install
updates by typing

. ado update pkgname

To check for and optionally install updates to all the packages you have previously installed, type

. ado update all

See [U] 29 Using the Internet to keep up to date.

3.6 Conferences and training

3.6.1 Conferences and users group meetings

StataCorp organizes the annual Stata Conference in the United States. Other conferences and users
group meetings are held in several countries around the world each year.

These meetings provide in-depth presentations from experienced Stata users and experts from
StataCorp. They also provide you with the opportunity to interact directly with the people who
develop Stata and to share your thoughts and ideas with them.

Visit https://www.stata.com/meeting/ for a list of upcoming conferences and meetings.

3.6.2 NetCourses

We offer courses on Stata at both introductory and advanced levels. Courses on software are
typically expensive and time consuming. They are expensive because, in addition to the direct costs
of the course, participants must travel to the course site. Courses over the Internet save everyone time
and money.

We offer courses over the Internet and call them Stata NetCoursesT™.

e What is a NetCourse?
A NetCourse is a course offered through the Stata website that varies in length from 7 to 8
weeks. Everyone with an email address and a web browser can participate.

e How does it work?
Every Friday a lesson is posted on a password-protected website. After reading the lesson over
the weekend or perhaps on Monday, participants then post questions and comments on a message
board. Course leaders typically respond to the questions and comments on the same day they
are posted. Other participants are encouraged to amplify or otherwise respond to the questions
or comments as well. The next lesson is then posted on Friday, and the process repeats.

e How much of my time does it take?
It depends on the course, but the introductory courses are designed to take roughly 3 hours per
week.

https://www.stata.com/meeting/

[U] 3 Resources for learning and using Stata 19

e There are three of us here—can just one of us enroll and then redistribute the NetCourse
materials ourselves?
We ask that you not. NetCourses are priced to cover the substantial time input of the course
leaders. Moreover, enrollment is typically limited to prevent the discussion from becoming
unmanageable. The value of a NetCourse, just like a real course, is the interaction of the
participants, both with each other and with the course leaders.

e I’ve never taken a course by Internet before. I can see that it might work, but then again,
it might not. How do I know I will benefit?
All Stata NetCourses come with a 30-day satisfaction guarantee. The 30 days begins after the
conclusion of the final lesson.

You can learn more about the current NetCourse offerings by visiting https://www.stata.com/netcourse.
NetCourseNow

A NetCourseNow offers the same material as NetCourses but it allows you to choose the time
and pace of the course, and you have a personal NetCourse instructor.

o What is a NetCourseNow?
A NetCourseNow offers the same material as a NetCourse, but allows you to move at your own
pace and to specify a starting date. With a NetCourseNow, you also have the added benefit of
a personal NetCourse instructor whom you can email directly with questions about lessons and
exercises. You must have an email address and a web browser to participate.

e How does it work?
All course lessons and exercises are posted at once, and you are free to study at your own pace.
You will be provided with the email address of your personal NetCourse instructor to contact
when you have questions.

o How much of my time does it take?
A NetCourseNow allows you to set your own pace. How long the course takes and how much
time you spend per week is up to you.

3.6.3 Classroom training courses

Classroom training courses are intensive, in-depth courses that will teach you to use Stata or, more
specifically, to use one of Stata’s advanced statistical procedures. Courses are taught by StataCorp at
third-party sites around the United States.

e How is a classroom training course taught?
These are interactive, hands-on sessions. Participants work along with the instructor so that
they can see firsthand how to use Stata. Questions are encouraged.

e Do I need my own computer?
Because the sessions are in computer labs running the latest version of Stata, there is no need
to bring your own computer. Of course, you may bring your own computer if you have a
registered copy of Stata you can use.

e Do I get any notes?
You get a complete set of printed notes for each class, which includes not only the materials
from the lessons but also all the output from the example commands.

See https://www.stata.com/training/classroom-and-web/ for all course offerings.

https://www.stata.com/netcourse
https://www.stata.com/training/classroom-and-web/

20 [U] 3 Resources for learning and using Stata

3.6.4 Web-based training courses

Web-based training courses, like classroom training courses, are intensive, in-depth courses that
will teach you to use Stata or, more specifically, to use one of Stata’s advanced statistical procedures.
Courses are taught by StataCorp, and you join the course online from your home or office.

o How is a web-based training course taught?
These are interactive, hands-on sessions. Participants work along with the instructor so that
they can see firsthand how to use Stata. Questions are encouraged.

e Do I need my own computer and Stata license?
You will need a computer with a high-speed Internet connection to join the course and to run
Stata. If you do not have a license for the current version of Stata, you will be provided with
a temporary license.

e Do I get any notes?
You get a complete set of notes for each class, which includes not only the materials from the
lessons but also all the output from the example commands.

See https://www.stata.com/training/classroom-and-web/ for all course offerings.

3.6.5 On-site training courses

On-site training courses are courses that are tailored to the needs of an institution. StataCorp
personnel can come to your site to teach what you need, whether it be to teach new users or to show
how to use a specialized tool in Stata.

o How is an on-site training course taught?
These are interactive, hands-on sessions, just like our classroom training courses. You will need
a computer for each participant.

e What topics are available?
We offer training in anything and everything related to Stata. You work with us to put together
a curriculum that matches your needs.

e How does licensing work?
We will supply you with the licenses you need for the training session, whether the training
is in a lab or for individuals working on laptops. We will send the licensing and installation
instructions so that you can have everything up and running before the session starts.

See https://www.stata.com/training/onsite-training/ for all the details.

3.6.6 Webinars

Webinars are free, live demonstrations of Stata features for both new and experienced Stata users.
The Ready. Set. Go Stata. webinar shows new users how to quickly get started manipulating, graphing,
and analyzing data. Already familiar with Stata? Discover a few of our developers’ favorite features
of Stata in our Tips and tricks webinar. The one-hour specialized feature webinars provide both new
and experienced users with an in-depth look at one of Stata’s statistical, graphical, data management,
or reporting features.

o How do I access the webinar?
Webinars are given live using Adobe Connect software.

e Do I need my own computer and Stata license?
You will need a computer with high-speed Internet connection to join the webinar and to run
Adobe Connect. You do not need access to Stata to attend.

https://www.stata.com/training/classroom-and-web/
https://www.stata.com/training/onsite-training/

[U] 3 Resources for learning and using Stata 21

e What is the cost to attend?
Webinars are free, but you must register to attend. Registrations are limited so we recommend
registering early.

See https://www.stata.com/training/webinar/ for all the details.

3.7 Books and other support materials

3.7.1 For readers

There are books published about Stata, both by us and by others. Visit the Stata Bookstore at
https://www.stata.com/bookstore/. We include the table of contents and comments written by a member
of our technical staff, explaining why we think this book might interest you.

3.7.2 For authors

If you have written a book related to Stata and would like us to consider adding it to our bookstore,
email bookstore @stata.com.

If you are writing a book, join our free Author Support Program. Stata professionals are available
to review your Stata code to ensure that it is efficient and reflects modern usage, production specialists
are available to help format Stata output, and editors and statisticians are available to ensure the
accuracy of Stata-related content. Visit https://www.stata.com/authorsupport/.

If you are thinking about writing a Stata-related book, consider publishing it with Stata Press.
Email submissions@statapress.com.

3.7.3 For editors

If you are editing a book that demonstrates Stata usage and output, join our free Editor Support
program. Stata professionals are available to review the Stata content of book proposals, review
Stata code and ensure output is efficient and reflects modern usage, provide advice about formatting
of Stata output (including graphs), and review the accuracy of Stata-related content. Visit https:
/Iwww.stata.com/publications/editor-support-program/.

3.7.4 For instructors

Teaching your course with Stata provides your students with tools and skills that translate to
their professional life. Our teaching resources page provides access to resources for instructors,
including links to our video tutorials, Ready. Set. Go Stata. webinar, Stata cheat sheets, and more.
Visit https://www.stata.com/teaching-with-stata/.

3.8 Technical support

We are committed to providing superior technical support for Stata software. To assist you as
efficiently as possible, please follow the procedures listed below.

https://www.stata.com/training/webinar/
https://www.stata.com/bookstore/
https://www.stata.com/authorsupport/
https://www.stata.com/publications/editor-support-program/
https://www.stata.com/publications/editor-support-program/
https://www.stata.com/teaching-with-stata/

22 [U] 3 Resources for learning and using Stata

3.8.1 Register your software

You must register your software to be eligible for technical support, updates, special offers, and
other benefits. By registering, you will receive the Stata News, and you may access our support staff
for free with any question that you encounter. You may register your software electronically.

After installing Stata and successfully entering your License and Activation Key, your default web
browser will open to the online registration form at the Stata website. You may also manually point
your web browser to https://www.stata.com/register/ if you wish to register your copy of Stata at a
later time.

3.8.2 Before contacting technical support

Before you spend the time gathering the information our technical support department needs, make
sure that the answer does not already exist in the help files. You can use the help and search
commands to find all the entries in Stata that address a given subject. Be sure to try selecting
Help > Contents. Check the manual for a particular command. There are often examples that address
questions and concerns. Another good source of information is our website. You should keep a
bookmark to our frequently asked questions page (https://www.stata.com/support/faqs/).

If you do need to contact technical support, visit https://www.stata.com/support/tech-support/ for
more information.

3.8.3 Technical support by email

This is the preferred method of asking a technical support question. It has the following advantages:

e You will receive a prompt response from us saying that we have received your question and
that it has been forwarded to Technical Services to answer.

e We can route your question to a specialist for your particular question.

e Questions submitted via email may be answered after normal business hours, or even on
weekends or holidays. Although we cannot promise that this will happen, it may, and your
email inquiry is bound to receive a faster response than leaving a message on Stata’s voicemail.

e If you are receiving an error message or an unexpected result, it is easy to include a log file
that demonstrates the problem.

Please visit https://www.stata.com/support/tech-support/ for information about contacting technical
support.

3.8.4 Technical support by phone

Our installation support telephone number is 979-696-4600. Please have your serial number handy.
It is also best if you are at your computer when you call. Telephone support is reserved for installation
questions. If your question does not involve installation, the question should be submitted via email.

Visit https://www.stata.com/support/tech-support/ for information about contacting technical support.

https://www.stata.com/register/
https://www.stata.com/support/faqs/
https://www.stata.com/support/tech-support/
https://www.stata.com/support/tech-support/
https://www.stata.com/support/tech-support/

[U] 3 Resources for learning and using Stata 23

3.8.5 Comments and suggestions for our technical staff

By all means, send in your comments and suggestions. Your input is what determines the changes
that occur in Stata between releases, so if we do not hear from you, we may not include your most
desired new feature! Email is preferred, as this provides us with a permanent copy of your request.
When requesting new features, please include any references that you would like us to review should
we develop those new features. Email your suggestions to service @stata.com.

3.9 References
Cox, N. J. 2014. Speaking Stata Graphics. College Station, TX: Stata Press.
Cox, N. J., and H. J. Newton, ed. 2014. One Hundred Nineteen Stata Tips. 3rd ed. College Station, TX: Stata Press.
Haghish, E. F. 2019. On the importance of syntax coloring for teaching statistics. Stata Journal 19: 83-86.

http://www.stata-press.com/books/speaking-stata-graphics/
http://www.stata-press.com/books/stata-tips/
https://doi.org/10.1177/1536867X19830892

4 Stata’s help and search facilities

Introduction
Getting started i e
help: Stata’s help SyStemttt e

Searching e
More On SEArCh ... it e
More on help . ..o e
search: All the details e e
4.8.1 How search wWorks i i e e
4.8.2 AUthor SearChest i e
483 Entry ID searches i
4.8.4 FAQ Searchest e e
4.8.5 Return codes e
net search: Searching net resourcest ..

Contents

4.1

4.2

43

4.4 Accessing PDF manuals from help entries
4.5

4.6

4.7

4.8

4.9

4.1 Introduction

To access Stata’s help, you will either
1. select Help from the menus, or

2. use the help and search commands.

24
24
24
25
26
26
27
27
28
28
29
30
30
30

Regardless of the method you use, results will be shown in the Viewer or Results windows. Blue

text indicates a hypertext link, so you can click to go to related entries.

4.2

Getting started

The first time you use help, try one of the following:

1. select Help > Advice from the menu bar, or

2. type help advice.

Either step will open the help_advice help file within a Viewer window. The advice file provides

you with steps to search Stata to find information on topics and commands that interest you.

4.3

help: Stata’s help system
When you

1. Select Help > Stata command...

Type a command name in the Command edit field

Click on OK, or

2. Type help followed by a command name

24

[U] 4 Stata’s help and search facilities 25

you access Stata’s help files. These files provide shortened versions of what is in the printed manuals.
Let’s access the help file for Stata’s ttest command. Do one of the following:

1. Select Help > Stata command...
Type ttest in the Command edit field
Click on OK, or

2. Type help ttest
Regardless of which you do, the result will be

@ Viewer - help ttest - 0 x

File Edit History Help

e c @ Q help ttest Q-
help ttest X hd
+ Dialeg~ Alsosee~ Jumpto -~
il
[R] ttest — t tests (mean-comparison tests)

(vView complete PDF manual entry)

Syntax

One-sample t test

ttest varnome == # [if] [in] [» lewvel(#)]

Two-sample t test using groups

ttest varname [if] [in] , by(groupvar) [optionsI]

Two-sample t test using variables

ttest varnagmel == varname? [if] [in], unpaired [unequal welch level(#)]

Paired t test

ttest varnomel == varname2 [if] [in] [» level{#)]

NUM

The trick is in already knowing that Stata’s command for testing equality of means is ttest and
not, say, meanstest. The solution to that problem is searching.

4.4 Accessing PDF manuals from help entries

Every help file in Stata links to the equivalent manual entry. If you are reading help ttest,
simply click on (View complete PDF manual entry) below the title to go directly to the [R] ttest
manual entry.

We provide some tips for viewing Stata’s PDF documentation at https://www.stata.com/support/
fags/resources/pdf-documentation-tips/.

https://www.stata.com/support/faqs/resources/pdf-documentation-tips/
https://www.stata.com/support/faqs/resources/pdf-documentation-tips/

26 [U] 4 Stata’s help and search facilities

4.5 Searching
If you do not know the name of the Stata command you are looking for, you can search for it by
keyword,

1. Select Help > Search...
Type keywords in the edit field
Click on OK

2. Type search followed by the keywords

search matches the keywords you specify to a database and returns matches found in Stata
commands, FAQs at www.stata.com, official blogs, and articles that have appeared in the Stata Journal.
It can also find community-contributed additions to Stata available over the web.

search does a better job when what you want is based on terms commonly used or when what
you are looking for might not already be installed on your computer.

4.6 More on search

However you access search—command or menu—it does the same thing. You tell search what
you want information about, and it searches for relevant entries. By default, search looks for the
topic across all sources, including the system help, the FAQs at the Stata website, the Stata Journal,
and all Stata-related Internet sources including community-contributed additions.

search can be used broadly or narrowly. For instance, if you want to perform the
Kolmogorov—Smirnov test for equality of distributions, you could type

. search Kolmogorov-Smirnov test of equality of distributions

[R] ksmirnov Kolmogorov-Smirnov equality of distributions test
(help ksmirnov)

In fact, we did not have to be nearly so complete—typing search Kolmogorov-Smirnov
would have been adequate. Had we specified our request more broadly—looking up equality
of distributions—we would have obtained a longer list that included ksmirnov.

Here are guidelines for using search.
e Capitalization does not matter. Look up Kolmogorov-Smirnov or kolmogorov-smirnov.
e Punctuation does not matter. Look up kolmogorov smirnov.
e Order of words does not matter. Look up smirnov kolmogorov.

e You may abbreviate, but how much depends. Break at syllables. Look up kol smir. search
tends to tolerate a lot of abbreviation; it is better to abbreviate than to misspell.

e The words a, an, and, are, for, into, of, on, to, the, and with are ignored. Use them—Iook up
equality of distributions—or omit them—Ilook up equality distributions—it
makes no difference.

e search tolerates plurals, especially when they can be formed by adding an s. Even so, it is
better to look up the singular. Look up normal distribution, not normal distributions.

e Specify the search criterion in English, not in computer jargon.
e Use American spellings. Look up color, not colour.

e Use nouns. Do not use -ing words or other verbs. Look up median tests, not testing
medians.

[U] 4 Stata’s help and search facilities 27

e Use few words. Every word specified further restricts the search. Look up distribution,
and you get one list; look up normal distribution, and the list is a sublist of that.

e Sometimes words have more than one context. The following words can be used to restrict
the context:

a. data, meaning in the context of data management. Order could refer to the order of
data or to order statistics. Look up order data to restrict order to its data management
sense.

b. statistics (abbreviation stat), meaning in the context of statistics.
Look up order statistics to restrict order to the statistical sense.

c. graph or graphs, meaning in the context of statistical graphics. Look up median
graphs to restrict the list to commands for graphing medians.

d. utility (abbreviation util), meaning in the context of utility commands. The
search command itself is not data management, not statistics, and not graphics; it
is a utility.

e. programs or programming (abbreviation prog), to mean in the context of program-
ming. Look up programming scalar to obtain a sublist of scalars in programming.

search has other features, as well; see [U] 4.8 search: All the details.

4.7 More on help

Both help and search are understanding of some mistakes. For instance, you may abbreviate
some command names. If you type either help regres or help regress, you will bring up the
help file for regress.

When help cannot find the command you are looking for among Stata’s official help files or
any community-contributed additions you have installed, Stata automatically performs a search. For
instance, typing help ranktest causes Stata to reply with “help for ranktest not found”, and then
Stata performs search ranktest. The search tells you that ranktest is available in the Enhanced
routines for IV/GMM estimation and testing article in Stata Journal, Volume 7, Number 4.

Stata can run into some problems with abbreviations. For instance, Stata has a command with the
inelegant name ksmirnov. You forget and think the command is called ksmir:

. help ksmir
No entries found for search on "ksmir"

A help file for ksmir was not found, so Stata automatically performed a search on the word. The
message indicates that a search of ksmir also produced no results. You should type search followed
by what you are really looking for: search kolmogorov smirnov.

4.8 search: All the details

The search command actually provides a few features that are not available from the Help menu.
The full syntax of the search command is

search word [W{)I’d] [, [all\loca1|net] author entry exact faq

historical or manual sj]

where underlining indicates the minimum allowable abbreviation and [brackets] indicate optional.

http://www.stata-journal.com/sjpdf.html?articlenum=st0030_3
http://www.stata-journal.com/sjpdf.html?articlenum=st0030_3

28 [U] 4 Stata’s help and search facilities

all, the default, specifies that the search be performed across both the local keyword database and
the net materials.

local specifies that the search be performed using only Stata’s keyword database.

net specifies that the search be performed across the materials available via Stata’s net command.
Using search word [word } , net is equivalent to typing net search word [wom’]
(without options); see [R] net.

author specifies that the search be performed on the basis of author’s name rather than keywords.
entry specifies that the search be performed on the basis of entry IDs rather than keywords.
exact prevents matching on abbreviations.

faq limits the search to entries found in the FAQs at https://www.stata.com.

historical adds to the search entries that are of historical interest only. By default, such entries
are not listed.

or specifies that an entry be listed if any of the words typed after search are associated with the
entry. The default is to list the entry only if all the words specified are associated with the entry.

manual limits the search to entries in the User’s Guide and all the Reference manuals.

sj limits the search to entries in the Stata Journal and the Stata Technical Bulletin.

4.8.1 How search works

search has a database—files—containing the titles, etc., of every entry in the User’s Guide,
Reference manuals, undocumented help files, NetCourses, Stata Press books, FAQs posted on the
Stata website, videos on StataCorp’s YouTube channel, selected articles on StataCorp’s official blog,
selected community-contributed FAQs and examples, and the articles in the Stata Journal and in the
Stata Technical Bulletin. In this file is a list of words associated with each entry, called keywords.

When you type search xyz, search reads this file and compares the list of keywords with xyz.
If it finds xyz in the list or a keyword that allows an abbreviation of xyz, it displays the entry.

When you type search xyz abc, search does the same thing but displays an entry only if it
contains both keywords. The order does not matter, so you can search linear regression or
search regression linear.

How many entries search finds depends on how the search database was constructed. We have
included a plethora of keywords under the theory that, for a given request, it is better to list too much
rather than risk listing nothing at all. Still, you are in the position of guessing the keywords. Do you
look up normality test, normality tests, or tests of normality? Normality test would be best, but all
would work. In general, use the singular and strike the unnecessary words. We provide guidelines
for specifying keywords in [U] 4.6 More on search above.

4.8.2 Author searches

search ordinarily compares the words following search with the keywords for the entry. If you
specify the author option, however, it compares the words with the author’s name. In the search
database, we have filled in author names for Stata Journal and STB articles, Stata Press books,
StataCorp’s official blog, and FAQs.

For instance, in [R] kdensity, you will discover that Isafas H. Salgado-Ugarte wrote the first version
of Stata’s kdensity command and published it in the STB. Assume that you have read his original
and find the discussion useful. You might now wonder what he has written in the Stata Journal. To
find out, type

https://www.stata.com

[U] 4 Stata’s help and search facilities 29

. search Salgado-Ugarte, author
(output omitted)

Names like Salgado-Ugarte are confusing to some people. search does not require you specify the
entire name; what you type is compared with each “word” of the name, and, if any part matches,
the entry is listed. The hyphen is a special character, and you can omit it. Thus you can obtain the
same list by looking up Salgado, Ugarte, or Salgado Ugarte without the hyphen.

To find entries written by Salgado-Ugarte in the STB, you need to type

. search Salgado-Ugarte, author historical
(output omitted)

Inserts in the STB are marked as historical in the search database and, by default, are not listed. The
historical option ensures that all entries are listed.

4.8.3 Entry ID searches

If you specify the entry option, search compares what you have typed with the entry ID. The
entry ID is not the title—it is the reference listed to the left of the title that tells you where to look.
For instance, in

[R] regress+ « + +« « « + +« « « +« +« « .« . . . Linear regression
(help regress)

“[R] regress” is the entry ID. In

GS C e e e e e e e e e eGetting Started manual

“GS” is the entry ID. In

SJ-14-4 gro0o59 Plotting regression coefficients and other estimates
(help coefplot if installed) B. Jann
Q4/14 SJ 14(4):708--737
alternative to marginsplot that plots results from any
estimation command and combines results from several models
into one graph

“SJ-14-4 gr0059” is the entry ID.
search with the entry option searches these entry IDs.
Thus you could generate a table of contents for the Reference manuals by typing

. search [R], entry
(output omitted)

You could generate a table of contents for the 16th issue of the STB by typing

. search STB-16, entry historical
(output omitted)

You could obtain a list of all inserts associated with sbel9 by typing

. search sbel9, entry historical
(output omitted)

We include the historical option in case any of the relevant inserts have been marked historical.

30 [U] 4 Stata’s help and search facilities

4.8.4 FAQ searches

To search across the FAQs, specify the faq option:

. search logistic regression, faq
(output omitted)

4.8.5 Return codes

In addition to indexing the entries in the User’s Guide and all the Stata Reference manuals, search
also can be used to look up return codes.

To see information about return code 131, type

. search rc 131

[R] error messages « « « « Return code 131
not possible with test;
You requested a test of a hypothesis that is nonlinear in the
variables. test tests only linear hypotheses. Use testnl.

To get a list of all Stata return codes, type

. search rc
(output omitted)

4.9 net search: Searching net resources

When you select Help > Search..., there are two types of searches to choose. The first, which
has been discussed in the previous sections, is to Search documentation and FAQs. The second is
to Search net resources. This feature of Stata searches resources over the Internet.

When you choose Search net resources in the search dialog box and enter keywords in the field,
Stata searches all community-contributed programs on the Internet, including community-contributed
additions published in the Stata Journal and the STB. The results are displayed in the Viewer, and
you can click to go to any of the matches found.

Equivalently, you can type net search keywords on the Stata command line to display the results
in the Results window. For the full syntax for using the net search command, see [R] net search.

5]

5.1

Flavors of Stata

Contents

5.1 Platforms ... e 31

52 Stata/MP, Stata/SE, or Stata/IC e 31
5.2.1 Determining which version you own oL 32
5.2.2 Determining which version is installed 32

53 Size limits of Stata/MP, SE, and IC i, 32

5.4 Speed comparison of Stata/MP, SE, and IC 32

5.5 Feature comparison of Stata/MP, SE, and IC 33

Platforms

Stata is available for a variety of systems, including
Stata for Windows, 64-bit x86-64
Stata for Mac, 64-bit x86-64
Stata for Linux, 64-bit x86-64

Which version of Stata you run does not matter— Stata is Stata. You instruct Stata in the same way
and Stata produces the same results, right down to the random-number generator. Even files can be
shared. A dataset created on one computer can be used on any other computer, and the same goes
for graphs, programs, or any file Stata uses or produces. Moving files across platforms is simply a
matter of copying them; no translation is required.

Some computers, however, are faster than others. Some computers have more memory than others.
Computers with more memory, and faster computers, are better.

When you purchase Stata, you may install it on any of the above platforms. Stata licenses are not
locked to a single operating system.

5.2 Stata/MP, Stata/SE, or Stata/IC

Stata is available in three flavors, although perhaps sizes would be a better word. The flavors are,
from largest to smallest, Stata/MP, Stata/SE, and Stata/IC.

Stata/MP is the multiprocessor version of Stata. It runs on multiple CPUs or on multiple cores,
from 2 to 64. Stata/MP uses however many cores you tell it to use (even one), up to the number
of cores for which you are licensed. Stata/MP is the fastest version of Stata. Even so, all the details
of parallelization are handled internally and you use Stata/MP just like you use any other flavor of
Stata. You can read about how Stata/MP works and see how its speed increases with more cores in
the Stata/MP performance report at https://www.stata.com/statamp/report.pdf.

Stata/SE is like Stata/MP, but for single CPUs. Stata/SE will run on multiple CPUs or multiple-core
computers, but it will use only one CPU or core. SE stands for special edition.

In addition to being the fastest version of Stata, Stata/MP is also the largest. Stata/MP allows up
to 1,099,511,627,775 observations in theory, but you can undoubtedly run out of memory first. You
may have up to 120,000 variables with Stata/MP. Statistical models may have up to 11,000 variables.

31

https://www.stata.com/statamp/report.pdf

32 [U] 5 Flavors of Stata

Stata/SE allows up to 2,147,583,647 observations, assuming you have enough memory. You may
have up to 32,767 variables, and, like Stata/MP, statistical models may have up to 11,000 variables.

Stata/IC is standard Stata. Up to 2,147,583,647 observations and 2,048 variables are allowed,
depending on memory. Statistical models may have up to 800 variables.

5.2.1 Determining which version you own

Check your License and Activation Key. Included with every copy of Stata is a License and
Activation Key that contains codes that you will input during installation. This determines which
flavor of Stata you have and for which platform.

Contact us or your distributor if you want to upgrade from one flavor to another. Usually, all you
need is an upgraded License and Activation Key with the appropriate codes. All flavors of Stata are
on the same DVD.

If you purchased one flavor of Stata and want to use a lesser version, you may. You might want to
do this if you had a large computer at work and a smaller one at home. Please remember, however,
that you have only one license (or however many licenses you purchased). You may, both legally and
ethically, install Stata on both computers and then use one or the other, but you should not use them
both simultaneously.

5.2.2 Determining which version is installed

If Stata is already installed, you can find out which Stata you are using by entering Stata as you
normally do and typing about:

. about

Stata/MP 16.1 for Windows (64-bit x86-64)
Revision date
Copyright 1985-2019 StataCorp LLC

Total usable memory: 8388608 KB

Stata license: 10-user 32-core network perpetual
Serial number: 16
Licensed to: Stata Developer
StataCorp LLC

5.3 Size limits of Stata/MP, SE, and IC

Stata/MP allows more variables and observations, longer macros, and a longer command line than
Stata/SE. Stata/SE allows more variables, larger models, longer macros, and a longer command line
than Stata/IC. The longer command line and macro length are required because of the greater number
of variables allowed. The larger model means that Stata/MP and Stata/SE can fit statistical models
with more independent variables. See [R] Limits for the maximum size limits for Stata/MP, Stata/SE,
and Stata/IC.

5.4 Speed comparison of Stata/MP, SE, and IC

We have written a white paper comparing the performance of Stata/MP with Stata/SE; see
https://www.stata.com/statamp/report.pdf. The white paper includes command-by-command perfor-
mance measurements.

https://www.stata.com/statamp/report.pdf

[U] 5 Flavors of Stata 33

In summary, on a dual-core computer, Stata/MP will run commands in 71% of the time required
by Stata/SE. There is variation; some commands run in half the time and others are not sped up at
all. Statistical estimation commands run in 59% of the time. Numbers quoted are medians. Average
performance gains are higher because commands that take longer to execute are generally sped up
more.

Stata/MP running on four cores runs in 50% (all commands) and 35% (estimation commands) of
the time required by Stata/SE. Both numbers are median measures.

Stata/MP supports up to 64 cores.

Stata/IC is slower than Stata/SE, but those differences emerge only when processing datasets
that are pushing the limits of Stata/IC. Stata/SE has a larger memory footprint and uses that extra
memory for larger look-aside tables to more efficiently process large datasets. The real benefits of
the larger tables become apparent only after exceeding the limits of Stata/IC. Stata/SE was designed
for processing large datasets.

The differences are all technical and internal. From the user’s point of view, Stata/MP, Stata/SE,
and Stata/IC work the same way.

5.5 Feature comparison of Stata/MP, SE, and IC

The features of all flavors of Stata on all platforms are the same. The differences are in speed
and in limits as discussed above. To learn more, type help stata/mp, help stata/se, or help
stata/ic.

6 Managing memory

Contents

6.1 Memory-size conSIderations oottt tn et 34
6.2 Compressing data 34
6.3 Setting MAXVAT . ..ottt ettt e e e e e e e 34
6.4 The memory commanduuuuntneneun et 35
6.5 Setting aside memory for temporary storage of preserved datasets 35

6.1 Memory-size considerations

Stata works with a copy of data that it loads into memory. To be precise, Stata can work with
multiple datasets in memory at the same time. See [D] frames intro.

Memory allocation is automatic. Stata automatically sizes itself up and down as your session
progresses. Stata obtains memory from the operating system and draws no distinction between real
and virtual memory. Virtual memory is memory that resides on disk that operating systems supply
when physical memory runs short. Virtual memory is slow but adequate in cases when you have
a dataset that is too large to load into real memory. If you wish to limit the maximum amount of
memory Stata can use, you can set max_memory; see [D] memory. If you use the Linux operating
system, we strongly suggest you set max_memory; see Serious bug in Linux OS in [D] memory.

6.2 Compressing data

Stata stores data in memory. The compress command reduces the amount of memory required
to store the data without loss of precision or any other disadvantages; see [D] compress. Typing
compress every so often is a good idea.

compress works by examining the values you have stored and changing the data types of variables
when that can be done without loss of precision. For instance, you may have a variable stored as
float but that records only integer values between —127 and 100. compress would change the
storage type of that variable to byte and save 3 bytes per observation. If you had 100 variables like
that, the savings would be 300 bytes per observation, and if you had 3,000,000 observations, the total
savings would be nearly 900 megabytes.

6.3 Setting maxvar

If you get the error message “no room to add more variables”, r(901), do not jump to the conclusion
that you have exceeded Stata’s capacity.

maxvar specifies the maximum number of variables you can use. The default setting depends on
whether you are using Stata/MP, Stata/SE, or Stata/IC. To determine the current setting, type query
memory at the Stata prompt.

If you use Stata/MP, you can reset this maximum number to 120,000. If you use Stata/SE, you
can reset this maximum number to 32,767. Set maxvar to more than you need—at least 20 more
than you need but not too much more than you need. Figure that each 10,000 variables consumes
roughly 0.5 megabytes of memory.

34

[U] 6 Managing memory 35

You reset maxvar using the set maxvar command,
set maxvar # [, permanently]

where 2,048 < # < 120,000, depending on your flavor of Stata. You can reset maxvar repeatedly
during a session. If you specify the permanently option, you change maxvar not only for this
session but also for future sessions. Each additional 10,000 variables specified with set maxvar
requires Stata to set aside roughly 1.3 megabytes of memory for variable names, not including the
data stored in those variables.

6.4 The memory command

The memory command will show you the major components of Stata’s memory footprint.

. use https://www.stata-press.com/data/r16/regsmpl
(NLS Women 14-26 in 1968)

. memory

Memory usage

used allocated
data 856,020 67,108,864
strLs 0 0
data & strLs 856,020 67,108,864
data & strLs 856,020 67,108,864
var. names, %fmts, ... 4,436 67,327
overhead 2,081,344 1,082,136
Stata matrices 0 0
ado-files 9,429 9,429
stored results 0 0
Mata matrices 0 0
Mata functiomns 0 0
set maxvar usage 2,164,426 2,164,426
other 3,282 3,282
grand total 4,114,061 70,435,464

See [D] memory.

6.5 Setting aside memory for temporary storage of preserved datasets

Stata has a feature to preserve and restore datasets, allowing you to manipulate the data
during an analysis and bring them back without harm. Stata/MP uses memory to make copies of
these datasets as fast as possible. Stata/SE and Stata/IC make the copies on disk.

To control the amount of memory Stata/MP will use for these temporary dataset copies before it
falls back to slower disk storage, use the set max_preservemen setting. See [P] preserve for more
details.

7 —more- conditions

Contents

7.1 DesCriptionot e 36
T2 SBLIMOIE ...ttt ettt 36
7.3 The more programming commandttt 36

7.1 Description
By default, Stata does not pause its output. If a command generates more than a screenful of
output, you can scroll back to see what you missed.

Some users prefer for Stata to pause every time the screen is full of output. You can enable this
with Stata’s set more command. See [R] more.

If you set more on, Stata will pause any time a command generates more than a screenful of
output. When you see —more— at the bottom of the screen,

Press ... and Stata ...

letter [or Enter displays the next line

letter g acts as if you pressed Break
Spacebar or any other key displays the next screen

Also, from the menu, you can press the More button, the green button with the down arrow.

—more— is Stata’s way of telling you that it has something more to show you, but showing you
that something more will cause the information on the screen to scroll off.

7.2 set more
If you type set more on, —more— conditions will arise at the appropriate places.

If you type set more off (Stata’s default behavior), —more— conditions will never arise and
Stata’s output will scroll by at full speed.

Programmers: If set more is used within a do-file or program, Stata automatically restores the
previous set more setting when the do-file or program concludes.

See [R] more.

7.3 The more programming command
Ado-file programmers need take no special action to have —more— conditions arise when the
screen is full. Stata handles that automatically.

If, however, you wish to force a —more— condition early, you can include the more command
in your program. The syntax of more is

more
more takes no arguments.

For more information, see [P] more.

36

8

8.1

8.1

Error messages and return codes

Contents

8.1 Making mistakest 37
8.1.1 Mistakes are forgiven e 37
8.1.2 Mistakes stop user-written programs and do-files 37
8.1.3 Advanced programming to tolerate errors, 38

8.2 The return message for obtaining command timings 38

Making mistakes

When an error occurs, Stata produces an error message and a return code. For instance,

. list myvar
no variables defined
r(111);

We ask Stata to list the variable named myvar. Because we have no data in memory, Stata responds
with the message “no variables defined” and a line that reads “r(111)”.
The “no variables defined” is called the error message.

The 111 is called the return code. You can click on blue return codes to get a detailed explanation
of the error.

.1 Mistakes are forgiven

After “no variables defined” and r(111), all is forgiven; it is as if the error never occurred.

Typically, the message will be enough to guide you to a solution, but if it is not, the numeric
return codes are documented in [P] error.

8.1.2 Mistakes stop user-written programs and do-files

Whenever an error occurs in a user-written program or do-file, the program or do-file immediately
stops execution and the error message and return code are displayed.

For instance, consider the following do-file:

begin myfile.do
use https://www.stata-press.com/data/r16/auto

decribe

list

end myfile.do

Note the second line—you meant to type describe but typed decribe. Here is what happens when
you execute this do-file by typing do myfile:

. do myfile

. use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)

37

38 [U] 8 Error messages and return codes

. decribe

command decribe is unrecognized
r(199);

end of do-file

r(199);

The first error message and return code were caused by the illegal decribe. This then caused the
do-file itself to be aborted; the valid 1ist command was never executed.

8.1.3 Advanced programming to tolerate errors

Errors are not only of the typographical kind; some are substantive. A command that is valid in
one dataset might not be valid in another. Moreover, in advanced programming, errors are sometimes
anticipated: use one dataset if it is there, but use another if you must.

Programmers can access the return code to determine whether an error occurred, which they can
then ignore, or, by examining the return code, code their programs to take the appropriate action.
This is discussed in [P] capture.

You can also prevent do-files from stopping when errors occur by using the do command’s nostop
option.

. do myfile, nostop

8.2 The return message for obtaining command timings

In addition to error messages and return codes, there is something called a return message, which
you normally do not see. Normally, if you typed summarize tempjan, you would see
. use https://wuw.stata-press.com/data/r16/citytemp
(City Temperature Data)
. summarize tempjan
Variable | Obs Mean Std. Dev. Min Max

tempjan | 954 35.74895 14.18813 2.2 72.6

If you were to type

. set rmsg on
r; t=0.00 10:21:22

sometime during your session, Stata would display return messages:

. summarize tempjan
Variable | Obs Mean Std. Dev. Min Max

tempjan | 954 35.74895 14.18813 2.2 72.6
r; t=0.01 10:21:26

The line that reads r; t=0.01 10:21:26 is called the return message.
The r; indicates that Stata successfully completed the command.

The t=0.01 shows the amount of time, in seconds, it took Stata to perform the command (timed
from the point you pressed Enter to the time Stata typed the message). This command took a hundredth
of a second. Stata also shows the time of day with a 24-hour clock. This command completed at
10:21 a.m.

[U] 8 Error messages and return codes 39

Stata can run commands stored in files (called do-files) and can log output. Some users find the
detailed return message helpful with do-files. They construct a long program and let it run overnight,
logging the output. They come back the next morning, look at the output, and discover a mistake in
some portion of the job. They can look at the return messages to determine how long it will take to
rerun that portion of the program.

You may set rmsg on whenever you wish.
When you want Stata to stop displaying the detailed return message, type set rmsg off.

There is another way to obtain timings of subsets of code that is of interest to programmers. See
[P] timer.

9 The Break key

Contents

9.1 Making Stata stop what it is dOINgottt 40
9.2 Side effects of clicking on Break i 41
9.3 Programming considerationsiiii i e 41

9.1 Making Stata stop what it is doing

When you want to make Stata stop what it is doing and return to the Stata dot prompt, you click on
Break:

Stata for Windows: click on the Break button (it is the button with the big red X), or
press Ctrl+Pause/Break
Stata for Mac: click on the Break button or
press Command+. (period)
Stata for Unix(GUI): click on the Break button or
press Ctrl+k
Stata for Unix(console): press Ctrl+c or
press q

Elsewhere in this manual, we describe this action as simply clicking on Break. Break tells Stata to
cancel what it is doing and return control to you as soon as possible.

If you click on Break in response to the input prompt or while you are typing a line, Stata ignores
it, because you are already in control.

If you click on Break while Stata is doing something—creating a new variable, sorting a dataset,
making a graph, etc.—Stata stops what it is doing, undoes it, and issues an input prompt. The state
of the system is the same as if you had never issued the command.

> Example 1

You are fitting a logit model, type the command, and, as Stata is working on the problem, realize
that you omitted an important variable:

. logit foreign mpg weight

Iteration O: log likelihood = -45.03321
Iteration 1: log likelihood = -29.898968
—Break—

r(1);

When you clicked on Break, Stata responded by typing —Break— and then typing r(1) ;. Clicking
on Break always results in a return code of 1—that is why return codes are called return codes and
not error codes. The 1 does not indicate an error, but it does indicate that the command did not
complete its task.

N

40

[U] 9 The Break key 41

9.2 Side effects of clicking on Break

In general, there are no side effects of clicking on Break. We said above that Stata undoes what it
is doing so that the state of the system is the same as if you had never issued the command. There
are two exceptions to that statement.

If you are reading data from disk by using import delimited, infile, or infix, whatever data
have already been read will be left behind in memory, the theory being that perhaps you stopped the
process so you could verify that you were reading the right data correctly before sitting through the
whole process. If not, you can always clear.

. infile v1-v9 using workdata
(eof not at end of obs)

(4 observations read)
—Break—

r(1);

The other exception is sort. You have a large dataset in memory, decide to sort it, and then
change your mind.

. sort price
—Break—
r(1);

If the dataset was previously sorted by, say, the variable prodid, it is no longer. When you click on
Break in the middle of a sort, Stata marks the data as unsorted.

9.3 Programming considerations

There are basically no programming considerations for handling Break because Stata handles it
all automatically. If you write a program or do-file, execute it, and then click on Break, Stata stops
execution just as it would with an internal command.

Advanced programmers may be concerned about cleaning up after themselves; perhaps they have
generated a temporary variable they intended to drop later or a temporary file they intended to erase
later. If a Stata user clicks on Break, how can you ensure that these temporary variables and files
will be erased?

If you obtain names for such temporary items from Stata’s tempname, tempvar, and tempfile
commands, Stata will automatically erase the temporary items; see [U] 18.7 Temporary objects.

There are instances, however, when a program must commit to executing a group of commands
without interruption, or the user’s data would be left in an intermediate or undefined state. In these
instances, Stata provides a

nobreak {

}

construct; see [P] break. Also see [M-5] setbreakintr() to read about Break-key processing in Mata.

1 0 Keyboard use

Contents

101 DeSCIIPHON vttt et et e e e e e e e e e e e e e e e e e e 42
10,2 FoKOYS ottt 42
10.3 Editing keys in Statao. it e 44
10.4 Editing keys in Stata for Unix(console)t nnan.. 44
10.5 Editing previous lines in Statao.iiiini i 46
10.6 Tab expansion of variable namesottt 47

10.1 Description

The keyboard should operate much the way you would expect, with a few additions:

e There are some unexpected keys you can press to obtain previous commands you have typed.
Also, you can click once on a command in the History window to reload it, or click on it twice
to reload and execute; this feature is discussed in the Getting Started manuals.

e There are a host of command-editing features for Stata for Unix(console) users because their
user interface does not offer such features.

e Regardless of operating system or user interface, if there are F-keys on your keyboard, they
have special meaning and you can change the definitions of the keys.

10.2 F-keys

Windows users: F3 and F10 are reserved internally by Windows; you cannot program these keys.

By default, Stata defines the F-keys to mean

F-key Definition

F1 help advice;
F2 describe;

F7 save

F8 use

The semicolons at the end of some entries indicate an implied Enter.

Stata provides several methods for obtaining help. To learn about these methods, select Help >
Advice. Or you can just press FI.

describe is the Stata command to report the contents of data loaded into memory. It is explained
in [D] describe. Normally, you type describe and press Enter. You can also press F2.

save is the command to save the data in memory into a file, and use is the command to load
data; see [D] use and [D] save. The syntax of each is the same: save or use followed by a filename.
You can type the commands or you can press F7 or F8 followed by the filename.

You can change the definitions of the F-keys. For instance, the command to list data is 1ist; you
can read about it in [D] list. The syntax is list to list all the data, or 1ist followed by the names
of some variables to list just those variables (there are other possibilities).

42

[U] 10 Keyboard use 43

If you wanted F9 to mean 1ist, you could type

. global F9 "list "

In the above, F9 refers to the letter F followed by 9, not the F9 key. Note the capitalization and
spacing of the command.

You type global in lowercase, type F9, and then type "list ". The space at the end of 1list is
important. In the future, rather than typing list mpg weight, you want to be able to press the F9
key and then type only mpg weight. You put a space in the definition of F9 so that you would not
have to type a space in front of the first variable name after pressing F9.

Now say you wanted F5 to mean list all the data—1ist followed by Enter. You could define

. global F5 "list;"

Now you would have two ways of listing all the data: press F9, and then press Enter, or press F5.
The semicolon at the end of the definition of F5 will press Enter for you.

If you really want to change the definitions of F9 and F5, you will probably want to change the
definition every time you invoke Stata. One way would be to type the two global commands every
time you invoke Stata. Another way would be to type the two commands into a text file named
profile.do. Stata executes the commands in profile.do every time it is launched if profile.do
is placed in the appropriate directory:

Windows: see [GSW] B.3 Executing commands every time Stata is started
Mac: see [GSM] B.1 Executing commands every time Stata is started
Unix: see [GSU] B.1 Executing commands every time Stata is started

You can use the F-keys any way you desire: they contain a string of characters, and pressing the
F-key is equivalent to typing those characters.

Q Technical note

[Stata for Unix(console) users.] Sometimes Unix assigns a special meaning to the F-keys, and if
it does, those meanings supersede our meanings. Stata provides a second way to get to the F-keys.
Press Ctrl+F, release the keys, and then press a number from O through 9. Stata interprets Ctrl+F
plus 1 as equivalent to the FI key, Ctrl+F plus 2 as F2, and so on. Ctrl+F plus 0 means F10. These
keys will work only if they are properly mapped in your termcap or terminfo entry.

a

Q Technical note

On some international keyboards, the left single quote is used as an accent character. In this
case, we recommend mapping this character to one of your function keys. In fact, you might find it
convenient to map both the left single quote () and the right single quote (’) characters so that they
are next to each other.

Within Stata, open the Do-file Editor. Type the following two lines in the Do-file Editor:

global F4 ¢
global F5 ’

Save the file as profile.do into your Stata directory. If you already have a profile.do file,
append the two lines to your existing profile.do file.

44 [U] 10 Keyboard use

Exit Stata and restart it. You should see the startup message
running C:\Program Files\Statal6\profile.do ...
or some variant of it depending on where your Stata is installed. Press F4 and F5 to verify that they
work.
If you did not see the startup message, you did not save the profile.do in your home folder.

You can, of course, map to any other function keys, but F1, F2, F7, and F8 are already used.
Q

10.3 Editing keys in Stata

Users have available to them the standard editing keys for their operating system. So, Stata should
just edit what you type in the natural way—the Stata Command window is a standard edit window.

Also, you can fetch commands from the History window into the Command window. Click on a
command in the History window, and it is loaded into the Command window, where you can edit it.
Alternatively, if you double-click on a line in the History window, it is loaded and executed.

Another way to get lines from the History window into the Command window is with the PgUp
and PgDn keys. Press PgUp and Stata loads the last command you typed into the Command window.
Press it again and Stata loads the line before that, and so on. PgDn goes in the opposite direction.

Another editing key that interests users is Esc. This key clears the Command window.

In summary,
Press Result

PgUp Steps back through commands and moves command
from History window to Command window

PgDn Steps forward through commands and moves command
from History window to Command window

Esc Clears Command window

10.4 Editing keys in Stata for Unix(console)

Certain keys allow you to edit the line that you are typing. Because Stata supports a variety of
computers and keyboards, the location and the names of the editing keys are not the same for all
Stata users.

Every keyboard has the standard alphabet keys (QWERTY and so on), and every keyboard has a
Ctrl key. Some keyboards have extra keys located to the right, above, or left, with names like PgUp
and PgDn.

Throughout this manual we will refer to Stata’s editing keys using names that appear on nobody’s
keyboard. For instance, PrevLine is one of the Stata editing keys—it retrieves a previous line. Hunt
all you want, but you will not find it on your keyboard. So, where is PrevLine? We have tried to put
it where you would naturally expect it. On keyboards with a key labeled PgUp, PgUp is the PrevLine
key, but on everybody’s keyboard, no matter which version of Unix, brand of keyboard, or anything
else, Ctrl+R also means PrevLine.

[U] 10 Keyboard use 45

When we say press PrevLine, now you know what we mean: press PgUp or Ctrl+R. The editing
keys are the following:

Name for
editing key Editing key Function
Kill Esc on PCs and Ctrl+U Deletes the line and lets you start over.
Dbs Backspace on PCs and Backspace Backs up and deletes one character.
or Delete on other computers

Lft <, 4 on the numeric keypad Moves the cursor left one character

for PCs, and Ctrl+H without deleting any characters.

Rgt —, 6 on the numeric keypad Moves the cursor forward one character.

for PCs, and Ctrl+L

Up 1, 8 on the numeric keypad Moves the cursor up one physical line on a

for PCs, and Ctrl+O line that takes more than one physical line.
Also see PrevLine.
Dn 1, 2 on the numeric keypad Moves the cursor down one physical line on a
for PCs, and Ctrl+N line that takes more than one physical line.
Also see NextLine.

PrevLine PgUp and Ctrl+R Retrieves a previously typed line. You may
press PrevLine multiple times to step back
through previous commands.

NextLine PgDn and Ctrl+B The inverse of PrevLine.

Seek Ctrl+Home on PCs and Ctrl+W Goes to the line number specified. Before
pressing Seek, type the line number. For
instance, typing 3 and then pressing Seek is
the same as pressing PrevLine three times.

Ins Ins and Ctrl+E Toggles insert mode. In insert mode, characters
typed are inserted at the position
of the cursor.

Del Del and Ctrl+D Deletes the character at the position of
the cursor.

Home Home and Ctrl+K Moves the cursor to the start of the line.

End End and Ctrl+P Moves the cursor to the end of the line.

Hack Ctrl+End on PCs, and Ctrl+X Hacks off the line at the cursor.

Tab —| on PCs, Tab, and Ctrl+I Expand variable name.

Btab k— on PCs, and Ctr+G The inverse of Tab.

> Example 1

It is difficult to demonstrate the use of editing keys in print. You should try each of them.
Nevertheless, here is an example:

summarize price waht

You typed summarize price waht and then pressed the Lft key (+— key or Ctrl+H) three times
to maneuver the cursor back to the a of waht. If you were to press Enter right now, Stata would see
the command summarize price waht, so where the cursor is does not matter when you press Enter.
If you wanted to execute the command summarize price, you could back up one more character
and then press the Hack key. We will assume, however, that you meant to type weight.

If you were now to press the letter e on the keyboard, an e would appear on the screen to replace
the a, and the cursor would move under the character h. We now have weht. You press Ins, putting
Stata into insert mode, and press i and g. The line now says summarize price weight, which is

46 [U] 10 Keyboard use

correct, so you press Enter. We did not have to press Ins before every character we wanted to insert.
The Ins key is a toggle: If we press it again, Stata turns off insert mode, and what we type replaces
what was there. When we press Enter, Stata forgets all about insert mode, so we do not have to
remember from one command to the next whether we are in insert mode.

d

Q Technical note

Stata performs its editing magic from the information about your terminal recorded in
/etc/termcap(5) or, under System V, /usr/lib/terminfo(4). If some feature does not appear to
work, the entry for your terminal in the termcap file or terminfo directory is probably incorrect.
Contact your system administrator.

a

10.5 Editing previous lines in Stata

In addition to what is said below, remember that the History window also shows the contents of
the review buffer.

One way to retrieve lines is with the PrevLine and NextLine keys. Remember, PrevLine and
NextLine are the names we attach to these keys—there are no such keys on your keyboard. You have
to look back at the previous section to find out which keys correspond to PrevLine and NextLine
on your computer. To save you the effort this time, PrevLine probably corresponds to PgUp and
NextLine probably corresponds to PgDn.

Suppose you wanted to reissue the third line back. You could press PrevLine three times and then
press Enter. If you made a mistake and pressed PrevLine four times, you could press NextLine to
go forward in the buffer. You do not have to count lines because, each time you press PrevLine or
NextLine, the current line is displayed on your monitor. Simply press the key until you find the line
you want.

Another method for reviewing previous lines, #review, is convenient for Unix(console) users.

> Example 2

Typing #review by itself causes Stata to list the last five commands you typed. For instance,

#review

list make mpg weight if abs(res)>6
list make mpg weight if abs(res)>5
tabulate foreign if abs(res)>b
regress mpg weight weight2

test weight2=0

=N W o

We can see from the listing that the last command typed by the user was test weight2=0. Or, you
may just look at the History window to see the history of commands you typed.

N

47

> Example 3

Perhaps the command you are looking for is not among the last five commands you typed. You
can tell Stata to go back any number of lines. For instance, typing #review 15 tells Stata to show
you the last 15 lines you typed:

. #review 15

15 replace resmpg=mpg-pred

14 summarize resmpg, detail

13 drop predmpg

12 describe

11 sort foreign

10 by foreign: summarize mpg weight

9 * lines that start with a * are comments.
8 * they go into the review buffer too.
7 summarize resmpg, detail

6 list make mpg weight

5 list make mpg weight if abs(res)>6

4 list make mpg weight if abs(res)>5

3 tabulate foreign if abs(res)>5

2 regress mpg weight weight2

1 test weight2=0

If you wanted to resubmit the 10th previous line, you could type 10 and press Seek, or you could
press PrevLine 10 times. No matter which of the above methods you prefer for retrieving lines, you
may edit previous lines by using the editing keys.

4

10.6 Tab expansion of variable names

Another way to quickly enter a variable name is to take advantage of Stata’s tab-completion feature.
Simply type the first few letters of the variable name in the Command window and press the Tab
key. Stata will automatically type the rest of the variable name for you. If more than one variable
name matches the letters you have typed, Stata will complete as much as it can and beep at you to
let you know that you have typed a nonunique variable abbreviation.

The tab-completion feature also applies to typing filenames. If you start by typing a double quote,
", you can type the first few letters of a filename or directory and press the Tab key. Stata will
automatically type the rest of the name for you. If more than one filename or directory matches the
letters you have typed, Stata will complete as much as it can and beep at you to let you know that
you have typed a nonunique abbreviation. After the entire filename or directory has been typed, type
another double quote.

11

12

13

14

15

16

17

18

19

20

21

Elements of Stata

Functions and eXpresSSionS e ettt e e e e
MatriX EXPIeSSIONS . v v vttt ettt e e ettt e e e e e
Saving and printing output—Ilog files
Do-fIleS ot e
AdO-fIles oo
Programming Stata
Immediate commands e
Estimation and postestimation commandsitiiiiii .

Creating TEPOTLS . . . v v vt e ettt e et et e e e e e e e e e e et e

48

1 1 Language syntax

11

Contents

11.1 Overview
11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7
11.1.8
11.1.9
11.1.10

11.2.1
11.2.2
11.2.3
11.2.4

11.3 Naming conventions
114 varname and varlists
Lists of existing variables . .

11.4.1
11.4.2
1143

11.4.4

11.5 by varlist: construct
11.6 Filenaming conventions
A special note for Mac users

11.6.1
11.6.2

11.7 References

varlist
by varlist:
ifexp ...
inrange
ZEXP v e
weight
options
numlist
datelist
Prefix commands
11.2 Abbreviation rules
Command abbreviation
Option abbreviation

Variable-name abbreviation

Abbreviations for programmers i i

Lists of new variablest
Factor variables i
11.4.3.1 Factor-variable operators
11.4.3.2 Base levelso
11433 Setting base levels permanently
11434 Selecting levels i
11.4.3.5 Applying operators to a group of variables
11.4.3.6 Using factor variables with time-series operators

11.4.3.7 Video examples

Time-series varlists

11.4.4.1 Video example

A shortcut to your home directory

.1 Overview

With few exceptions, the basic Stata language syntax is

[by varlist:] command [varlist} [=exp] [if exp] [in range] [weight} [, ()pti(ms]

49
50
51
52
54
55
55
57
59
59
60
61
62
62
63
64
64
65
65

68
69
71
72
72
73
74
74
75
71
71
81
83
83
83

where square brackets distinguish optional qualifiers and options from required ones. In this diagram,
varlist denotes a list of variable names, command denotes a Stata command, exp denotes an algebraic
expression, range denotes an observation range, weight denotes a weighting expression, and options

denotes a list of

options.

49

50 [U] 11 Language syntax

11.1.1 varlist

Most commands that take a subsequent varlist do not require that you explicitly type one. If no
varlist appears, these commands assume a varlist of _all, the Stata shorthand for indicating all the
variables in the dataset. In commands that alter or destroy data, Stata requires that the varlist be
specified explicitly. See [U] 11.4 varname and varlists for a complete description.

Some commands take a varname, rather than a varlist. A varname refers to exactly one variable.
The tabulate command requires a varname; see [R] tabulate oneway.

> Example 1

The summarize command lists the mean, standard deviation, and range of the specified variables.
In [R] summarize, we see that the syntax diagram for summarize is

summarize [varlist] [lf] [in} [weight] [, options]

Farther down on the manual page is a table summarizing options, but let’s focus on the syntax
diagram itself first. Because everything except the word summarize is enclosed in square brackets, the
simplest form of the command is “summarize”. Typing summarize without arguments is equivalent
to typing summarize _all; all the variables in the dataset are summarized. Underlining denotes the
shortest allowed abbreviation, so we could have typed just su; see [U] 11.2 Abbreviation rules.

The table that defines options looks like this:

options Description
Main
detail display additional statistics
meanonly suppress the display; calculate only the mean; programmer’s option
format use variable’s display format
separator (#) draw separator line after every # variables; default is separator(5)

Thus we learn we could also type, for instance, summarize, detail or summarize, detail
format.

As another example, the drop command eliminates variables or observations from a dataset. When
dropping variables, its syntax is

drop varlist

drop has no option table because it has no options.

In fact, nothing is optional. Typing drop by itself would result in the error message “varlist or in
range required”. To drop all the variables in the dataset, we must type drop —all.

Even before looking at the syntax diagram, we could have predicted that varlist would be
required—drop is destructive, so Stata requires us to spell out our intent. The syntax diagram
informs us that varlist is required because varlist is not enclosed in square brackets. Because drop
is not underlined, it cannot be abbreviated.

N

[U] 11 Language syntax 51

11.1.2 by varlist:

The by varlist: prefix causes Stata to repeat a command for each subset of the data for which the
values of the variables in varlist are equal. When prefixed with by varlist:, the result of the command
will be the same as if you had formed separate datasets for each group of observations, saved them,
and then gave the command on each dataset separately. The data must already be sorted by varlist,
although by has a sort option; see [U] 11.5 by varlist: construct for more information.

> Example 2
Typing summarize marriage_rate divorce_rate produces a table of the mean, standard
deviation, and range of marriage_rate and divorce_rate, using all the observations in the data:

. use https://www.stata-press.com/data/r16/census12
(1980 Census data by state)

. summarize marriage_rate divorce_rate

Variable | Obs Mean Std. Dev. Min Max
marriage_r~e 50 .0133221 .0188122 .0074654 .1428282
divorce_rate 50 .0056641 .0022473 .0029436 .0172918

Typing by region: summarize marriage_rate divorce_rate produces one table for each region
of the country:
. sort region

. by region: summarize marriage_rate divorce_rate

-> region = N Cntrl

Variable Obs Mean Std. Dev. Min Max
marriage_r-~e 12 .0099121 .0011326 .0087363 .0127394
divorce_rate 12 .0046974 .0011315 .0032817 .0072868

-> region = NE

Variable Obs Mean Std. Dev. Min Max
marriage_r~e 9 .0087811 .001191 .0075757 .0107055
divorce_rate 9 .004207 .0010264 .0029436 .0057071

-> region = South

Variable Obs Mean Std. Dev. Min Max
marriage_r~e 16 .0114654 .0025721 .0074654 .0172704
divorce_rate 16 .005633 .0013355 .0038917 .0080078

-> region = West
Variable Obs Mean Std. Dev. Min Max

marriage_r~e 13 .0218987 .0363775 .0087365 .1428282
divorce_rate 13 .0076037 .0031486 .0046004 .0172918

52 [U] 11 Language syntax

The dataset must be sorted on the by variables:
. use https://www.stata-press.com/data/r16/census12
(1980 Census data by state)

. by region: summarize marriage_rate divorce_rate
not sorted

r(5);

. sort region

. by region: summarize marriage_rate divorce_rate
(output appears)

We could also have asked that by sort the data:

. by region, sort: summarize marriage_rate divorce_rate
(output appears)

by varlist: can be used with most Stata commands; we can tell which ones by looking at their
syntax diagrams. For instance, we could obtain the correlations by region, between marriage_rate
and divorce_rate, by typing by region: correlate marriage_rate divorce_rate.

d

Q Technical note

The varlist in by varlist: may contain up to 120,000 variables with Stata/MP, 32,767 variables
with Stata/SE, or 2,048 variables with Stata/IC; these are the maximum allowed in the dataset. For
instance, if we had data on automobiles and wished to obtain means according to market category
(market) broken down by manufacturer (origin), we could type by market origin: summarize.
That varlist contains two variables: market and origin. If the data were not already sorted on

market and origin, we would first type sort market origin.
a

Q Technical note

The varlist in by varlist: may contain string variables, numeric variables, or both. In the example
above, region is a string variable, in particular, a str7. The example would have worked, however,
if region were a numeric variable with values 1, 2, 3, and 4, or even 12.2, 16.78, 32.417, and
152.13.

a

11.1.3 ifexp

The if exp qualifier restricts the scope of a command to those observations for which the value
of the expression is true (which is equivalent to the expression being nonzero; see [U] 13 Functions
and expressions).

> Example 3

Typing summarize marriage_rate divorce_rate if region=="West" produces a table for
the western region of the country:

[U] 11 Language syntax 53

. summarize marriage_rate divorce_rate if region == "West"

Variable | Obs Mean Std. Dev. Min Max
marriage_r~e 13 .0218987 .0363775 .0087365 .1428282
divorce_rate 13 .0076037 .0031486 .0046004 .0172918

The double equal sign in region=="West" is not an error. Stata uses a double equal sign to denote
equality testing and one equal sign to denote assignment; see [U] 13 Functions and expressions.

A command may have at most one if qualifier. If you want the summary for the West re-
stricted to observations with values of marriage_rate in excess of 0.015, do not type summarize
marriage_rate divorce_rate if region=="West" if marriage_rate>.015. Instead type

. summarize marriage_rate divorce_rate if region == "West" & marriage_rate > .015
Variable | Obs Mean Std. Dev. Min Max

marriage_r-~e 1 .1428282 .1428282 .1428282

divorce_rate 1 .0172918 .0172918 .0172918

You may not use the word and in place of the symbol “&” to join conditions. To select observations

“l”

that meet one condition or another, use the

symbol. For instance, summarize marriage_rate

divorce_rate if region=="West" | marriage_rate>.015 summarizes all observations for

which region is West or marriage_rate is greater than 0.015.

> Example 4

N

if may be combined with by. Typing by region: summarize marriage_rate divorce_rate
if marriage_rate>.015 produces a set of tables, one for each region, reflecting summary statistics
on marriage_rate and divorce_rate among observations for which marriage_rate exceeds

0.015:

. by region: summarize marriage_rate divorce_rate if marriage_rate > .015

-> region = N Cntrl

Variable Obs Mean Std. Dev. Min Max
marriage_r~e 0
divorce_rate 0
-> region = NE

Variable Obs Mean Std. Dev. Min Max
marriage_r~e 0
divorce_rate 0
-> region = South

Variable Obs Mean Std. Dev. Min Max
marriage_r~e 2 .0163219 .0013414 .0153734 .0172704
divorce_rate 2 .0061813 .0025831 .0043548 .0080078
-> region = West

Variable Obs Mean Std. Dev. Min Max
marriage_r-~e 1 . 1428282 .1428282 .1428282
divorce_rate 1 .0172918 .0172918 .0172918

54 [U] 11 Language syntax

The results indicate that there are no states in the Northeast and North Central regions for which
marriage_rate exceeds 0.015, whereas there are two such states in the South and one state in the
West.

d

11.1.4 in range

The in range qualifier restricts the scope of the command to a specific observation range. A range
specification takes the form #; [/#2}, where #, and #, are positive or negative integers. Negative
integers are understood to mean “from the end of the data”, with —1 referring to the last observation.
The implied first observation must be less than or equal to the implied last observation.

The first and last observations in the dataset may be denoted by f and 1 (lowercase letter),
respectively. F is allowed as a synonym for £, and L is allowed as a synonym for 1. A range specifies
absolute observation numbers within a dataset. As a result, the in qualifier may not be used when
the command is preceded by the by varlist: prefix; see [U] 11.5 by varlist: construct.

> Example 5

Typing summarize marriage_rate divorce_rate in 5/25 produces a table based on the
values of marriage_rate and divorce_rate in observations 5-25:

. summarize marriage_rate divorce_rate in 5/25

Variable | Obs Mean Std. Dev. Min Max
marriage_r-~e 21 .0093926 .0013515 .0074654 .0127394
divorce_rate 21 .0045575 .0010381 .0029436 .0072868

This is, admittedly, a rather odd thing to want to do. It would not be odd, however, if we substituted
list for summarize. If we wanted to see the states with the 10 lowest values of marriage_rate,
we could type sort marriage_rate followed by 1ist marriage_rate in 1/10.

Typing summarize marriage_rate divorce_rate in f/1 is equivalent to typing summarize
marriage_rate divorce_rate—all observations are summarized.

4
> Example 6
Typing summarize marriage_rate divorce_rate in 5/25 if region == "South" produces
a table based on the values of the two variables in observations 5-25 for which the value of region
is South:
. summarize marriage_rate divorce_rate in 5/25 if region == "South"
Variable | Obs Mean Std. Dev. Min Max
marriage_r-~e 4 .0089146 .0011709 .0074654 .0103331
divorce_rate 4 .0045092 .0005785 .0038917 .0052692

The ordering of the in and if qualifiers is not significant. The command could also have been
specified as summarize marriage_rate divorce_rate if region == "South" in 5/25.

N

[U] 11 Language syntax 55

> Example 7

Negative in ranges can be useful with sort. For instance, we have data on automobiles and wish
to list the five with the highest mileage ratings:
. use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)
. sort mpg
. list make mpg in -5/1

make mpg

70. Toyota Corolla 31

1. Plym. Champ 34
72. Subaru 35
73. Datsun 210 35
74. VW Diesel 41
N
11.1.5 =exp

=exp specifies the value to be assigned to a variable and is most often used with generate and
replace. See [U] 13 Functions and expressions for details on expressions and [D] generate for
details on the generate and replace commands.

> Example 8
Expression Meaning
generate newvar=oldvar+2 creates a new variable named newvar
equal to oldvar+-2
replace oldvar=oldvar+2 changes the contents of the existing variable
oldvar
egen newvar=rank(oldvar) creates newvar containing the ranks of

oldvar (see [D] egen)

11.1.6 weight

weight indicates the weight to be attached to each observation. The syntax of weight is

[weightword=exp]

where you actually type the square brackets and where weightword is one of

weightword Meaning

weight default treatment of weights
fweight or frequency frequency weights
pweight sampling weights

aweight or cellsize analytic weights

iweight importance weights

The underlining indicates the minimum acceptable abbreviation. Thus weight may be abbreviated w
or we, etc.

56 [U] 11 Language syntax

> Example 9

Before explaining what the different types of weights mean, let’s obtain the population-weighted
mean of a variable called median_age from data containing observations on all 50 states of the
United States. The dataset also contains a variable named pop, which is the total population of each
state.

. use https://www.stata-press.com/data/r16/censusi2
(1980 Census data by state)
. summarize median_age [weight=pop]
(analytic weights assumed)
Variable | Obs Weight Mean Std. Dev. Min Max

median_age | 50 225907472 30.11047 1.66933 24.2 34.7

In addition to telling us that our dataset contains 50 observations, Stata informs us that the sum of
the weight is 225,907,472, which was the number of people living in the United States as of the
1980 census. The weighted mean is 30.11. We were also informed that Stata assumed that we wanted
“analytic” weights. 4

weight is each command’s idea of what the “natural” weights are and is one of fweight, pweight,
aweight, or iweight. When you specify the vague weight, the command informs you which kind
it assumes. Not every command supports every kind of weight. A note below the syntax diagram for
a command will tell you which weights the command supports.

Stata understands four kinds of weights:

1. fweights, or frequency weights, indicate duplicated observations. fweights are always integers.
If the fweight associated with an observation is 5, that means there are really 5 such observations,
each identical.

2. pweights, or sampling weights, denote the inverse of the probability that this observation
is included in the sample because of the sampling design. A pweight of 100, for instance,
indicates that this observation is representative of 100 subjects in the underlying population.
The scale of these weights does not matter in terms of estimated parameters and standard
errors, except when estimating totals and computing finite-population corrections with the svy
commands; see [SVY] Survey.

3. aweights, or analytic weights, are inversely proportional to the variance of an observation;
that is, the variance of the jth observation is assumed to be o2/ w;, where w; are the weights.
Typically, the observations represent averages, and the weights are the number of elements
that gave rise to the average. For most Stata commands, the recorded scale of aweights is
irrelevant; Stata internally rescales them to sum to /N, the number of observations in your data,
when it uses them.

4. iweights, or importance weights, indicate the relative “importance” of the observation. They
have no formal statistical definition; this is a catch-all category. Any command that supports
iweights will define how they are treated. They are usually intended for use by programmers
who want to produce a certain computation.

See [U] 20.24 Weighted estimation for a thorough discussion of weights and their meaning.

Q Technical note
When you do not specify a weight, the result is equivalent to specifying [fweight=1].

[U] 11 Language syntax 57

11.1.7 options

Many commands take command-specific options. These are described along with each command
in the Reference manuals. Options are indicated by typing a comma at the end of the command,
followed by the options you want to use.

> Example 10
Typing summarize marriage_rate produces a table of the mean, standard deviation, minimum,
and maximum of the variable marriage_rate:

. summarize marriage_rate
Variable | Obs Mean Std. Dev. Min Max

marriage_r~e | 50 .0133221 .0188122 .0074654 .1428282
The syntax diagram for summarize is
summarize [varlist] [lf] [m} [weight] [, Options]

followed by the option table

options Description
Main
detail display additional statistics
meanonly suppress the display; calculate only the mean; programmer’s option
format use variable’s display format
separator (#) draw separator line after every # variables; default is separator(5)

Thus the options allowed by summarize are detail or meanonly, format, and separator().
The shortest allowed abbreviations for these options are d for detail, mean for meanonly, £ for
format, and sep() for separator(); see [U] 11.2 Abbreviation rules.

Typing summarize marriage_rate, detail produces a table that also includes selected per-
centiles, the four largest and four smallest values, the skewness, and the kurtosis.

. summarize marriage_rate, detail

marriage_rate

Percentiles Smallest

1% .0074654 .0074654

5% .0078956 .0075757
10% .0080043 .0078956 Obs 50
25% .0089399 .0079079 Sum of Wgt. 50
50% .0105669 Mean .0133221
Largest Std. Dev. .0188122

5% .0122899 .0146266
90% .0137832 .0153734 Variance .0003539
95% .0153734 .0172704 Skewness 6.718494
99% .1428282 .1428282 Kurtosis 46.77306

N

Some commands have options that are required. For instance, the ranksum command requires
the by (groupvar) option, which identifies the grouping variable. A groupvar is a specific kind of
varname. It identifies to which group each observation belongs.

58 [U] 11 Language syntax

Q Technical note

Once you have typed the varlist for the command, you can place options anywhere in the command.
You can type summarize marriage_rate divorce_rate if region=="West", detail, or you
can type summarize marriage_rate divorce_rate, detail, if region=="West". You use a
second comma to indicate a return to the command line as opposed to the option list. Leaving out
the comma after the word detail would cause an error because Stata would attempt to interpret the
phrase if region=="West" as an option rather than as part of the command.

You may not type an option in the middle of a varlist. Typing summarize marriage_rate,
detail, divorce_rate will result in an error.

Options need not be specified contiguously. You may type summarize marriage_rate di-
vorce_rate, detail, if region=="South", noformat. Both detail and noformat are op-
tions.

a

Q Technical note

Most options are toggles—they indicate that something either is or is not to be done. Sometimes
it is difficult to remember which is the default. The following rule applies to all options: if option
is an option, then nooption is an option as well, and vice versa. Thus if we could not remember
whether detail or nodetail were the default for summarize but we knew that we did not want
the detail, we could type summarize, nodetail. Typing the nodetail option is unnecessary, but
Stata will not complain.

Some options take arguments. The Stata kdensity command has an n(#) option that indicates
the number of points at which the density estimate is to be evaluated. When an option takes an
argument, the argument is enclosed in parentheses.

Some options take more than one argument. In such cases, arguments should be separated from
one another by commas. For instance, you might see in a syntax diagram

saving (filename [, replace])

Here replace is the (optional) second argument. Lists, such as lists of variables (varlists) and lists
of numbers (numlists), are considered to be one argument. If a syntax diagram reported

powers (numlist)

the list of numbers would be one argument, so the elements would not be separated by commas. You
would type, for instance, powers(1 2 3 4). In fact, Stata will tolerate commas here, so you could
type powers(1,2,3,4).

Some options take string arguments. regress has an eform() option that works this way—for
instance, eform("Exp Beta"). To play it safe, you should type the quotes surrounding the string,
although it is not required. If you do not type the quotes, any sequence of two or more consecutive
blanks will be interpreted as one blank. Thus eform(Exp beta) would be interpreted the same as
eform(Exp beta).

a

[U] 11 Language syntax

59

11.1.8 numlist

A numlist is a list of numbers. Stata allows certain shorthands to indicate ranges:

Numlist Meaning

2 just one number

123 three numbers

321 three numbers in reversed order
.5611.5 three different numbers

13-2.17 5.12 four numbers in jumbled order

1/3 three numbers: 1, 2, 3

3/1 the same three numbers in reverse order
5/8 four numbers: 5, 6, 7, 8

-8/-5 four numbers: —8, —7, —6, —5
-5/-8 four numbers: —5, —6, —7, —8
-1/2 four numbers: —1, 0, 1, 2
12to4d four numbers: 1, 2, 3, 4

43to1l four numbers: 4, 3, 2, 1

10 15 to 30 five numbers: 10, 15, 20, 25, 30
12:4 same as 1 2 to 4

4 3:1 same as 4 3 to 1

10 15:30 same as 10 15 to 30

1(1)3 three numbers: 1, 2, 3

1(2)9 five numbers: 1, 3, 5, 7, 9

1(2)10 the same five numbers, 1, 3, 5, 7, 9
9(-2)1 five numbers: 9, 7, 5, 3, and 1
-1(.5)2.5 the numbers —1, —.5, 0, .5, 1, 1.5, 2, 2.5
1[113 same as 1(1)3

1[2]19 same as 1(2)9

1[2]10 same as 1(2)10

9[-2]1 same as 9(—2)1

-1[.5]2.5 same as —1(.5)2.5

12 3/58(2)12 eight numbers: 1, 2, 3, 4, 5, 8, 10, 12
1,2,3/5,8(2)12 the same eight numbers

123/568 10 to 12 the same eight numbers
1,2,3/5,8,10 to 12 the same eight numbers
123/5810:12 the same eight numbers

poisson’s constraints() option has syntax constraints (numlist). Thus you could type con-
straints(2 4 to 8), constraints(2(2)8), etc.

11.1.9 datelist

A datelist is a list of dates or times and is often used with graph options when the variable being
graphed has a date format. For a description of how dates and times are stored and manipulated
in Stata, see [U] 25 Working with dates and times. Calendar dates, also known as %td dates, are
recorded in Stata as the number of days since 01jan1960, so 0 means 01jan1960, 1 means 02jan1960,
and 16,541 means 15apr2005. Similarly, —1 means 31dec1959, —2 means 30dec1959, and —16,541
means 18sep1914. In such a case, a datelist is a list of dates, as in

15apr1973 17apr1973 20apr1973 23apr1973

or it is a first and last date with an increment between, as in

17apr1973(3)23apr1973
or it is a combination:

15apr1973 17apr1973(3)23apr1973

60 [U] 11 Language syntax

Dates specified with spaces, slashes, or commas must be bound in parentheses, as in
(15 apr 1973) (april 17, 1973) (3) (april 23, 1973)

Evenly spaced calendar dates are not especially useful, but with other time units, even spacing
can be useful, such as

1999q1 (1) 2005q1

when %tq dates are being used. 1999q1(1)2005q1 means every quarter between 1999q1 and 2005q]1.
1999q1(4)2005q1 would mean every first quarter.

To interpret a datelist, Stata first looks at the format of the related variable and then uses the
corresponding date-to-numeric translation function. For instance, if the variable has a %td format,
the td() function is used to translate the date; if the variable has a %tq format, the tq() function
is used; and so on. See Typing dates into expressions in [D] Datetime.

11.1.10 Prefix commands

Stata has a handful of commands that are used to prefix other Stata commands. by varlist:,
discussed in section [U] 11.1.2 by varlist:, is in fact an example of a prefix command. In that section,
we demonstrated by using

by region: summarize marriage_rate divorce_rate
and later,

by region, sort: summarize marriage_rate divorce_rate
and although we did not, we could also have demonstrated

by region, sort: summarize marriage_rate divorce_rate, detail
Each of the above runs the summarize command separately on the data for each region.

by itself follows standard Stata syntax:
by varlist], options]: ...

In by region, sort: summarize marriage_rate divorce_rate, detail, region is by’s varlist
and sort is by’s option, just as marriage_rate and divorce_rate are summarize’s varlist and
detail is summarize’s option.

[U] 11 Language syntax

61

by is not the only prefix command, and the full list of such commands is

Prefix command

Description

by run command on subsets of data

frame run command on the data in a specified frame

statsby same as by, but collect statistics from each run

rolling run command on moving subsets and collect statistics

bootstrap run command on bootstrap samples

jackknife run command on jackknife subsets of data

permute run command on random permutations

simulate run command on manufactured data

svy run command and adjust results for survey sampling

mi estimate run command on multiply imputed data and adjust results for multiple
imputation (MI)

bayes fit model as a Bayesian regression

fmm fit model using finite mixture modeling

nestreg run command with accumulated blocks of regressors and
report nested model comparison tests

stepwise run command with stepwise variable inclusion/exclusion

xi run command after expanding factor variables and interactions; for most

commands, using factor variables is preferred to using xi (see
[U] 11.4.3 Factor variables)

fp run command with fractional polynomials of one regressor

mfp run command with multiple fractional polynomial regressors
capture run command and capture its return code

noisily run command and show the output

quietly run command and suppress the output

version run command under specified version

The last group—-capture, noisily, quietly, and version—deal with programming Stata and, for
historical reasons, capture, noisily, and quietly allow you to omit the colon, so one programmer
might code

quietly regress ...
and another
quietly: regress ...

All the other prefix commands require the colon. In addition to the corresponding reference manual
entries, you may want to consult Baum (2016) for a richer discussion of prefix commands.

11.2 Abbreviation rules

Stata allows abbreviations. In this manual, we usually avoid abbreviating commands, variable
names, and options to ensure readability:

. summarize myvar, detail

Experienced Stata users, on the other hand, tend to abbreviate the same command as

. sum myv, d

62 [U] 11 Language syntax

As a general rule, command, option, and variable names may be abbreviated to the shortest string of
characters that uniquely identifies them.

This rule is violated if the command or option does something that cannot easily be undone; the
command must then be spelled out in its entirety.

Also, a few common commands and options are allowed to have even shorter abbreviations than
the general rule would allow.

The general rule is applied, without exception, to variable names.

11.2.1 Command abbreviation

The shortest allowed abbreviation for a command or option can be determined by looking at the
command’s syntax diagram. This minimal abbreviation is shown by underlining:

generate
append
rotate
run

If there is no underlining, no abbreviation is allowed. For example, replace may not be abbreviated,
the underlying reason being that replace changes the data.

rename can be abbreviated ren, rena, or renam, or it can be spelled out in its entirety.

Sometimes short abbreviations are also allowed. Commands that begin with the letter d include
decode, describe, destring, dir, discard, display, do, and drop, which suggests that
the shortest allowable abbreviation for describe is desc. However, because describe is such a
commonly used command, you may abbreviate it with the single letter d. You may also abbreviate
the 1ist command with the single letter 1.

The other exception to the general abbreviation rule is that commands that alter or destroy data
must be spelled out completely. Two commands that begin with the letter d, discard and drop, are
destructive in the sense that, once you give one of these commands, there is no way to undo the
result. Therefore, both must be spelled out.

The final exceptions to the general rule are commands implemented as ado-files. Such commands
may not be abbreviated. Ado-file commands are external, and their names correspond to the names
of disk files.

11.2.2 Option abbreviation

Option abbreviation follows the same logic as command abbreviation: you determine the mini-
mum acceptable abbreviation by examining the command’s syntax diagram. The syntax diagram for
summarize reads, in part,

summarize ..., detail format

The detail option may be abbreviated d, de, det, ..., detail. Similarly, option format may be
abbreviated f, fo, ..., format.

The clear and replace options occur with many commands. The clear option indicates that
even though completing this command will result in the loss of all data in memory, and even though
the data in memory have changed since the data were last saved on disk, you want to continue. clear
must be spelled out, as in use newdata, clear.

[U] 11 Language syntax 63

The replace option indicates that it is okay to save over an existing dataset. If you type save
mydata and the file mydata.dta already exists, you will receive the message “file mydata.dta already
exists”, and Stata will refuse to overwrite it. To allow Stata to overwrite the dataset, you would type
save mydata, replace. replace may not be abbreviated.

Q Technical note

replace is a stronger modifier than clear and is one you should think about before using. With

a mistaken clear, you can lose hours of work, but with a mistaken replace, you can lose days of
work.

a

11.2.3 Variable-name abbreviation

e Variable names may be abbreviated to the shortest string of characters that uniquely identifies them
given the data currently loaded in memory.

If your dataset contained four variables, state, mrgrate, dvcrate, and dthrate, you could
refer to the variable dvcrate as dvcrat, dvcra, dvcr, dvc, or dv. You might type list dv to
list the data on dvcrate. You could not refer to the variable dvcrate as d, however, because
that abbreviation does not distinguish dvcrate from dthrate. If you were to type list d, Stata
would respond with the message “ambiguous abbreviation”. (If you wanted to refer to all variables
that started with the letter d, you could type 1ist d*; see [U] 11.4 varname and varlists.)

e The character ~ may be used to mean that “zero or more characters go here”. For instance, r~8
might refer to the variable rep78, or rep1978, or repair1978, or just r8. (The ~ character is
similar to the * character in [U] 11.4 varname and varlists, except that it adds the restriction “and
only one variable matches this specification”.)

Above, we said that you could abbreviate variables. You could type dvcr to refer to dvcrate,
but, if there were more than one variable that started with the letters dvcr, you would receive an
error. Typing dvcr is the same as typing dvcr~.

64 [U] 11 Language syntax

11.2.4 Abbreviations for programmers

Stata has several useful commands and functions to assist programmers with abbreviating and
unabbreviating command names and variable names.

Command/function Description

unab expand and unabbreviate standard variable lists

tsunab expand and unabbreviate variable lists that may contain time-series
operators

fvunab expand and unabbreviate variable lists that may contain time-series
operators or factor variables

unabcmd unabbreviate command name

novarabbrev turn off variable abbreviation

varabbrev turn on variable abbreviation

set varabbrev

abbrev(s,n)
abbrev(s,n)

set whether variable abbreviations are supported

string function that abbreviates s to n display columns
Mata variant of above that allows s and n to be matrices

11.3 Naming conventions

A name is a sequence of 1 to 32 letters (A-Z, a—z, and any Unicode letter), digits (0—9), and

underscores (_).

Programmers: Local macro names can have no more than 31 characters in the name; see

[U] 18.3.1 Local macros.

Stata reserves the following names:

—all
-b
byte
_coef
_cons
double

float _N _skip
if _pi str#
in _pred strL
int _rc using
long _se with
-n

You may not use these reserved names for your variables.

The first character of a name must be a letter or an underscore (macro names are an exception;
they may also begin with a digit). We recommend, however, that you not begin your variable names
with an underscore. All of Stata’s built-in variables begin with an underscore, and we reserve the
right to incorporate new _variables freely.

Stata respects case; that is, myvar, Myvar, and MYVAR are three distinct names.

All objects in Stata—not just variables—follow this naming convention.

[U] 11 Language syntax 65

11.4 varname and varlists

A varlist is a list of variable names. The variable names in a varlist refer either exclusively to new
(not yet created) variables or exclusively to existing variables. A newvarlist always refers exclusively
to new (not yet created) variables. Similarly, a varname refers to one variable, either existing or not
yet created. A newvar always refers to one new variable.

Sometimes a command will refer to a varname in another way, such as “groupvar”. This is still a
varname. The different name is used to give you an extra hint about the purpose of that variable. For
example, a groupvar is the name of a variable that defines groups within your data. Other common
ways of referring to a varname or varlist in Stata are

depvar, which means the dependent variable for an estimation command;

indepvars, which means a varlist containing the independent variables for an estimation command;
xvar, which means a continuous real variable, often plotted on the x axis of a graph;

yvar, which means a variable that is a function of an xvar, often plotted on the y axis of a
graph;

clustvar, which means a numeric variable that identifies the cluster or group to which an
observation belongs;

panelvar, which means a numeric variable that identifies panels in panel data, also known as
cross-sectional time-series data; and

timevar, which means a numeric variable with a %td, %tc, or %tC format.

11.4.1 Lists of existing variables

In lists of existing variable names, variable names may be repeated.

> Example 11

If you type 1ist state mrgrate dvcrate state, the variable state will be listed twice, once
in the leftmost column and again in the rightmost column of the list.

d

Existing variable names may be abbreviated as described in [U] 11.2 Abbreviation rules. You
may also use “*” to indicate that “zero or more characters go here”. For instance, if you suffix * to a
partial variable name (for example, sta%), you are referring to all variable names that start with that
letter combination. If you prefix * to a letter combination (for example, *rate), you are referring to
all variables that end in that letter combination. If you put * in the middle (for example, m*rate),
you are referring to all variables that begin and end with the specified letters. You may put more than
one * in an abbreviation.

> Example 12

If the variables poplt5, pop5tol7, and pop18p are in our dataset, we may type pop* as a
shorthand way to refer to all three variables. For instance, 1ist state popx lists the variables
state, poplth, pop5tol7, and pop18p.

If we had a dataset with variables inc1990, inc1991, ..., inc1999 along with variables
incfarm1990, ..., incfarm1999; pop1990, ..., pop1999; and ms1990, ..., ms1999, then *1995
would be a shorthand way of referring to inc1995, incfarm1995, pop1995, and ms1995. We could
type, for instance, 1ist *1995.

66 [U] 11 Language syntax

In that same dataset, typing list i*95 would be a shorthand way of listing inc1995 and
incfarm1995.

Typing list i*£*95 would be a shorthand way of listing to incfarm1995.
d

~ is an alternative to *, and really, it means the same thing. The difference is that ~ indicates that
if more than one variable matches the specified pattern, Stata will complain rather than substituting
all the variables that match the specification.

> Example 13

In the previous example, we could have typed 1ist i~f~95 to list incfarm1995. If, however, our
dataset also included variable infant1995, then 1list i*f*95 would list both variables and 1ist
i~f~95 would complain that 1~f~95 is an ambiguous abbreviation.

N

You may use 7 to specify that one character goes here. Remember, * means zero or more characters
go here, so 7* can be used to mean one or more characters goes here, ?7* can be used to mean two
or more characters go here, and so on.

> Example 14
In a dataset containing variables repl, rep2, ..., rep78, rep? would refer to repl, rep2, ...,
rep9, and rep?? would refer to rep10, repll, ..., rep78.

4

You may place a dash (-) between two variable names to specify all the variables stored between
the two listed variables, inclusive. You can determine storage order by using describe; it lists
variables in the order in which they are stored.

> Example 15

If the dataset contains the variables state, mrgrate, dvcrate, and dthrate, in that order, typing
list state-dvcrate is equivalent to typing 1ist state mrgrate dvcrate. In both cases, three
variables are listed.

N

11.4.2 Lists of new variables
In lists of new variables, no variable names may be repeated or abbreviated.

You may specify a dash (=) between two variable names that have the same letter prefix and that
end in numbers. This form of the dash notation indicates a range of variable names in ascending
numerical order.

For example, typing input v1-v4 is equivalent to typing input vl v2 v3 v4. Typing infile
state v1-v3 ssn using rawdata is equivalent to typing infile state vl v2 v3 ssn using
rawdata.

Many commands that require a specific number of new variables also allow the new variables to
be specified using the stub* notation. For example, if you are using predict to generate four new
variables, you could type predict predx* to create new variables predl, pred2, pred3, and pred4.

[U] 11 Language syntax 67

You may specify the storage type before the variable name to force a storage type other than
the default. The numeric storage types are byte, int, long, float (the default), and double. The
string storage types are str# where # is replaced with an integer between 1 and 2045, inclusive,
representing the maximum length of the string, or strL. See [U] 12 Data.

For instance, the list varl str8 var2 var3 specifies that varl and var3 be given the default
storage type and that var2 be stored as a str8—a string whose maximum length is eight bytes.

The list varl int var2 var3 specifies that var2 be stored as an int. You may use parentheses
to bind a list of variable names. The list var1l int(var2 var3) specifies that both var2 and var3
be stored as ints. Similarly, the list varl str20(var2 var3) specifies that both var2 and var3
be stored as str20s. The different storage types are listed in [U] 12.2.2 Numeric storage types and
[U] 12.4 Strings.

> Example 16

Typing infile str2 state str10 region v1i-v5 using mydata reads the state and region
strings from the file mydata.raw and stores them as str2 and stri10, respectively, along with the
variables v1 through v5, which are stored as the default storage type float (unless we have specified
a different default with the set type command).

Typing infile striO(state region) v1-v5 using mydata would achieve almost the same
result, except that the state and region values recorded in the data would both be assigned to str10
variables. (We could then use the compress command to shorten the strings. See [D] compress; it
is well worth reading.)

d

Q Technical note

You may append a colon and a value label name to numeric variables. (See [U] 12.6 Dataset,
variable, and value labels for a description of value labels.) For instance, varl var2:myfmt specifies
that the variable var2 be associated with the value label stored under the name myfmt. This has the
same effect as typing the list var1l var2 and then subsequently giving the command label values
var2 myfmt.

The advantage of specifying the value label association with the colon notation is that value labels
can then be assigned by the current command; see [D] input and [D] infile (free format).
a

> Example 17

Typing infile int(state:stfmt region:regfmt) v1-v5 using mydata, automatic reads
the state and region data from the file mydata.raw and stores them as ints, along with the variables
v1 through v5, which are stored as the default storage type.

In our previous example, both state and region were strings, so how can strings be stored in a
numeric variable? See [U] 12.6 Dataset, variable, and value labels for the complete answer. The
colon notation specifies the name of the value label, and the automatic option tells Stata to assign
unique numeric codes to all character strings. The numeric code for state, which Stata will make up
on the fly, will be stored in the state variable. The mapping from numeric codes to words will be
stored in the value label named stfmt. Similarly, regions will be assigned numeric codes, which are
stored in region, and the mapping will be stored in regfmt.

68 [U] 11 Language syntax

If we were to list the data, the state and region variables would look like strings. state,
for instance, would appear to contain things like AL, CA, and WA, but actually it would contain only
numbers like 1, 2, 3, and 4.

d

11.4.3 Factor variables
Factor variables are extensions of varlists of existing variables. When a command allows factor

variables, in addition to typing variable names from your data, you can type factor variables, which
might look like

i.varname

i.varname#i.varname

i.varname#i.varname#i .varname

i.varname##i.varname

i.varname##i .varname##i .varname

Factor variables create indicator variables from categorical variables and are allowed with most
estimation and postestimation commands, along with a few other commands.

Consider a variable named group that takes on the values 1, 2, and 3. Stata command 1ist allows
factor variables, so we can see how factor variables are expanded by typing

. list group i.group in 1/5

1. 2. 3.
group group group group

O WN e
WNN - =
O O O r =
O = OO
= O O OO

There are no variables named 1.group, 2.group, and 3.group in our data; there is only the
variable named group. When we type i.group, however, Stata acts as if the variables 1.group,
2.group, and 3. group exist. 1.group, 2.group, and 3. group are called virtual variables. 1.group
is a virtual variable equal to 1 when group = 1, and 0 otherwise. 2.group is a virtual variable equal
to 1 when group = 2, and 0 otherwise. 3.group is a virtual variable equal to 1 when group = 3,
and 0 otherwise.

The categorical variable to which factor-variable operators are applied must contain nonnegative
integers.

Q Technical note

We said above that 3.group equals 1 when group = 3 and equals O otherwise. We should have
added that 3. group equals missing when group contains missing. To be precise, 3.group equals 1
when group = 3, equals system missing (.) when group > ., and equals O otherwise.

a

[U] 11 Language syntax 69

Q Technical note

We said above that when we typed i.group, Stata acts as if the variables 1.group, 2.group, and
3.group exist, and that might suggest that the act of typing i.group somehow created the virtual
variables. That is not true; the virtual variables always exist.

In fact, i.group is an abbreviation for 1.group, 2.group, and 3.group. In any command that
allows factor variables, you can specify virtual variables. Thus the listing above could equally well
have been produced by typing

. list group 1.group 2.group 3.group in 1/5
#.varname is defined as equal to 1 when varname = #, equal to system missing (.) when
varname > ., and equal to O otherwise. Thus 4.group is defined even when group takes on only
the values 1, 2, and 3. 4.group would be equal to 0 in all observations. Referring to 4.group would

not produce an error such as “virtual variable not found”.
a

When factor-variable operators are used in a regression command, one of the categories is chosen
as a base category. If we type

. regress y i.group
this is equivalent to typing
. regress y lb.group 2.group 3.group
1b.group is different from the other virtual variables. The b is a marker indicating base value.
1b.group is a virtual variable equal to 0. We can see this by typing

. list group i.group in 1/5

1. 2. 3.
group group group group

g WN e
WNN ==
O O O =
O = OO
= O O OO

When the i.group collection is included in a linear regression, virtual variable 1b.group drops
from the estimation because it does not vary; thus the coefficients on 2.group and 3.group would
measure the change from group = 1. Hence, the term base value.

11.4.3.1 Factor-variable operators

i.groupis called a factor variable, although more correctly, we should say that group is a categorical
variable to which factor-variable operators have been applied. There are five factor-variable operators:

Operator Description

i. unary operator to specify indicators

c. unary operator to treat as continuous

o. unary operator to omit a variable or indicator
binary operator to specify interactions

#it binary operator to specify full-factorial interactions

70 [U] 11 Language syntax

When you type i.group, it forms the indicators for the distinct values of group. We will usually
say this more briefly as i.group forms indicators for the levels of group, and sometimes we will
abbreviate the statement even more and say i.group forms indicators for group.

The c. operator means continuous. We will get to that below.

The o. operator specifies that a continuous variable or an indicator for a level of a categorical
variable should be omitted. For example, o.age means that the continuous variable age should be
omitted, and 02.group means that the indicator for group = 2 should be omitted.

and ##, pronounced cross and factorial cross, are operators for use with pairs of variables.
i.group#i.sex means to form indicators for each combination of the levels of group and sex.
group#sex means the same thing, which is to say that use of # implies the i. prefix.

groupic.age (or i.groupic.age) means the interaction of the levels of group with the continuous
variable age. This amounts to forming i.group and then multiplying each level by age. We
already know that i.group expands to the virtual variables 1.group, 2.group, and 3.group,
so groupi#c.age results in the collection of variables equal to 1.group*age, 2.group*age, and
3.group*age. 1.group*age will be age when group = 1, and 0 otherwise. 2.group*age will
be age when group = 2, and O otherwise. 3.group*age will be age when group = 3, and 0
otherwise.

In a regression of y on age and group#c.age, group = 1 will again be chosen as the base
value of group. Thus group#c.age expands to 1b.group*age, 2.group*age, and 3.group*age.
1b.group*age will be zero because 1b.group is zero, so it will be omitted. 2.group*age will
measure the change in the age coefficient for group = 2 relative to the base group, and 3. group*age
will measure the change for group = 3 relative to the base.

[U] 11 Language syntax 71

Here are some more examples of use of the operators:

Factor specification Result

i.group indicators for levels of group

i.group#i.sex indicators for each combination of levels of group and sex,
a two-way interaction

group#sex same as i.group#i.sex

group#sex#arm indicators for each combination of levels of group, sex, and arm,
a three-way interaction

group##sex same as i.group i.sex group#sex

group##sex##arm same as i.group i.sex i.arm group#sex group#arm sex#arm
group#sex#arm

sex#c.age two variables—age for males and O elsewhere, and age for females

and O elsewhere; if age is also in the model, one of the two virtual
variables will be treated as a base

sex##c.age same as i.sex age sex#c.age
c.age same as age

c.age#c.age age squared
c.agettc.age#c.age age cubed

Several factor-variable terms are often specified in the same varlist, such as
. regress y 1i.sex i.group sex#group age sex#c.age

or, equivalently,

. regress y sex##igroup sex##c.age

11.4.3.2 Base levels

When we typed i.group in a regression command, group = 1 became the base level. When we
do not specify otherwise, the smallest level becomes the base level.

You can specify the base level of a factor variable by using the ib. operator. The syntax is

Base operator® Description

ib#. use # as base, # = value of variable
ib (##) . use the #th ordered value as base
ib(first). use smallest value as base (default)
ib(last). use largest value as base

ib(freq) . use most frequent value as base
ibn. no base level

2The i may be omitted. For instance, you can type ib2.group or b2.group.
bFor example, ib(#2) . means to use the second value as the base.

Thus, if you want to use group = 3 as the base, you can type ib3.group. You can type

. regress y 1i.sex ib3.group sex#ib3.group age sex#c.age

72 [U] 11 Language syntax

or you can type

. regress y 1i.sex ib3.group sex#group age sex#c.age

That is, you only have to set the base once. If you specify the base level more than once, it must be
the same base level. You will get an error if you attempt to change base levels in midsentence.
If you type ib3.group, the virtual variables become 1.group, 2.group, and 3b.group.

Were you to type ib(freq) .group, the virtual variables might be 1b.group, 2.group, and
3.group; 1.group, 2b.group, and 3.group; or 1.group, 2.group, and 3b.group, depending on
the most frequent group in the data.

11.4.3.3 Setting base levels permanently

You can permanently set the base level by using the fvset command; see [R] fvset. For example,
. fvset base 3 group
sets the base for group to be 3. The setting is recorded in the data, and if the dataset is resaved, the
base level will be remembered in future sessions.
If you want to set the base group back to the default, type

. fvset base default group

If you want to set the base levels for a group of variables to be the largest value, you can type

. fvset base last group sex arm

See [R] fvset for details.

Base levels can be temporarily overridden by using the ib. operator regardless of whether they
are set explicitly.

11.4.3.4 Selecting levels

Typing i.group specifies virtual variables 1b.group, 2.group, and 3.group. Regardless of
whether you type i.group, you can access those virtual variables. You can, for instance, use them
in expressions and if statements:

. list if 3.group
(output omitted)

. generate over_age = cond(3.group, age-21, 0)

Although throughout this section we have been typing #.group such as 3.group as if it is
somehow different from i.group, the complete, formal syntax is i3.group. You are allowed to
omit the i. The point is that i3.group is just a special case of i.group; i3.group specifies an
indicator for the third level of group, and i.group specifies the indicators for all the levels of group.
Anyway, the above commands could be typed as

. list if i3.group
(output omitted)

. generate over_age = cond(i3.group, age-21, 0)

Similarly, the virtual variables 1b. group, 2. group, and 3. group more formally would be referred
to as ilb.group, i2.group, and i3.group. You are allowed to omit the leading i whenever what
appears after is a number or a b followed by a base specification.

[U] 11 Language syntax 73

You can select a range of levels—a range of virtual variables—by using the i (numlist) . varname.
This can be useful when specifying the model to be fit using estimation commands. You may not
omit the i when specifying a numlist.

Examples Description
i2.cat single indicator for cat =2
2.cat same as i2.cat
i(2 34).cat three indicators, cat = 2, cat = 3, and cat = 4; same as
i2.cat i3.cat i4.cat
i(2/4) .cat same as i(2 3 4) .cat
2.cat#l.sex a single indicator that is 1 when cat = 2 and sex = 1 and is O otherwise
i2.cat#il.sex same as 2.cat#l.sex

Rather than selecting the levels that should be included, you can specify the levels that should
be omitted by using the o. operator. When you use io (numlist) .varname in a command, indicators
for the levels of varname other than those specified in numlist are included. When omitted levels are

specified with the o. operator, the i. operator is implied, and the remaining indicators for the levels
of varname will be included.

Examples Description

io2.cat indicators for levels of cat, omitting the indicator for cat = 2

o2.cat same as io2.cat

io(2 3 4).cat indicators for levels of cat, omitting three indicators, cat = 2, cat = 3, and
cat =4

0(2 34).cat same as io(2 3 4) .cat

0(2/4) .cat same as io(2 3 4) .cat

o2.cat#ol.sex indicators for each combination of the levels of cat and sex, omitting the

indicator for cat = 2 and sex =1

11.4.3.5 Applying operators to a group of variables

Factor-variable operators may be applied to groups of variables by using parentheses. You may
type, for instance,

i.(group sex arm)

to mean i.group i.sex i.arm.

74 [U] 11 Language syntax

In the examples that follow, variables group, sex, arm, and cat are categorical, and variables
age, wt, and bp are continuous:

Examples Expansion

i.(group sex arm) i.group i.sex i.arm

group# (sex arm cat) group#sex group#arm group#cat

group## (sex arm cat) i.group i.sex i.arm i.cat group#sex group#arm
group#cat

group#(c.age c.wt c.bp) group#c.age group#c.wt group#c.bp

groupt#c. (age wt bp) same as group#(c.age c.wt c.bp)

Parentheses can shorten what you type and make it more readable. For instance,
. regress y 1i.sex i.group sex#group age sex#c.age c.age#c.age sex#c.age#c.age
is easier to understand when written as

. regress y sex##(group c.age c.age#c.age)

11.4.3.6 Using factor variables with time-series operators

Factor-variable operators may be combined with the L. and F. time-series operators, so you
may specify lags and leads of factor variables in time-series applications. You could type iL.group

or Li.group; the order of the operators does not matter. You could type L.group#L.arm or
L.group#c.age.

Examples include

. regress y bl.sex##(i(2/4).group cL.age cL.age#cL.age)
. regress y 2.arm#(sex#i(2/4)b3.group cL.age)

. regress y 2.arm##cat##(sex##i(2/4)b3.group cL.age#c.age) c.bp
> c.bp#c.bp c.bp#c.bp#c.bp sex##c.bp#c.age

11.4.3.7 Video examples

Introduction to factor variables in Stata, part 1: The basics
Introduction to factor variables in Stata, part 2: Interactions

Introduction to factor variables in Stata, part 3: More interactions

https://www.youtube.com/watch?v=Wa1Nd9epHmY
https://www.youtube.com/watch?v=f-tLLX8v11c
https://www.youtube.com/watch?v=9vR9n35aX5k

[U] 11 Language syntax 75

11.4.4 Time-series varlists

Time-series varlists are a variation on varlists of existing variables. When a command allows a
time-series varlist, you may include time-series operators. For instance, L.gnp refers to the lagged
value of variable gnp. The time-series operators are

Operator Meaning

L. lag x1—1

L2. 2-period lag x;_o

F. lead x¢y1

F2. 2-period lead ;42

D. difference x; — x¢_1

D2. difference of difference xy — x4—1 — (T4—1 — Tr—2) = Tt — 2T4—1 + Tp—2
S. “seasonal” difference x; — ;1

S2. lag-2 (seasonal) difference vy — r¢_2

Time-series operators may be repeated and combined. L3.gnp refers to the third lag of variable
gnp. So do LLL.gnp, LL2.gnp, and L2L.gnp. LF.gnp is the same as gnp. DS12.gnp refers to the
one-period difference of the 12-period difference. LDS12.gnp refers to the same concept, lagged
once.

D1. = S1., but D2. # S2., D3. # S3., and so on. D2. refers to the difference of the difference.
S2. refers to the two-period difference. If you wanted the difference of the difference of the 12-period
difference of gnp, you would write D2S12. gnp.

Operators may be typed in uppercase or lowercase. Most users would type d2s12.gnp instead of
D2S12.gnp.

You may type operators however you wish; Stata internally converts operators to their canonical
form. If you typed 1d21s12d.gnp, Stata would present the operated variable as L2D3S12. gnp.

In addition to using operator#, Stata understands operator (numlist) to mean a set of operated
variables. For instance, typing L(1/3) .gnp in a varlist is the same as typing L.gnp L2.gnp L3.gnp.
The operators can also be applied to a list of variables by enclosing the variables in parentheses; for
example,

. use https://wuw.stata-press.com/data/r16/gxmpli
. list year L(1/3).(gnp cpi)

L. L2. L3. L. L2. L3.
year gnp gnp gnp cpi cpi cpi

1. 1989 . .
2. 1990 5837.9 . 124 .
3. 1991 6026.3 5837.9 . 130.7 124 .
4. 1992 6367.4 6026.3 5837.9 136.2 130.7 124
5. 1993 6689.3 6367.4 6026.3 140.3 136.2 130.7
6. 1994 7098.4 6689.3 6367.4 144.5 140.3 136.2
7. 1995 7433.4 7098.4 6689.3 148.2 144 .5 140.3
8. 1996 7851.9 7433.4 7098.4 152.4 148.2 144.5

76 [U] 11 Language syntax

The parentheses notation may be used with any operator. Typing D(1/3) .gnp would return the
first through third differences.

The parentheses notation may be used in operator lists with multiple operators, such as
L(0/3)D2S12.gnp.

Operator lists may include up to one set of parentheses, which may enclose a numlist; see
[U] 11.1.8 numlist.

The time-series operators L. and F. may be combined with factor variables. If we want to lag
the indicator variables for the levels of the factor variable region, we would type iL.region. We
could also say that we are specifying the level indicator variables for the lag of the region variables.
They are equivalent statements.

The numlists and parentheses notation from both factor varlists and time-series oper-
ators may be combined. For example, iL(1/3).region specifies the first three lags of
the level indicators for region. If region has four levels, this is equivalent to typ-
ing ilLl.region i2L1.region i3L1l.region i4Ll.region ilL2.region i2L2.region
i3L2.region i4L2.region ilL3.region i2L3.region i3L3.region i4L3.region. Pushing
the notation further, i (1/2)L(1/3) . (region education) specifies the first three lags of the level
1 and level 2 indicator variables for both region and education.

Q Technical note

The D. and S. time-series operators may not be combined with factor variables because such
combinations could have two meanings. iD.a could be the level indicators for the difference of the
variable a from its prior period, or it could be the level indicators differenced between the two periods.
These are generally not the same values, nor even the same number of indicators. Moreover, they are
rarely interesting.

a

Before you can use time-series operators in varlists, you must set the time variable by using the
tsset command:

. list l.gnp
time variable not set
r(111);

. tsset time
(output omitted)

. list 1l.gnp
(output omitted)

See [TS] tsset. The time variable must take on integer values. Also, the data must be sorted on the
time variable. tsset handles this, but later you might encounter

. list 1.mpg
not sorted
r(5);

Then type sort time or type tsset to reestablish the order.

The time-series operators respect the time variable. L2 . gnp refers to gnp;_o, regardless of missing
observations in the dataset. In the following dataset, the observation for 1992 is missing:

[U] 11 Language syntax 77

. use https://www.stata-press.com/data/r16/gxmpl2
. list year gnp 12.gnp, separator(0)

L2.
year gnp gnp
1. 1989 5837.9
2. 1990 6026.3 .
3. 1991 6367 .4 5837.9
4. 1993 7098.4 6367.4 < note, filled in correctly
5. 1994 7433.4 .
6. 1995 7851.9 7098.4

Operated variables may be used in expressions:

. generate gnplag2 = 12.gnp
(3 missing values generated)

Stata also understands cross-sectional time-series data. If you have cross sections of time series,
you indicate this when you tsset the data:

. tsset country year

See [TS] tsset. In fact, you can type that, or you can type

. Xtset country year

xtset is how you set panel data just as tsset is how you set time-series data and here the two
commands do the same thing. Some panel datasets are not cross-sectional time series, however, in
that the second variable is not time, so xtset also allows

. xtset country

See [XT] xtset.

11.4.4.1 Video example

Time series, part 3: Time-series operators

11.5 Dby varlist: construct

by varlist: command

The by prefix causes command to be repeated for each distinct value or combination of values of the
variables in varlist. varlist may contain numeric, string, or a mixture of numeric and string variables.
(varlist may not contain time-series operators.)

by is an optional prefix to perform a Stata command separately for each group of observations
where the values of the variables in the varlist are the same.

During each iteration, the values of the system variables _n and _N are set in relation to the first
observation in the by-group; see [U] 13.7 Explicit subscripting. The in range qualifier cannot be
used with by varlist: because ranges specify absolute rather than relative observation numbers.

https://www.youtube.com/watch?v=ik8r4WvrPkc

78 [U] 11 Language syntax

Q Technical note

The inability to combine in and by is not really a constraint because if provides all the functionality
of in and a bit more. If you wanted to perform command for the first three observations in each of
the by-groups, you could type

. by varlist: command if _n<=3

a

The results of command would be the same as if you had formed separate datasets for each group
of observations, saved them, used each separately, and issued command.

> Example 18

We provide some examples using by in [U] 11.1.2 by varlist: above. We demonstrate the effect
of by on _n, _N, and explicit subscripting in [U] 13.7 Explicit subscripting.

by requires that the data first be sorted. For instance, if we had data on the average January and
July temperatures in degrees Fahrenheit for 420 cities located in the Northeast and West and wanted
to obtain the averages, by region, across those cities, we might type

. use https://www.stata-press.com/data/r16/citytemp3, clear
(City Temperature Data)

. by region: summarize tempjan tempjuly
not sorted
r(6);

Stata refused to honor our request because the data are not sorted by region. We must either sort
the data by region first (see [D] sort) or specify by’s sort option (which has the same effect):

. by region, sort: summarize tempjan tempjuly

-> region = NE

Variable Obs Mean Std. Dev. Min Max
tempjan 164 27.88537 3.543096 16.6 31.8
tempjuly 164 73.35 2.361203 66.5 76.8

-> region = N Cntrl

Variable Obs Mean Std. Dev. Min Max
tempjan 284 21.69437 5.725392 2.2 32.6
tempjuly 284 73.46725 3.103187 64.5 81.4

-> region = South

Variable Obs Mean Std. Dev. Min Max
tempjan 250 46.1456 10.38646 28.9 68
tempjuly 250 80.9896 2.97537 71 87.4

-> region = West

Variable | Obs Mean Std. Dev. Min Max
tempjan 256 46.22539 11.25412 13 72.6
tempjuly 256 72.10859 6.483131 58.1 93.6

[U] 11 Language syntax 79

> Example 19

Using the same data as in the example above, we estimate regressions, by region, of average January
temperature on average July temperature. Both temperatures are specified in degrees Fahrenheit.

. by region: regress tempjan tempjuly

-> region = NE
Source SS df MS Number of obs = 164
F(1, 162) = 479.82
Model 1529.74026 1 1529.74026 Prob > F = 0.0000
Residual 516.484453 162 3.18817564 R-squared 0.7476
Adj R-squared = 0.7460
Total 2046.22471 163 12.5535268 Root MSE = 1.7855
tempjan Coef. Std. Err. t P>|t] [95% Conf. Intervall
tempjuly 1.297424 .0592303 21.90 0.000 1.180461 1.414387
_cons -67.28066 4.346781 -15.48 0.000 -75.86431 -58.697
-> region = N Cntrl
Source SS df MS Number of obs = 284
F(1, 282) = 115.89
Model 2701.97917 1 2701.97917 Prob > F = 0.0000
Residual 6574.79175 282 23.3148644 R-squared = 0.2913
Adj R-squared = 0.2887
Total 9276.77092 283 32.7801093 Root MSE = 4.8285
tempjan Coef. Std. Err. t P>|t] [95% Conf. Intervall
tempjuly .9957259 .0924944 10.77 0.000 .8136589 1.177793
_cons -51.45888 6.801344 -7.57 0.000 -64.84673 -38.07103
-> region = South
Source SS df MS Number of obs = 250
F(1, 248) = 95.17
Model 7449.51623 1 7449.51623 Prob > F 0.0000
Residual 19412.2231 248 78.2750933 R-squared = 0.2773
Adj R-squared = 0.2744
Total 26861.7394 249 107.878471 Root MSE 8.8473
tempjan Coef. Std. Err. t P>|t| [95% Conf. Intervall
tempjuly 1.83833 .1884392 9.76 0.000 1.467185 2.209475
_cons -102.74 15.27187 -6.73 0.000 -132.8191 -72.66089

80 [U] 11 Language syntax

-> region = West

Source Ss df MS Number of obs = 256
F(1, 254) = 2.84

Model 357.161728 1 357.161728 Prob > F = 0.0932
Residual 31939.9031 254 125.74765 R-squared = 0.0111
Adj R-squared = 0.0072

Total 32297.0648 255 126.655156 Root MSE = 11.214
tempjan Coef. Std. Err. t P>|t] [95% Conf. Intervall
tempjuly .1825482 .1083166 1.69 0.093 -.0307648 .3958613
_cons 33.0621 7.84194 4.22 0.000 17.61859 48.5056

The regressions show that a 1-degree increase in the average July temperature in the Northeast
corresponds to a 1.3-degree increase in the average January temperature. In the West, however, it
corresponds to a 0.18-degree increase, which is only marginally significant.

N

Q Technical note
by has a second syntax that is especially useful when you want to play it safe:

by varlist; (varlisty) : command

This says that Stata is to verify that the data are sorted by varlist; varlist and then, assuming that
is true, perform command by varlist,. For instance,

. by subject (time): generate finalval = val[_N]

By typing this, we want to create new variable finalval, which contains, in each observation, the
final observed value of val for each subject in the data. The final value will be the last value if,
within subject, the data are sorted by time. The above command verifies that the data are sorted by
subject and time and then, if they are, performs

. by subject: generate finalval = val[_N]

If the data are not sorted properly, an error message will instead be issued. Of course, we could have
just typed

. by subject: generate finalval = val[_N]
after verifying for ourselves that the data were sorted properly, as long as we were careful to look.
by’s second syntax can be used with by’s sort option, so we can also type

. by subject (time), sort: generate finalval = val[_N]

which is equivalent to

. sort subject time

. by subject: generate finalval = val[_N]

Q

See Mitchell (2020, chap. 8) for numerous examples of processing groups using the by: construct.
Also see Cox (2002).

[U] 11 Language syntax 81

11.6 Filenaming conventions

Some commands require that you specify a filename. Filenames are specified in the way natural
for your operating system:

Windows Unix Mac

mydata mydata mydata

mydata.dta mydata.dta mydata.dta
c:mydata.dta ~friend/mydata.dta ~friend/mydata.dta
"my data" "my data" "my data"

"my data.dta" "my data.dta" "my data.dta"
myproj\mydata myproj/mydata myproj/mydata

"my project\my data"
C:\analysis\data\mydata
"C:\my project\my data"

..\data\mydata
"..\my project\my data"

"my project/my data"
~/analysis/data/mydata
"~/my project/my data"
../data/mydata

"../my project/my data"

"my project/my data"
~/analysis/data/mydata
"~/my project/my data"

../data/mydata
"../my project/my data"

We strongly discourage using Unicode characters beyond plain ASCII in filenames because different
operating systems use different UTF encodings for Unicode characters. For example, because Linux
encodes filenames in UTF-8 and Windows encodes them in UTF-16, the file may become unusable after

it has been transferred from one system to another if it contains Unicode characters beyond plain
ASCIL.

In most cases, where filename is a file that you are loading, filename may also be a URL. For
instance, we might specify use https://www.stata-press.com/data/r16/nlswork.

All operating systems allow blanks in filenames, and so does Stata. However, if the filename
includes a blank, you must enclose the filename in double quotes. Typing

. save "my data"

would create the file my data.dta. Typing

. save my data

would be an error.

Usually (the exceptions being copy, dir, 1s, erase, rm, and type), Stata automatically provides
a file extension if you do not supply one. For instance, if you type use mydata, Stata assumes that
you mean use mydata.dta because .dta is the file extension Stata normally uses for data files.

82 [U] 11 Language syntax

Stata provides 23 default file extensions that are used by various commands:

.ado automatically loaded do-files

.dct text data dictionary

.do do-file

.dta Stata-format dataset

.dtasig datasignature file

.gph graph

.grec Graph Editor recording (text format)
Jirf impulse—response function datasets
.log log file in text format

.mata Mata source code

.mlib Mata library

.mmat Mata matrix

.mo Mata object file

.raw text-format data

.smcl log file in SMCL format

.stbcal business calendars

.ster saved estimates

.sthlp help file

.stpr project file

.stptrace parameter-trace file; see [MI] mi ptrace
.stsem SEM Builder file

.stswm spatial weighting matrix

.stxer ancillary file to .ster when using lasso commands
.sum checksum files to verify network transfers

You do not have to name your data files with the .dta extension—if you type an explicit file
extension, it will override the default. For instance, if your dataset was stored as myfile.dat, you
could type use myfile.dat. If your dataset was stored as simply myfile with no file extension,
you could type the period at the end of the filename to indicate that you are explicitly specifying the
null extension. You would type use myfile. to use this dataset.

Q Technical note

Stata also uses 12 other file extensions. These files are of interest only to advanced programmers
or are for Stata’s internal use. They are

.class class file for object-oriented programming; see [P] class
.dlg dialog resource file

.idlg dialog resource include file

.ihlp help include file

.key search’s keyword database file

.maint maintenance file (for Stata’s internal use only)

.mnu menu file (for Stata’s internal use only)

.pkg user-site package file

.plugin compiled addition (DLL)
.scheme control file for a graph scheme
.style graph style file

.toc user-site description file

[U] 11 Language syntax 83

11.6.1 A special note for Mac users

Have you seen the notation myfolder/myfile before? This notation is called a path and describes
the location of a file or folder (also called a directory).

You do not have to use this notation if you do not like it. You could instead restrict yourself to using
files only in the current folder. If that turns out to be too restricting, Stata for Mac provides enough
menus and buttons that you can probably get by. You may, however, find the notation convenient. If
you do, here is the rest of the definition.

The character / is called a path delimiter and delimits folder names and filenames in a path. If
the path starts with no path delimiter, the path is relative to the current folder.

For example, the path myfolder/myfile refers to the file myfile in the folder myfolder, which
is contained in the current folder.

The characters .. refer to the folder containing the current folder. Thus ../myfile refers to
myfile in the folder containing the current folder, and ../nextdoor/myfile refers to myfile in
the folder nextdoor in the folder containing the current folder.

If a path starts with a path delimiter, the path is called an absolute path and describes a fixed
location of a file or folder name, regardless of what the current folder is. The leading / in an absolute
path refers to the root directory, which is the main hard drive from which the operating system is
booted. For example, the path /myfolder/myfile refers to the file myfile in the folder myfolder,
which is contained in the main hard drive.

11.6.2 A shortcut to your home directory

Stata understands ~ to mean your home directory. Thus, you can refer to a dataset named
mydata.dta in a subdirectory named mydir within your home directory by referring to the path

~\mydir\mydata.dta

in Stata for Windows or by referring to the path

~/mydir/mydata.dta

in Stata for Mac or Stata for Unix.

11.7 References

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.
Buis, M. L. 2020. Stata tip 135: Leaps and bounds. Stata Journal 20: 244-249.

Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86-102.

——. 2009. Stata tip 79: Optional arguments to options. Stata Journal 9: 504.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indicator or dummy variables. Stata
Journal 19: 246-259.

Daniels, L., and N. Minot. 2020. An Introduction to Statistics and Data Analysis Using Stata. Thousand Oaks, CA:
SAGE.

Kolev, G. I. 2006. Stata tip 31: Scalar or variable? The problem of ambiguous names. Stata Journal 6: 279-280.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata
Press.

Ryan, P. 2005. Stata tip 22: Variable name abbreviation. Stata Journal 5: 465—466.

http://www.stata-press.com/books/introduction-stata-programming/
https://doi.org/10.1177/1536867X20909707
http://www.stata-journal.com/article.html?article=pr0004
http://www.stata-journal.com/article.html?article=pr0048
https://doi.org/10.1177/1536867X19830921
http://www.stata.com/bookstore/introduction-to-statistics-and-data-analysis-using-stata/
http://www.stata-journal.com/article.html?article=dm0021
http://www.stata-press.com/books/data-management-using-stata/
http://www.stata-journal.com/article.html?article=dm0016

1 2 Data

Contents
12.1 Data and datasetsttt e 85
12,2 NUIMDEIS .ttt et e e e et e e e e e e e 85
12.2.1 Missing values 86
12.2.2 NUMETIC StOrage tYPES v vttt et e et et et e e e 89
12.3 Dates and tIMESottt ettt ettt et e e e 89
12,4 SHINES .ot 90
1241 OVEIVIEW oottt et et et e e e e e e e 90
12.4.2 Handling Unicode Stringsocuoueuninenenninenenennenennn. 92
124.2.1 Unicode string functionsc.ouiunienennen.. 92
12.4.2.2 Displaying Unicode characters 93
12423 Encodingst 93
124.2.4 Locales in Unicode 0iiiuiiiinnanan.. 93
12.4.2.5 Sorting strings containing Unicode characters 94
12.42.6 Advice for users of Stata 13 and earlier 98
12.4.3 Strings containing identifying data oL, 98
12.4.4 Strings containing categorical data, 98
12.4.5 Strings containing numeric data i 98
12.4.6 String literals e 99
1247 strl=str2045 and Str 99
12.4.8 Strl Lo 100
12.4.9 strL variables and duplicated values, 102
12.4.10 strL variables and binary Stringsc.oiuiininenennenan .. 102
12.4.11 strL variables and files e 103
12.4.12 String display formats 104
12.4.13 How to see the full contents of a strL. or a str# variable 104
12.4.14 Notes for programmerscouuieneinieneennennennennn.. 105
12.5 Formats: Controlling how data are displayed 105
12.5.1 Numeric formatsoouitnitnn it 105
12.5.2 European numeric formats i 108
12.5.3 Date and time formatst 109
1254 String formatst e 110
12.6 Dataset, variable, and value labels i 111
12.6.1 Dataset 1abelsttt 111
12.6.2 Variable labels e 112
12.6.3 Value labels 113
12.6.4 Labels in other languagesot ennenn... 119
12.7 Notes attached to data i 120
12.8 CharacteriStICS . .. vt ettt et e e e e e e e e e e e 121
12.9 Data Editor and Variables Managerttt ininennen.. 122
12.10 Data framesttt e 122
1211 Ref@IreNCES . .o ov ettt et e e e e e e e 122

84

[U] 12 Data 85

12.1 Data and datasets

Data form a rectangular table of numeric and string values in which each row is an observation on
all the variables and each column contains the observations on one variable. Variables are designated
by variable names. Observations are numbered sequentially from 1 to _N. The following example of
data contains the first five odd and first five even positive integers, along with a string variable:

odd even name

1. 1 2 Bill
2. 3 4 Mary
3. 5 6 Pat
4. 7 8 Roger
5. 9 10 Sean

The observations are numbered 1 to 5, and the variables are named odd, even, and name. Observations
are referred to by number, and variables by name.

A dataset is data plus labelings, formats, notes, and characteristics.

All aspects of data and datasets are defined here. Long (2009) offers a long-time Stata user’s hard-
won advice on how to manage data in Stata to promote accurate, replicable research. Mitchell (2020)
provides many examples on data management in Stata.

12.2 Numbers

A number may contain a sign, an integer part, a decimal point, a fraction part, an e or E, and a
signed integer exponent. Numbers may not contain commas; for example, the number 1,024 must be
typed as 1024 (or 1024. or 1024.0). The following are examples of valid numbers:

5

-5

5.2

.5
5.2e+2
5.2e-2

Q Technical note

Stata also allows numbers to be represented in a hexadecimal/binary format, defined as
[+|]-]0.0][(zeros) | {X|x}-3££

or
[+]-]1. (hexdigit) [(hexdigits) | {X|x}{+|-} (hexdigit) | (hexdigits)]

The lead digit is always O or 1; it is O only when the number being expressed is zero. A maximum of
13 digits to the right of the hexadecimal point are allowed. The power ranges from -3ff to +3ff. The
number is expressed in hexadecimal (base 16) digits; the number aX+b means a X 2% For instance,
1.0X+3 is 23 or 8. 1.8X+3 is 12 because 1.816 is 14+ 8/16 = 1.5 in decimal and the number is thus
15x2°=15x8=12.

Stata can also display numbers using this format; see [U] 12.5.1 Numeric formats. For example,

. display 1.81x+2
6.015625

. display %21x 6.015625
+1.8100000000000X+002

This hexadecimal format is of special interest to numerical analysts.

86 [U] 12 Data

12.2.1 Missing values

A number may also take on the special value missing, denoted by a period (.). You specify a
missing value anywhere that you may specify a number. Missing values differ from ordinary numbers
in one respect: any arithmetic operation on a missing value yields a missing value.

3

In fact, there are 27 missing values in Stata: ‘.’, the one just discussed, as well as .a, .b, ...,
and .z, which are known as extended missing values. The missing value .’ is known as the default
or system missing value. Some people use extended missing values to indicate why a certain value
is unknown—the question was not asked, the person refused to answer, etc. Other people have no

use for extended missing values and just use ‘.’

Stata’s default or system missing value will be returned when you perform an arithmetic operation
on missing values or when the arithmetic operation is not defined, such as division by zero, or the
logarithm of a nonpositive number.

. display 2/0

. list
a
1. .b
2.
3. .a
4. 3
5. 6

. generate x = a + 1
(3 missing values generated)

. list
a x
1. .b
2.
3. a .
4. 3 4
5. 6 7

Numeric missing values are represented by “large positive values”. The ordering is

all numbers < . < .a< .b< - < .2

Thus the expression

age > 60

is true if variable age is greater than 60 or is missing. Similarly,

gender # 0

is true if gender is not zero or is missing.

[U] 12 Data 87

3

To exclude missing values, you must ask whether the value is less than

.’; to detect missing
values, you must ask whether the value is greater than or equal to ‘.’. For instance,

. list if age>60 & age<.

. generate agegt60 = 0 if age<=60

. replace agegt60 = 1 if age>60 & age<.
. generate agegt60 = (age>60) if age<.

O Technical note
Before Stata 8, Stata had only one representation for missing values, the period (.).

To ensure that old programs and do-files continue to work properly, when version is set less

than 8, all missing values are treated as being the same. Thus . == .a == .b == .z, and so ‘exp==.’
and ‘exp!=.’" work just as they previously did.
Q
> Example 1

We have data on the income of husbands and wives recorded in the variables hincome and
wincome, respectively. Typing the 1ist command, we see that your data contain

. use https://www.stata-press.com/data/r16/gxmpl3
. list

hincome wincome

1. 32000 0
2. 35000 34000
3. 47000 .b
4. .z 50000
5. .a

The values of wincome in the third and fifth observations are missing, as distinct from the value of
wincome in the first observation, which is known to be zero.

If we use the generate command to create a new variable, income, that is equal to the sum of
hincome and wincome, three missing values would be produced.
. generate income = hincome + wincome
(3 missing values generated)
. list

hincome wincome income

1. 32000 0 32000
2. 35000 34000 69000
3. 47000 .b

4. .z 50000

5. .a

generate produced a warning message that 3 missing values were created, and when we list the
data, we see that 47,000 plus missing yields missing.

N

88 [U] 12 Data

Q Technical note

Stata stores numeric missing values as the largest 27 numbers allowed by the particular storage
type; see [U] 12.2.2 Numeric storage types. There are two important implications. First, if you sort
on a variable that has missing values, the missing values will be placed last, and the sort order of
any missing values will follow the rule regarding the properties of missing values stated above.

. sort wincome

. list wincome

wincome

0
34000
50000

O WN e

The second implication concerns relational operators and missing values. Do not forget that a
missing value will be larger than any numeric value.

. list if wincome > 40000

hincome wincome income

.z 50000
.a .
5. 47000 .b

S ow

[}

Observations 4 and 5 are listed because and ‘.b’ are both missing and thus are greater than
40,000. Relational operators are discussed in detail in [U] 13.2.3 Relational operators.
a

> Example 2

In producing statistical output, Stata ignores observations with missing values. Continuing with the
example above, if we request summary statistics on hincome and wincome by using the summarize
command, we obtain

. summarize hincome wincome

Variable | Obs Mean Std. Dev. Min Max
hincome 3 38000 7937.254 32000 47000
wincome 3 28000 25534.29 0 50000

Some commands discard the entire observation (known as casewise deletion) if one of the variables
in the observation is missing. If we use the correlate command to obtain the correlation between
hincome and wincome, for instance, we obtain

. correlate hincome wincome

(obs=2)
| hincome wincome
hincome 1.0000
wincome 1.0000 1.0000

The correlation coefficient is calculated over two observations.

[U] 12 Data 89

12.2.2 Numeric storage types

Numbers can be stored in one of five variable types: byte, int, long, float (the default), or
double. bytes are, naturally, stored in 1 byte. ints are stored in 2 bytes, longs and floats in 4
bytes, and doubles in 8 bytes. The table below shows the minimum and maximum values for each
storage type.

Closest to 0

Storage type Minimum Maximum without being O Bytes
byte —127 100 +1 1
int —32,767 32,740 +1 2
long —2,147,483,647 2,147,483,620 +1 4

float —1.70141173319 x 1038 1.70141173319 x 10%® +10738 4
double —8.9884656743 x 1037 18.9884656743 x 103°7 +107323 8

Do not confuse the term integer, which is a characteristic of a number, with int, which is a storage
type. For instance, the number 5 is an integer, no matter how it is stored; thus, if you read that an
argument must be an integer, that does not mean that it must be stored as an int.

12.3 Dates and times

Stata has nine date, time, and date-and-time numeric encodings known collectively as %t variables
or values. They are

%tC calendar date and time, adjusted for leap seconds
htc calendar date and time, ignoring leap seconds
%td calendar date

tw week

%tm calendar month

%tq financial quarter

%th financial half-year
Wty calendar year
%tb business calendars

All except %ty and %tb are based on 0 = beginning of January 1960. %tc and %tC record the number
of milliseconds since then. %td records the number of days. The others record the numbers of weeks,
months, quarters, or half-years. %ty simply records the year, and %tb records a user-defined business
calendar format.

For a full discussion of working with dates and times, see [U] 25 Working with dates and times.

90 [U]12Data

12.4 Strings

This section describes the treatment of strings by Stata. The section is divided into the following
subsections:

[U] 12.4.1 Overview

[U] 12.4.2 Handling Unicode strings

[U] 12.4.3 Strings containing identifying data
[U] 12.4.4 Strings containing categorical data
[U] 12.4.5 Strings containing numeric data

[U] 12.4.6 String literals

[U] 12.4.7 str1-str2045 and str

[U] 12.4.8 strLL

[U] 12.4.9 strL variables and duplicated values
[U] 12.4.10 strL variables and binary strings
[U] 12.4.11 strL variables and files

[U] 12.4.12 String display formats

[U] 12.4.13 How to see the full contents of a strL. or a str# variable
[U] 12.4.14 Notes for programmers

12.4.1 Overview

A string is a sequence of characters.

Samuel Smith
California
U.K.
Usually—but not always—strings are enclosed in double quotes.

"Samuel Smith"
"California"
IIU' K . n
Strings typed in quotes are called string literals.
Strings can be stored in Stata datasets in string variables.

. use https://www.stata-press.com/data/r16/auto, clear
(1978 Automobile Data)

. describe make

storage display value
variable name type format label variable label
make str18 %-18s Make and Model
The string-variable storage types are strl, str2, ..., str2045, and strL. For example, variable

make is a str18 variable. It can contain strings of up to 18 characters long. The strings are not all
18 characters long.

. list make in 1/2

make

e

AMC Concord
2. AMC Pacer

[U] 12 Data 91

str18 means that the variable cannot hold a string longer than 18 bytes, and even that is an unimportant
detail, because Stata automatically promotes str# variables to be longer when required.

. replace make = "Mercedes Benz Gullwing" in 1
variable make was stri8 now str22
(1 real change made)

Strings in Stata can also be stored in labels and notes that let you see information about your
dataset. See [U] 12.6 Dataset, variable, and value labels and [U] 12.7 Notes attached to data.
Strings in Stata programs can be stored in string scalars, macros, characteristics, and in stored results.

Stata provides a suite of string functions, such as strlen() and substr().

. generate len = strlen(make)
. generate str first5 = substr(make, 1,5)

. list make len firstb5 in 1/2

make len firstd
1. Mercedes Benz Gullwing 22 Merce
2. AMC Pacer 9 AMC P

Many Stata commands can use string variables.

. generate str brand = word(make, 1)

. tabulate brand

brand Freq. Percent Cum.
AMC 2 2.70 2.70
Audi 2 2.70 5.41
BMW 1 1.35 6.76
Buick 7 9.46 16.22
Cad. 3 4.05 20.27
Chev. 6 8.11 28.38
Datsun 4 5.41 33.78
Dodge 4 5.41 39.19
Fiat 1 1.35 40.54
Ford 2 2.70 43.24
Honda 2 2.70 45.95
Linc. 3 4.05 50.00
Mazda 1 1.35 51.35
Merc. 6 8.11 59.46
Mercedes 1 1.35 60.81
0lds 7 9.46 70.27
Peugeot 1 1.35 71.62
Plym. 5 6.76 78.38
Pont. 6 8.11 86.49
Renault 1 1.35 87.84
Subaru 1 1.35 89.19
Toyota 3 4.05 93.24
vw 4 5.41 98.65
Volvo 1 1.35 100.00
Total 74 100.00

Beginning in Stata 14, text in Stata strings can include Unicode characters and is encoded as
UTF-8. This means that you can use plain ASCII characters (also known as “lower ASCII” and stored
as 0—127 on computers) like those shown above. You can also use the remaining Latin characters,
as well as characters from the Chinese, Cyrillic, and Japanese alphabets, among others. However, if

92 [U] 12 Data

you have characters other than ASCII in your datasets, do-files, or ado-files, you may need to take
special steps. See [U] 12.4.2 Handling Unicode strings.

12.4.2 Handling Unicode strings

If you do not have Unicode characters beyond the plain ASCII characters, you do not need to
use any special steps to work with your data. In many cases, the same is true even if you do have
other Unicode characters. While it is impossible to provide a rule for every situation, there are some
general guidelines that you should be aware of.

The fundamental concept to understand is the difference between characters and bytes. Characters
are what you see. For example, “a”, “Z”, and “@” are characters. Bytes are used to encode characters,
which are stored on a computer.

For plain ASCII characters, there is a one-to-one mapping between the number of bytes and the
number of characters. By contrast, UTF-8 encoded Unicode characters require two, three, or four bytes.
For this reason, strings containing Unicode characters require string functions that recognize whole
characters; see [U] 12.4.2.1 Unicode string functions. Some characters from older Stata files, known
as extended ASCII characters, will not display correctly and can cause unexpected results. To avoid
this, you must properly convert your older datasets and text files, such as do-files, if they contain
extended ASCII. See [U] 12.4.2.6 Advice for users of Stata 13 and earlier.

If you do have characters in your data other than plain ASCII characters, or if you write commands
for others to use, you should read the following sections.

12.4.2.1 Unicode string functions

Some of Stata’s string functions exist in Unicode-aware versions so they can understand the string
as a sequence of Unicode characters rather than as a sequence of bytes. At times, you will need to
use one of these Unicode-aware functions to return accurate results. For example, suppose that our
data on make included a car manufactured by Clénet Coachworks.

If we wanted to know the correct string length, we would use ustrlen(), not strlen(). The
former will give you the answer you expect, 17, while the latter will return the number of bytes used
to store that string, 18.

There are other Unicode-aware functions. For example, to change Unicode characters to uppercase,
lowercase, or titlecase, use functions ustrupper (), ustrlower (), or ustrtitle(). If you want to
see if there is a Unicode variant of the string function you want to use, check [FN] String functions.

Note that Unicode-aware functions are not required just because a variable contains UTF-8 characters
beyond the plain ASCII range. For example, suppose that rather than wanting the string length, we
wanted to replace “Mercedes” with “Merc.”. We could use subinstr() instead of usubinstr()
because neither “Mercedes” nor “Merc.” contains UTF-8 characters.

Other Unicode-aware functions address the display columns. These functions are primarily of
interest to programmers. See [U] 12.4.2.2 Displaying Unicode characters.

If you are in doubt, or if you are writing code to be used in a general way by others, you should use
the Unicode-aware version of a string function, if it exists. The Unicode-aware functions generally
have the same names as the regular string functions, but with “u” as a prefix. See [FN] String
functions.

[U] 12 Data 93

12.4.2.2 Displaying Unicode characters

Stata has a concept called a display column to ensure that the fixed-width output in Stata’s Results
and Viewer windows continues to align properly. Stata automatically displays each character in one
or two display columns.

Most users, even users with UTF-8 characters beyond the ASCII range, will find that there is
no distinction between the number of characters and the number of display columns because most
characters are displayed in one column. Some wider characters, however, such as Chinese, Japanese,
and Korean (CJK) characters, occupy two display columns.

You may occasionally wish to account for the number of display columns that a string occupies.
Just as some Stata functions understand Unicode characters, some functions understand display
columns. These functions are prefixed with “ud”. For example, you can obtain the number of display
columns for a string with udstrlen(string). If you want to extract a subset of characters from the
beginning of a string and make sure it fits within 10 display columns, use udsubstr (string,1,10).
See [FN] String functions for more information.

12.4.2.3 Encodings

An encoding is the way a computer stores a given string of text. ASCII and UTF-8, which is how
Stata stores all text, are examples of encodings. Plain ASCII characters are stored as a single byte,
each with a value between 0 and 127. “a”, “Z”, and “@” are all examples of plain ASCII characters,
and their respective byte values are 97, 90, and 64.

The letter “4” is also a character. In UTF-8 encoding, that single character is stored as two bytes:
195 and 161. All Unicode characters beyond the plain ASCII range are stored as two or more bytes,
and each of those bytes has a value between 128 and 255. Some characters in UTF-8 encoding take
three or even four bytes to store.

Not every possible combination of bytes represents a valid Unicode character. Because two or
more bytes are required to encode a Unicode character, any single byte between 128 and 255 is not
a valid Unicode character. Invalid Unicode characters are most likely to occur if you have extended
ASCII characters in a file from a previous version of Stata; see [U] 12.4.2.6 Advice for users of Stata
13 and earlier.

If you have text in other encodings, including text in Stata files, you must convert it to UTF-8 for
it to display properly and for some of Stata’s string functions to work properly. To convert a file
to UTF-8, you must know the original encoding. The most common encoding is Windows-1252. To
obtain a list of other common encodings as well as a list of all possible encodings, see unicode
encoding list and unicode encoding alias in [D] unicode encoding.

The unicode analyze and unicode translate commands help to convert text files and Stata
datasets. See [D] unicode translate for more information. Also see [U] 12.4.2.6 Advice for users of
Stata 13 and earlier.

12.4.2.4 Locales in Unicode

A locale identifies a community with a certain set of rules for how their language should be written.
A locale can be as general as a certain language, such as “en” for English, or it can be specific to a
country or region, such as “en_US” for U.S. English and “en_HK” for Hong Kong English.

Locales use tags to define how specific they are to language variants; these tags include language,
script, country, variant, and keywords. Typically the language is required and the other tags are optional.
In most cases, Stata uses only the language and country tags. For example, “en_US” specifies the
language as English and the country as the USA.

94 [U] 12 Data

Certain language-specific operations require a locale to be properly carried out. For example, in
English, the uppercase version of “i” is “I”. In Turkish, the uppercase version of “i” is an “I” [that is,
an “I” with a dot above it (Unicode character \u0130)]. To specify how to properly convert a letter to
uppercase, you can specify the locale in the ustrupper () function, for example, ustrupper("i",
"en_US").

The following Stata functions are locale-dependent: ustrupper (), ustrlower(), ustrtitle(),
ustrword (), ustrwordcount (), ustrcompare(), ustrcompareex(), ustrsortkey(), and us-
trsortkeyex().

If you do not explicitly specify a locale when using these functions, the current Stata lo-
cale_functions setting will be used. You can see the current setting by typing

. display c(locale_functions)

and
. unicode locale list
to see a list of supported locales. It is unlikely, however, that you will ever need to change the set

locale_functions setting.

See [P] set locale_functions for more information about setting the locale, including information
about how the default value is determined.

12.4.2.5 Sorting strings containing Unicode characters
This section deals with collation, sorting strings that contain Unicode characters, and the special
rules that apply when you do. Many users will find that they can skip this section.

If you do not have Unicode characters beyond the plain ASCII range, you can skip this section.
You can also skip this section if you are interested in using sort only so that you can use another
command or prefix. For example, suppose you have the variable id that contains Unicode characters
and you want to type

. statsby id: regress y x1 x2

If your aim is to group the coefficients by id only and the exact order of id does not matter, then
the advice in this section does not apply to you. The usual sort command will be sufficient.

The steps described here also do not apply to commands that require the data to be sorted or
grouped. For example, suppose that you wish to perform a one-to-one merge for two datasets using
id as the key variable. You can just type

. merge 1:1 id using ...

Finally, you can skip this section if you do not want to apply language-specific rules to the Unicode
characters in your data. For example, if you do not particularly care that “café” is sorted before or
after “cafe”, but only that the two words are distinguished, then this section is not for you.

For users who wish to sort or compare strings as a human might, there are four rules that you
should keep in mind.

1. Sorting is locale-specific.

2. You must generate a sort key. You cannot sort by the variable itself.

3. There are multiple options for controlling the order of Unicode strings.
4. Concatenation is required to sort by varlist.

Rules 1 and 3 also apply to string comparisons. We explain each of these rules in more detail below.
But first, it may be helpful to review how sorting works in general.

[U] 12 Data 95

Stata’s sort command and Stata’s logical operators > and < order strings based on the byte
values of the characters. For example, the byte value for “a” is 97 and the byte value for “A” is 65,
so “a” > “A”. Similarly, the byte value for “Z” is 90, so “a” > *“Z”. This means that words starting
with “Z” come before “a”, which might surprise you because, in an English dictionary, words starting

with “Z” would certainly come after words starting with “a”.
For example, suppose we have the following data:

. list mystr

mystr

Quick
quick
brown

Fox

Jump

O W N

If we sort these data and then 1list them, we see

. sort mystr

. list

mystr

Fox
Quick
brown

jump
quick

O W N

This probably is not the order you would have placed these values in.

To sort the values of mystr in a more human fashion, you can use a Unicode tool, known as the
Unicode collation algorithm (UCA), for comparing and sorting strings in a language-aware manner.
Given knowledge of a locale and perhaps some optional instructions about whether to consider things
like case and diacritical marks, the UCA can order Unicode strings as a human (or a dictionary) would.

Stata and Mata provide access to the UCA via the ustrcompare (), ustrcompareex (), and us-
trsortkey (), ustrsortkeyex () functions. Stata also provides access via the collatorlocale()
and collatorversion() functions.

See http://www.unicode.org/reports/tr10/ for the formal specification of the UCA.

Rule 1: Sorting is locale-dependent.

The ordering of strings in Unicode depends on the specified language and any optional tags and
keywords that are specified with the locale.

For the ustrcompare () and ustrsortkey () functions, the default rules for ordering by language
(and country, if specified) are used. You can use the current Stata locale_functions setting or
specify a different locale with these each of these functions. See [U] 12.4.2.4 Locales in Unicode for
more information about locales, and see [D] unicode collator for information about locale-specific
collation.

For advanced control of ordering, use the ustrcompareex() and ustrsortkeyex() functions.
These functions allow you to specify a collation keyword, which is used for finer control for ordering,
such as whether case-sensitivity and diacritical marks matter. For example, “pinyin” and “stroke”

96 [U] 12 Data

for the Chinese language produce different sort orders. A list of valid collation keywords and their
meanings may be found http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml.

Rule 2: You must generate a sort key.

To appropriately sort your data with all the rules of the locale applied, you must generate a sort
key. A sort key is a string created by the UCA that can be used to sort Unicode strings. You sort on
the sort key rather than the Unicode string variable. The sort key is not a variable we would ever
want to use for any purpose other than data management because it is not human-readable.

You can generate a sort key using either ustrsortkey() or ustrsortkeyex(). You then sort
your data by the new variable. The following example illustrates the difference between sort and
Unicode collation using the above functions:

. generate sortkey = ustrsortkey(mystr, "en")
. sort sortkey

. list mystr

mystr

brown
Fox
Jjump
quick
Quick

O W N

It is important to note that the Stata dataset is sorted by sortkey and not by mystr, even though
mystr appears to be sorted correctly. Stata is aware of sorting only by sortkey. This means that if
you need to perform an operation that relies on the sort order, such as by, you should use sortkey
rather than mystr, such as

. by sortkey:

Also note that sort keys generated from one locale or one set of advanced options in ustr-
sortkeyex () are usually not compatible or comparable with sort keys generated from another locale
or another set of options. For example, you should not compare the sort keys generated from the
"en" locale with those generated from the "fr" locale.

Q Technical note

The effective locale may be different from the requested locale. Thus, the sort keys obtained on a
different machine, or even on a different user account on the same machine, may be different unless
the locale is specified. You can retrieve the effective locale with the function collatorlocale()
and then use that effective locale in future calls to the Unicode ordering functions.

a

Q Technical note

The Unicode standard is constantly adding more characters, and language rules are constantly
changing, which means that sort keys produced by the current version of the UCA may not be
compatible with sort keys of the same strings produced by future versions of the UCA.

You can use function collatorversion() to retrieve the current version of the collation routine
and then store the result (for example, in a variable characteristic) with any saved sort keys if those
keys are intended for future use.

http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml

[U] 12 Data 97

If the current version is different from the saved sort key, then you should regenerate the sort key
variables if you want them to be up-to-date with the new language rules or if you want to compare
them with newly generated sort keys.

a

Rule 3: There are multiple options for controlling the order of Unicode strings.

This may appear straightforward, but some finer points of the UCA could surprise you. Consider
an example of string comparisons.

. display ustrcompare("café","cafe","fr")
1

Here we asked Stata to compare the string “café” with the string “cafe” using the French locale

("fr"). Stata reported 1, which means that in this case “café” is considered to be greater than “cafe”.
If we were sorting our data, this means “café” would be sorted after “cafe”.

Now consider

. display ustrcompare("café du monde","cafe new york","fr")

-1
It might surprise you that the result is -1, which means that in this case “café du monde” is considered
to be less than “cafe new york”, even though we already established that “café” is greater than “cafe”.

The reason is that the difference between “d” and “n” in the second word of each string is
considered by the UCA to be a primary difference, whereas the difference between “é” and “e” in the
first word of each string is a diacritical mark which is considered to be a secondary difference. The
primary difference outweighs the secondary difference even though it occurs later in the string.

The default behavior of ustrcompare() and ustrsortkey() should be sufficient for most
comparison and sorting needs. For advanced control over how Unicode strings are ordered, including
whether the ordering should be based on differences from primary to quaternary, use ustrcompareex ()
and ustrsorkeyex (). See [FN] String functions.

Rule 4: Concatenation is required to sort by a varlist.

An important implication of Rule 3 arises when creating sort keys for Unicode strings. Ordinarily,
if you want to sort on two string variables, you can simply type

. sort stringl string?2

However, to take full advantage of the UCA while sorting two or more strings, you should first
concatenate them and then sort the result.

. generate string3 = stringl + string2
. generate sortkey = ustrsortkey(sting3, "fr")

. sort sortkey

If you do not do this, then primary differences that might arise in string2 will not override any
secondary differences in stringl.

98 [U] 12 Data

12.4.2.6 Advice for users of Stata 13 and earlier

In this section, we discuss how to use your older Stata files in modern Stata and also points you
should consider when sharing your modern Stata files with users of Stata 13 and earlier.

In Stata 13 and earlier, Unicode characters were not supported. If you have only plain ASCII
characters in your datasets, do-files, and ado-files, then you do not need to take any special steps to
continue using these files with modern Stata. You can use saveold to share your dataset with users
of older versions of Stata. Your do-files and ado-files can be shared directly.

If files you used with Stata 13 or earlier contain strings with extended ASCII characters, you should
convert those strings to Unicode UTF-8 encoding so they will work properly with modern Stata. The
unicode analyze command will check your files to see if they need conversion, and if so, the
unicode translate command will convert them to UTF-8 encoding. See [D] unicode translate. To
convert a single variable, use ustrfrom().

If you have Unicode characters in your dataset and you wish to share it with a user of Stata 13 or
earlier, be aware that while they can load a dataset created with the saveold command, their copy of
Stata is not Unicode-aware and will not display Unicode characters properly. Before you use saveold,
you can convert your string variables from the UTF-8 encoding to an extended ASCII encoding by
using ustrto(). We recommend that you generate a new variable when using ustrfrom() or
ustrto() so that you can review the results and make sure you are satisfied before you replace
your existing variable. ustrfrom() and ustrto() may also be used with Mata string matrices.

12.4.3 Strings containing identifying data

String variables often contain identifying information, such as the patient’s name or the name
of the city or state. Such strings are typically listed but are not used directly in statistical analysis,
although the data might be sorted on the string or datasets might be merged on the basis of one or
more string variables.

12.4.4 Strings containing categorical data

Strings sometimes contain information to be used directly in analysis, such as the patient’s sex,
which might be coded “male” or “female”. Stata shows a decided preference for such information to be
numerically encoded and stored in numeric variables. Stata’s statistical routines treat string variables
as if every observation records a numeric missing value. Stata provides two commands for converting
string variables into numeric codes and back again: encode and decode. See [U] 24.2 Categorical
string variables and [U] 11.4.3 Factor variables.

12.4.5 Strings containing numeric data

If a string variable contains the character representation of a number, say, myvar contains “1”,
“1.2”, and “—5.2”, you can convert the string into a numeric value by using the real() function or
the destring command. For example,

. generate newvar = real(myvar)

To convert a numeric variable to its string representation, you can use the string() function or
the tostring command. For example,

. generate as_str = string(numvar)

See [FN] String functions and [D] destring.

[U] 12 Data 99

12.4.6 String literals

A string literal is a sequence of printable characters enclosed in quotes. The quotes are not
considered part of the string; they merely serve to delimit the beginning and end of the string. The
following are examples of string literals:

"Hello, world"
"String"
"string"

" string"
"string "
le/y+3ll

II1 '2"

All the strings above are distinct. Capitalization matters, as do leading and trailing spaces. Also
note that "1.2" is a string and not a number because it is enclosed in quotes.

There is never a circumstance in which a string cannot be delimited with quotes, but there are
instances where strings do not have to be delimited by quotes, such as when inputting data. In those
cases, nondelimited strings are stripped of their leading and trailing spaces. Delimited strings are
always accepted as is.

The list above could also be written as

‘"Hello, world"’
[4 lIStringll)
‘"stringll)

«n String“)
string "’

cnno

(4 "X/y+3")

["1 . 2")

n

‘" and "’ are called compound double quotes.

Use of compound double quotes can help solve the problem of typing strings that themselves
contain double quotes.

‘"Bob said, "Wow!" and promptly fainted."’

Strings in compound quotes can themselves contain compound quotes.

‘"The compound quotes characters are ‘" and "’"’

12.4.7 stri—str2045 and str

str is something generate understands. We will get to that.
stril-str2045 are known as Stata’s fixed-length string storage types.

They are called that because, in your dataset, if a variable is stored as a str#, then each observation
requires # bytes to store the contents of the variable. You obviously do not want # to be longer than
necessary. Stata’s compress command will shorten str# strings that are unnecessarily long.

100 [U]12 Data

. use https://www.stata-press.com/data/r16/auto, clear
(1978 Automobile Data)

. compress
variable mpg was int now byte
variable rep78 was int now byte
variable trunk was int now byte
variable turn was int now byte
variable make was stri8 now stri7
(370 bytes saved)

In [U] 12.4.1 Overview, we used str with generate:

. generate str brand = word(make, 1)

str is something generate understands and tells generate to create a str# variable of the
minimum required length. Although you cannot tell from the output, generate created variable
brand as a str7.

Stata commands automatically promote str# storage types when necessary:

. replace make = "Mercedes Benz Gullwing" in 1
variable make was stri7 now str22
(1 real change made)

In fact, if the string to be stored is longer than 2,045 bytes, generate and replace will even
promote to strL. We discuss strLs in the next section.

12.4.8 strL
strL variables can be 0 to 2-billion bytes long.
The “L” stands for long, and strL is often pronounced sturl.
strL variables are not required to be longer than 2,045 bytes.

str# variables can store strings of up to 2,045 bytes, so strL and str# overlap. This overlap is
comparable to the overlap of the numeric types int and float. Any number that can be stored as
an int can be stored as a float. Similarly, any string that can be stored as a str#, can be stored as
a strL. The reverse is not true. In addition, strL variables can hold binary strings, whereas str#
variables can only hold text strings. Thus the analogy between str#/strL and int/float is exact.
There will be occasions when you will want to use strL variables in preference to str# variables,
just as there are occasions when you will want to use float variables in preference to int variables.

strL variables work just like str# variables. Below we repeat what we did in [U] 12.4.1 Overview
using a strL variable.
. use https://www.stata-press.com/data/r16/auto, clear
(1978 Automobile Data)
. generate strL mymake = make

. describe mymake

storage display value
variable name type format label variable label
mymake strL %9s

. list mymake in 1/2

mymake

[ure

AMC Concord
2. AMC Pacer

[U] 12 Data 101

We can replace strL values just as we can replace str# values:

. replace mymake = "Mercedes Benz Gullwing" in 1
(1 real change made)

We can use string functions with strL variables just as we can with str# variables:

. generate len = strlen(mymake)
. generate strL firstb = substr(mymake, 1, 5)
. list mymake len first5 in 1/2

mymake len firstb

[ure

Mercedes Benz Gullwing 22 Merce
2. AMC Pacer 9 AMC P

We can even make tabulations:

. generate strL brand = word(mymake, 1)
. tabulate brand

brand Freq. Percent Cum.
AMC 2 2.70 2.70
Audi 2 2.70 5.41
BMW 1 1.35 6.76
(output omitted)

Volvo 1 1.35 100.00

Total 74 100.00

The only limitations are the following:

1. You cannot use strL variables as the matching (key) variables in a match merge of two
datasets.

2. strL variables cannot be used with fillin.

strL variables are stored differently from str# variables. str# variables require # bytes per
observation. strL variables require the actual number of bytes per string per observation, which
means strLs require even less memory than str# when the value being stored is less than # bytes
long. Most strLs, however, have an 80-byte overhead per value stored; the exception is strLs
containing empty strings, in which case the overhead is 8 bytes.

Whether strL or str# requires less memory for storing the same string values depends on the
string values themselves. compress can be used to figure that out:

. compress
variable mpg was int now byte
variable rep78 was int now byte
variable trunk was int now byte
variable turn was int now byte
variable len was float now byte
variable make was stri8 now stri7
variable mymake was strL now str22
variable firstbs was strL now strb
variable brand was strL now str8
(12,420 bytes saved)

compress decided to demote all of our strL variables to str# to save memory.

102 [U] 12 Data

compress, however, never promotes a str# variable to a strL, even if that would save memory.
It does not do this because, as we mentioned, there are a few things you can do with str# variables
that you cannot do with strL variables.

You can use recast to promote str# to strL:

. * variable make is currently stril7
. recast strL make

. describe make

storage display value
variable name type format label variable label
make strL %-9s Make and Model

. compress make
variable make was strL now stri?7
(5,607 bytes saved)

12.4.9 strL variables and duplicated values

You would never know it, but when strL variables have the same values across observations,
Stata stores only one copy of each value. This is called coalescing, and it saves memory.

Stata mostly coalesces strL variables automatically as they are created, but sometimes duplicate
values escape its attention. When you type compress, however, Stata looks for coalescing opportunities.
You might see

. compress X

x is strL now coalesced
(11,301,687 bytes saved)

We recommend that you type compress occasionally when strL variables are present.

12.4.10 strL variables and binary strings

strLs can hold binary strings. A binary string is, technically speaking, any string that contains
binary 0. Here is an example:
. use https://www.stata-press.com/data/ri6/auto, clear
(1978 Automobile Data)

. replace make = "a" + char(0) + "b" in 1
variable make was stri8 now strL
(1 real change made)

. list make in 1

make

1. a\0Ob

list displays binary zeros as \O.

[U] 12 Data 103

If we did this same experiment with a str# variable and include the nopromote option to prevent
promotion, we would see something different:
. use https://www.stata-press.com/data/r16/auto, clear
(1978 Automobile Data)

. replace make = "a" + char(0) + "b" in 1, nopromote
(1 real change made)

. list make in 1

make

1. a

For str# strings, binary O indicates the end of the string, and thus the variable really does contain
“a” in the first observation.

str# variables cannot contain binary O; strL variables can.

compress knows this. If we typed compress in the first example, we would discover that compress
would not demote make to be a str#. It would not do this because one of the values could not be
stored in a str# variable. This is no different from compress not demoting a float variable to an
int because one of the values is 1.5.

12.4.11 strL variables and files

strLs can be used to hold the contents of files. We have data on 10 patients. Some of the data have
been coded from doctor notes, and those notes are stored in notes_2217.xyz, notes_2221.xyz,
notes_2222.xyz, and so on. We could do the following:

. generate strL notes = fileread("notes_2217.xyz") in 1
. replace notes = fileread("notes_2221.xyz") in 2

. replace notes = fileread("notes_2222.xyz") in 3

It would be even easier for us to type
. generate str fname = "notes_" + string(patid) + ".xyz"

. generate strL notes = fileread(fname)

The original files can be re-created from the copies stored in Stata. To re-create all the files, we
could type

. generate len = filewrite(fname, notes)

If we want to know whether the phrase “Diabetes Mellitus Type 17 appears in the notes and
whether doctors recorded the disease as T1DM, we can type

. generate t2dm = (strpos("notes", "T1DM")) != 0

Of course, that depends on the notes_*.xyz files being either text or text-like enough so that
the T1DM would show up as “TIDM”.

Note that strpos() and all of Stata’s string functions also work with binary strings.

104 [U] 12 Data

12.4.12 String display formats

The format for strings is %[—}#s, such as %18s and %-18s. # may be up to 2,045. # indicates
the width of the field. %#s specifies that the string be displayed right-aligned in the field, and %-#s
specifies that the string is displayed left-aligned.

Stata sets good default formats for str# variables. The default format is %#s, so if a variable is
stri8, its default format is %18s.

Stata sets poor default formats for strL variables. Stata uses %9s in all cases. Because strL
variables can be so long, there is no good choice for the format; the question is merely how much
of the string you want to see.

When the format is too short for the length of the string, whether the string is str# or strL,
Stata usually displays # — 2 characters of the string and adds two dots at the end. We say “usually”
because a few commands are able to do something better than that.

12.4.13 How to see the full contents of a strL or a str# variable

By default, the 1ist command shows only the first part of long strings, followed by two dots.
How much 1list shows is determined by the width of your Results window.

list will show the first 2,045 bytes of long strings, whether stored as strLs or str#s, if you
add the notrim option.
. list, notrim
(output omitted)

. list mystr, notrim
(output omitted)

. list mystr in 5, notrim
(output omitted)

Another way to display long strings is to use the display command. With display, you can see
the entire contents. To display the fifth observation of the variable mystr, you type

. display _asis mystr[5]
(output omitted)

That one command can produce a lot of output if the string is long, even hundreds of thousands
of pages! Remember that you can press Break to stop the listing.
To see the first 5,000 characters of the string, you type
. display _asis usubstr(mystr[5], 1, 5000)
For detailed information about displaying Unicode characters beyond plain ASCII characters, see
[U] 12.4.2.2 Displaying Unicode characters.

Very rarely, a string variable might contain SMCL output. SMCL is Stata’s text markup language.
A variable might contain SMCL if you used fileread () to read a Stata log file into it. In that case,
you can see the text correctly formatted by typing

. display as txt mystr[1]
(output omitted)

To learn more about other features of display, see [R] display.

[U] 12 Data 105

12.4.14 Notes for programmers

The maximum length of macros is shorter than that of strLs. This means the following:

L.
2.

You can use macros in string expressions without fear that results will be truncated.

You can enclose expanded macros in quotes—‘" ‘macname’"’—to form string literals
without fear of truncation.

Macros cannot hold binary strings. If you are working with binary strings, use string scalars,
which are also implemented as strLs. See [P] scalar.

You should not assume that the result of a string expression will fit into a macro. If you
are sure it will, go ahead and store the result into a macro. If you are not sure, use a string
scalar, which can hold a strL.

You should not assume that the contents of a strL variable will fit into a macro. Use string
scalars.

In programming, use string scalars just as you would use numeric scalars.

program ...
version 16.1

{:ér;lpname mystr

:'séélar ‘mystr’ = ...

és.n;erate Loo= L ‘mystr ...
end

mystr in the above code is a macro containing a temporary name. Thus ‘mystr’ is a
reference, not an expansion, of the contents of the string scalar.

12.5 Formats: Controlling how data are displayed

Formats describe how a number or string is to be presented. For instance, how is the number
325.24 to be presented? As 325.2, or 325.24, or 325.240, or 3.2524e+02, or 3.25e+02, or some
other way? The display format tells Stata exactly how to present such data. You do not have to
specify display formats because Stata always makes reasonable assumptions about how to display a

variable,

but you always have the option.

12.5.1 Numeric formats

A Stata numeric format is formed by

first type % to indicate the start of the format
then optionally type - if you want the result left-aligned
then optionally type O if you want to retain leading zeros (1)
then type a number w stating the width of the result
then type .
then type a number d stating the number of digits to follow the decimal point
then type
either for scientific notation, e.g., 1.00e+03

or
or

then optionally type

e
f for fixed format, e.g., 1000.0

g for general format; Stata chooses based on the number being displayed
c to indicate comma format (not allowed with e)

(1) Specifying 0 to mean “include leading zeros” will be honored only with the £ format.

106 [U] 12 Data

For example,

%9.0g general format, 9 columns wide
sqri(2) = 1.414214
1,000 = 1000
10,000,000 = 1.00e+07
%9.0gc general format, 9 columns wide, with commas
sqrt(2) = 1.414214
1,000 = 1,000
10,000,000 = 1.00e+07
%9 .2f fixed format, 9 columns wide, 2 decimal places
sqrt(2) = 1.41
1,000 = 1000.00
10,000,000 = 10000000.00
%9.2fc fixed format, 9 columns wide, 2 decimal places, with commas
sqrt(2) = 1.41
1,000 = 1,000.00
10,000,000 = 10,000,000.00
%9.2e exponential format, 9 columns wide
sqrt(2) = 1.41e+00
1,000 = 1.00e+03
10,000,000 = 1.00e+07

Stata has three numeric format types: e, f, and g. The formats are denoted by a leading percent
sign (%) followed by the string w.d, where w and d stand for two integers. The first integer, w,
specifies the width of the format. The second integer, d, specifies the number of digits that are to
follow the decimal point. d must be less than w. Finally, a character denotes the format type (e, £,
or g), and a ¢ may optionally be appended to that to indicate that commas are to be included in the
result (c is not allowed with e).

By default, every numeric variable is given a %w.Og format, where w is large enough to display
the largest number of the variable’s type. The %w.Og format is a set of formatting rules that present
the values in as readable a fashion as possible without sacrificing precision. The g format changes
the number of decimal places displayed whenever it improves the readability of the current value.

The default formats for each of the numeric variable types are

byte %8.0g
int %8.0g
long %12.0g
float %9.0g
double %10.0g

You can change the format of a variable by using the format varname % fint command.

In addition to %w.Og, %w.Ogc is also allowed and displays numbers with commas. “One thousand”
is displayed as 1000 in %9.0g format and as 1,000 in %9.0gc format.

In addition to using %w.Og and %w.Ogc, you can use %w.dg and %w.dgc, d > 0. For example,
%9 .4g and %9.4gc. The 4 means to display approximately four significant digits. For instance, the
number 3.14159265 in %9 . 4g format is displayed as 3.142, 31.4159265 as 31.42, 314.159265 as 314.2,
and 3141.59265 as 3142. The format is not exactly a significant digit format because 31415.9265 is
displayed as 31416, not as 3.142e+04.

Under the £ format, values are always displayed with the same number of decimal places, even
if this results in a loss in the displayed precision. Thus the f format is similar to the C £ format.
Stata’s £ format is also similar to the Fortran F format, but, unlike the Fortran F format, it switches
to g whenever a number is too large to be displayed in the specified £ format.

In addition to %w.df, the format %w.dfc can display numbers with commas.

[U] 12 Data 107

The e format is similar to the C e and the Fortran E format. Every value is displayed as a leading
digit (with a minus sign, if necessary), followed by a decimal point, the specified number of digits,
the letter e, a plus sign or a minus sign, and the power of 10 (modified by the preceding sign) that
multiplies the displayed value. When the e format is specified, the width must exceed the number of
digits that follow the decimal point by at least seven to accommodate the leading sign and digit, the
decimal point, the e, and the signed power of 10.

> Example 3

Below we have a five-observation dataset with three variables: e_fmt, f_fmt, and g_fmt. All
three variables have the same values stored in them; only the display format varies. describe shows
the display format to the right of the variable type.

. use https://www.stata-press.com/data/r16/format, clear
. describe

Contains data from https://www.stata-press.com/data/r16/format.dta

obs: 5
vars: 3 12 Mar 2018 15:18
storage display value
variable name type format label variable label
e_fmt float %9.2e
f_fmt float %10.2f
g_fmt float %9.0g
Sorted by:

The formats for each of these variables were set by typing
. format e_fmt %9.2e
. format f_fmt %10.2f

It was not necessary to set the format for the g_fmt variable because Stata automatically assigned it
the %9.0g format. Nevertheless, we could have typed format g_fmt %9.0g. Listing the data results

m
. list

e_fmt f_fmt g_fmt
1. 2.80e+00 2.80 2.801785
2. 3.96e+06 3962322.50 3962323
3. 4.85e+00 4.85 4.852834
4. -5.60e-06 -0.00 -5.60e-06
5. 6.26e+00 6.26 6.264982

Q Technical note

The discussion above is incomplete. There is one other format available that will be of interest to
numerical analysts. The %21x format displays base 10 numbers in a hexadecimal (base 16) format.
The number is expressed in hexadecimal (base 16) digits; the number aX+b means a X 2°. For
example,

. display %21x 1234.75
+1.34b0000000000X+00a

108 [U] 12 Data

Thus the base 10 number 1,234.75 has a base 16 representation of 1.34bX+0a, meaning
(1 +3-1671+4-1672+11- 16—3) x 210

Remember, the hexadecimal—decimal equivalents are

hexadecimal decimal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
a 10
b 11
C 12
d 13
e 14
f 15

See [U] 12.2 Numbers.

12.5.2 European numeric formats

3

The three numeric formats e, £, and g will use ¢,’ to indicate the decimal symbol if you specify
their width and depth as w,d rather than w.d. For instance, the format %9, 0g will display what Stata
would usually display as 1.5 as 1,5.

If you use the European specification with fc or gc, the comma will be presented as a period.
For instance, %9,0gc would display what Stata would usually display as 1,000.5 as 1.000,5.

If this way of presenting numbers appeals to you, consider using Stata’s set dp comma command.
set dp comma tells Stata to interpret nearly all %w.d{g|f|e} formats as %w,d{g|f|e} formats. Most
of Stata is written using a period to represent the decimal symbol, and that means that even if you
set the appropriate %w,d{g|f|e} format for your data, it will affect only displays of the data. For
instance, if you type summarize to obtain summary statistics or regress to obtain regression results,
the decimal will still be shown as a period.

set dp comma changes that and affects all of Stata. With set dp comma, it does not matter whether
your data are formatted %w.d{g|f|e} or %w,d{g|f|e}. All results will be displayed using a comma
as the decimal character.

[U] 12 Data 109

. use https://www.stata-press.com/data/r16/auto, clear
(1978 Automobile Data)

. set dp comma

. summarize mpg weight foreign

Variable Obs Mean Std. Dev. Min Max
mpg 74 21,2973 5,785503 12 41
weight 74 3019,459 777,1936 1760 4840
foreign 74 ,2972973 ,4601885 0 1
. regress mpg weight foreign
Source SS df MS Number of obs = 74
F(2, 71) = 69,75
Model 1619,2877 2 809,643849 Prob > F = 0,0000
Residual 824,171761 71 11,608053 R-squared = 0,6627
Adj R-squared = 0,6532
Total 2443,45946 73 33,4720474 Root MSE = 3,4071
mpg Coef. Std. Err. t P>|t] [95% Conf. Intervall
weight -,0065879 ,0006371 -10,34 0,000 -,00785683 -,0053175
foreign -1,650029 1,075994 -1,63 0,130 -3,7955 ,4954422
_cons 41,6797 2,165547 19,25 0,000 37,36172 45,99768

You can switch the decimal character back to a period by typing set dp period.

Q Technical note

set dp comma makes drastic changes inside Stata, and we mention this because some older user-
written programs may not be able to deal with those changes. If you are using an older user-written
program, you might set dp comma and then find that the program does not work and instead presents
some sort of syntax error.

If, when using any program, you do get an unanticipated error, try setting dp back to period.
See [D] format for more information.

Also understand that set dp comma affects how Stata outputs numbers, not how it inputs them.
You must still use the period to indicate the decimal point on all input. Even with set dp comma,

you type

. replace x=1.5 if x==

12.5.3 Date and time formats

Date and time formats are really a numeric format because Stata stores dates as the number of
milliseconds, days, weeks, months, quarters, half-years, or years from 01jan1960; see [U] 25 Working
with dates and times.

The syntax of the %t format is

first type % to indicate the start of the format
then optionally type - if you want the result left-aligned
then type t

then type character to indicate the units

then optionally type other characters to indicate how the date/time is to be displayed

110 [U] 12 Data

The letter you type to specify the units is

milliseconds from 01jan1960, adjusted for leap seconds
milliseconds from 01jan1960, ignoring leap seconds
days from 01jan1960

weeks from 1960-wl

calendar months from jan1960

quarters from 1960-q1

half years from 1960-hl

o 8B 82 a0 Q

There are many codes you can type after that to specify exactly how the date/time is to be displayed, but
usually, you do not. Most users use the default %tc for date/times and %td for dates. See [D] Datetime
display formats for details.

12.5.4 String formats

The syntax for a string format is

first type % to indicate the start of the format
then optionally type - if you want the result left-aligned
then type a number indicating the width of the result
then type s

For instance, %10s represents a string format with a width of 10 display columns; see [U] 12.4.2.2 Dis-
playing Unicode characters.

For strw, the default format is %ws or %9s, whichever is wider. For example, a str10 variable
receives a %10s format. Strings are displayed right-justified in the field, unless the minus sign is
coded; %-10s would display the string left-aligned.

> Example 4

Our automobile data contain a string variable called make.

. use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)

. describe make

storage display value
variable name type format label variable label
make stri8 %-18s Make and Model

. list make in 63/67

make

63. Mazda GLC

64. Peugeot 604
65. Renault Le Car
66. Subaru

67. Toyota Celica

These values are left-aligned because make has a display format of %-18s. If we want to right-align
the values, we could change the format.

[U] 12 Data 111

. format 7%18s make
. list make in 63/67

make
63. Mazda GLC
64. Peugeot 604
65. Renault Le Car
66. Subaru
67. Toyota Celica

12.6 Dataset, variable, and value labels

Labels are strings used to label elements in Stata, such as labels for datasets, variables, and values.

12.6.1 Dataset labels

Associated with every dataset is an 80-character dataset label, which is initially set to blanks. You
can use the label data "fext" command to define the dataset label.

> Example 5
We have just entered 1980 state data on marriage rates, divorce rates, and median ages. The
describe command will describe the data in memory:

. describe

Contains data

obs: 50
vars: 4
storage display value
variable name type format label variable label
state str8 %9s
median_age float %9.0g

marriage_rate long %12.0g
divorce_rate long %12.0g

Sorted by:
Note: Dataset has changed since last saved.

describe shows that there are 50 observations on 4 variables named state, median_age, mar-
riage_rate, and divorce_rate. state is stored as a str8; median_age is stored as a float;
and marriage_rate and divorce_rate are both stored as longs. Each variable’s display format
(see [U] 12.5 Formats: Controlling how data are displayed) is shown. Finally, the data are not in
any particular sort order, and the dataset has changed since it was last saved on disk.

112 [U] 12 Data

We can label the data by typing label data "1980 state data". We type this and then type
describe again.
. label data "1980 state data"
. describe

Contains data

obs: 50 1980 state data
vars: 4
storage display value
variable name type format label variable label
state str8 %9s
median_age float %9.0g
marriage_rate long %12.0g

divorce_rate long %12.0g

Sorted by:
Note: Dataset has changed since last saved.

The dataset label is displayed by the describe and use commands.

12.6.2 Variable labels

In addition to the name, every variable has associated with it an 80-character variable label. The
variable labels are initially set to blanks. You use the label variable varname "text" command to
define a new variable label.

> Example 6
We have entered data on four variables: state, median_age, marriage_rate, and di-
vorce_rate. describe portrays the data we entered.

. describe

Contains data from states.dta

obs: 50 1980 state data
vars: 4
storage display value
variable name type format label variable label
state str8 %9s
median_age float %9.0g

marriage_rate long %12.0g
divorce_rate long %12.0g

Sorted by:
Note: Dataset has changed since last saved.

We can associate labels with the variables by typing

. label variable median_age "Median Age"
. label variable marriage_rate "Marriages per 100,000"

. label variable divorce_rate "Divorces per 100,000"

[U] 12 Data 113

From then on, the result of describe will be

. describe
Contains data
obs: 50 1980 state data
vars: 4
storage display value
variable name type format label variable label
state str8 %9s
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by:

Note: Dataset has changed since last saved.

d

Whenever Stata produces output, it will use the variable labels rather than the variable names to
label the results if there is room.

12.6.3 Value labels

Value labels define a correspondence or mapping between numeric data and the words used to
describe what those numeric values represent. Mappings are named and defined by the 1abel define
IbIname # "string" # "string" ... command. The maximum length for the lblname is 32 characters. #

must be an integer or an extended missing value (.a,

.b, ..., .2z). The maximum length of string is

32,000 bytes. Named mappings are associated with variables by the label values varname [blname

command.

Below, we demonstrate how to create value labels and then associate those mappings (labels) with
the numeric values to which they relate. To see how to use labels in an expression in place of the
numeric values with which they are associated, see [U] 13.11 Label values.

> Example 7

The definition makes value labels sound more complicated than they are in practice. We create a
dataset on individuals in which we record a person’s sex, coding O for males and 1 for females. If
our dataset also contained an employee number and salary, it might resemble the following:

. use https://www.stata-press.com/data/r16/gxmpl4, clear
(2007 Employee data)

. describe

Contains data from https://www.stata-press.com/data/r16/gxmpl4.dta

obs: 7 2007 Employee data
vars: 3 11 Feb 2018 15:31
storage display value
variable name type format label variable label
empno float %9.0g Employee number
sex float %9.0g Sex
salary float %8.0fc Annual salary, exclusive of bonus

Sorted by:

114 [U] 12 Data

. list

empno sex salary
1. 57213 0 34,000
2. 47229 1 37,000
3. 57323 0 34,000
4. 57401 0 34,500
5. 57802 1 37,000
6. 57805 1 34,000
7 57824 0 32,500

We could create a mapping called sexlabel defining 0 as “Male” and 1 as “Female”, and then
associate that mapping with the variable sex by typing

. label define sexlabel 0 "Male" 1 "Female"

. label values sex sexlabel

From then on, our data would appear as

. describe

Contains data from https://www.stata-press.com/data/r16/gxmpl4.dta

obs: 7 2007 Employee data

vars: 3 11 Feb 2018 15:31
storage display value
variable name type format label variable label
empno float %9.0g Employee number
sex float %9.0g sexlabel Sex
salary float %8.0fc Annual salary, exclusive of bonus
Sorted by:
Note: Dataset has changed since last saved.
. list
empno sex salary

1. 57213 Male 34,000

2. 47229 Female 37,000

3. 57323 Male 34,000

4. 57401 Male 34,500

5. 57802 Female 37,000

6. 57805 Female 34,000

7. 57824 Male 32,500

Notice not only that the value label is used to produce words when we 1ist the data, but also that the
association of the variable sex with the value label sexlabel is shown by the describe command.

4

[U] 12 Data 115

Q Technical note

Value labels and variables may share the same name. For instance, rather than calling the value
label sexlabel in the example above, we could just as well have named it sex. We would then type

label values sex sex to associate the value label named sex with the variable named sex.

> Example 8

a

Stata’s encode and decode commands provide a convenient way to go from string variables to
numerically coded variables and back again. Let’s pretend that, in the example above, rather than
coding 0 for males and 1 for females, we created a string variable recording either "male" or

"female".

. use https://www.stata-press.com/data/r16/gxmpl5, clear
(2007 Employee data)

. describe

Contains data from https://www.stata-press.com/data/r16/gxmpl5.dta

obs: 7 2007 Employee data

vars: 3 11 Feb 2018 15:37
storage display value
variable name type format label variable label
empno float %9.0g Employee number
sex stré %9s Sex
salary float %8.0fc Annual salary, exclusive of bonus
Sorted by:
. list
empno sex salary

1. 57213 male 34,000

2. 47229 female 37,000

3. 57323 male 34,000

4. 57401 male 34,500

5. 57802 female 37,000

6. 57805 female 34,000

7. 57824 male 32,500

We now want to create a numerically encoded variable—we will call it gender—from the string
variable. We want to do this, say, because we typed anova salary sex to perform a one-way ANOVA
of salary on sex, and we were told that there were “no observations”. We then remembered that all
of Stata’s statistical commands treat string variables as if they contain nothing but missing values.
The statistical commands work only with numerically coded data.

116 [U] 12 Data

. encode sex, generate(gender)
. describe

Contains data from https://www.stata-press.com/data/r16/gxmpl5.dta

obs: 7 2007 Employee data

vars: 4 11 Feb 2018 15:37
storage display value

variable name type format label variable label
empno float %9.0g Employee number
sex stré %9s Sex
salary float 8.0fc Annual salary, exclusive of bonus
gender long %8.0g gender Sex
Sorted by:

Note: Dataset has changed since last saved.

encode adds a new long variable called gender to the data and defines a new value label called
gender. The value label gender maps 1 to the string male and 2 to female, so if we were to 1ist
the data, we could not tell the difference between the gender and sex variables. However, they are
different. Stata’s statistical commands know how to deal with gender but do not understand the sex
variable. See [U] 24.2 Categorical string variables.

N

Q Technical note

Perhaps rather than employee data, our data are on persons undergoing gender reassignment surgery.
There would, therefore, be two sex variables in our data: sex before the operation and sex after the
operation. Assume that the variables are named presex and postsex. We can associate the same
value label to each variable by typing

. label define sexlabel 0 "Male" 1 "Female"
. label values presex sexlabel

. label values postsex sexlabel

Q Technical note

Stata’s input commands (input and infile) can switch from the words in a value label back to
the numeric codes. Remember that encode and decode can translate a string to a numeric mapping
and vice versa, sO we can map strings to numeric codes either at the time of input or later.

For example,

. label define sexlabel 0 "Male" 1 "Female"
. input empno sex:sexlabel salary, label

empno sex salary
57213 Male 34000
47229 Female 37000
57323 0 34000
57401 Male 34500
57802 Female 37000
57805 Female 34000
57824 Male 32500
end

0N U WN -

[U] 12 Data 117

The label define command defines the value label sexlabel. input empno sex:sexlabel
salary, label tells Stata to input three variables from the keyboard (empno, sex, and salary),
attach the value label sexlabel to the sex variable, and look up any words that are typed in the
value label to try to convert them to numbers. To demonstrate, we 1ist the data that we recently

entered:
. list

empno sex salary
1. 57213 Male 34000
2. 47229 Female 37000
3. | 57323 Male 34000
4. 57401 Male 34500
5. 57802 Female 37000
6. 57805 Female 34000
7. 57824 Male 32500

Compare the information we typed for observation 3 with the result listed by Stata. We typed
57323 0 34000. Thus the value of sex in the third observation is 0. When Stata listed the observation,
it indicated that the value is Male because we told Stata in our label define command that zero
is equivalent to Male.

Let’s now add one more observation to our data:

. input, label

empno sex salary
8. 67223 FEmale 33000
’FEmale’ cannot be read as a number
8. 67223 Female 33000
9. end

At first we typed 67223 FEmale 33000, and Stata responded with “”FEmale’ cannot be read as a
number”. Remember that Stata always respects case, so FEmale is not the same as Female. Stata
prompted us to type the line again, and we did so, this time correctly.

a

Q Technical note

Coupled with the automatic option, Stata not only can go from words to numbers but also can
create the mapping. Let’s input the data again, but this time, rather than typing the data, let’s read
the data from a file. Assume that we have a text file named employee.raw stored on our disk that
contains

57213 Male 34000
47229 Female 37000
57323 Male 34000
57401 Male 34500
57802 Female 37000
57805 Female 34000
57824 Male 32500

The infile command can read these data and create the mapping automatically.

118 [U] 12 Data

. label list sexlabel
value label sexlabel not found
r(111);

. infile empno sex:sexlabel salary using employee, automatic
(7 observations read)

Our first command, label list sexlabel, is only to prove that we had not previously defined the
value label sexlabel. Stata infiled the data without complaint. We now have

. list

empno sex salary
1. 57213 Male 34000
2. 47229 Female 37000
3. 57323 Male 34000
4. 57401 Male 34500
5. 57802 Female 37000
6. 57805 Female 34000
7 57824 Male 32500

Of course, sex is just another numeric variable; it does not actually take on the values Male and
Female—it takes on numeric codes that have been automatically mapped to Male and Female. We
can find out what that mapping is by using the label list command.

. label list sexlabel
sexlabel:

1 Male
2 Female

We discover that Stata attached the codes 1 to Male and 2 to Female. Anytime we want to see what
our data really look like, ignoring the value labels, we can use the nolabel option.

. list, nolabel

empno sex salary
1. 57213 1 34000
2. 47229 2 37000
3. 57323 1 34000
4. 57401 1 34500
5. 57802 2 37000
6. 57805 2 34000
7 57824 1 32500

[U] 12 Data 119

12.6.4 Labels in other languages

A dataset can contain labels—data, variable, and value—in up to 100 languages. To discover the
languages available for the dataset in memory, type label language. You will see

. label language

Language for variable and value labels

In this dataset, value and variable labels have been defined in only one
language: default

To create new language:
To rename current language:

. label language <name>, new
. label language <name>, rename

or something like the following:

. label language

Language for variable and value labels

Available languages:
de
en
sp

Currently set is:
To select different language:

To create new language:
To rename current language:

. label language
. label language

. label language
. label language

sp
<name>

<name>, new
<name>, rename

Right now, the example dataset is set with sp (Spanish) labels:

. describe

Contains data

obs: 74 Automéviles, 1978

vars: 12 3 Oct 2018 13:53
storage display value

variable name type format label variable label
make stri8 %-18s Marca y modelo
price int %8.0gc Precio
mpg int %8.0g Consumo de combustible
rep78 int %8.0g Historia de reparaciones
headroom float %6.1f Cabeza adelante
trunk int %8.0g Volumen del maletero
weight int %8.0gc Peso
length int %8.0g Longitud
turn int %8.0g Radio de giro
displacement int %8.0g Cilindrada
gear_ratio float %6.2f Relacién de cambio
foreign byte %8.0g Extranjero

Sorted by: foreign

To create labels in more than one language, you set the new language and then define the labels in
the standard way; see [D] label language.

120 [U] 12 Data

12.7 Notes attached to data

A dataset may contain notes, which are nothing more than little bits of text that you define and
review with the notes command. Typing note, a colon, and the text defines a note:

. note: Send copy to Bob once verified.

You can later display whatever notes you have previously defined by typing notes:

. notes

_dta:
1. Send copy to Bob once verified.

Notes are saved with the data, so once you save your dataset, you can replay this note in the future,
too.

You can add more notes:

. note: Mary wants a copy, too.
. notes
_dta:

1. Send copy to Bob once verified.
2. Mary wants a copy, too.

The notes you have added so far are attached to the data generically, which is why Stata prefixes
them with _dta when it lists them. You can attach notes to variables:

. note state: verify values for Nevada.
. note state: what about the two missing values?
. notes
_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.

state:
1. verify values for Nevada.
2. what about the two missing values?

When you describe your data, you can see whether notes are attached to the dataset or to any
of the variables:

. describe

Contains data from states.dta

obs: 50 1980 state data
vars: 4

(_dta has notes)

storage display value
variable name type format label variable label
state str8 %9s *
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

* indicated variables have notes

Sorted by:
Note: Dataset has changed since last saved.

See [D] notes for a complete description of this feature.

[U] 12 Data 121

12.8 Characteristics

Characteristics are an arcane feature of Stata but are of great use to Stata programmers. In fact,
the notes command described above was implemented using characteristics.

The dataset itself and each variable within the dataset have associated with them a set of
characteristics. Characteristics are named and referred to as varname [charname] , where varname is
the name of a variable or _dta. The characteristics contain text and are stored with the data in the
Stata-format .dta dataset, so they are recalled whenever the data are loaded.

How are characteristics used? The [XT] xt commands need to know the name of the panel variable,
and some of these commands also need to know the name of the time variable. xtset is used to
specify the panel variable and optionally the time variable. Users need xtset their data only once.
Stata then remembers this information, even from a different Stata session. Stata does this with
characteristics: _dta[iis] contains the name of the panel variable and _dta[tis] contains the
name of the time variable. When an xt command is issued, the command checks these characteristics
to obtain the panel and time variables’ names. If this information is not found, then the data have
not previously been xtset and an error message is issued. This use of characteristics is hidden from
the user—no mention is made of how the commands remember the identity of the panel variable and
the time variable.

As a Stata user, you need understand only how to set and clear a characteristic for the few commands
that explicitly reveal their use of characteristics. You set a variable varname’s characteristic charname
to x by typing

. char varnamel[charname] x

You set the data’s characteristic charname to be x by typing

. char _dtalcharname] x

You clear a characteristic by typing

. char varname[charname]

where varname is either a variable name or _dta. You can clear a characteristic, even if it has never
been set.

The most important feature of characteristics is that Stata remembers them from one session to
the next; they are saved with the data.

Q Technical note

Programmers will want to know more. A technical description is found in [P] char, but for an
overview, you may refer to varname’s charname characteristic by embedding its name in single quotes
and typing ‘varname [charname] ’; see [U] 18.3.13 Referring to characteristics.

You can fetch the names of all characteristics associated with varname by typing

. local macname : char varnamel]

The maximum length of the contents of a characteristic is 67,784 bytes for Stata/IC, Stata/SE, and
Stata/MP. The association of names with characteristics is by convention. If you, as a programmer,
wish to create new characteristics for use in your ado-files, do so, but include at least one capital
letter in the characteristic name. The current convention reserves all lowercase names for “official”

Stata.
Q

122 [U] 12 Data

12.9 Data Editor and Variables Manager

We have spent most of this chapter writing about data management performed from Stata’s command
line. However, Stata provides two powerful features in its interface to help you examine and manage
your data: the Data Editor and the Variables Manager.

The Data Editor is a spreadsheet-style data editor that allows you to enter new data, edit existing
data, safely browse your data in a read-only mode, and perform almost any data-management task
you desire in a reproducible manner using a graphical interface. To open the Data Editor, select
Data > Data Editor > Data Editor (Edit) or Data > Data Editor > Data Editor (Browse). See
[GS] 6 Using the Data Editor (GSM, GSU, or GSW) for a tutorial discussion of the Data Editor. See
[D] edit for technical details.

The Variables Manager is a tool that lists and allows you to manage all the properties of the
variables in your data. Variable properties include the name, label, storage type, format, value label,
and notes. The Variables Manager allows you to sort and filter your variables; this is something that
you will find to be very useful if you work with datasets containing many variables. The Variables
Manager also can be used to create varlists for the Command window. To open the Variables Manager,
select Data > Variables Manager. See [GS] 7 Using the Variables Manager (GSM, GSU, or GSW)
for a tutorial discussion of the Variables Manager.

Both the Data Editor and the Variables Manager submit commands to Stata to perform any changes
that you request. This lets you see a log of what changes were made, and it also allows you to work
interactively while still building a list of commands that you can execute later to reproduce your
analysis.

12.10 Data frames

So far, we have shown you examples of using Stata with a single dataset in memory. Stata can
load multiple datasets into memory at the same time, storing them in frames, also known as data
frames. You can easily switch between frames, copy data between them, obtain results from analyses
performed on the data in them, and even link them together on key variables. See [D] frames intro
for an overview.

12.11 References

Cox, N. J. 2006. Stata tip 33: Sweet sixteen: Hexadecimal formats and precision problems. Stata Journal 6: 282-283.
——. 2010a. Stata tip 84: Summing missings. Stata Journal 10: 157-159.
——. 2010b. Stata tip 85: Looping over nonintegers. Stata Journal 10: 160-163.

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:
981-994.

Daniels, L., and N. Minot. 2020. An Introduction to Statistics and Data Analysis Using Stata. Thousand Oaks, CA:
SAGE.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.
Longest, K. C. 2014. Using Stata for Quantitative Analysis. 2nd ed. Thousand Oaks, CA: SAGE.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata
Press.

Rising, W. R. 2010. Stata tip 86: The missing() function. Stata Journal 10: 303-304.

http://www.stata-journal.com/article.html?article=dm0022
http://www.stata-journal.com/article.html?article=dm0047
http://www.stata-journal.com/article.html?article=pr0051
http://www.stata-journal.com/article.html?article=dm0098
http://www.stata.com/bookstore/introduction-to-statistics-and-data-analysis-using-stata/
http://www.stata-press.com/books/wdaus.html
http://www.stata.com/bookstore/using-stata-for-quantitative-analysis/
http://www.stata-press.com/books/data-management-using-stata/
http://www.stata-journal.com/article.html?article=dm0049

1 3 Functions and expressions

Contents
13,1 OVEIVIEW oottt e e e e e e e e e e e e e e
13.2 OPCTAtOTS . .o ettt e ettt e e e e e e e e e
13.2.1 Arithmetic OPeratorsc.uutn ettt
13.2.2 SHring OPETatOrSo vttt ettt e e e e e e
13.2.3 Relational Operatorsc.vuen oot
13.2.4 Logical OPEratorsiuniuneuen it
13.2.5 Order of evaluation, all Operatorsc...euiinmenennenen ..
13.3 FUNCHONS .ttt ettt e et e e e e e e e e e e e e
13.4 System variables (_variables) e
13.5 Accessing coefficients and standard errorsi ..
13.5.1 Single-equation models i e
13.5.2 Multiple-equation models
13.5.3 Factor variables and time-series Operatorsovenen...
13.6 Accessing results from Stata commands i
13.7 EXplicit SUDSCIIPUNG . . oottt ettt e e e e e e e e e et
13.7.1 Generating lags and leads i
13.7.2 Subscripting within groupsc.i.iiin ...
13.8 Using the Expression Builder i
13.9 Indicator values for levels of factor variables
13.10 TIME-SEries OPEIALOIS .. . e v v ettt ettt et e e e e e e e e et e s
13.10.1 Generating lags, leads, and differences
13.10.2 Time-series operators and factor variables
13.10.3 Operators Within ZrOUPSc.iirnirntti et
13.10.4 Video example
13.11 Label valuesot e e e
13.12 Precision and problems therein i
1313 REfOrenCesottt e e e e e

If you have not read [U] 11 Language syntax, please do so before reading this entry.

123

124 [U] 13 Functions and expressions

13.1 Overview

Examples of expressions include

2+2

miles/gallons
myv+2/oth

(myv+2) /oth
1n(income)

age<25 & income>50000
age<25 | income>50000

age==25

name=="M Brown"
fname + " " + lname
substr (name,1,10)
val[_n-1]

L.gnp

Expressions like those above are allowed anywhere exp appears in a syntax diagram. One example
is [D] generate:

generate newvar = exp [l_'f} [ln}

The first exp specifies the contents of the new variable, and the optional second expression restricts
the subsample over which it is to be defined. Another is [R] summarize:

summarize [varlisl} [1}‘] [m]
The optional expression restricts the sample over which summary statistics are calculated.

Algebraic and string expressions are specified in a natural way using the standard rules of hierarchy.
You may use parentheses freely to force a different order of evaluation.

> Example 1

myv+2/oth is interpreted as myv+(2/oth). If you wanted to change the order of the evaluation,
you could type (myv+2)/oth.
d

13.2 Operators

Stata has four different classes of operators: arithmetic, string, relational, and logical. Each type
is discussed below.

13.2.1 Arithmetic operators
The arithmetic operators in Stata are + (addition), - (subtraction), * (multiplication), / (division),

~ (raise to a power), and the prefix - (negation). Any arithmetic operation on a missing value or an
impossible arithmetic operation (such as division by zero) yields a missing value.

[U] 13 Functions and expressions 125

> Example 2

The expression - (z+y~ (z-y))/(z*y) denotes the formula

T +y*Y
-y

and evaluates to missing if x or ¥y is missing or zero.

13.2.2 String operators

The + and * signs are also used as string operators.

+ is used for the concatenation of two strings. Stata determines by context whether + means
addition or concatenation. If + appears between two numeric values, Stata adds them. If + appears
between two strings, Stata concatenates them.

> Example 3

The expression "this"+"that" results in the string "thisthat", whereas the expression 2+3
results in the number 5. Stata issues the error message “type mismatch” if the arguments on either
side of the + sign are not of the same type. Thus the expression 2+"this" is an error, as is 2+"3".

The expressions on either side of the + can be arbitrarily complex:
substr(string(20+2),1,1) + strupper(substr("rf",1+1,1))

The result of the above expression is the string "2F". See [FN] String functions for a description of
the substr(), string(), and strupper() functions.

N

* is used to duplicate a string 0 or more times. Stata determines by context whether * means
multiplication or string duplication. If * appears between two numeric values, Stata multiplies them.
If * appears between a string and a numeric value, Stata duplicates the string as many times as the
numeric value indicates.

> Example 4

The expression "this"*3 results in the string "thisthisthis", whereas the expression 2%3
results in the number 6. Stata issues the error message “type mismatch” if the arguments on either
side of the * sign are both strings. Thus the expression "this"*"that" is an error.

As with string concatenation above, the arguments can be arbitrarily complex.

126 [U] 13 Functions and expressions

13.2.3 Relational operators

The relational operators are > (greater than), < (less than), >= (greater than or equal), <= (less than
or equal), == (equal), and !'= (not equal). Observe that the relational operator for equality is a pair
of equal signs. This convention distinguishes relational equality from the =exp assignment phrase.

Q Technical note

You may use ~ anywhere ! would be appropriate to represent the logical operator “not”. Thus the
not-equal operator may also be written as ~=.
a

Relational expressions are either true or false. Relational operators may be used on either numeric
or string subexpressions; thus, the expression 3>2 is true, as is "zebra">"cat". In the latter case, the
relation merely indicates that "zebra" comes after the word "cat" in the dictionary. All uppercase
letters precede all lowercase letters in Stata’s book, so "cat">"Zebra" is also true.

Missing values may appear in relational expressions. If x were a numeric variable, the expression
x>=. is true if x is missing and false otherwise. A missing value is greater than any nonmissing
value; see [U] 12.2.1 Missing values.

> Example 5
You have data on age and income and wish to list the subset of the data for persons aged 25
years or less. You could type
. list if age<=25
If you wanted to list the subset of data of persons aged exactly 25, you would type
. list if age==25

Note the double equal sign. It would be an error to type 1ist if age=25.
d

Although it is convenient to think of relational expressions as evaluating to true or false, they
actually evaluate to numbers. A result of true is defined as 1 and false is defined as 0.

> Example 6

The definition of true and false makes it easy to create indicator, or dummy, variables. For instance,

generate incgtl0k=income>10000

creates a variable that takes on the value 0 when income is less than or equal to $10,000, and 1 when
income is greater than $10,000. Because missing values are greater than all nonmissing values, the
new variable incgt10k will also take on the value 1 when income is missing. It would be safer to
type

generate incgtlOk=income>10000 if income<.
Now, observations in which income is missing will also contain missing in incgt10k. See

[U] 26 Working with categorical data and factor variables for more examples.

4

[U] 13 Functions and expressions 127

Q Technical note

Although you will rarely wish to do so, because arithmetic and relational operators both evaluate
to numbers, there is no reason you cannot mix the two types of operators in one expression. For
instance, (2==2)+1 evaluates to 2, because 2==2 evaluates to 1, and 1 + 1 is 2.

Relational operators are evaluated after all arithmetic operations. Thus the expression (3>2)+1 is
equal to 2, whereas 3>2+1 is equal to 0. Evaluating relational operators last guarantees the logical
(as opposed to the numeric) interpretation. It should make sense that 3>2+1 is false.

a

13.2.4 Logical operators

The logical operators are & (and), | (or), and ! (not). The logical operators interpret any nonzero
value (including missing) as true and zero as false.

> Example 7

If you have data on age and income and wish to 1ist data for persons making more than $50,000
along with persons under the age of 25 making more than $30,000, you could type

list if income>50000 | income>30000 & age<25

The & takes precedence over the |. If you were unsure, however, you could have typed
list if income>50000 | (income>30000 & age<25)

In either case, the statement will also 1list all observations for which income is missing, because
missing is greater than 50,000.
d

Q Technical note

Like relational operators, logical operators return 1 for true and O for false. For example, the
expression 5 & . evaluates to 1. Logical operations, except for !, are performed after all arithmetic
and relational operations; the expression 3>2 & 5>4 is interpreted as (3>2) & (5>4) and evaluates
to 1.

a

13.2.5 Order of evaluation, all operators

The order of evaluation (from first to last) of all operators is ! (or ~), =, - (negation), /, *, -
(subtraction), +, !'= (or ~=), >, <, <=, >=, ==&, and |.

13.3 Functions

Stata provides mathematical functions, probability and density functions, matrix functions, string
functions, functions for dealing with dates and time series, and a set of special functions for
programmers. You can find all of these documented in the Stata Functions Reference Manual. Stata’s
matrix programming language, Mata, provides more functions and those are documented in the Mata
Reference Manual or in the help documentation (type help mata functions).

128 [U] 13 Functions and expressions

Functions are merely a set of rules; you supply the function with arguments, and the function
evaluates the arguments according to the rules that define the function. Because functions are essentially
subroutines that evaluate arguments and cause no action on their own, functions must be used in
conjunction with a Stata command. Functions are indicated by the function name, an open parenthesis,
an expression or expressions separated by commas, and a close parenthesis.

For example,

. display sqrt(4)
2

or

. display sqrt(2+2)
2

demonstrates the simplest use of a function. Here we have used the mathematical function, sqrt (),
which takes one number (or expression) as its argument and returns its square root. The function was
used with the Stata command display. If we had simply typed

. sqrt(4)

Stata would have returned the error message

command sqrt is unrecognized
r(199);

Functions can operate on variables, as well. For example, suppose that you wanted to generate a
random variable that has observations drawn from a lognormal distribution. You could type
. set obs 5
number of observations (_N) was O, now 5
. generate y = runiform()

. replace y = invnormal(y)
(6 real changes made)

. replace y = exp(y)
(5 real changes made)

. list

y

.686471
2.380994
.2814537
1.215575
.2920268

O WN -

You could have saved yourself some typing by typing just

. generate y = exp(rnormal())

Functions accept expressions as arguments.

All functions are defined over a specified domain and return values within a specified range.
Whenever an argument is outside a function’s domain, the function will return a missing value or
issue an error message, whichever is most appropriate. For example, if you supplied the log()
function with an argument of zero, the 1og(0) would return a missing value because zero is outside
the natural logarithm function’s domain. If you supplied the 1log() function with a string argument,
Stata would issue a “type mismatch” error because 1og() is a numerical function and is undefined

[U] 13 Functions and expressions 129

for strings. If you supply an argument that evaluates to a value that is outside the function’s range,
the function will return a missing value. Whenever a function accepts a string as an argument, the
string must be enclosed in double quotes, unless you provide the name of a variable that has a string
storage type.

13.4 System variables (_variables)

Expressions may also contain _variables (pronounced “underscore variables”), which are built-in
system variables that are created and updated by Stata. They are called _variables because their names

w9

all begin with the underscore character, “_".
The _variables are

Legnol _b [varname]l (synonym: [eqnol _coef [varname]) contains the value (to machine precision)
of the coefficient on varname from the most recently fitted model (such as ANOVA, regression, Cox,
logit, probit, and multinomial logit). See [U] 13.5 Accessing coefficients and standard errors
below for a complete description.

_cons is always equal to the number 1 when used directly and refers to the intercept term when
used indirectly, as in _b[_cons].

_n contains the number of the current observation.

_N contains the total number of observations in the dataset or the number of observations in the
current by () group.

_pi contains the value of 7 to machine precision.
—rc contains the value of the return code from the most recent capture command.

Legnol _se [varname] contains the value (to machine precision) of the standard error of the coefficient
on varname from the most recently fit model (such as ANOVA, regression, Cox, logit, probit, and
multinomial logit). See [U] 13.5 Accessing coefficients and standard errors below for a complete
description.

13.5 Accessing coefficients and standard errors

After fitting a model, you can access the coefficients and standard errors and use them in subsequent
expressions. Also see [R] predict (and [U] 20 Estimation and postestimation commands) for an
easier way to obtain predictions, residuals, and the like.

13.5.1 Single-equation models

First, let’s consider estimation methods that yield one estimated equation with a one-to-one
correspondence between coefficients and variables such as logit, ologit, oprobit, probit,
regress, and tobit. _b[varname] (synonym _coef [varname]) contains the coefficient on varname
and _se[varname] contains its standard error, and both are recorded to machine precision. Thus
_b[age] refers to the calculated coefficient on the age variable after typing, say, regress response
age sex, and _se[age] refers to the standard error on the coefficient. _b[_cons] refers to the
constant and _se[_cons] to its standard error. Thus you might type

. regress response age sex
. generate asif = _b[_cons] + _blagel*age

130 [U] 13 Functions and expressions

13.5.2 Multiple-equation models

The syntax for referring to coefficients and standard errors in multiple-equation models is the same
as in the simple-model case, except that _b[] and _se[] are preceded by an equation number in
square brackets. There are, however, many alternatives in how you may type requests. The way that
you are supposed to type requests is

Legnol _b [varname]
Legnol —se [varname]

but you may substitute _coef[] for _b[]. In fact, you may omit the _b[] altogether, and most
Stata users do:

Legnol [varname]
You may also omit the second pair of square brackets:
Legnol varname
You may retain the _b[] or _se[] and insert a colon between eqno and varname:

_blegno:varnamel

There are two ways to specify the equation number egno: either as an absolute equation number or
as an “indirect” equation number. In the absolute form, the number is preceded by a ‘#’ sign. Thus
[#11displ refers to the coefficient on displ in the first equation (and [#1] _se[displ] refers to
its standard error). You can even use this form for simple models, such as regress, if you prefer.
regress estimates one equation, so [#1]displ refers to the coefficient on displ, just as _b[displ]
does. Similarly, [#1] _se[displ] and _se[displ] are equivalent. The logic works both ways—in
the multiple-equation context, _b[displ] refers to the coefficient on displ in the first equation
and _se[displ] refers to its standard error. _b[varname] (_se [varname]l) is just another way of
saying [#1]varname ([#1] _se [varnamel).

Equations may also be referred to indirectly. [res]displ refers to the coefficient on displ in the
equation named res. Equations are often named after the corresponding dependent variable name if
there is such a concept in the fitted model, so [res]displ might refer to the coefficient on displ
in the equation for variable res.

For multinomial logit (mlogit), multinomial probit (mprobit), and similar commands, equations
are named after the levels of the single dependent categorical variable. In these models, there is one
dependent variable, and there is an equation corresponding to each of the outcomes (values taken
on) recorded in that variable, except for the one that is taken to be the base outcome. [res]displ
would be interpreted as the coefficient on displ in the equation corresponding to the outcome res.
If outcome res is the base outcome, Stata treats [res]displ as zero (and Stata does the same for
[res] _se[displl]).

Continuing with the multinomial outcome case: the outcome variable must be numeric. The syntax
[res]displ would be understood only if there were a value label associated with the numeric
outcome variable and res were one of the labels. If your data are not labeled, then you can use the
usual multiple-equation syntax [##]varname and [##] _se [varname] to refer to the coefficient and
standard error for variable varname in the #th equation.

For mlogit, if your data are not labeled, you can also use the syntax [#]varname and
[#] _se [varname] (without the ‘#’) to refer to the coefficient and standard error for varname
in the equation for outcome #.

[U] 13 Functions and expressions 131

13.5.3 Factor variables and time-series operators

We refer to time-series—operated variables exactly as we refer to normal variables. We type the name
of the variable, which for time-series—operated variables includes the operators; see [U] 11.4.4 Time-
series varlists. You might type

. regress open L.close LD.volume
. display _b[L.close]
. display _b[LD.volume]

We cannot refer to factor variables such as i.group in expressions. Assuming that i.group has
three levels, i.group represents three virtual indicator variables—1b. group, 2. group, and 3. group.
We can refer to the indicator variables in expressions by typing, for example, _b[i2.group] or just
_b[2.group]. That is to say, we include the operators and the levels of the factor variables when
typing the indicator-variable name. Consider a regression using factor variables:

. use https://www.stata-press.com/data/r16/fvex, clear
(Artificial factor variables’ data)

. regress y i.sex i.group sex#group age sex#c.age

Source SS df MS Number of obs = 3,000
F(7, 2992) = 80.84
Model 221310.507 7 31615.7868 Prob > F = 0.0000
Residual 1170122.5 2,992 391.083723 R-squared = 0.1591
Adj R-squared = 0.1571
Total 1391433.01 2,999 463.965657 Root MSE = 19.776
y Coef. Std. Err. t P>t [95% Conf. Intervall
sex
female 32.29378 3.782064 8.54 0.000 24.87807 39.70949
group
2 9.477077 1.624075 5.84 0.000 6.292659 12.66149
3 18.31292 1.776337 10.31 0.000 14.82995 21.79588
sex#group
female#2 -6.621804 2.021384 -3.28 0.001 -10.585625 -2.658361
female#3 -10.48293 3.209 -3.27 0.001 -16.775 -4.190858
age -.212332 .0538345 -3.94 0.000 -.3178884 -.1067756
sex#c.age
female -.226838 .0745707 -3.04 0.002 -.3730531 -.0806229
_cons 60.48167 2.842955 21.27 0.000 54.90732 66.05601

If we want to use the coefficient for level 2 of group in an expression, we type _b[2.group]; for
level 3, we type _b[3.group]. To refer to the coefficient of an interaction of two levels of two factor
variables, we specify the interaction operator and the level of each variable. For example, to use the
coefficient for sex = 1 (female) and group = 2, we type _b[1.sex#2.group]. (We determined
that 1 was the level corresponding to female by typing label list.) When one of the variables in
an interaction is continuous, we can make that explicit, _b[1.sex#c.age], or we can leave off the
c., _b[1.sex#agel.

Referring to interactions is more challenging than referring to normal variables. It is also more
challenging to refer to coefficients from estimators that use multiple equations. If you find it difficult
to know what to type for a coefficient, replay your estimation results using the coeflegend option.

132 [U] 13 Functions and expressions

. regress, coeflegend

Source SS df MS Number of obs = 3,000
F(7, 2992) = 80.84
Model 221310.507 7 31615.7868 Prob > F = 0.0000
Residual 1170122.5 2,992 391.083723 R-squared = 0.1591
Adj R-squared 0.1571
Total 1391433.01 2,999 463.965657 Root MSE = 19.776
y Coef. Legend
sex
female 32.29378 _bl1l.sex]
group
2 9.477077 _b[2.group]
3 18.31292 _b[3.group]
sex#group
female#2 -6.621804 _b[1.sex#2.group]
female#3 -10.48293 _b[1.sex#3.group]
age -.212332 _b[age]
sex#c.age
female -.226838 _bl[1.sex#c.agel
_cons 60.48167 _b[_cons]

The Legend column shows you exactly what to type to refer to any coefficient in the estimation.

If your estimation results have both equations and factor variables, nothing changes from what we
said in [U] 13.5.2 Multiple-equation models above. What you type for varname is just a little more
complicated.

13.6 Accessing results from Stata commands

Most Stata commands—not just estimation commands—store results so that you can access them
in subsequent expressions. You do that by referring to e (name), r(name), s(name), or c(name).

. summarize age
. generate agedev = age-r(mean)
. regress mpg weight

. display "The number of observations used is " e(N)

Most commands are categorized as r-class, meaning that they store results in r(). The returned
results—such as r (mean) —are available immediately following the command, and if you are going
to refer to them, you need to refer to them soon because the next command will probably replace
what is in r ().

e-class commands are Stata’s estimation commands—commands that fit models. Results in e ()
remain available until the next model is fit.

s-class commands are parsing commands—commands used by programmers to interpret commands
you type. Few commands store anything in s().

There are no c-class commands. c() contains values that are always available, such as
c(current_date) (today’s date), c (pwd) (the current directory), c (N) (the number of observations),
and so on. There are many c() values and they are documented in [P] creturn.

[U] 13 Functions and expressions 133

Every command of Stata is designated r-class, e-class, or s-class, or, if the command stores nothing,
n-class. r stands for return as in returned results, e stands for estimation as in estimation results, s
stands for string, and, admittedly, this last acronym is weak, n stands for null.

You can find out what is stored where by looking in the Stored results section for the particular
command in the Reference manual. If you know the class of a command—and it is easy enough to
guess—you can also see what is stored by typing return list, ereturn list, or sreturn list:

See [R] Stored results and [U] 18.8 Accessing results calculated by other programs.

13.7 Explicit subscripting

Individual observations on variables can be referred to by subscripting the variables. Explicit
subscripts are specified by following a variable name with square brackets that contain an expression.
The result of the subscript expression is truncated to an integer, and the value of the variable for the
indicated observation is returned. If the value of the subscript expression is less than 1 or greater
than _N, a missing value is returned.

13.7.1 Generating lags and leads
When you type something like

. generate y = x

Stata interprets it as if you typed
. generate y = x[_n]
which means that the first observation of y is to be assigned the value from the first observation of

x, the second observation of y is to be assigned the value from the second observation on x, and so
on. If you instead typed

. generate y = x[1]

you would set each observation of y equal to the first observation on x. If you typed

. generate y = x[2]

you would set each observation of y equal to the second observation on x. If you typed

. generate y = x[0]
Stata would merely copy a missing value into every observation of y because observation 0 does not
exist. The same would happen if you typed

. generate y = x[100]

and you had fewer than 100 observations in your data.

When you type the square brackets, you are specifying explicit subscripts. Explicit subscripting
combined with the _variable _n can be used to create lagged values on a variable. The lagged value
of a variable x can be obtained by typing

. generate xlag = x[_n-1]

If you are really interested in lags and leads, you probably have time-series data and would be better
served by using the time-series operators, such as L.x. Time-series operators can be used with varlists
and expressions and they are safer because they account for gaps in the data; see [U] 11.4.4 Time-series
varlists and [U] 13.10 Time-series operators. Even so, it is important that you understand how the
above works.

134 [U] 13 Functions and expressions

The built-in underscore variable _n is understood by Stata to mean the observation number of the
current observation. That is why

. generate y = x[_n]
results in observation 1 of x being copied to observation 1 of y and similarly for the rest of the
observations. Consider

. generate xlag = x[_n-1]
_n-1 evaluates to the observation number of the previous observation. For the first observation,

_n-1 = 0 and therefore xlag[1] is set to missing. For the second observation, _—n-1 = 1 and
xlag[2] is set to the value of x[1], and so on.

Similarly, the lead of x can be created by
. generate xlead = x[_n+1]

Here the last observation on the new variable xlead will be missing because _n+1 will be greater
than _N (_N is the total number of observations in the dataset).

13.7.2 Subscripting within groups

When a command is preceded by the by varlist: prefix, subscript expressions and the underscore
variables —_n and _N are evaluated relative to the subset of the data currently being processed. For
example, consider the following (admittedly not very interesting) data:

. use https://www.stata-press.com/data/r16/gxmpl6
. list

bvar oldvar

O W N R
NN = ==
g wWwN
i

To see how _n, _N, and explicit subscripting work, let’s create three new variables demonstrating
each and then 1ist their values:

. generate small_n = _n

. generate big.n = _N

. generate newvar = oldvar[1]
. list

bvar oldvar small_n big_n newvar

O WN -
NN P ==
g wN -
B R R
(S =V O T o
a0,
i
T

small_n (which is equal to _n) goes from 1 to 5, and big_n (which is equal to _N) is 5. This should
not be surprising; there are 5 observations in the data, and _n is supposed to count observations,
whereas _N is the total number. newvar, which we defined as oldvar[1], is 1.1. Indeed, we see
that the first observation on oldvar is 1.1.

[U] 13 Functions and expressions 135

Now, let’s repeat those same three steps, only this time preceding each step with the prefix by
bvar:. First, we will drop the old values of small_n, big_n, and newvar so that we start fresh:

. drop small_n big_n newvar

. by bvar, sort: generate small_n=_n
. by bvar: generate big_n =_N

. by bvar: generate newvar=oldvar[1]

. list

bvar oldvar small_n big_n newvar

g WN e
NN = ==
GO WN =
i
N = WN =
NN WWW
N e
PR R R

The results are different. Remember that we claimed that _n and _N are evaluated relative to the
subset of data in the by-group. Thus small_n (_n) goes from 1 to 3 for bvar = 1 and from 1 to 2
for bvar = 2. big_n (_N) is 3 for the first group and 2 for the second. Finally, newvar (oldvar[1])
is 1.1 and 4.1.

> Example 8

You now know enough to do some amazing things.

Suppose that you have data on individual states and you have another variable in your data called
region that divides the states into the four census regions. You have a variable x in your data, and
you want to make a new variable called avgx to include in your regressions. This new variable is to
take on the average value of x for the region in which the state is located. Thus, for California, you
will have the observation on x and the observation on the average value in the region, avgx. Here is
how:

. by region, sort: generate avgx=sum(x)/_n

. by region: replace avgx=avgx[_N]

First, by region, we generate avgx equal to the running sum of x divided by the number of
observations so far. The , sort ensures that the data are in region order. We have, in effect, created
the running average of x within region. It is the last observation of this running average, the overall
average within the region, that interests us. So, by region, we replace every avgx observation
in a region with the last observation within the region, avgx [_N].

Here is what we will see when we type these commands:
. use https://www.stata-press.com/data/r16/gxmpl7, clear

. by region, sort: generate avgx=sum(x)/_n

. by region: replace avgx=avgx[_N]
(46 real changes made)

In our example, there are no missing observations on x. If there had been, we would have obtained
the wrong answer. When we created the running average, we typed

. by region, sort: generate avgx=sum(x)/_n

136 [U] 13 Functions and expressions

The problem is not with the sum() function. When sum() encounters a missing, it adds zero to
the sum. The problem is with _n. Let’s assume that the second observation in the first region has
recorded a missing for x. When Stata processes the third observation in that region, it will calculate
the sum of two elements (remember that one is missing) and then divide the sum by 3 when it should
be divided by 2. There is an easy solution:

. by region: generate avgx=sum(x)/sum(x<.)

Rather than divide by _n, we divide by the total number of nonmissing observations seen on x so
far, namely, the sum(x<.).

If our goal were simply to obtain the mean, we could have more easily accomplished it by typing
egen avgx=mean(x), by(region); see [D] egen. egen, however, is written in Stata, and the above
is how egen’s mean() function works. The general principles are worth understanding.

4

> Example 9

You have some patient data recording vital signs at various times during an experiment. The
variables include patient, an ID number or name of the patient; time, a variable recording the date
or time or epoch of the vital-sign reading; and vital, a vital sign. You probably have more than
one vital sign, but one is enough to illustrate the concept. Each observation in your data represents
a patient-time combination.

Let’s assume that you have 1,000 patients and, for every observation on the same patient, you
want to create a new variable called orig that records the patient’s initial value of this vital sign.
. use https://www.stata-press.com/data/r16/gxmpl8, clear
. sort patient time

. by patient: generate orig=vitall[1]

Observe that vital[1] refers not to the first reading on the first patient but to the first reading on
the current patient, because we are performing the generate command by patient.

N

> Example 10

Let’s do one more example with these patient data. Suppose that we want to create a new dataset
from our patient data that record not only the patient’s identification, the time of the reading of the
first vital sign, and the first vital sign reading itself, but also the time of the reading of the last vital
sign and its value. We want 1 observation per patient. Here’s how:

. sort patient time

. by patient: generate lasttime=time[_N]

. by patient: generate lastvital=vital[_N]
. by patient: drop if _n!=1

d

See Mitchell (2020, chap. 8) for numerous examples of subscripting and subscripting within groups.

[U] 13 Functions and expressions 137

13.8 Using the Expression Builder

The Expression Builder in Stata provides a convenient way to create expressions using any of the
methods described above. To access the Expression Builder, click on the Create... button in a dialog
box of any command that allows an exp.

Within the Expression Builder, you can interactively browse and then select almost anything you
would want to add to an expression: mathematical constants, variables, system limits, local and global
macros, dataset and variable notes, and more. This is especially useful for accessing estimation results
and system values when you may not immediately know the name.

B | Expression Builder *

OK

Cancel

Categories: Estimation results » Matrices

- Estimation resut A 3] [8] [

¢ - Scalars v ST
- Macros 4((5||a :

: L. Matrices 111Z103

-- Returned results £ | ==

-- System paramet 0 e

< > | &|] 1] [0][=

e(b): coefficient vector

138 [U] 13 Functions and expressions

You may also find the Expression Builder helpful if you want to use a function because a description
of each function, as well as the order of the arguments for each function, is provided at the bottom
of the dialog box when it is selected.

B | Expression Builder *

OK

Cancel

Categories: Functions > Random-number

S Functions ~ 7 [E e =
Date and tin runiformint() =105
Mathematici rbgta(j . 41156
. rbinomial() _|[=
Matri rcauchy() 1 213 =
i Programmin rchi2() + | |=
- Random-nui w | |rexpenential() 0 A=
iy - - rgammaf) \ -
< o rhunernenmetric’l v | & ! (1=

runiformia,b): unifermly distributed random variates over the interval
(a,b)

Watch a video example of using the Expression Builder.

13.9 Indicator values for levels of factor variables

Stata’s factor-variable features let us access virtual indicator variables for categorical variables and
their interactions; see [U] 11.4.3 Factor variables and [U] 26 Working with categorical data and
factor variables. We can use those virtual indicator variables in expressions just as though the virtual
variables existed in our data. If you have not read about factor-variable varlists in [U] 11.4.3 Factor
variables, do so now.

If group is a categorical variable taking on the value 1, 2, or 3, consider the expression
. generate groupl = 1.group
We have taken the virtual indicator variable that is 1 when group = 1 and 0 when group # 1

and made it into a real variable—group1l. That is strictly true only if group is never missing. If
group can be missing, we need to add that 1.group is missing when group is missing.

These virtual variables extend to interactions. If we also have a variable, sex, that is 0 for males
and 1 for females, then

. generate sexOgrp2 = 0.sex#2.group

creates the variable sexOgrp2, which is 1 when sex = 0 and group = 2, . (missing) when sex or
group is missing, and O otherwise.

Virtual indicator variables can be used in any expression, including if expressions.

https://www.youtube.com/watch?v=SVaxqlWXJpc

[U] 13 Functions and expressions 139

Q Technical note

We have been using the shorthand notation for virtual indicators that drops the i prefix. We
have written 2.group rather than i2.group. There are three cases where we cannot drop the i
prefix—when our variable name is e, d, or x. These three letters can be used to construct numbers
such as 1e-3, which can also be typed 1.e-3. If we have a variable named e, are we to interpret
1.e-3 as the number 0.001 or as the virtual indicator variable 1.e with the number 3 subtracted?
Because of longstanding precedent, it is interpreted as the number 0.001. If we want 1.e interpreted
as a virtual indicator, we must include the i prefix—il.e.

a

13.10 Time-series operators

Time-series operators allow you to refer to the lag of gnp by typing L.gnp, the second lag by
typing L2.gnp, etc. There are also operators for lead (sometimes called forward; F), difference (D),
and seasonal difference (S).

Time-series operators can be used with varlists and with expressions. See [U] 11.4.4 Time-series
varlists if you have not read it already. This section has to do with using time-series operators in
expressions such as with generate. You do not have to create new variables; you can use the
time-series operated variables directly.

13.10.1 Generating lags, leads, and differences

In a time-series context, referring to L2.gnp is better than referring to gnp [_n-2] because there
might be missing observations. Pretend that observation 4 contains data for ¢ = 25 and observation
5 data for ¢ = 27. L2.gnp will still produce correct answers; L2.gnp for observation 5 will be the
value from observation 4 because the time-series operators look at ¢ to find the relevant observation.
The more mechanical gnp[_n-2] just goes 2 observations back, which, here, would not produce the
desired result.

This same idea holds for differences. In our example, D.gnp will produce a missing value in
observation 5 (tf = 27) because there is no data recorded for ¢ = 26, and therefore there is no first
difference for ¢t = 27.

Time-series operators can be used with varlists or with expressions, so you can type

. regress val L.gnp r

or
. generate gnplagged = L.gnp
. regress val gnplagged

Before you can type either one, however, you must use the tsset command to tell Stata the identity
of the time variable; see [TS] tsset. Once you have tsset the data, anyplace you see an exp in a
syntax diagram, you may type time series—operated variables, so you can type

. summarize r if F.gnp < gnp
or

. generate grew = 1 if gnp > L.gnp & L.gnp < .
. replace grew = 0 if grew >= . & L.gnp < .

or

. generate grew = (gnp > L.gnp) if L.gnp < .

140 [U] 13 Functions and expressions

13.10.2 Time-series operators and factor variables

As with varlists, factor variables may be combined with the L. (lag) and F. (lead) time-series
operators in expressions. We can generate a variable containing the lag of the level 2 indicator of

group (group = 2) by typing
. generate lag2group = 2L.group
The operators can be combined anywhere expressions are allowed. We can select observations for
which the lag of the second level of group is 1 by typing if i2L.group.

They can be combined in interactions. We can generate the lag of the interaction of sex = 1 with
group = 3 by typing
. generate laglsexX3grp = 1L.sex#2L.group

See [U] 11.4.3.6 Using factor variables with time-series operators and [U] 11.4.4 Time-series
varlists for more on factor variables and time-series operators.

13.10.3 Operators within groups

Stata also understands panel or cross-sectional time-series data. For instance, if you type

. tsset country time

you are declaring that you have time-series data. The time variable is time, and you have time-series
data for separate countries.

Once you have tsset both cross-sectional and time identifiers, you proceed just as you would if
you had a simple time series.

. generate grew = (gnp > L.gnp) if L.gnp < .

would produce correct results. The L. operator will not confuse the observation at the end of one
panel with the beginning of the next.

13.10.4 Video example

Time series, part 3: Time-series operators

13.11 Label values

If you have not read [U] 12.6 Dataset, variable, and value labels, please do so. You may use
labels in an expression in place of the numeric values with which they are associated. To use a label
in this way, type the label in double quotes followed by a colon and the name of the value label.

> Example 11

If the value label yesno associates the label yes with 1 and no with O, then "yes" :yesno (said
aloud as the value of yes under yesno) is evaluated as 1. If the double-quoted label is not defined
in the indicated value label, or if the value label itself is not found, a missing value is returned. Thus
the expression "maybe" :yesno is evaluated as missing.

https://www.youtube.com/watch?v=ik8r4WvrPkc

. use https://www.stata-press.com/data/r16/gxmpl9, clear

[U] 13 Functions and expressions 141

. list
name answer
1. Mikulin no
2. Gaines no
3. Hilbe yes
4. DeLeon no
5. Cain no
6. Wann yes
7. Schroeder no
8. Cox no
9. Bishop no
10. Hardin yes
11. Lancaster yes
12. Poole no
. list if answer=="yes":yesno
name answer
3. Hilbe yes
6. Wann yes
10. Hardin yes
11. Lancaster yes

In the above example, the variable answer is not a string variable; it is a numeric variable that has
the associated value label yesno. Because yesno associates yes with 1 and no with 0, we could
have typed list if answer==1 instead of what we did type. We could not have typed list if
answer=="yes" because answer is not a string variable. If we had, we would have received the
error message “type mismatch”.

d

13.12 Precision and problems therein

Examine the following short Stata session:

. drop _all
. input x y

W N
wW N =
e
W N =

. end

. count if x==
1

. count if y==1.1
0

142 [U] 13 Functions and expressions

. list
X y
1. 1 1.1
2. 2 1.2
3. 3 1.3

We created a dataset containing two variables, x and y. The first observation has x equal to 1 and
y equal to 1.1. When we asked Stata to count the number of times that the variable x took on the
value 1, we were told that it occurred once. Yet when we asked Stata to count the number of times
y took on the value 1.1, we were told zero—meaning that it never occurred. What has gone wrong?
When we list the data, we see that the first observation has y equal to 1.1.

Despite appearances, Stata has not made a mistake. Stata stores numbers internally in binary form,
and the number 1.1 has no exact binary representation—that is, there is no finite string of binary
digits that is equal to 1.1.

Q Technical note

The number 1.1 in binary form is 1.0001100110011 ..., where the period represents the binary
point. The problem binary computers have with storing numbers like 1/10 is much like the problem
we base-10 users have in precisely writing 1/11, which is 0.0909090909

For detailed information about precision on binary computers and how Stata stores binary floating-
point numbers, see Gould (2011a).
a

The number that appears as 1.1 in the listing above is actually 1.1000000238419, which is off by
roughly 2 parts in 10%. Unless we tell Stata otherwise, it stores all numbers as f1loats, which are also
known as single-precision or 4-byte reals. On the other hand, Stata performs all internal calculations
in doubles, which are also known as double-precision or 8-byte reals. This is what leads to the
difficulty.

In the above example, we compared the number 1.1, stored as a float, with the number 1.1 stored
as a double. The double-precision representation of 1.1 is more accurate than the single-precision
representation, but it is also different. Those two numbers are not equal.

There are several ways around this problem. The problem with 1.1 apparently not equaling 1.1
would never arise if the storage precision and the precision of the internal calculations were the same.
Thus you could store all your data as doubles. This takes more computer memory, however, and it
is unlikely that your data are really that accurate and the extra digits would meaningfully affect any
calculated result, even if the data were that accurate.

Q Technical note

This is unlikely to affect any calculated result because Stata performs all internal calculations
in double precision. This is all rather ironic, because the problem would also not arise if we had
designed Stata to use single precision for its internal calculations. Stata would be less accurate, but
the problem would have been completely disguised from the user, making this entry unnecessary.

a

Another solution is to use the float () function. float (x) rounds x to its float representation.
If we had typed count if y==float(1.1) in the above example, we would have been informed
that there is one such value.

[U] 13 Functions and expressions 143

13.13 References

Cox, N. J. 2006. Stata tip 33: Sweet sixteen: Hexadecimal formats and precision problems. Stata Journal 6: 282-283.
——. 2011a. Speaking Stata: Compared with Stata Journal 11: 305-314.

——. 2011b. Speaking Stata: Fun and fluency with functions. Stata Journal 11: 460-471.

——. 2011c. Stata tip 96: Cube roots. Stata Journal 11: 149-154.

Cox, N. J,, and C. B. Schechter. 2019. Speaking Stata: How best to generate indicator or dummy variables. Stata
Journal 19: 246-259.

Crow, K. 2012. Building complicated expressions the easy way. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/02/07/building-complicated-expressions-the-easy-way/.

Gould, W. W. 2006. Mata Matters: Precision. Stata Journal 6: 550-560.

——. 2011a. How to read the %21x format, part 2. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/02/10/how-to-read-the-percent-2 1x-format-part-2/.

——. 2011b. Precision (yet again), Part I. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/06/17/precision-yet-again-part-i/.

——. 201 1c. Precision (yet again), Part II. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/06/23/precision-yet-again-part-ii/.

——. 2012. The penultimate guide to precision. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/04/02/the-penultimate-guide-to-precision/.

Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point format. Stata Journal 8: 255-268.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata
Press.

Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640-642.

http://www.stata-journal.com/article.html?article=dm0022
http://www.stata-journal.com/article.html?article=dm0055
http://www.stata-journal.com/article.html?article=dm0058
http://www.stata-journal.com/article.html?article=st0223
https://doi.org/10.1177/1536867X19830921
http://blog.stata.com/2012/02/07/building-complicated-expressions-the-easy-way/
http://blog.stata.com/2012/02/07/building-complicated-expressions-the-easy-way/
http://www.stata-journal.com/article.html?article=pr0025
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
http://blog.stata.com/2011/06/17/precision-yet-again-part-i/
http://blog.stata.com/2011/06/17/precision-yet-again-part-i/
http://blog.stata.com/2011/06/23/precision-yet-again-part-ii/
http://blog.stata.com/2011/06/23/precision-yet-again-part-ii/
http://blog.stata.com/2012/04/02/the-penultimate-guide-to-precision/
http://blog.stata.com/2012/04/02/the-penultimate-guide-to-precision/
http://www.stata-journal.com/article.html?article=pr0038
http://www.stata-press.com/books/data-management-using-stata/
http://www.stata-journal.com/article.html?article=st0181

14 Matrix expressions

Contents
T4 OVEIVIEW oottt e e e e e e e e e e e e e e 144
14.1.1 Definition of @ MatriXttt 144
142 Row and column NamMeSttt ettt ettt 145
14.2.1 The purpose of row and column namesc.covuuenen... 146
14.2.2 TWO-Part NAMES . . o ettt ettt e e e e e et e e e e e e 148
14.2.3 Setting row and column Namesciiitiniiiaanan.. 151
14.2.4 Obtaining row and column NAMESvuienenernenenennenen .. 152
14.3 Vectors and scalarsiiii i e 152
14.4 Inputting matrices by hand 152
14.5 Accessing matrices created by Stata commands 153
14.6 Creating matrices by accumulating data, 154
147 MALriX OPEIAtOrS . .ttt ettt e e e e e e e e e e e e e e e et et e e 154
14.8 MatrixX functionsttt e e e 155
14.9 SUbSCIIPUNG . oottt et e e e e e e e e e 156
14.10 Using matrices in scalar eXpressionsuueieet oo eneenenenenn... 157
T4.11 REfeIeNCEe . ..ottt e e e e e e e e e 158

14.1 Overview

Stata has two matrix programming languages, one that might be called Stata’s older matrix language
and another that is called Mata. Stata’s Mata is the new one, and there is an uneasy relationship
between the two.

Below we discuss Stata’s older language and leave the newer one to another manual—the Mata
Reference Manual ([M])—or you can learn about the newer one by typing help mata.

We admit that the newer language is better in almost every way than the older language, but the
older one still has a use because it is the one that Stata truly and deeply understands. Even when
Mata wants to talk to Stata, matrixwise, it is the older language that Mata must use, so you must
learn to use the older language as well as the new.

This is not nearly as difficult, or messy, as you might imagine because Stata’s older language is
remarkably easy to use, and really, there is not much to learn. Just remember that for heavy-duty
programming, it will be worth your time to learn Mata, too.

14.1.1 Definition of a matrix

Stata’s definition of a matrix includes a few details that go beyond the mathematics. To Stata, a
matrix is a named entity containing an 7 X ¢ rectangular array of double-precision numbers (including
missing values) that is bordered by a row and a column of names. For the dimensions of a matrix,
see [R] Limits.

144

[U] 14 Matrix expressions 145

. matrix list A
A[3,2]

cl c2
ri 1 2
2 3 4
r3 5 6
Here we have a 3 X 2 matrix named A containing elements 1, 2, 3, 4, 5, and 6. Row 1, column 2
(written A; o in math and A[1,2] in Stata) contains 2. The columns are named c1 and c2 and the
rows, rl, r2, and r3. These are the default names Stata comes up with when it cannot do better. The
names do not play a role in the mathematics, but they are of great help when it comes to labeling
the output.

The names are operated on just as the numbers are. For instance,
. matrix B=A’*A
. matrix list B

symmetric B[2,2]
cl c2

cl 35

c2 44 56

We defined B = A’A. The row and column names of B are the same. Multiplication is defined for
any a X b and b X ¢ matrices, the result being a X c. Thus the row and column names of the result
are the row names of the first matrix and the column names of the second matrix. We formed A’A,
using the transpose of A for the first matrix—which also interchanged the names—and so obtained
the names shown.

14.2 Row and column names

Matrix rows and columns always have names. Stata is smart about setting these names when
the matrix is created, and the matrix commands and operators manipulate these names throughout
calculations, so the names typically are set correctly at the conclusion of matrix calculations.

For instance, consider the matrix calculation b = (X’X)~1X'y performed on real data:
. use https://www.stata-press.com/data/ri6/auto
(1978 Automobile Data)
. matrix accum XprimeX = weight foreign
(obs=74)
. matrix vecaccum yprimeX = mpg weight foreign
. matrix b = syminv(XprimeX)*yprimeX’
. matrix list b
b[3,1]

mpg

weight -.00658789
foreign -1.6500291
_cons 41.679702

These names were produced without our ever having given a special command to place the names
on the result. When we formed matrix XprimeX, Stata produced the result

. matrix list XprimeX

symmetric XprimeX[3,3]

weight foreign _cons
weight 7.188e+08
foreign 50950 22

_cons 223440 22 74

146 [U] 14 Matrix expressions

matrix accum forms X’X matrices from data and sets the row and column names to the variable
names used. The names are correct in the sense that, for instance, the (1,1) element is the sum across
the observations of squares of weight and the (2,1) element is the sum of the product of weight
and foreign.

Similarly, matrix vecaccum forms y’X matrices, and it sets the row and column names to the
variable names used, so matrix vecaccum yprimeX = mpg weight foreign resulted in

. matrix list yprimeX

yprimeX[1,3]
weight foreign _cons
mpg 4493720 545 1576

The final step, matrix b = invsym(XprimeX)*yprimeX’, manipulated the names, and, if you think
carefully, you can derive the rules for yourself. invsym() (inversion) is much like transposition, so
row and column names must be swapped. Here, however, the matrix was symmetric, so that amounted
to leaving the names as they were. Multiplication amounts to taking the column names of the first
matrix and the row names of the second. The final result is

. matrix list b
b[3,1]

mpg

weight -.00658789
foreign -1.6500291
_cons 41.679702

and the interpretation is mpg = —0.00659 weight — 1.65 foreign + 41.68 + e.

Researchers realized long ago that using matrix notation simplifies the description of complex
calculations. What they may not have realized is that, corresponding to each mathematical definition
of a matrix operator, there is a definition of the operator’s effect on the names that can be used to
carry the names forward through long and complex matrix calculations.

14.2.1 The purpose of row and column names

Mostly, matrices in Stata are used in programming estimators, and Stata uses row and column
names to produce pretty output. Say that we wrote code—interactively or in a program—that produced
the following coefficient vector b and covariance matrix V:

. matrix list b

b[1,3]
weight displacement _cons
yi -.00656711 .00528078 40.084522

. matrix list V

symmetric V[3,3]

weight displacement _cons
weight 1.360e-06
displacement -.0000103 .00009741

_cons -.00207455 .01188356 4.0808455

[U] 14 Matrix expressions 147

We could now produce standard estimation output by coding two more lines:

. ereturn post b V

. ereturn display

Coef. Std. Err. z P>zl [95% Conf. Intervall]

weight -.0065671 .0011662 -5.63 0.000 -.0088529 -.0042813
displacement .0052808 .0098696 0.54 0.593 -.0140632 .0246248
_cons 40.08452 2.02011 19.84 0.000 36.12518 44.04387

Stata’s ereturn command knew to produce this output because of the row and column names on
the coefficient vector and variance matrix. Moreover, we usually do nothing special in our code that
produces b and V to set the row and column names because, given how matrix names work, they
work themselves out.

Also, sometimes row and column names help us detect programming errors. Assume that we wrote
code to produce matrices b and V but made a mistake. Sometimes our mistake will result in the wrong
row and column names. Rather than the b vector we previously showed you, we might produce

. matrix list b

b[1,3]
weight c2 _cons
yl -.00656711 42.23 40.084522

If we posted our estimation results now, Stata would refuse because it can tell by the names that
there is a problem:
. ereturn post b V

name conflict
r(507);

Understand, however, that Stata follows the standard rules of matrix algebra; the names are just along
for the ride. Matrices are summed by position, meaning that a directive to form C = A + B results
in C1; = Aq1 + Bi1, regardless of the names, and it is not an error to sum matrices with different
names:

. matrix list a

symmetric a[3,3]

cl c2 c3
mpg 14419
weight 1221120 1.219e+08
_cons 545 50950 22

. matrix list b

symmetric b[3,3]
cl c2 c3
displacement 3211055
mpg 227102 22249
_cons 121563 1041 52

. matrix c = a + b
. matrix list c
symmetric c[3,3]
cl c2 c3
displacement 3225474

mpg 1448222 1.219e+08
_cons 12698 51991 74

Matrix row and column names are used to label output; they do not affect how matrix algebra is
performed.

148 [U] 14 Matrix expressions

14.2.2 Two-part names

Row and column names have two parts separated by a colon: equation_name: opvarname.

In the examples shown so far, the equation_name has been blank and the opvarnames have been
simple variable names without factor-variable or time-series operators. A blank equation_name is
typical. Run any single-equation model (such as regress, probit, or logistic), and if you fetch
the resulting matrices, you will find that they have row and column names that use only opvarnames.

Those who work with time-series data will find matrices with row and column names of the
form opvarname. For time-series variables, opvarname is the variable name prefixed by a time-series
operator such as L., D., or L2D.; see [U] 11.4.4 Time-series varlists. For example,

. matrix list examplel

symmetric examplel[3,3]

L.
rate rate _cons
rate 3.0952534
L.rate .0096504 .00007742

_cons -2.8413483 -.01821928 4.8578916

We obtained this matrix by running a linear regression on rate and L.rate and then fetching the
covariance matrix. Think of the row and column name L.rate no differently from how you think of
rate or, in the previous examples, r1, r2, cl, c2, weight, and foreign.

Those who work with factor variables will also find row and column names of the opvarname
form. For factor variables, opvarname is any factor-variable construct that references a single virtual
indicator variable. For example, 3. group refers to the virtual variable that is 1 when group = 3 and
is O otherwise, 1.sex#3.group refers to the virtual variable that is 1 when sex = 1 and group = 3
and is O otherwise, and 1.sex#c.age refers to the virtual variable that takes on the values of age
when sex = 1 and is 0 otherwise. For example,

. matrix list example2

symmetric example2[5,5]

Ob. 1. Ob.sex# 1.sex#
sex sex c.age c.age _cons
Ob.sex 0
1.sex 0 7.7785864
Ob.sex#c.age 0 .08350827 .00231307
1.sex#c.age 0 -.09705697 5.606e-17 .00223195
_cons 0 -3.2868185 -.08350827 -2.131e-15 3.2868185

1.sex#c.age is a row name and column name just like rate or L.rate in the prior example.
For details on factor variables and valid factor-variable constructs see [U] 11.4.3 Factor variables,
[U] 26 Working with categorical data and factor variables, [U] 13.9 Indicator values for levels of
factor variables, and [U] 20.12 Accessing estimated coefficients.

Factor-variable operators may be combined with the time-series operators L. and F., leading to
opvarnames such as 1L.sex (the first lag of the level 1 indicator of sex) and 3L2.group (the second
lag of the level 3 indicator of group).

[U] 14 Matrix expressions 149

Equation names are used to label partitioned matrices and, in estimation, occur in the context of
multiple equations. Here is a matrix with equation_names and simple (unoperated) opvarnames.

. matrix list example3

symmetric example2[5,5]

mpg: mpg: mpg: mpg: mpg:
foreign displ _cons foreign _cons
mpg:foreign 1.6483972
mpg:displ .004747 .00003876
mpg:_cons -1.4266352 -.00905773 2.4341021
weight:foreign -51.208454 -4.665e-19 15.224135 24997.727
weight:_cons 15.224135 2.077e-17 -15.224135 -7431.7565 7431.7565
Here is an example with equation_names and operated variable names:
. matrix list exampled
symmetric example3[5,5]
val: val: val: weight: weight:
L.
rate rate _cons foreign _cons
val:rate 2.2947268
val:L.rate .00385216 .0000309
val:_cons -1.4533912 -.0072726 2.2583357
weight:foreign -163.86684 7.796e-17 49.384526 25351.696
weight:_cons 49.384526 -1.566e-16 -49.384526 -7640.237 7640.237

val:L.rate is a column name, just as, in the previous section, c2 and foreign were column names.

Say that this last matrix is the variance matrix produced by a program we wrote and that our
program also produced a coefficient vector, b:

. matrix list b

b[1,5]
val: val: val: weight: weight:
L.
rate rate _cons foreign _cons
yl 4.5366753 -.00316923 20.68421 -1008.7968 3324.7059
Here is the result of posting and displaying the results:
. ereturn post b exampled
. ereturn display
Coef. Std. Err. z P>|z| [95% Conf. Intervall
val
rate
— 4.536675 1.514836 2.995 0.003 1.567652 7.505698
L1 -.0031692 .0055591 -0.570 0.569 -.0140648 .0077264
_cons 20.68421 1.502776 13.764 0.000 17.73882 23.6296
weight
foreign -1008.797 159.2222 -6.336 0.000 -1320.866 -696.7271
_cons 3324.706 87.40845 38.036 0.000 3153.388 3496.023

150 [U] 14 Matrix expressions

We have been using matrix list to see the row and column names on our matrices because
matrix 1list works on all matrices. There is a better way to see the names when we are working
with estimation results because estimation results have the same names on the rows and columns
of the variance matrix, and those same names are also the column names for the coefficient vector.
That better way is the coeflegend display option available on almost every estimation command.
For example,

. use https://www.stata-press.com/data/r16/fvex
(Artificial factor variables’ data)
. generate t = _n

. tsset t
(output omitted)

. sureg (y = sex##fgroup) (distance = d.age il2.sex)
(output omitted)

. sureg, coeflegend

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P
y 2,998 5 20.03657 0.1343 464.08 0.0000
distance 2,998 2 181.3797 0.0005 0.92 0.6314
Coef. Legend
y
sex
female 21.59726 _bly:1.sex]
group
2 11.42832 _Dbly:2.group]
3 21.6461 _bly:3.group]
sex#group
female#2 -4.892653 _bly:1.sex#2.group]
female#3 -6.220653 _bly:1.sex#3.group]
_cons 50.5957 _Dbly:_cons]
distance
age
D1. .2230927 _b[distance:D.agel
L2.sex
female 1.300898 _bl[distance:1L2.sex]
_cons 67.96172 _bldistance:_cons]

We could have used matrix list e(V) or matrix list e(b) to see the names, but the
limited space available to matrix list to write the names would have made the names more
difficult to read. With coeflegend, the names are neatly arrayed in their own Legend column. One
difference between matrix list and the coeflegend option is that coeflegend brackets the names
with _b[]. That is because coeflegend’s primary use is to show us how to type coefficients in
expressions and postestimation commands; see [U] 13.5 Accessing coefficients and standard errors
and [U] 20.12 Accessing estimated coefficients. There the _b[] is required.

[U] 14 Matrix expressions 151

14.2.3 Setting row and column names

You reset row and column names by using the matrix rownames and matrix colnames commands.

Before resetting the names, use matrix list to verify that the names are not set correctly; often,
they already are. When you enter a matrix by hand, however, the row names are unimaginatively set
to rl, r2, ..., and the column names to ci1, c2,

. matrix a = (1,2,3\4,5,6)
. matrix list a
al[2,3]

cl c2 «c3

rl 1 2 3
r2 4 5 6

Regardless of the current row and column names, matrix rownames and matrix colnames reset
them:
. matrix colnames a = foreign alpha _cons

. matrix rownames a = one two

. matrix list a

al2,3]

foreign alpha _cons
one 1 2 3
two 4 5 6

You may set the operator as part of the opvarname,

. matrix colnames a = foreign l.rate _cons

. matrix list a

al2,3]
L.
foreign rate _cons
one 1 2 3
two 4 5 6

The names you specify may be any virtual factor-variable indicators, and those names may include
the base (b.) and omitted (o.) operators,
. matrix colnames b = Ob.sex 20.arm 1.sex#c.age 1.sex#3.group#2.arm

. matrix list b

b[2,4]
1.sex#
Ob. 20. 1.sex# 3.group#
sex arm c.age 2.arm
one 1 2 3 3
two 5 6 7 8

See [U] 11.4.3 Factor variables for more about factor-variable operators.

You may set equation names:

. matrix colnames a = this:foreign this:1l.rate that:_cons

. matrix list a

a[2,3]
this: this: that:
L.
foreign rate _cons
one 1 2 3
two 4 5 6

See [P] matrix rownames for more information.

152 [U] 14 Matrix expressions

14.2.4 Obtaining row and column names

matrix list displays the matrix with its row and column names. In a programming context, you
can fetch the row and column names into a macro using

local ... : rowfullnames matname
local ... : colfullnames matname
local ... : rownames matname
local ... : colnames matname
local ... : roweq matname

local ... : coleq matname

rowfullnames and colfullnames return the full names (equation_name:opvarnames) listed one
after the other.

rownames and colnames omit the equations and return opvarnames, listed one after the other.
roweq and coleq return the equation names, listed one after the other.

See [P] macro and [P] matrix define for more information.

14.3 Vectors and scalars

Stata does not have vectors as such—they are considered special cases of matrices and are handled
by the matrix command.

Stata does have scalars, although they are not strictly necessary because they, too, could be handled
as special cases. See [P] scalar for a description of scalars.

14.4 Inputting matrices by hand

You input matrices using

matrix input matname = (...)
or

matrix matname = (...)

In either case, you enter the matrices by row. You separate one element from the next by using
commas (,) and one row from the next by using backslashes (\). If you omit the word input, you
are using the expression parser to input the matrix:

. matrix a = (1,2\3,4)

. matrix list a

al2,2]

cl c2
rl 1 2
r2 3 4

This has the advantage that you can use expressions for any of the elements:

. matrix b = (1, 2+3/2 \ cos(_pi), _pi)
. matrix list b

b[2,2]

cl c2
rl 1 3.5
r2 -1 3.1415927

The disadvantage is that the matrix must be small, say, no more than 50 elements.

[U] 14 Matrix expressions 153

matrix input has no such restriction, but you may not use subexpressions for the elements:

= (1,2\3,4)

. matrix input d = (1, 2+3/2 \ cos(_pi), _pi)
invalid syntax
r(198);

. matrix input c

Either way, after inputting the matrix, you will probably want to set the row and column names; see
[U] 14.2.3 Setting row and column names above.

For small matrices, you may prefer entering them in a dialog box. Launch the dialog box from the
menu Data > Matrices, ado language > Input matrix by hand, or by typing db matrix_input.
The dialog box is particularly convenient for small symmetric matrices.

14.5 Accessing matrices created by Stata commands

Some Stata commands—including all estimation commands—Ileave behind matrices that you can
subsequently use. After executing an estimation command, type ereturn 1ist to see what is available:
. use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)
. probit foreign mpg weight

(output omitted)
. ereturn list

scalars:

e(rank) =
e(N) =

e(ic)

e(k) =

e(k_eq)

e(k_dv) =

e(converged)

e(rc) =

e(11)

e(k_eq_model) =

O FHFE WO NW

-26.84418900579869
1

e(11_0) = -45.03320955699139
e(df_m) = 2
e(chi2) = 36.3780411023854

e(p) 1.26069126402e-08
e(N_cdf) = O
e(N_cds) 0
e(r2_p) = .4039023807124771
macros:
e(cmdline) "probit foreign mpg weight"
e(cmd) "probit"
e(estat_cmd) : "probit_estat"
e(predict) "probit_p"
e(marginsok) "default Pr"
e(marginsnotok) "stdp DEviance SCore"
e(title) "Probit regression"
e(chi2type) "LR"
e(opt) "moptimize"
e(vce) "oim"
e(user) "mopt__probit_d2()"
e(ml_method) "d2"
e(technique) "nr"
e(which) "max"
e(depvar) "foreign"
e(properties) "b V"

154 [U] 14 Matrix expressions

matrices:
e(b)
e (V)
e(mns)
e(rules)
e(ilog)
e(gradient)

[l o R GV I
[l B o T B
WN P> WWww

functions:
e(sample)

Most estimation commands leave behind e(b) (the coefficient vector) and e(V) (the variance—
covariance matrix of the estimator):

. matrix list e(b)

e(b) [1,3]
foreign: foreign: foreign:
mpg weight _cons
yl -.10395033 -.00233554 8.275464

You can refer to e(b) and e(V) in any matrix expression:

. matrix myb = e(b)
. matrix list myb

myb[1,3]
foreign: foreign: foreign:
mpg weight _cons
yl -.10395033 -.00233554 8.275464

. matrix c = e(b)*invsym(e(V))*e(b)’
. matrix list c

symmetric c[1,1]
yi
y1l 22.440542

14.6 Creating matrices by accumulating data

In programming estimators, matrices of the form X'X, X'Z, X’'WX, and X'WZ often occur,
where X and Z are data matrices. matrix accum, matrix glsaccum, matrix vecaccum, and
matrix opaccum produce such matrices; see [P] matrix accum.

We recommend that you not load the data into a matrix and use the expression parser directly to
form such matrices, although see [P] matrix mkmat if that is your interest. If that is your interest,
be sure to read the technical note at the end of [P] matrix mkmat. There is much to recommend
learning how to use the matrix accum commands.

14.7 Matrix operators

You can create new matrices or replace existing matrices by typing
matrix matname = matrix_expression
For instance,

. matrix A = invsym(R*V*R’)
. matrix IAR = I(rowsof(A)) - A*R
. matrix beta = b*IAR’ + rxA’

. matrix C = -C’

. matrix D = (A, B \ B’, A)
. matrix E = (A+B)*C’

. matrix S = (S+S’)/2

[U] 14 Matrix expressions 155

The following operators are provided:

Operator

Symbol

Unary operators
negation
transposition

Binary operators

(lowest precedence)
row join
column join
addition
subtraction
multiplication
division by scalar
Kronecker product

(highest precedence)

HFN ¥ I+ -

Parentheses may be used to change the order of evaluation.

Note in particular that , and \ are operators; (1,2) creates a 1 X 2 matrix (vector), and (A,B)
creates a rowsof (A) X colsof (A)+colsof (B) matrix, where rowsof (A) = rowsof (B). (1\2)
creates a 2 X 1 matrix (vector), and (A\B) creates a rowsof (A)+rowsof (B) X colsof (A) matrix,

where colsof (A) = colsof (B). Thus expressions of the form

matrix R = (A,B)*Vinv*(A,B)’

are allowed.

14.8 Matrix functions

In addition to the functions listed below, see [P] matrix svd for singular value decomposition,
[P] matrix symeigen for eigenvalues and eigenvectors of symmetric matrices, and see [P] matrix
eigenvalues for eigenvalues of nonsymmetric matrices. For a full description of the matrix functions,

see [FN] Matrix functions.

Matrix functions returning matrices:

cholesky (M) I(n)

corr (M) inv (M)

diag(v) invsym (M)

get (systemname) J(r,c,z)
hadamard(M ,N) matuniform(r,c)

Matrix functions returning scalars:

coleqnumb(M,s) diagOcnt (M)
colnfreeparms (M) el(M,i,j)
colnumb (M ,s) issymmetric (M)
colsof (M) matmissing (M)

det (M) mreldif (X ,Y)

nullmat (matname)
sweep (M ,7)

vec (M)
vecdiag(M)

roweqnumb (M, s)
rownfreeparms (M)
rownumb (M, s)
rowsof (M)
trace(M)

156 [U] 14 Matrix expressions

14.9 Subscripting

1.

In matrix and scalar expressions, you may refer to matname[r,c], where r and c are scalar
expressions, to obtain one element of matname as a scalar.

Examples:
matrix A=A/ A[1,1]
generate newvar = oldvar / A[2,2]

. In matrix expressions, you may refer to matname [s, ,s.], where s, and s. are string expressions,

to obtain a submatrix with one element. The element returned is based on searching the row and
column names.

Examples:
matrix B = V["price","price"]
generate sdif = dif / sqrt(V["price","price"])

. In matrix expressions, you may mix these two syntaxes and refer to matnamel[r,s.] or to

matname [S,.,c].

Example:
matrix b =Db * R[1,"price"]

. In matrix expressions, you may use matname[ry..72,c1 . .c2] to refer to submatrices; 71, 72, 1,

and co may be scalar expressions. If 7o evaluates to missing, it is taken as referring to the last
row of matname; if co evaluates to missing, it is taken as referring to the last column of matname.
Thus matmamelry...,c1...]1 is allowed.

Examples:
matrix S = Z[1..4, 1..4]
matrix R =2Z[5..., 5...]

. In matrix expressions, you may refer to matname[s,1..572,5.1..5c2] to refer to submatrices

where S,1, Sr2, Sc1, and Sco, are string expressions. The matrix returned is based on looking up
the row and column names.

If the string evaluates to an equation name only, all the rows or columns for the equation are
returned.

Examples:

matrix S = Z["price".."weight", "price".."weight"]

matrix L = D["mpg:price".."mpg:weight", "mpg:price".."mpg:weight"]
matrix T1 = C["mpg:", "mpg:"]

matrix T2 = C["mpg:", "price:"]

. In matrix expressions, any of the above syntaxes may be combined.

Examples:
matrix T1 = C["mpg:", "price:weight".."price:displ"]
matrix T2 = C["mpg:", "price:weight"...]

matrix T3 = C["mpg:price", 2..5]
matrix T4 = C["mpg:price", 2]

[U] 14 Matrix expressions 157

7. When defining an element of a matrix, use
matrix matnameli,j] = expression

where ¢ and j are scalar expressions. The matrix matname must already exist.

Example:
matrix A = J(2,2,0)
matrix A[1,2] = sqrt(2)

8. To replace a submatrix within a matrix, use the same syntax. If the expression on the right evaluates
to a scalar or 1 X 1 matrix, the element is replaced. If it evaluates to a matrix, the submatrix with
top-left element at (4, j) is replaced. The matrix matname must already exist.

Example:
matrix A = J(4,4,0)
matrix A[2,2] = C’*C

14.10 Using matrices in scalar expressions

Scalar expressions are documented as exp in the Stata manuals:

generate newvar = exp if exp ...
replace newvar = exp if exp ...
regress ... if exp ...

if exp {... }

while exp {... }

Most importantly, scalar expressions occur in generate and replace, in the if exp qualifier allowed
on the end of many commands, and in the if and while commands for program control.

You will rarely need to refer to a matrix in any of these situations except when using the if
qualifier and the while command.

In any case, you may refer to matrices in any of these situations, but the expression cannot require
evaluation of matrix expressions returning matrices. Thus you could refer to trace(A) but not to
trace (A+B).

It can be difficult to predict when an evaluation of an expression requires evaluating a matrix;
even experienced users can be surprised. If you get the error message “matrix operators that return
matrices not allowed in this context”, r(509), you have encountered such a situation.

The solution is to split the line in two. For instance, you would change
if trace(A+B)==0 {

}

to
matrix AplusB = A+B
if trace(AplusB)==0 {
}

or even to

matrix Trace = trace(A+B)
if Trace[1,1]==0 {

}

158 [U] 14 Matrix expressions

14.11 Reference
Miura, H. 2012. Stata graph library for network analysis. Stata Journal 12: 94-129.

http://www.stata-journal.com/article.html?article=st0248

15.6

Contents
151 Overviewc.coiiiiienan..
15.1.1 Starting and closing logs
15.1.2 Appending to an existing log
15.1.3 Suspending and resuming logging
15.2 Placing comments in logs
15.3 Logging only what you type
154 The log-button alternative
15.5 Printing logs
Creating multiple log files for simultaneous use

1 5 Saving and printing output—Ilog files

159
160
162
162
163
163
164
164
164

15.1

Overview

Stata can record your session into a file called a log file but does not start a log automatically; you
must tell Stata to record your session. By default, the resulting log file contains what you type and what
Stata produces in response, recorded in a format called Stata Markup and Control Language (SMCL);
see [P] smcl. The file can be printed or converted to plain text for incorporation into documents you
create with your word processor.

To start a log:
Your session is now being recorded
in file filename .smcl.

To temporarily stop logging:
Temporarily stop:
Resume:
To stop logging and close the file:
You can now print filename.smcl or type:
to create filename.log that you can
load into your word processor.
You can also create a PDF of filename . smcl
on Windows or Mac:

. log using filename

. log off
. log on

. log close
. translate filename.sncl filename.log

. translate filename.smcl filename.pdf

Alternative ways to start logging:
append to an existing log:
replace an existing log:

. log using filename, append
. log using filename, replace

Using the GUI:
To start a log:
To temporarily stop logging:
To resume:
To stop logging and close the file:
To print previous or current log:

click on the Log button

click on the Log button, and choose Suspend
click on the Log button, and choose Resume
click on the Log button, and choose Close
select File > View..., choose file,

right-click on the Viewer, and select Print

Also, cmdlog will produce logs containing solely what you typed—logs that, although not containing
your results, are sufficient to re-create the session.

To start a command-only log:

To stop logging and close the file:

To re-create your session:

. cmdlog using filename

. cmdlog close

. do filename.txt

160 [U] 15 Saving and printing output—log files

15.1.1 Starting and closing logs

With great foresight, you begin working in Stata and type log using session (or click on the
Log button) before starting your work:

. log using session

name: <unnamed>
log: C:\example\session.smcl
log type: smcl
opened on: 17 Mar 2019, 12:35:08

. use https://www.stata-press.com/data/r16/censusb
(1980 Census data by state)

. tabulate region [fweight=pop]

Census
region Freq. Percent Cum.
NE | 49,135,283 21.75 21.75
N Cntrl | 58,865,670 26.06 47.81
South | 74,734,029 33.08 80.89
West | 43,172,490 19.11 100.00
Total (225,907,472 100.00
. summarize median_age
Variable | Obs Mean Std. Dev. Min Max
median_age | 50 29.54 1.693445 24.2 34.7
. log close

name: <unnamed>
log: C:\example\session.smcl
log type: smcl
closed on: 17 Mar 2019, 12:35:38

There is now a file named session.smcl on your disk. If you were to look at it in a text editor or
word processor, you would see something like this:

{smcl}
{com}{sf}{ul off}{txt}{.-}
name: {res}<unnamed>
{txt}log: {res}C:\example\session.smcl

{txt}log type: {resl}smcl

{txt}opened on: {res}17 Mar 2019, 12:35:08
{com}. use https://www.stata-press.com/data/r16/censusb
{txt} (1980 Census data by state)

{com}. tabulate region [fweight=pop]
{txt}Census {c |}

region {c |} Freq. Percent Cum.
{hline 12}{c +}{hline 35}
NE {c |}{res} 49,135,283 21.75 21.75
{txt} N Cntrl {c |}{res} 58,865,670 26.06 47.81

(output omitted)

[U] 15 Saving and printing output—log files 161

What you are seeing is SMCL, which Stata understands. Here is the result of typing the file using
Stata’s type command:

. type session.smcl

name: <unnamed>
log: C:\example\session.smcl
log type: smcl
opened on: 17 Mar 2019, 12:35:08

. use https://www.stata-press.com/data/r16/censusb
(1980 Census data by state)

. tabulate region [fweight=pop]

Census
region Freq. Percent Cum.
NE 49,135,283 21.75 21.75
N Cntrl | 58,865,670 26.06 47.81
South | 74,734,029 33.08 80.89
West | 43,172,490 19.11 100.00
Total (225,907,472 100.00
. summarize median_age
Variable | Obs Mean Std. Dev. Min Max
median_age | 50 29.54 1.693445 24.2 34.7
. log close
name: <unnamed>
log: C:\example\session.smcl
log type: smcl

closed on:

17 Mar 2019, 12:35:38

What you will see is a perfect copy of what you previously saw. If you use Stata to print the file,
you will get a perfect printed copy, too.

SMCL files can be translated to plain text, which is a format more useful for inclusion into a
word processing document. If you type translate filename.smcl filename.log, Stata will translate
filename . smcl to text and store the result in filename . log:

. translate session.smcl session.log

The resulting file session.log looks like this:

name: <unnamed>
log: C:\example\session.smcl
log type: smcl
opened on: 17 Mar 2019, 12:35:08
. use https://www.stata-press.com/data/r16/censusb
(1980 Census data by state)

. tabulate region [fweight=pop]

Census |
region | Freq. Percent Cum.
NE | 49,135,283 21.75 21.75
N Cntrl | 58,865,670 26.06 47.81
South | 74,734,029 33.08 80.89

(output omitted)

162 [U] 15 Saving and printing output—log files

When you use translate to create filename.log from filename.smcl, filename.log must not
already exist:

. translate session.smcl session.log
file session.log already exists
r(602);

If the file does already exist and you wish to overwrite the existing copy, you can specify the replace
option:

. translate session.smcl session.log, replace

See [R] translate for more information.

On Windows and Mac, you can also convert your SMCL file to a PDF to share it more easily with
others:

. translate session.smcl session.pdf

See [R] translate for more information.

If you prefer, you can skip the SMCL and create text logs directly, either by specifying that you
want the log in text format,

. log using session, text

or by specifying that the file to be created be a .1log file:
. log using session.log

If you wish to suppress the header and footer information log usually displays when you open
and close a log, you can specify the nomsg option with log using and log close. See [R] log.

15.1.2 Appending to an existing log

Stata never lets you accidentally write over an existing log file. If you have an existing log file
and you want to continue logging, you have three choices:

e create a new log file
e append the new log onto the existing log file by typing log using logname, append
e replace the existing log file by typing log using logname, replace

For example, if you have an existing log file named session.smcl, you might type

. log using session, append

to append the new log to the end of the existing log file, session.smcl.

15.1.3 Suspending and resuming logging

Once you have started logging your session, you can turn logging on and off. When you turn
logging off, Stata temporarily stops recording your session but leaves the log file open. When you
turn logging back on, Stata continues to record your session, appending the additional record to the
end of the file.

[U] 15 Saving and printing output—log files 163

Say that the first time something interesting happens, you type log using results (or click on
Log and open results.smcl). You then retype the command that produced the interesting result (or
double-click on the command in the History window, or use the PgUp key to retrieve the command;
see [U] 10 Keyboard use). You now have a copy of the interesting result saved in the log file.

You are now reasonably sure that nothing interesting will occur, at least for a while. Rather than
type log close, however, you type log off, or you click on Log and choose Suspend. From now
on, nothing goes into the file. The next time something interesting happens, you type log on (or
click on Log and choose Resume) and reissue the (interesting) command. After that, you type log
off. You keep working like this—toggling the log on and off.

15.2 Placing comments in logs

g

Stata treats lines starting with a “*” as comments and ignores them. Thus, if you are working

@y

interactively and wish to make a comment, you can type “*” followed by your comment:

. * check that all the spells are completed

Stata ignores your comment, but if you have a log going the comment now appears in the file.

Q Technical note

log can be combined with #review (see [U] 10 Keyboard use) to bail you out when you have
not adequately planned ahead. Say that you have been working in front of your computer, and you
now realize that you have done what you wanted to do. Unfortunately, you are not sure exactly what
it is you have done. Did you make a mistake? Could you reproduce the result? Unfortunately, you
have not been logging your output. Typing #review will allow you to look over what commands
you have issued, and, combined with log, will allow you to make a record. You can also see the
commands that you have issued in the History window. You can save those commands to a file by
selecting the commands to save, right-clicking on the History window, and selecting Save Selected....

Type log using filename. Type #review 100. Stata will list the last 100 commands you gave,
or however many it has stored. Because log is making a record, that list will also be stored in the
file. Finally, type log close.

a

15.3 Logging only what you type

Log files record everything that happens during a session, both what you type and what Stata
produces in response.

Stata can also produce command log files—files that contain only what you type. These files are
perfect for later going back and creating a Stata do-file.

cmdlog creates command log files, and its basic syntax is

cmdlog using filename |, append replace| creates filename.txt

cmdlog off temporarily suspends command logging
cmdlog on resumes command logging
cmdlog close closes the command log file

See [R] log for all the details.

164 [U] 15 Saving and printing output—log files

Command logs are plain text files. If you typed
. cmdlog using session
(cmdlog C:\example\session.txt opened)

. use https://www.stata-press.com/data/r16/censusb
(Census Data)

. tabulate region [fweight=pop]
(output omitted)

. summarize median_age
(output omitted)

. cmdlog close
(cmdlog C:\example\session.txt closed)

file mycmds. txt would contain

use https://www.stata-press.com/data/r16/censusb
tabulate region [fweight=pop]
summarize median_age

You can create both kinds of logs—full session logs and command logs—simultaneously, if you
wish. A command log file can later be used as a do-file; see [R] do.

15.4 The log-button alternative
The capabilities of the log command (but not the cmdlog command) are available from Stata’s
GUI interface; just click on the Log button or select Log from the File menu.

You can use the Viewer to view logs, even logs that are in the process of being created. Just select
File > View.... If you are currently logging, the filename to view will already be filled in with the
current log file, and all you need to do is click on OK. Periodically, you can click on the Refresh
button to bring the Viewer up to date.

You can also use the Viewer to view previous logs.

You can access the Viewer by selecting File > View..., or you can use the view command:

. view myoldlog.smcl

15.5 Printing logs
You print logs from the Viewer. Select File > View..., or type view logfilename from the command
line to load the log into the Viewer, and then right-click on the Viewer and select Print.

You can also print logs by other means; see [R] translate.

15.6 Creating multiple log files for simultaneous use

Programmers or advanced users may want to create more than one log file for simultaneous use.
For example, you may want a log file of your whole session but want a separate log file for part of
your session.

You can create multiple logs by using log’s name () option; see [R] log.

16 Do-files

Contents

16.1 DeSCIIPLION . .ottt ettt e e e e e e e e e e e e e e e 165
16,11 VBISION .« .vvt ittt e e e e e e 166
16.1.2 Comments and blank lines in do-files 167
16.1.3 Long lines in do-files i 168
16.1.4 Error handling in do-files i 170
16.1.5 Logging the output of do-files i 171
16.1.6 Preventing —more— conditionsiuiiiiii ., 172

16.2 Calling other do-files i 172

16.3 Creating and running do-files 173
16.3.1 Creating and running do-files for Windows 173
16.3.2 Creating and running do-files for Mac 173
16.3.3 Creating and running do-files for Unix 174

164 Programming with do-files 175
16.4.1 Argument PasSiNEuu ittt et e e 175
16.4.2 Suppressing OULPUL ... ov vttt ettt e et e e e e 176

16.5 Referencesttt e 177

16.1 Description

Rather than typing commands at the keyboard, you can create a text file containing commands
and instruct Stata to execute the commands stored in that file. Such files are called do-files because
the command that causes them to be executed is do.

A do-file is a standard text file that is executed by Stata when you type do filename. You can
use any text editor or the built-in Do-file Editor to create do-files; see [GSW] 13 Using the Do-file
Editor—automating Stata. Using do-files rather than typing commands with the keyboard or using
dialog boxes offers several advantages. By writing the steps you take to manage and analyze your
data in the form of a do-file, you can reproduce your work later. Also, writing a do-file makes
the inevitable debugging process much easier. If you decide to change one part of your analysis,
changing the relevant commands in your do-file is much easier than having to start back at square
one, as is often necessary when working interactively. In this chapter, we describe the mechanics of
do-files. Long (2009) cogently argues that do-files should be used in all research projects and offers
an abundance of time-tested advice in how to manage data and statistical analysis.

> Example 1

You can use do-files to create a batchlike environment in which you place all the commands you
want to perform in a file and then instruct Stata to do that file. Assume that you use your text editor
or word processor to create a file called myjob.do that contains these three lines:

begin myjob.do
use https://www.stata-press.com/data/r16/censusb

tabulate region

summarize marriage_rate divorce_rate median_age if state!="Nevada"

end myjob.do

165

166 [U] 16 Do-files

You then enter Stata and instruct Stata to do the file:

. do myjob

. use https://www.stata-press.com/data/r16/censusb
(1980 Census data by state)

. tabulate region

Census
region Freq. Percent Cum.
NE 9 18.00 18.00
N Cntrl 12 24.00 42.00
South 16 32.00 74.00
West 13 26.00 100.00
Total 50 100.00
. summarize marriage_rate divorce_rate median_age if state !="Nevada"
Variable Obs Mean Std. Dev. Min Max
marriage_r~e 49 .0106791 .0021746 .0074654 .0172704
divorce_rate 49 .0054268 .0015104 .0029436 .008752
median_age 49 29.52653 1.708286 24.2 34.7

You typed only do myjob to produce this output. Because you did not specify the file extension,
Stata assumed you meant do myjob.do; see [U] 11.6 Filenaming conventions.

N

16.1.1 Version

We recommend that the first line in your do-file declare the Stata release you used when you wrote
the do-file; myjob.do would read better as

begin myjob.do
version 16.1

use https://www.stata-press.com/data/r16/censusb

tabulate region

summarize marriage_rate divorce_rate median_age if state!="Nevada"

end myjob.do

We admit that we do not always follow our own advice, as you will see many examples in this
manual that do not include the version 16.1 line.

If you intend to keep the do-file, however, you should include this line because it ensures that your
do-file will continue to work with future versions of Stata. Stata is under continual development, and
sometimes things change in surprising ways.

For instance, in Stata 3.0, a new syntax for specifying the weights was introduced. If you had an
old do-file written for Stata 2.1 that analyzed weighted data and did not have version 2.1 at the
top, you would find that today’s Stata would flag some of the file’s lines as syntax errors. If you had
the version 2.1 line, it would work just as it used to.

Skipping ahead to Stata 10, we introduced xtset and declared that, to use the xt commands, you
must xtset your data first. Previously, you specified options on the end of each xt command that
identified the group and, optionally, the time variables. Despite this change, if you include version 9
or earlier at the top of your do-file, the xt commands will continue to work the old way.

For an overview of versioning and an up-to-date list of the issues that versioning does not address
automatically, see help version.

[U] 16 Do-files 167

When running an old do-file that includes a version statement, you need not worry about setting
the version back after it has completed. Stata automatically restores the previous value of version
when the do-file completes.

See [U] 12.4.2.6 Advice for users of Stata 13 and earlier for information about sharing your
Stata 16 files with users of Stata 13 or earlier.

16.1.2

Comments and blank lines in do-files

You may freely include blank lines in your do-file. In the previous example, the do-file could just
as well have read

begin myjob.do
version 16.1

use https://www.stata-press.com/data/r16/censusb

tabulate region

summarize marriage_rate divorce_rate median_age if state!="Nevada"

end myjob.do

There are four ways to include comments in a do-file.

1.
2.
3.

Begin the line with a ‘*’; Stata ignores such lines. * cannot be used within Mata.

Place the comment in /* */ delimiters.

Place the comment after two forward slashes, that is, //. Everything after the // to the end of

the current line is considered a comment (unless the // is part of http://...).

. Place the comment after three forward slashes, that is, ///. Everything after the /// to the

end of the current line is considered a comment. However, when you use ///, the next line

joins with the current line. /// lets you split long lines across multiple lines in the do-file.

Q Technical note

The /* */, //, and /// comment indicators can be used in do-files and ado-files only; you may

not use them interactively. You can, however, use the ‘*’ comment indicator interactively.

myjob.do then might read

begin myjob.do
* a sample analysis job

version 16.1

use https://www.stata-press.com/data/r16/census5

/* obtain the summary statistics: */
tabulate region
summarize marriage_rate divorce_rate median_age if state!="Nevada"

end myjob.do

or equivalently,

begin myjob.do
// a sample analysis job

version 16.1

use https://www.stata-press.com/data/r16/censusb

// obtain the summary statistics:
tabulate region
summarize marriage_rate divorce_rate median_age if state!="Nevada"

end myjob.do

a

168 [U] 16 Do-files

The style of comment indicator you use is up to you. One advantage of the /* */ method is that it
can be put at the end of lines:

begin myjob.do
* a sample analysis job
version 16.1
use https://www.stata-press.com/data/r16/censusb
tabulate region /* obtain summary statistics */
summarize marriage_rate divorce_rate median_age if state!="Nevada"

end myjob.do
In fact, /* */ can be put anywhere, even in the middle of a line:
begin myjob.do

* a sample analysis job
version 16.1

use /* confirm this is latest */ https://www.stata-press.com/data/r16/censusb

tabulate region /* obtain summary statistics */
summarize marriage_rate divorce_rate median_age if state!="Nevada"
end myjob.do
You can achieve the same results with the // and /// methods:
begin myjob.do
// a sample analysis job
version 16.1
use https://www.stata-press.com/data/r16/censusb
tabulate region // obtain summary statistics
summarize marriage_rate divorce_rate median_age if state!="Nevada"
end myjob.do
or
begin myjob.do

// a sample analysis job

version 16.1

use /// confirm this is latest
https://wuw.stata-press.com/data/r16/censusb

tabulate region // obtain summary statistics
summarize marriage_rate divorce_rate median_age if state!="Nevada"
end myjob.do

16.1.3 Long lines in do-files

When you use Stata interactively, you press Enter to end a line and tell Stata to execute it. If you
need to type a line that is wider than the screen, you simply do it, letting it wrap or scroll.

You can follow the same procedure in do-files—if your editor or word processor will let you—but
you can do better. You can change the end-of-line delimiter to ‘;’ by using #delimit, you can
comment out the line break by using /* */ comment delimiters, or you can use the /// line-join
indicator.

[U] 16 Do-files

169

> Example 2

In

the following fragment of a do-file, we temporarily change the end-of-line delimiter:

fragment of example.do
use mydata
#delimit ;
summarize weight price displ headroom rep78 length turn gear_ratio

if substr(company,1,4)=="Ford" |

substr(company,1,2)=="GM", detail ;

gen byte ford = substr(company,1,4)=="Ford"
#delimit cr
gen byte gm = substr(company,1,2)=="GM"

fragment of example.do

Once we change the line delimiter to semicolon, all lines, even short ones, must end in semicolons.
Stata treats carriage returns as no different from blanks. We can change the delimiter back to carriage
return by typing #delimit cr.

The #delimit command is allowed only in do-files—it is not allowed interactively. You need
not remember to set the delimiter back to carriage return at the end of a do-file because Stata will
reset it automatically.

> Example 3

4

The other way around long lines is to comment out the carriage return by using /* */ comment
brackets or to use the /// line-join indicator. Thus our code fragment could also read

fragment of example.do
use mydata
summarize weight price displ headroom rep78 length turn gear_ratio /*
/ if substr(company,1,4)=="Ford" | /
*/ substr(company,1,2)=="GM", detail
gen byte ford = substr(company,1,4)=="Ford"
gen byte gm = substr(company,1,2)=="GM"

or

fragment of example.do

fragment of example.do
use mydata
summarize weight price displ headroom rep78 length turn gear_ratio ///
if substr(company,1,4)=="Ford" | ///
substr(company,1,2)=="GM", detail
gen byte ford = substr(company,1,4)=="Ford"
gen byte gm = substr(company,1,2)=="GM"

fragment of example.do

170 [U] 16 Do-files

16.1.4 Error handling in do-files

A do-file stops executing when the end of the file is reached, an exit is executed, or an error
(nonzero return code) occurs. If an error occurs, the remaining commands in the do-file are not
executed.

If you press Break while executing a do-file, Stata responds as though an error has occurred,
stopping the do-file. This happens because the return code is nonzero; see [U] 8 Error messages and
return codes for an explanation of return codes.

> Example 4
Here is what happens when we execute a do-file and then press Break:

. do myjob2
. version 16.1

. use census
(Census data)

. tabulate region

Census

region Freq. Percent Cum.
—Break—
r(1);

end of do-file
—Break—
r(1);

When we pressed Break, Stata responded by typing —Break— and showed a return code of 1. Stata
seemingly repeated itself, typing first “end of do-file”, and then —Break— and the return code of 1
again. Do not worry about the repeated messages. The first message indicates that Stata was stopping
the tabulate because you pressed Break, and the second message indicates that Stata is stopping
the do-file for the same reason.

4

> Example 5

Let’s try our example again, but this time, let’s introduce an error. We change the file myjob2.do
to read

begin myjob2.do
version 16.1

use censas

tabulate region

summarize marriage_rate divorce_rate median_age if state!="Nevada"

end myjob2.do

To introduce a subtle typographical error, we typed use censas when we meant use census5. We
assume that there is no file called censas.dta, so now we have an error. Here is what happens
when you instruct Stata to do the file:

[U] 16 Do-files 171

. do myjob2
. version 16.1

. use censas
file censas.dta not found
r(601);

end of do-file
r(601);

When Stata was told to use censas, it responded with “file censas.dta not found” and a return code
of 601. Stata then typed “end of do-file” and repeated the return code of 601. The repeated message
occurred for the same reason it did when we pressed Break in the previous example. The use resulted
in a return code of 601, so the do-file itself resulted in the same return code. The important thing to
understand is that Stata stopped executing the file because there was an error.

4

Q Technical note

We can tell Stata to continue executing the file even if there are errors by typing do filename,
nostop. Here is the result:

. do myjob2, nostop
. version 16.1

. use censas
file censas.dta not found
r(601);

. tabulate region
no variables defined
r(111);

summarize marriage_rate divorce_rate median_age if state!="Nevada"
no variables defined
r(111);

end of do-file

None of the commands worked because the do-file’s first command failed. That is why Stata
ordinarily stops. However, if our file had contained anything that could work, it would have worked.
In general, we do not recommend coding in this manner, as unintended consequences can result when

errors do not stop execution.
a

16.1.5 Logging the output of do-files

You log the output of do-files just as you would an interactive session; see [U] 15 Saving and
printing output—Ilog files.

172 [U] 16 Do-files

Many users include the commands to start and stop the logging in the do-file itself:

begin myjob3.do
version 16.1

log using myjob3, replace

* a sample analysis job

use census

tabulate region // obtain summary statistics
summarize marriage_rate divorce_rate median_age if state!="Nevada"
log close

end myjob3.do

We chose to open with log using myjob3, replace, the important part being the replace option.
Had we omitted the option, we could not easily rerun our do-file. If myjob3.smcl had already existed
and log was not told that it is okay to replace the file, the do-file would have stopped and instead
reported that “file myjob3.smcl already exists”. We could get around that, of course, by erasing the
log file before running the do-file.

16.1.6 Preventing —more— conditions

Stata has —more— turned off by default; see [U] 7 —-more- conditions.

If you have set more on for interactive use, Stata’s feature of pausing every time the screen is
full will probably be an irritation when you are running a do-file and logging the output.

The way around this is to include the line set more off in your do-file, which prevents Stata from
issuing —more—. The previous set more setting will automatically be restored when the do-file is
finished.

16.2 Calling other do-files

Do-files may call other do-files. Say that you wrote makedata.do, which infiles your data,
generates a few variables, and saves stepl.dta. Say that you wrote anlstepl.do, which performed
a little analysis on stepl.dta. You could then create a third do-file,

begin master.do
version 16.1
do makedata
do anlstepl

end master.do

and so in effect combine the two do-files.

Do-files may call other do-files, which, in turn, call other do-files, and so on. Stata allows do-files
to be nested 64 deep.

Be not confused: master.do above could call 1,000 do-files one after the other, and still the level
of nesting would be only two.

[U] 16 Do-files 173

16.3 Creating and running do-files

16.3.1

Creating and running do-files for Windows

1. You can execute do-files by typing do followed by the filename, as we did above.
. You can execute do-files by selecting File > Do....

3. You can use the Do-file Editor to compose, save, and execute do-files; see [GSW] 13 Using

the Do-file Editor—automating Stata. To use the Do-file Editor, click on the Do-file Editor
button, or type doedit in the Command window. Stata also has a Project Manager for managing
collections of do-files and other files. See [P] Project Manager.

. You can double-click on the icon for the do-file to launch Stata and open the do-file in the

Do-file Editor.

. You can run the do-file in batch mode. See [GSW] B.5 Stata batch mode for details, but the

short explanation is that you open a Window command window and type

C:\data> "C:\Program Files\Statal6\Stata" /s do myjob

or

C:\data> "C:\Program Files\Statai6\Stata" /b do myjob

to run in batch mode, assuming that you have installed Stata in the folder C:\Program
Files\Statal6. /b and /s determine the kind of log produced, but put that aside for a
second. When you start Stata in these ways, Stata will run in the background. When the do-file
completes, the Stata icon on the taskbar will flash. You can then click on it to close Stata. If
you want to stop the do-file before it completes, click on the Stata icon on the taskbar, and
Stata will ask you if you want to cancel the job. If you want Stata to exit when the do-file is
complete rather than flashing on the taskbar, also specify /e on the command line.

To log the output, you can start the log before executing the do-file or you can include the log using
and log close in your do-file.

16.3.2

When you run Stata in these ways, Stata takes the following actions:

a. Stata automatically opens a log. If you specified /s, Stata will open a SMCL log; if you
specified /b, Stata will open a plain text log. If your do-file is named xyz.do, the log
will be called xyz.smcl (/s) or xyz.log (/b) in the same directory.

b. If your do-file explicitly opens another log, Stata will save two copies of the output.

c. Stata ignores —more— conditions and anything else that would cause the do-file to stop
were it running interactively.

Creating and running do-files for Mac

. You can execute do-files by typing do followed by the filename, as we did above.
. You can execute do-files by selecting File > Do....

3. You can use the Do-file Editor to compose, save, and execute do-files; see [GSM] 13 Using the

Do-file Editor—automating Stata. Click on the Do-file Editor button, or type doedit in the
Command window. Stata also has a Project Manager for managing collections of do-files and
other files. See [P] Project Manager.

. You can double-click on the icon for the do-file to open the do-file in the Do-file Editor.

174 [U] 16 Do-files

5. Double-clicking on the icon for a do-file named Stata.do will launch Stata if it is not already
running and set the current working directory to the location of the do-file.

6. You can run the do-file in batch mode. See [GSM] B.3 Stata batch mode for details, but the
short explanation is that you open a Terminal window and type

% /Applications/Stata/Stata.app/Contents/Mac0S/Stata -s do myjob

or

% /Applications/Stata/Stata.app/Contents/Mac0S/Stata -b do myjob

to run in batch mode, assuming that you have installed Stata/IC in the folder
/Applications/Stata. -b and -s determine the kind of log produced, but put that aside for a
second. When you start Stata in these ways, Stata will run in the background. When the do-file
completes, the Stata icon on the Dock will bounce until you put Stata into the foreground. You
can then exit Stata. If you want to stop the do-file before it completes, right-click on the Stata
icon on the Dock, and select Quit.

To log the output, you can start the log before executing the do-file or you can include the log using
and log close in your do-file.

When you run Stata in these ways, Stata takes the following actions:

a. Stata automatically opens a log. If you specified -s, Stata will open a SMCL log; if you
specified -b, Stata will open a plain text log. If your do-file is named xyz.do, the log
will be called xyz.smcl (-s) or xyz.log (-b) in the same directory.

b. If your do-file explicitly opens another log, Stata will save two copies of the output.

c. Stata ignores —more— conditions and anything else that would cause the do-file to stop
were it running interactively.

16.3.3 Creating and running do-files for Unix

1. You can execute do-files by typing do followed by the filename, as we did above.
2. You can execute do-files by selecting File > Do....

3. You can use the Do-file Editor to compose, save, and execute do-files; see [GSU] 13 Using the
Do-file Editor—automating Stata. Click on the Do-file Editor button, or type doedit in the
Command window. Stata also has a Project Manager for managing collections of do-files and
other files. See [P] Project Manager.

4. At the Unix prompt, you can type
$ xstata do filename
or
$ stata do filename
to launch Stata and run the do-file. When the do-file completes, Stata will prompt you for the
next command just as if you had started Stata the normal way. If you want Stata to exit instead,
include exit, STATA clear as the last line of your do-file.

To log the output, you can start the log before executing the do-file or you can include the log using
and log close in your do-file.

[U] 16 Do-files 175

5. At the Unix prompt, you can type

$ stata -s do filename &
or

$ stata -b do filename &
to run the do-file in the background. The above two examples both involve the use of stata, not
xstata. Type stata, even if you usually use the GUI version of Stata, xstata. The examples
differ only in that one specifies the —s option and the other, the -b option, which determines
the kind of log that will be produced. In the above examples, Stata takes the following actions:

a. Stata automatically opens a log. If you specified -s, Stata will open a SMCL log; if you
specified -b, Stata will open a plain text log. If your do-file is named xyz.do, the log
will be called xyz.smcl (-s) or xyz.1log (-b) in the current directory (the directory from
which you issued the stata command).

b. If your do-file explicitly opens another log, Stata will save two copies of the output.

c. Stata ignores —more— conditions and anything else that would cause the do-file to stop
were it running interactively.

To reiterate: one way to run a do-file in the background and obtain a text log is by typing

$ stata -b do myfile &

Another way uses standard redirection:

$ stata < myfile.do > myfile.log &

The first way is slightly more efficient. Either way, Stata knows it is in the background and ignores
—more— conditions and anything else that would cause the do-file to stop if it were running
interactively. However, if your do-file contains either the #delimit command or the comment
characters (/* at the end of one line and */ at the beginning of the next), the second method will
not work. We recommend that you use the first method: stata -b do myfile &.

The choice between stata -b do myfile & and stata -s do myfile & is more personal. We
prefer obtaining SMCL logs (-s) because they look better when printed, and, in any case, they can
always be converted to text format with translate; see [R] translate.

16.4 Programming with do-files

This is an advanced topic, and we are going to refer to concepts not yet explained; see [U] 18 Pro-
gramming Stata for more information.

16.4.1 Argument passing

Do-files accept arguments, just as Stata programs do; this is described in [U] 18 Programming
Stata and [U] 18.4 Program arguments. In fact, the logic Stata follows when invoking a do-file
is the same as when invoking a program: the local macros are stored, and new ones are defined.
Arguments are stored in the local macros ‘1’, ‘2’, and so on. When the do-file completes, the
previous definitions are restored, just as with programs.

Thus, if you wanted your do-file to
1. use a dataset of your choosing,
2. tabulate a variable named region, and

3. summarize variables marriage_rate and divorce_rate,

176 [U] 16 Do-files

you could write the do-file

begin myxmpl.do
use ‘1’

tabulate region

summarize marriage_rate divorce_rate

end myxmpl.do

and you could run this do-file by typing, for instance,

. do myxmpl census
(output omitted)

The first command—use ‘1’ —would be interpreted as use censusb because census5 was the
first argument you typed after do myxmpl.

An even better version of the do-file would read

begin myxmpl.do
args dsname

use ‘dsname’

tabulate region

summarize marriage_rate divorce_rate

end myxmpl.do

The args command merely assigns a better name to the argument passed. args dsname does not
verify that what we type following do myxmpl is a filename—we would have to use the syntax
command if we wanted to do that—but substituting ‘dsname’ for ‘1’ does make the code more
readable.

If our program were to receive two arguments, we could refer to them as ‘1’ and ¢2’, or we could
put an ‘args dsname other’ at the top of our do-file and then refer to ‘dsname’ and ‘other’.

To learn more about argument passing, see [U] 18.4 Program arguments. Baum (2016) provides
many examples and tips related to do-files.

16.4.2 Suppressing output

There is an alternative to typing do filename; it is run filename. run works in the same way as
do, except that neither the instructions in the file nor any of the output caused by those instructions
is shown on the screen or in the log file.

For instance, with the above myxmpl.do, typing run myxmpl censusb results in

. run myxmpl census

All the instructions were executed, but none of the output was shown.

This is not useful here, but if the do-file contained only the definitions of Stata programs—see
[U] 18 Programming Stata—and you merely wanted to load the programs without seeing the code,
run would be useful.

[U] 16 Do-files

177

16.5 References

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.
Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Wiggins, V. L. 2018. How to automate common tasks. The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2018/10/09/how-to-automate-common-tasks/.

http://www.stata-press.com/books/introduction-stata-programming/
http://www.stata-press.com/books/wdaus.html
https://blog.stata.com/2018/10/09/how-to-automate-common-tasks/
https://blog.stata.com/2018/10/09/how-to-automate-common-tasks/

17

Ado-files

Contents
17.1 DeSCIIPLION . .ottt et et e e e e e e e e e e e e e e e e e 178
17.2 What is an ado-file? 178
17.3 How can I tell if a command is built in or an ado-file? 179
17.4 How can I look at an ado-file? 179
17.5 Where does Stata look for ado-files? i 180
17.5.1 Where is the official ado-directory? iiiiiinon... 180
17.5.2 Where is my personal ado-directory?, 181
17.6 How do I install an addition? ittt 181
177 How do I add my own ado-files? i 182
17.8 How do I install official updates? i, 182
17.9 How do I install updates to community-contributed additions? 182
17.10 ReferenCeS . ..ottt et et e e e e e e 182
17.1 Description

Stata is programmable, and even if you never write a Stata program, Stata’s programmability is
still important. Many of Stata’s features are implemented as Stata programs, and new features are
implemented every day, both by StataCorp and by others.

1.

4.

You can obtain additions from the Stata Journal. You subscribe to the printed journal, but the
software additions are available free over the Internet.

You can obtain additions from the Stata forum, Statalist, where an active group of users advise
each other on how to use Stata, and often, in the process, trade programs. Visit the Statalist
website, https://www.statalist.org, for instructions on how to participate.

. The Boston College Statistical Software Components (SSC) archive is a distributed database

making available a large and constantly growing number of Stata programs. You can browse
and search the archive, and you can find links to the archive from https://www.stata.com.
Importantly, Stata knows how to access the archive and other places, as well. You can search
for additions by using Stata’s search, net command; see [R] search. You can immediately
install materials you find with search, net by using the hyperlinks that will be displayed by
search in the Results window or by using the net command. A specialized command, ssc,
has several options available to help you find and install the community-contributed commands
that are available from this site; see [R] ssc.

You can write your own additions to Stata.

This chapter is written for people who want to use ado-files. All users should read it. If you later
decide you want to write ado-files, see [U] 18.11 Ado-files.

17.2 What is an ado-file?

An ado-file defines a Stata command, but not all Stata commands are defined by ado-files.

When you type summarize to obtain summary statistics, you are using a command built into

Stata.

178

https://www.statalist.org
https://www.stata.com

[U] 17 Ado-files 179

When you type ci to obtain confidence intervals, you are running an ado-file. The results of using
a built-in command or an ado-file are indistinguishable.

An ado-file is a text file that contains a Stata program. When you type a command that Stata does
not know, it looks in certain places for an ado-file of that name. If Stata finds it, Stata loads and
executes it, so it appears to you as if the ado-command is just another command built into Stata.

We just told you that Stata’s ci command is implemented as an ado-file. That means that,
somewhere, there is a file named ci.ado.

Ado-files usually come with help files. When you type help ci (or select Help > Stata command...,
and type ci), Stata looks for ci.sthlp, just as it looks for ci.ado when you use the ci command.
A help file is also a text file that tells Stata’s help system what to display.

17.3 How can | tell if a command is built in or an ado-file?

You can use the which command to determine whether a file is built in or implemented as an
ado-file. For instance, logistic is an ado-file, and here is what happens when you type which
logistic:

. which logistic

C:\Program Files\Statal6\ado\base\l\logistic.ado
*! version 3.5.4 28feb2017

summarize is a built-in command:

. which summarize
built-in command: summarize

17.4 How can | look at an ado-file?

When you type which followed by an ado-command, Stata reports where the file is stored:

. which logistic
C:\Program Files\Statal6\ado\base\l\logistic.ado
*! version 3.5.4 28feb2017

Ado-files are just text files containing the Stata program. You can view them in Stata’s Viewer window
(or even look at them in your editor or word processor) by typing

. type "C:\Program Files\Statal6\ado\base\l\logistic.ado"
*! version 3.5.4 28feb2017
program define logistic, eclass prop(or svyb svyj svyr swml mi bayes) ///
byable (onecall)
version 6.0, missing
(output omitted)
end

or

. viewsource logistic.ado
(output omitted)

180 [U] 17 Ado-files

The type command displays the contents of a file. The viewsource command searches for a file
along the ado-directories and displays the file in the Viewer. You can also look at the corresponding
help file in raw form if you wish. If there is a help file, it is stored in the same place as the ado-file:

. type "C:\Program Files\Statal6\ado\base\l\logistic.sthlp", asis
{smcl}
{* %! version 1.4.3 22may2019}{...}
{viewerdialog logistic "dialog logistic"}{...}
(output omitted)

or

. viewsource logistic.sthlp
(output omitted)

17.5 Where does Stata look for ado-files?

Stata looks for ado-files in seven places, which can be categorized in three ways:

1. The official ado-directory:
1. (BASE), the official directory containing the ado-files shipped with your version of Stata
and any updated ado-files that have been made available since then

II. Your personal ado-directories:
2. (SITE), the directory for ado-files your site might have installed
3. (PLUS), the directory for ado-files you personally might have installed
4. (PERSONAL), the directory for ado-files you might have written
5. (OLDPLACE), the directory where Stata users used to save their personally written ado-files

III. The current directory:
6. (.), the ado-files you have written just this instant or for just this project

The location of these directories varies from computer to computer, but Stata’s sysdir command
will tell you where they are on your computer:

. sysdir
STATA: C:\Program Files\Statal6\
BASE: C:\Program Files\Statal6\ado\base\
SITE: C:\Program Files\Statal6\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\

OLDPLACE: C:\ado\

17.5.1 Where is the official ado-directory?

This is the directory listed as BASE by sysdir:

. sysdir
STATA: C:\Program Files\Statal6\
BASE: C:\Program Files\Statal6\ado\base\
SITE: C:\Program Files\Statal6\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\

OLDPLACE: C:\ado\

1. BASE contains the ado-files we originally shipped to you and any updates you might have
installed since then. You can install updates by using the update command or by selecting
Help > Check for updates; see [U] 17.8 How do I install official updates?.

[U] 17 Ado-files 181

17.5.2 Where is my personal ado-directory?

These are the directories listed as PERSONAL, PLUS, SITE, and OLDPLACE by sysdir:

. sysdir
STATA: C:\Program Files\Statal6\
BASE: C:\Program Files\Statal6\ado\base\
SITE: C:\Program Files\Statal6\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\

OLDPLACE: C:\ado\

1. PERSONAL is for ado-files you have written. Store your private ado-files here; see [U] 17.7 How
do I add my own ado-files?.

2. PLUS is for ado-files you personally installed but did not write. Such ado-files are usually
obtained from the SJ or the SSC archive, but they are sometimes found in other places, too. You
find and install such files by using Stata’s net command, or you can select Help > SJ and
community-contributed commands; see [U] 17.6 How do I install an addition?.

3. SITE is really the opposite of a personal ado-directory—it is a public directory corresponding
to PLUS. If you are on a networked computer, the site administrator can install ado-files here,
and all Stata users will then be able to use them just as if they all found and installed them
in their PLUS directory for themselves. Site administrators find and install the ado-files just as
you would, using Stata’s net command, but they specify an option when they install something
that tells Stata to write the files into SITE rather than PLUS; see [R] net.

4. OLDPLACE is for old-time Stata users. Prior to Stata 6, all “personal” ado-files, whether personally
written or just personally installed, were written in the same directory—OLDPLACE. So that the
old-time Stata users do not have to go back and rearrange what they have already done, Stata
still looks in OLDPLACE.

17.6 How do | install an addition?

Additions come in four types:
1. Community-contributed additions, which you might find in the SJ, etc.

2. Updates to community-contributed additions
See [U] 17.9 How do I install updates to community-contributed additions?.

3. Ado-files you have written
See [U] 17.7 How do I add my own ado-files? If you have an ado-file obtained from
the Stata forum or a friend, treat it as belonging to this case.

4. Official updates provided by StataCorp
See [U] 17.8 How do I install official updates?.

Community-contributed additions you might find in the Stata Journal (SJ), etc., are obtained over
the Internet. To access them on the Internet,

1. select Help > SJ and community-contributed commands, and click on one of the links
or
2. type net from https://www.stata.com.

What to do next will be obvious, but, in case it is not, see [GS] 19 Updating and extending
Stata—Internet functionality (GSM, GSU, or GSW). Also see [U] 29 Using the Internet to keep up
to date, [R] net, and [R] ado update.

182 [U] 17 Ado-files

17.7 How do | add my own ado-files?

You write a Stata program (see [U] 18 Programming Stata), store it in a file ending in .ado,
perhaps write a help file, and copy everything to the directory sysdir lists as PERSONAL:

. sysdir
STATA: C:\Program Files\Statal6\
BASE: C:\Program Files\Statal6\ado\base\
SITE: C:\Program Files\Statal6\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\

OLDPLACE: C:\ado\

Here we would copy the files to C:\ado\personal.

While you are writing your ado-file, it is sometimes convenient to store the pieces in the current
directory. Do that if you wish; you can move them to your personal ado-directory when the program
is debugged.

17.8 How do | install official updates?

Updates are available over the Internet:

1. select Help > Check for updates, and then click on https://www.stata.com
or

2. type update query.

What to do next should be obvious, but in case it is not, see [GS] 19 Updating and extending
Stata—Internet functionality (GSM, GSU, or GSW). Also see [U] 29 Using the Internet to keep up
to date and [R] net.

The official updates include bug fixes and new features but do not change the syntax of an existing
command or change the way Stata works.

Once you have installed the updates, you can enter Stata and type help whatsnew (or select
Help > What’s new?) to learn about what has changed.

17.9 How do | install updates to community-contributed additions?

If you have previously installed community-contributed additions, you can check for updates to
them by typing adoupdate. If updates are available, you can install them by typing ado update,
update. See [R] ado update.

17.10 References
Cox, N. J. 2006. Stata tip 30: May the source be with you. Stata Journal 6: 149-150.

Wiggins, V. L. 2018. How to automate common tasks. The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2018/10/09/how-to-automate-common-tasks/.

http://www.stata-journal.com/article.html?article=pr0022
https://blog.stata.com/2018/10/09/how-to-automate-common-tasks/
https://blog.stata.com/2018/10/09/how-to-automate-common-tasks/

1 8 Programming Stata

Contents
I8.1 DESCIIPHON v e ettt et e et e e e e e e e e e e e 184
18.2 Relationship between a program and a do-file 185
I18.3 IMIACTOS . vttt et ettt e e e e e e e e e e 188
18.3.1 Local MAaCTOS ... oottt e et 188
18.3.2 Global MAaCIOS ... oottt et e e e 189
18.3.3 The difference between local and global macros 189
18.3.4 Macros and eXpressionsc.uiiniiti 190
18.3.5 Double qQUOLESt e 191
18.3.6 Macro functionsiouiiniinn et 193
18.3.7 Macro increment and decrement functions, 194
18.3.8 MACIO EXPIESSIONS . . v v vttt ettt et e e e et 195
18.3.9 Advanced local macro manipulation, 196
18.3.10 Advanced global macro manipulation 197
18.3.11 Constructing Windows filenames by using macros 198
18.3.12 Accessing system valuesinuriinin i 198
18.3.13 Referring to characteristicsoouiiniiniinninnennann... 199
18.4 Program argUIMEeNtSeueueununenen ettt 199
18.4.1 Named positional argumentsieneneinenenennenen... 201
18.4.2 Incrementing through positional arguments 203
18.4.3 Using macro shift 204
18.4.4 Parsing standard Stata SyNtaxoeieneneininenenaenen... 205
18.4.5 Parsing immediate commands i 207
18.4.6 Parsing nonstandard Syntaxi i 207
18.5 Scalars and MALIICES vtt ettt ettt e e e e 208
18.6 Temporarily destroying the data in MemMOryc.viuniuninnon.. 209
18.7 Temporary ODJECESottt ettt e e e e 209
18.7.1 Temporary variablest e 209
18.7.2 Temporary scalars and matricesoviuiiiiinnaon... 210
18.7.3 Temporary filest e 210
18.7.4 Temporary framest ettt 211
18.8 Accessing results calculated by other programs 211
18.9 Accessing results calculated by estimation commands 214
18.10 Storing resultsottt e 215
18.10.1 Storing results in I() oottt e 216
18.10.2 Storing results in () vu it 217
18.10.3 Storing results i S() . ..ottt e 220
I8.11 AdO-fIles .ttt 220
I8.11.1 VBISION . .vvtt ittt e e e e e e e 222
18.11.2 Comments and long lines in ado-files 222
18.11.3 Debugging ado-files 223
18.11.4 Local SUDTOULNES ... v vttt ettt e e ettt 223
18.11.5 Development of a sample ado-command 224
18.11.6 Writing system help 230
18.11.7 Programming dialog boXesuuiiiiii i 235
18.12 Tools for interacting with programs outside Stata and with other languages 236

183

184 [U] 18 Programming Stata

18.13 A compendium of useful commands for programmers 236
18.14 REefEreNCEeSttt e e 236

Stata programming is an advanced topic. Some Stata users live productive lives without ever
programming Stata. After all, you do not need to know how to program Stata to import data, create
new variables, and fit models. On the other hand, programming Stata is not difficult—at least if the
problem is not difficult—and Stata’s programmability is one of its best features. The real power of
Stata is not revealed until you program it.

Stata has two programming languages. One, known informally as “ado”, is the focus of this chapter.
It is based on Stata’s commands, and you can write scripts and programs to automate reproducible
analyses and to add new features to Stata.

The other language, Mata, is a byte-compiled language with syntax similar to C/C++, but with
extensive matrix capabilities. The two languages can interact with each other. You can call Mata
functions from ado-programs, and you can call ado-programs from Mata functions. You can learn all
about Mata in the Mata Reference Manual.

Stata also has a Project Manager to help you manage large collections of Stata scripts, programs,
and other files. See [P] Project Manager.

If you are uncertain whether to read this chapter, we recommend that you start reading and then
bail out when it gets too arcane for you. You will learn things about Stata that you may find useful
even if you never write a Stata program.

If you want even more, we offer courses over the Internet on Stata programming; see [U] 3.6.2 Net-
Courses. Baum (2016) provides a wealth of practical knowledge related to Stata programming.

18.1 Description

When you type a command that Stata does not recognize, Stata first looks in its memory for a
program of that name. If Stata finds it, Stata executes the program.
There is no Stata command named hello,

. hello
command helle is unrecognized
r(199);

but there could be if you defined a program named hello, and after that, the following might happen
when you typed hello:

. hello
hi there

This would happen if, beforehand, you had typed

. program hello
1. display "hi there"
2. end

That is how programming works in Stata. A program is defined by
program progname
Stata commands
end

and it is executed by typing progname at Stata’s dot prompt.

[U] 18 Programming Stata 185

18.2 Relationship between a program and a do-file

Stata treats programs the same way it treats do-files. Below we will discuss passing arguments,
consuming results from Stata commands, and other topics, but everything we say applies equally to
do-files and programs.

Programs and do-files differ in the following ways:

1. You invoke a do-file by typing do filename. You invoke a program by simply typing the
program’s name.

2. Programs must be defined (loaded) before they are used, whereas all that is required to run a
do-file is that the file exist. There are ways to make programs load automatically, however, so
this difference is of little importance.

3. When you type do filename, Stata displays the commands it is executing and the results. When
you type progname, Stata shows only the results, not the display of the underlying commands.
This is an important difference in outlook: in a do-file, how it does something is as important
as what it does. In a program, the how is no longer important. You might think of a program
as a new feature of Stata.

Let’s now mention some of the similarities:
1. Arguments are passed to programs and do-files in the same way.

2. Programs and do-files both contain Stata commands. Any Stata command you put in a do-file
can be put in a program.

3. Programs may call other programs. Do-files may call other do-files. Programs may call do-files
(this rarely happens), and do-files may call programs (this often happens). Stata allows programs
(and do-files) to be nested up to 64 deep.

Now here is the interesting thing: programs are typically defined in do-files (or in a variant of do-files
called ado-files; we will get to that later).

You can define a program interactively, and that is useful for pedagogical purposes, but in real
applications, you will compose your program in a text editor and store its definition in a do-file.

You have already seen your first program:
program hello

display "hi there"
end

You could type those commands interactively, but if the body of the program were more complicated,
that would be inconvenient. So instead, suppose that you typed the commands into a do-file:

begin hello.do
program hello

display "hi there"
end

end hello.do

Now returning to Stata, you type

. do hello

. program hello
1. display "hi there"
2. end

end of do-file

186 [U] 18 Programming Stata

Do you see that typing do hello did nothing but load the program? Typing do hello is the same as
typing out the program’s definition because that is all the do-file contains. The do-file was executed,
but the statements in the do-file only defined the program hello; they did not execute it. Now that
the program is loaded, we can execute it interactively:

. hello
hi there

So, that is one way you could use do-files and programs together. If you wanted to create new
commands for interactive use, you could

1. Write the command as a program ... end in a do-file.
2. do the do-file before you use the new command.
3. Use the new command during the rest of the session.

There are more convenient ways to do this that would automatically load the do-file, but put that
aside. The above method would work.

Another way we could use do-files and programs together is to put the definition of the program
and its execution together into a do-file:

begin hello.do
program hello
display "hi there"
end
hello

end hello.do

Here is what would happen if we executed this do-file:

. do hello

. program hello
1. display "hi there"
2. end

. hello

hi there

end of do-file

Do-files and programs are often used in such combinations. Why? Say that program hello is long
and complicated and you have a problem where you need to do it twice. That would be a good reason
to write a program. Moreover, you may wish to carry forth this procedure as a step of your analysis
and, being cautious, do not want to perform this analysis interactively. You never intended program
hello to be used interactively—it was just something you needed in the midst of a do-file—so you
defined the program and used it there.

Anyway, there are many variations on this theme, but few people actually sit in front of Stata and
interactively type program and then compose a program. They instead do that in front of their text
editor. They compose the program in a do-file and then execute the do-file.

There is one other (minor) thing to know: once a program is defined, Stata does not allow you to
redefine it:

. program hello
program hello already defined
r(110);

[U] 18 Programming Stata 187

Thus, in our most recent do-file that defines and executes hello, we could not rerun it in the same
Stata session:

. do hello

. program hello
program hello already defined
r(110);

end of do-file
r(110);

That problem is solved by typing program drop hello before redefining it. We could do that
interactively, or we could modify our do-file:

begin hello.do
program drop hello
program hello
display "hi there"
end
hello
end hello.do

There is a problem with this solution. We can now rerun our do-file, but the first time we tried to
run it in a Stata session, it would fail:

. do hello

. program drop hello
hello not found
r(111);

end of do-file
r(111);

The way around this conundrum is to modify the do-file:

begin hello.do
capture program drop hello
program hello
display "hi there"
end
hello
end hello.do

capture in front of a command makes Stata indifferent to whether the command works; see
[P] capture. In real do-files containing programs, you will often see capture program drop before
the program’s definition.

To learn about the program command itself, see [P] program. It manipulates programs. program
can define programs, drop programs, and show you a directory of programs that you have defined.

A program can contain any Stata command, but certain Stata commands are of special interest to
program writers; see the Programming heading in the subject table of contents in the Glossary and
Index.

188 [U] 18 Programming Stata

18.3 Macros

Before we can begin programming, we must discuss macros, which are the variables of Stata
programs.

A macro is a string of characters, called the macroname, that stands for another string of characters,
called the macro contents.

Macros can be local or global. We will start with local macros because they are the most commonly
used, but nothing really distinguishes one from the other at this stage.

18.3.1 Local macros
Local macro names can be up to 31 (not 32) characters long.

One sets the contents of a local macro with the 1ocal command. In fact, we can do this interactively.
We will begin by experimenting with macros in this way to learn about them. If we type

. local shortcut "myvar thisvar thatvar"

then ‘shortcut’ is a synonym for “myvar thisvar thatvar”. Note the single quotes around
shortcut. We said that sentence exactly the way we meant to because

if you type ‘shortcut’,
ie., left-single-quote shortcut right-single-quote,
Stata hears myvar thisvar thatvar.

To access the contents of the macro, we use a left single quote (located at the upper left on most
keyboards), the macro name, and a right single quote (located under the " on the right side of most
keyboards).

The single quotes bracketing the macroname shortcut are called the macro-substitution characters.
shortcut means shortcut. ‘shortcut’ means myvar thisvar thatvar.

So, if you typed
. list ‘shortcut’
the effect would be exactly as if you typed
. list myvar thisvar thatvar

Macros can be used anywhere in Stata. For instance, if we also defined

. local cmd "list"

we could type

‘cmd’ ‘shortcut’

to mean list myvar thisvar thatvar.
For another example, consider the definitions

. local prefix "my"
. local suffix "var"

Then

‘cmd’ ‘prefix’ ‘suffix’

would mean list myvar.

[U] 18 Programming Stata 189

One other important note is on the way we use left and right single quotes within Stata, which
you will especially deal with when working with macros (see [U] 18.3 Macros). Single quotes (and
double quotes, for that matter) may look different on your keyboard, your monitor, and our printed
documentation, making it difficult to determine which key to press on your keyboard to replicate
what we have shown you.

For the left single quote, we use the grave accent, which occupies a key by itself on most computer
keyboards. On U.S. keyboards, the grave accent is located at the top left, next to the numeral 1. On
some non-U.S. keyboards, the grave accent is produced by a dead key. For example, pressing the
grave accent dead key followed by the letter a would produce a; to get the grave accent by itself,
you would press the grave accent dead key followed by a space. This accent mark appears in our
printed documentation as ‘.

For the right single quote, we use the standard single quote, or apostrophe. On U.S. keyboards,
the single quote is located on the same key as the double quote, on the right side of the keyboard
next to the Enter key.

18.3.2 Global macros

Let’s put aside why Stata has two kinds of macros—local and global—and focus right now on
how global macros work.

Global macros can have names that are up to 32 (not 31) characters long. You set the contents of
a global macro by using the global rather than the local command:

. global shortcut "alpha beta"
You obtain the contents of a global macro by prefixing its name with a dollar sign: $shortcut is
equivalent to “alpha beta”.

In the previous section, we defined a local macro named shortcut, which is a different macro.
‘shortcut’ is still “myvar thisvar thatvar”.

Local and global macros may have the same names, but even if they do, they are unrelated and
are still distinguishable.

Global macros are just like local macros except that you set their contents with global rather
than local, and you substitute their contents by prefixing them with a $ rather than enclosing them
in €.

18.3.3 The difference between local and global macros
The difference between local and global macros is that local macros are private and global macros
are public.
Say that you have written a program
program myprog

code using local macro alpha
end

The local macro alpha in myprog is private in that no other program can modify or even look at
alpha’s contents. To make this point absolutely clear, assume that your program looks like this:

190 [U] 18 Programming Stata

program myprog
code using local macro alpha
mysub
more code using local macro alpha
end

program mysub
code using local macro alpha
end

myprog calls mysub, and both programs use a local macro named alpha. Even so, the local macros
in each program are different. mysub’s alpha macro may contain one thing, but that has nothing to
do with what myprog’s alpha macro contains. Even when mysub begins execution, its alpha macro
is different from myprog’s. It is not that mysub’s inherits myprog’s alpha macro contents but is then
free to change it. It is that myprog’s alpha and mysub’s alpha are entirely different things.

When you write a program using local macros, you need not worry that some other program
has been written using local macros with the same names. Local macros are just that: local to your
program.

Global macros, on the other hand, are available to all programs. If both myprog and mysub use
the global macro beta, they are using the same macro. Whatever the contents of $beta are when
mysub is invoked, those are the contents when mysub begins execution, and, whatever the contents
of $beta are when mysub completes, those are the contents when myprog regains control.

18.3.4 Macros and expressions

From now on, we are going to use local and global macros according to whichever is convenient;
whatever is said about one applies to the other.

Consider the definitions

. local one 2+2
. local two = 2+2

(which we could just as well have illustrated using the global command). In any case, note the
equal sign in the second macro definition and the lack of the equal sign in the first. Formally, the
first should be

. local one "2+2"

but Stata does not mind if we omit the double quotes in the local (global) statement.
local one 2+2 (with or without double quotes) copies the string 2+2 into the macro named one.

local two = 2+2 evaluates the expression 2+2, producing 4, and stores 4 in the macro named
two.

That is, you type
local macname contents
if you want to copy contents to macname, and you type
local macname = expression
if you want to evaluate expression and store the result in macname.

In the second form, expression can be numeric or string. 2+2 is a numeric expression. As an
example of a string expression,

. local res = substr("this",1,2) + "at"

stores that in res.

[U] 18 Programming Stata 191

Because the expression can be either numeric or string, what is the difference between the following
statements?

. local a "example"
. local b = "example"

Both statements store example in their respective macros. The first does so by a simple copy operation,
whereas the second evaluates the expression "example", which is a string expression because of
the double quotes that, here, evaluates to itself. You could put a more complicated expression to be
evaluated on the right-hand side of the second syntax.

There are some other issues of using macros and expressions that look a little strange to programmers
coming from other languages, at least the first time they see them. Say that the macro ‘i’ contains
5. How would you increment i so that it contains 5 + 1 = 6? The answer is

local i = ‘i’ + 1
Do you see why the single quotes are on the right but not the left? Remember, ‘i’ refers to the
contents of the local macro named i, which, we just said, is 5. Thus, after expansion, the line reads

local i =5+ 1

which is the desired result.

There is a another way to increment local macros that will be more familiar to some programmers,
especially C programmers:

local ++i
As C programmers would expect, local ++i is more efficient (executes more quickly) than local
i = i+1, but in terms of outcome, it is equivalent. You can decrement a local macro by using

local --i

local --i is equivalent to local i = i-1 but executes more quickly. Finally,

local i++

will not increment the local macro i but instead redefines the local macro i to contain ++. There is,
however, a context in which i++ (and i--) do work as expected; see [U] 18.3.7 Macro increment
and decrement functions.

18.3.5 Double quotes

Consider another local macro, ‘answ’, which might contain yes or no. In a program that was
supposed to do something different on the basis of answ’s content, you might code

if "‘answ’" == "yes" {
¥
else {
3
Note the odd-looking " ‘answ’", and now think about the line after substitution. The line reads
either
if "yes" == “yes" {
or

if "no" == "yes" {

192 [U] 18 Programming Stata

either of which is the desired result. Had we omitted the double quotes, the line would have read

if no == "yes" {

(assuming ‘answ’ contains no), and that is not at all the desired result. As the line reads now, no
would not be a string but would be interpreted as a variable in the data.

The key to all of this is to think of the line after substitution.

Double quotes are used to enclose strings: "yes", "no", "my dir\my file", " ‘answ’" (meaning
that the contents of local macro answ, treated as a string), and so on. Double quotes are used with
macros,

local a "example"

if "‘answ’" == "yes" {
}

and double quotes are used by many Stata commands:

. regress lnwage age ed if sex=="female"
. generate outa = outcome if drug=="A"

. use "person file"

Do not omit the double quotes just because you are using a “quoted” macro:

==n¢

. regress lnwage age ed if sex=="‘x’"
. generate outa = outcome if drug=="‘firstdrug’"

. use "‘filename’"

Stata has two sets of double-quote characters, of which "" is one. The other is ‘""’. They both
work the same way:

. regress lnwage age ed if sex==‘"female"’
. generate outa = outcome if drug==‘"A"’

. use ‘"person file"’

No rational user would use ‘""’ (called compound double quotes) instead of "" (called simple double
quotes), but smart programmers do use them:

local a ‘"example"’

if tntansw)u: == ‘"yes“’ {

Why is ‘"example"’ better than "example", ‘" ‘answ’"’ better than "‘answ’", and ‘"yes"’
better than "yes"? The answer is that only ‘"‘answ’"’ is better than " ‘answ’"; ‘"example"’
and ‘"yes"’ are no better—and no worse—than "example" and "yes".

‘"fansw’"’ is better than " ‘answ’" because the macro answ might itself contain (simple or
compound) double quotes. The really great thing about compound double quotes is that they nest.
Say that ‘answ’ contained the string “I "think" so”. Then,

Stata would find if "‘answ’"=="yes"
confusing because it would expand to if "I "think" so"=="yes"
Stata would not find if ‘"‘answ’"’==‘"yes"’

confusing because it would expand to if ‘"I "think" so"’==‘"yes"’

[U] 18 Programming Stata 193

Open and close double quote in the simple form look the same; open quote is " and so is close
quote. Open and close double quote in the compound form are distinguishable; open quote is ‘" and
close quote is "’, and so Stata can pair the close with the corresponding open double quote. ‘"I
"think" so"’ is easy for Stata to understand, whereas "I "think" so" is a hopeless mishmash.
(If you disagree, consider what "A"B"C" might mean. Is it the quoted string A"B"C, or is it quoted
string A, followed by B, followed by quoted string C?)

Because Stata can distinguish open from close quotes, even nested compound double quotes are
understandable: ‘"I ‘"think"’ so"’. (What does "A"B"C" mean? Either it means ‘"A¢"B"’>C"’
or it means ‘"A"’B¢"C" J.)

Yes, compound double quotes make you think that your vision is stuttering, especially when
combined with the macro substitution ¢’ characters. That is why we rarely use them, even when
writing programs. You do not have to use exclusively one or the other style of quotes. It is perfectly
acceptable to code

local a "example"

if ‘"‘answ’"’ == "yes" {

using compound double quotes where it might be necessary (‘" ‘answ’"’) and using simple double
quotes in other places (such as "yes"). It is also acceptable to use simple double quotes around
macros (for example, " “answ’") if you are certain that the macros themselves do not contain double
quotes or (more likely) if you do not care what happens if they do.

Sometimes careful programmers should use compound double quotes. Later you will learn that
Stata’s syntax command interprets standard Stata syntax and so makes it easy to write programs
that understand things like

. myprog mpg weight if strpos(make,"VW")!=0

syntax works—we are getting ahead of ourselves—by placing the if exp typed by the user in the
local macro if. Thus ¢if’ will contain “if strpos(make,"VW")!=0" here. Now say that you are
at a point in your program where you want to know whether the user specified an if exp. It would
be natural to code

if ‘ll(if}ll) !: nn {
// the if exp was specified

}
else {
// it was not

}

We used compound double quotes around the macro ‘if’. The local macro ‘if’ might contain
double quotes, so we placed compound double quotes around it.

18.3.6 Macro functions

In addition to allowing =exp, local and global provide macro functions. The use of a macro
function is denoted by a colon (:) following the macro name, as in

local 1bl : variable label myvar
local filenames : dir "." files "*.dta"

local xi : word ‘i’ of ‘list’

194 [U] 18 Programming Stata

Some macro functions access a piece of information. In the first example, the variable label associated
with variable myvar will be stored in macro 1bl. Other macro functions perform operations to gather
the information. In the second example, macro filenames will contain the names of all the .dta
datasets in the current directory. Still other macro functions perform an operation on their arguments
and return the result. In the third example, xi will contain the ¢i’th word (element) of ‘1ist’. See
[P] macro for a list of the macro functions.

Another useful source of information is c(), documented in [P] creturn:

local today "‘c(current_date)’"
local curdir "‘c(pwd)’"

local newn = c(N)+1

c() refers to a prerecorded list of values, which may be used directly in expressions or which may
be quoted and the result substituted anywhere. c (current_date) returns today’s date in the form
”dd MON yyyy”. Thus the first example stores in macro today that date. c (pwd) returns the current
directory, such as C:\data\proj. Thus the second example stores in macro curdir the current
directory. c(N) returns the number of observations of the data in memory. Thus the third example
stores in macro newn that number, plus one.

Note the use of quotes with c(). We could just as well have coded the first two examples as
local today = c(current_date)

local curdir = c(pwd)

c() is a Stata function in the same sense that sqrt() is a Stata function. Thus we can use c()
directly in expressions. It is a special property of macro expansion, however, that you may use the
c() function inside macro-expansion quotes. The same is not true of sqrt ().

In any case, whenever you need a piece of information, whether it be about the dataset or about
the environment, look in [P] macro and [P] creturn. It is likely to be in one place or the other, and
sometimes, it is in both. You can obtain the current directory by using

local curdir = c(pwd)
or by using

local curdir : pwd

When information is in both, it does not matter which source you use.

18.3.7 Macro increment and decrement functions

We mentioned incrementing macros in [U] 18.3.4 Macros and expressions. The construct

command that makes reference to ‘i’
local ++i

occurs so commonly in Stata programs that it is convenient (and faster when executed) to collapse
both lines of code into one and to increment (or decrement) i at the same time that it is referred to.
Stata allows this:

[U] 18 Programming Stata 195

while (‘++i’ < 1000) {

}
while (¢i++’ < 1000) {

3
while (¢--i> > 0) {

while (‘i-=> > 0) {

b
Above we have chosen to illustrate this by using Stata’s while command, but ++ and -- can be used
anyplace in any context, just so long as it is enclosed in macro-substitution quotes.

When the ++ or -- appears before the name, the macro is first incremented or decremented, and
then the result is substituted.

When the ++ or —- appears after the name, the current value of the macro is substituted and then
the macro is incremented or decremented.

Q Technical note

Do not use the inline ++ or —- operators when a part of the line might not be executed. Consider

if (‘i’==0) local j = ‘k++’

Versus

if (‘i’==0) {
local j = ‘k++’

}

The first will not do what you expect because macros are expanded before the line is interpreted.
Thus the first will result in k always being incremented, whereas the second increments k only when

¢§ir==(.

a

18.3.8 Macro expressions

Typing

command that makes reference to ‘=exp’

is equivalent to

local macroname = exp
command that makes reference to ‘macroname’

although the former runs faster and is easier to type. When you use ‘=exp’ within some larger

command, exp is evaluated by Stata’s expression evaluator, and the results are inserted as a literal
string into the larger command. Then the command is executed. For example,
summarize ué

summarize u‘=2+2’
summarize u‘=4*(cos(0)==1)’

196 [U] 18 Programming Stata

all do the same thing. exp can be any valid Stata expression and thus may include references to
variables, matrices, scalars, or even other macros. In the last case, just remember to enclose the
submacros in quotes:

replace ‘var’ = ‘group’[‘=¢j’+1’]

Also, typing

3

command that makes reference to ‘ :macro function’

is equivalent to
local macroname : macro function
command that makes reference to ‘macroname’
Thus one might code

format y ‘:format x’

to assign to variable y the same format as the variable x.

Q Technical note

There is another macro expansion operator, . (called dot), which is used in conjunction with
Stata’s class system; see [P] class for more information.

There is also a macro expansion function, macval (), which is for use when expanding a macro—
‘macval (name) > —which confines the macro expansion to the first level of name, thereby suppressing
the expansion of any embedded references to macros within name. Only a few Stata users have or
will ever need this, but, if you suspect you are one of them, see [P] macro and then see [P] file for

an example.
a

18.3.9 Advanced local macro manipulation

This section is really an aside to help test your understanding of macro substitution. The tricky
examples illustrated below sometimes occur in real programs.

1. Say that you have macros x1, x2, x3, and so on. Obviously, ‘x1’ refers to the contents of x1,
‘x2’ to the contents of x2, etc. What does ‘x¢i’’ refer to? Suppose that ‘i’ contains 6.
The rule is to expand the inside first:
‘x¢i’’ expands to ‘x6’
‘x6° expands to the contents of local macro x6
So, there you have a vector of macros.

2. We have already shown adjoining expansions: ‘alpha’‘beta’ expands to myvar if ‘alpha’
contains my and ‘beta’ contains var. What does ‘alpha’‘gamma’ ‘beta’ expand to when
gamma is undefined?

Stata does not mind if you refer to a nonexistent macro. A nonexistent macro is treated as a macro
with no contents. If local macro gamma does not exist, then
‘gamma’ expands to nothing
It is not an error. Thus ‘alpha’‘gamma’ ‘beta’ expands to myvar.
3. You clear a local macro by setting its contents to nothing:
local macname

or local macname
or local macname = ""

[U] 18 Programming Stata 197

18.3.10 Advanced global macro manipulation

Global macros are rarely used, and when they are used, it is typically for communication between
programs. You should never use a global macro where a local macro would suffice.

1. Constructions like xi are expanded sequentially. If $x contained this and $i 6, then xi
expands to this6. If $x was undefined, then xi is just 6 because undefined global macros, like
undefined local macros, are treated as containing nothing.

2. You can nest macro expansion by including braces, so if $i contains 6, ${x$i} expands to ${x6},
which expands to the contents of $x6 (which would be nothing if $x6 is undefined).

3. You can mix global and local macros. Assume that local macro j contains 7. Then, ${x‘j’}
expands to the contents of $x7.

4. You also use braces to force the contents of global macros to run up against the succeeding text.
For instance, assume that the macro drive contains “b:”. If drive were a local macro, you could
type
‘drive’myfile.dta

to obtain b:myfile.dta. Because drive is a global macro, however, you must type
${drivetmyfile.dta

You could not type
$drive myfile.dta

because that would expand to b: myfile.dta. You could not type
$drivemyfile.dta

because that would expand to .dta.

5. Because Stata uses $ to mark global-macro expansion, printing a real $ is sometimes tricky.
To display the string $22.15 with the display command, you can type display "\$22.15",
although you can get away with display "$22.15" because Stata is rather smart. Stata would
not be smart about display "$this" if you really wanted to display $this and not the contents
of the macro this. You would have to type display "\$this". Another alternative would be
to use the SMCL code for a dollar sign when you wanted to display it: display "{c S|}this";
see [P] smcl.

6. Real dollar signs can also be placed into the contents of macros, thus postponing substitution.
First, let’s understand what happens when we do not postpone substitution; consider the following
definitions:

global baseset "myvar thatvar"
global bigset "$baseset thisvar"

$bigset is equivalent to “myvar thatvar thisvar”. Now say that we redefine the macro
baseset:

global baseset "myvar thatvar othvar"

The definition of bigset has not changed—it is still equivalent to “myvar thatvar thisvar”.
It has not changed because bigset used the definition of baseset that was current at the time
it was defined. bigset no longer knows that its contents are supposed to have any relation to
baseset.

198 [U] 18 Programming Stata

Instead, let’s assume that we had defined bigset as

global bigset "\$baseset thisvar"
at the outset. Then $bigset is equivalent to “$baseset thisvar”, which in turn is equivalent to
“myvar thatvar othvar thisvar”. Because bigset explicitly depends upon baseset, anytime

we change the definition of baseset, we will automatically change the definition of bigset as
well.

18.3.11 Constructing Windows filenames by using macros

Stata uses the \ character to tell its parser not to expand macros.
Windows uses the \ character as the directory path separator.

Mostly, there is no problem using a \ in a filename. However, if you are writing a program that
contains a Windows path in macro path and a filename in fname, do not assemble the final result as

‘path’\ ‘fname’
because Stata will interpret the \ as an instruction to not expand ‘fname’. Instead, assemble the
final result as

‘path’/‘fname’

Stata understands / as a directory separator on all platforms.

18.3.12 Accessing system values

Stata programs often need access to system parameters and settings, such as the value of , the
current date and time, or the current working directory.

System values are accessed via Stata’s c-class values. The syntax works much the same as if you
were referring to a local macro. For example, a reference to the c-class value for m, ‘c(pi)’, will
expand to a literal string containing 3.141592653589793 and could be used to do

. display sqrt(2*‘c(pi)’)
2.5066283

You could also access the current time

ne

. display "‘c(current_time)’"

11:34:57

C-class values are designed to provide one all-encompassing way to access system parameters
and settings, including system directories, system limits, string limits, memory settings, properties
of the data currently in memory, output settings, efficiency settings, network settings, and debugging
settings.

See [P] creturn for a detailed list of what is available. Typing

. creturn list

will give you the list of current settings.

[U] 18 Programming Stata 199

18.3.13 Referring to characteristics

Characteristics—see [U] 12.8 Characteristics—are like macros associated with variables. They
have names of the form varname [charname] —such as mpg[comment] —and you quote their names
just as you do macro names to obtain their contents:

To substitute the value of varname [charname], type ‘varname [charname]’
For example, ‘mpg [comment]’

You set the contents using the char command:
char varname [charname] [["]text["]]

This is similar to the 1ocal and global commands, except that there is no =exp variation. You clear
a characteristic by setting its contents to nothing just as you would with a macro:

Type char varname [charname]
or char varname [charname] ""

What is unique about characteristics is that they are saved with the data, meaning that their contents
survive from one session to the next, and they are associated with variables in the data, so if you ever
drop a variable, the associated characteristics disappear, too. (Also, _dtalcharname] is associated
with the data but not with any variable in particular.)

All the standard rules apply: characteristics may be referred to by quotation in any context, and the
characteristic’s contents are substituted for the quoted characteristic name. As with macros, referring
to a nonexistent characteristic is not an error; it merely substitutes to nothing.

18.4 Program arguments
When you invoke a program or do-file, what you type following the program or do-file name are
the arguments. For instance, if you have a program called xyz and type
. Xyz mpg weight
then mpg and weight are the program’s arguments, mpg being the first argument and weight the
second.

Program arguments are passed to programs via local macros:

Macro Contents
‘0’ what the user typed exactly as the user typed it,
odd spacing, double quotes, and all
‘1 the first argument (first word of ‘0”)
€27 the second argument (second word of €0?)
‘3’ the third argument (third word of ‘07)
C% the arguments ‘1°, ‘2°, ‘3, ..., listed one after the other

and with one blank in between; similar to but different from €0’
because odd spacing and double quotes are removed

200 [U] 18 Programming Stata

That is, what the user types is passed to you in three different ways:
1. It is passed in ‘0’ exactly as the user typed it, meaning quotes, odd spacing, and all.
2. Itis passed in ‘17, ‘2, ... broken out into arguments on the basis of blanks (but with quotes
used to force binding; we will get to that).
3. Itis passed in ‘*’ as “‘1’ ‘27 €37 ...”, which is a crudely cleaned up version of ‘0’.
You will probably not use all three forms in one program.

We recommend that you ignore ‘*’, at least for receiving arguments; it is included so that old
Stata programs will continue to work.

Operating directly with ¢0° takes considerable programming sophistication, although Stata’s syntax
command makes interpreting ‘0’ according to standard Stata syntax easy. That will be covered in
[U] 18.4.4 Parsing standard Stata syntax below.

The easiest way to receive arguments, however, is to deal with the positional macros ¢1°, ‘2,

At the start of this section, we imagined an xyz program invoked by typing xyz mpg weight.
Then ‘1’ would contain mpg, ‘2’ would contain weight, and ‘3’ would contain nothing.

Let’s write a program to report the correlation between two variables. Of course, Stata already
has a command that can do this—correlate—and, in fact, we will implement our program in
terms of correlate. It is silly, but all we want to accomplish right now is to show how Stata passes
arguments to a program.

Here is our program:

program Xyz
correlate ‘1’ ‘2’
end

Once the program is defined, we can try it:

. use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)

. Xyz mpg weight

(obs=74)
| mpg weight
mpg 1.0000
weight -0.8072 1.0000

See how this works? We typed xyz mpg weight, which invoked our xyz program with ‘1’ being
mpg and ‘2’ being weight. Our program gave the command correlate ‘1’ ‘2’, and that expanded
to correlate mpg weight.

Stylistically, this is not a good example of the use of positional arguments, but realistically, there
is nothing wrong with it. The stylistic problem is that if xyz is really to report the correlation
between two variables, it ought to allow standard Stata syntax, and that is not a difficult thing to do.
Realistically, the program works.

Positional arguments, however, play an important role, even for programmers who care about style.
When we write a subroutine—a program to be called by another program and not intended for direct
human use—we often pass information by using positional arguments.

Stata forms the positional arguments ‘1°, ‘27, ... by taking what the user typed following the
command (or do-file), parsing it on white space with double quotes used to force binding, and
stripping the quotes. The arguments are formed on the basis of words, but double-quoted strings are
kept together as one argument but with the quotes removed.

[U] 18 Programming Stata 201

Let’s create a program to illustrate these concepts. Although we would not normally define programs
interactively, this program is short enough that we will:

. program listargs

O W N

end

display "The 1st
display "The 2nd
display "The 3rd
display "The 4th

argument you typed is: ‘1°"
argument you typed is: ‘2°"
argument you typed is: ‘3°"
argument you typed is: ‘4°"

The display command simply types the double-quoted string following it; see [P] display.

Let’s try our program:

. listargs

The 1st argument you
The 2nd argument you
The 3rd argument you
The 4th argument you

typed is:
typed is:
typed is:
typed is:

We type listargs, and the result shows us what we already know—we typed nothing after the
word listargs. There are no arguments. Let’s try it again, this time adding this is a test:

. listargs this is a
The 1st argument you
The 2nd argument you
The 3rd argument you
The 4th argument you

test

typed is:
typed is:
typed is:
typed is:

this
is

a
test

We learn that the first argument is ‘this’, the second is ‘is’, and so on. Blanks always separate
arguments. You can, however, override this feature by placing double quotes around what you type:

. listargs "this is a test"

The 1st argument you
The 2nd argument you
The 3rd argument you
The 4th argument you

typed is:
typed is:
typed is:
typed is:

this is a test

This time we typed only one argument, ‘this is a test’. When we place double quotes around
what we type, Stata interprets whatever we type inside the quotes to be one argument. Here €1°
contains ‘this is a test’ (the double quotes were removed).

We can use double quotes more than once:

. listargs "this is"
The 1st argument you
The 2nd argument you
The 3rd argument you

The 4th argument you

n

a test"

typed is:
typed is:
typed is:
typed is:

this is
a test

The first argument is ‘this is’ and the second argument is ‘a test’.

18.4.1 Named positional arguments

Positional arguments can be named: in your code, you do not have to refer to ‘1°, ‘2°, €37,

.; you can instead refer to more meaningful names, such as n, a, and b; numb, alpha, and beta;
or whatever else you find convenient. You want to do this because programs coded in terms of ‘17,
€2°, ... are hard to read and therefore are more likely to contain errors.

202 [U] 18 Programming Stata

You obtain better-named positional arguments by using the args command:

program progname
args argnames

end

For instance, if your program received four positional arguments and you wanted to call them varname,
n, oldval, and newval, you would code

program progname
args varname n oldval newval

end

varname, n, oldval, and newval become new local macros, and args simply copies ‘1°, ‘27, ‘37,
and ‘4’ to them. It does not change ‘1, ‘2°, ‘3’, and ‘4’ —you can still refer to the numbered
macros if you wish—and it does not verify that your program receives the right number of arguments.
If our example above were invoked with just two arguments, ‘oldval’ and ‘newval’ would contain
nothing. If it were invoked with five arguments, the fifth argument would still be out there, stored in
local macro ¢5°.

Let’s make a command to create a dataset containing n observations on x ranging from a to b.
Such a command would be useful, for instance, if we wanted to graph some complicated mathematical
function and experiment with different ranges. It is convenient if we can type the range of x over
which we wish to make the graph rather than concocting the range by hand. (In fact, Stata already
has such a command—range—but it will be instructive to write our own.)

Before writing this program, we had better know how to proceed, so here is how you could create
a dataset containing n observations with x ranging from a to b:

1. clear
to clear whatever data are in memory.

2. set obs n
to make a dataset of n observations on no variables; if n were 100, we would type set obs
100.

3. gen x = (Ln-1)/(n-1)*(b-a)+a
because the built-in variable _n is 1 in the first observation, 2 in the second, and so on; see
[U] 13.4 System variables (_variables).

So, the first version of our program might read

program rng // arguments are n a b
clear
set obs ‘1’
generate x = (_n-1)/(_N-1)*(‘3°-27)+2’

end

The above is just a direct translation of what we just said. ‘1’ corresponds to n, ‘2’ corresponds
to a, and ‘3’ corresponds to b. This program, however, would be far more understandable if we
changed it to read

program rng
args n a b
clear
set obs ‘n’
generate x = (_n-1)/(_N-1)*(‘b’-‘a’)+‘a’
end

[U] 18 Programming Stata 203

18.4.2 Incrementing through positional arguments

Some programs contain k arguments, where k varies, but it does not much matter because the
same thing is done to each argument. One such program is summarize: type summarize mpg to
obtain summary statistics on mpg, and type summarize mpg weight to obtain first summary statistics
on mpg and then summary statistics on weight.

program ...
local i =1
while ||(‘i))|l != nn {
logic stated in terms of ¢ ¢i’’
local ++i
}
end

Equivalently, if the logic that uses ¢ i’’ contains only one reference to ¢ “i’’,

program ...
local i =1
while ||(‘i)}|l != nn {
logic stated in terms of ¢ ¢i++’°
}
end

Note the tricky construction ¢ ¢i’’, which then itself is placed in double quotes—" ‘i’ ’"—for the
while loop. To understand it, say that i contains 1 or, equivalently, ‘i’ is 1. Then ‘i’ is ‘1’ is
the name of the first variable. "€ “i’’" is the name of the first variable in quotes. The while asks
if the name of the variable is nothing and, if it is not, executes. Now ‘i’ is 2, and "““i’’" is the
name of the second variable, in quotes. If that name is not "", we continue. If the name is "", we
are done.

Say that you were writing a subroutine that was to receive k variables, but the code that processes
each variable needs to know (while it is processing) how many variables were passed to the subroutine.
You need first to count the variables (and so derive k) and then, knowing k, pass through the list
again.

program progname

local k = 1 // count the number of arguments
While II(‘k))II != nn {
local ++k
}
local --k // k contains one too many

// now pass through again
local i =1
while ‘i’ <= ‘k’ {
code in terms of ‘‘i’’ and ‘k’
local ++i

end

In the above example, we have used while, Stata’s all-purpose looping command. Stata has two
other looping commands, foreach and forvalues, and they sometimes produce code that is more
readable and executes more quickly. We direct you to read [P] foreach and [P] forvalues, but at this
point, there is nothing they can do that while cannot do. Above we coded

local i =1

while ‘i’ <= ‘k’ {
code in terms of ¢i’’ and ‘k’
local ++i

204 [U] 18 Programming Stata

to produce logic that looped over the values ‘i’ =1 to ‘k’. We could have instead coded

forvalues i = 1(1)‘k’ {
code in terms of € ¢i’’ and ‘k’

}

Similarly, at the beginning of this subsection, we said that you could use the following code in terms
of while to loop over the arguments received:

program ...
local i =1
While ll(fi))ll != nn {
logic stated in terms of € ‘i’’
local ++i
}
end

Equivalent to the above would be

program ...
foreach x of local 0 {
logic stated in terms of ‘x’
}

end

See [P] foreach and [P] forvalues.

You can combine args and incrementing through an unknown number of positional arguments.
Say that you were writing a subroutine that was to receive varname, the name of some variable;
n, which is some sort of count; and at least one and maybe 20 variable names. Perhaps you are to
sum the variables, divide by n, and store the result in the first variable. What the program does is
irrelevant; here is how we could receive the arguments:

program progname
args varname n

local i 3

While ll(‘i))ll != nn {
logic stated in terms of € ‘i’
local ++i

}

end

18.4.3 Using macro shift

Another way to code the repeat-the-same-process problem for each argument is

program ...
while "€1°" 1= "" {
logic stated in terms of ‘1’
macro shift
}
end
macro shift shifts ‘1°, 27, ¢3°, ..., one to the left: what was ‘1’ disappears, what was ‘2’

becomes ‘1, what was ‘3’ becomes ‘2, and so on.
The outside while loop continues the process until macro ‘1’ contains nothing.

macro shift is an older construct that we no longer advocate using. Instead, we recommend
that you use the techniques described in the previous subsection, that is, references to ‘ “i’’ and
foreach or forvalues.

[U] 18 Programming Stata 205

There are two reasons we make this recommendation: macro shift destroys the positional macros
€1°, ¢2°, which must then be reset using tokenize should you wish to pass through the argument
list again, and (more importantly) if the number of arguments is large (which in Stata/MP and Stata/SE
is more likely), macro shift can be extremely slow.

Q Technical note
macro shift can do one thing that would be difficult to do by other means.

‘x> the result of listing the contents of the numbered macros one after the other with one blank
between, changes with macro shift. Say that your program received a list of variables and that the
first variable was the dependent variable and the rest were independent variables. You want to save
the first variable name in ‘lhsvar’ and all the rest in ‘rhsvars’. You could code

program progname
local lhsvar "‘1°"

macro shift 1
local rhsvars "‘x’"

end

Now suppose that one macro contains a list of variables and you want to split the contents of the macro
in two. Perhaps ‘varlist’ is the result of a syntax command (see [U] 18.4.4 Parsing standard
Stata syntax), and you now wish to split ‘varlist’ into ‘lhsvar’ and ‘rhsvars’. tokenize
will reset the numbered macros:

program progname
tokenize ‘varlist’
local lhsvar "‘1°"

macro shift 1
local rhsvars "‘x’"

end

18.4.4 Parsing standard Stata syntax

Let’s now switch to ‘0’ from the positional arguments ‘1°, ‘2°,

You can parse ‘0’ (what the user typed) according to standard Stata syntax with one command.
Remember that standard Stata syntax is

[by varlist:} command [varlist] [=exp] [using ﬁlename] [lf] [in] [weight}
[, options]

See [U] 11 Language syntax.

The syntax command parses standard syntax. You code what amounts to the syntax diagram of
your command in your program, and then syntax looks at ‘0” (it knows to look there) and compares
what the user typed with what you are willing to accept. Then one of two things happens: either
syntax stores the pieces in an easily processable way or, if what the user typed does not match what
you specified, syntax issues the appropriate error message and stops your program.

206 [U] 18 Programming Stata

Consider a program that is to take two or more variable names along with an optional if exp and
in range. The program would read

program ...
syntax varlist(min=2) [if] [in]

end

You will have to read [P] syntax to learn how to specify the syntactical elements, but the command
is certainly readable, and it will not be long until you are guessing correctly about how to fill it in.
And yes, the square brackets really do indicate optional elements, and you just use them with syntax
in the natural way.

The one syntax command you code encompasses the parsing process. Here, if what the user
typed matches “two or more variables and an optional if and in”, syntax defines new local macros:

‘varlist’ the two or more variable names
‘if? the if exp specified by the user (or nothing)
‘in’ the in range specified by the user (or nothing)

To see that this works, experiment with the following program:

program tryit
syntax varlist(min=2) [if] [in]
display "varlist now contains |‘varlist’|"
display ‘"if now contains |‘if’|"’
display "in now contains | ‘in’|"
end

Below we experiment:

. tryit mpg weight

varlist now contains |mpg weightl|

if now contains ||

in now contains ||

. tryit mpg weight displ if foreign==1
varlist now contains |mpg weight displl|
if now contains |if foreign==1|

in now contains ||

. tryit mpg wei in 1/10

varlist now contains |mpg weight|

if now contains ||

in now contains |in 1/10]

. tryit mpg

too few variables specified

r(102);

In our third try we abbreviated the weight variable as wei, yet, after parsing, syntax unabbreviated
the variable for us.

If this program were next going to step through the variables in the varlist, the positional macros
€1°, ¢2°, .. .could be reset by coding

tokenize ‘varlist’

See [P] tokenize. tokenize ‘varlist’ resets ‘1’ to be the first word of ‘varlist’, ‘2’ to be
the second word, and so on.

[U] 18 Programming Stata 207

18.4.5 Parsing immediate commands

Immediate commands are described in [U] 19 Immediate commands—they take numbers as
arguments. By convention, when you name immediate commands, you should make the last letter
of the name i. Assume that mycmdi takes as arguments two numbers, the first of which must be a
positive integer, and allows the options alpha and beta. The basic structure is

program mycmdi

gettoken n 0 : 0, parse(" ,") /* get first number */
gettoken x 0 : 0, parse(" ,") /* get second number */
confirm integer number ‘n’ /* verify first is integer */
confirm number ‘x’ /* verify second is number */

if ‘n’<=0 error 2001 /*
place any other checks here

syntax [, Alpha Betal /*
make calculation and display output

check that n is positive */

parse remaining syntax */
end

See [P] gettoken.

18.4.6 Parsing nonstandard syntax

If you wish to interpret nonstandard syntax and positional arguments are not adequate for you,
you know that you face a formidable programming task. The key to the solution is the gettoken
command.

gettoken can pull one token from the front of a macro according to the parsing characters you
specify and, optionally, define another macro or redefine the initial macro to contain the remaining
(unparsed) characters. That is,

Say that €0’ contains

After gettoken,
new macro ‘token’ could contain
and ‘0’ could still contain

or

“this is what the user typed”

“this”
“this is what the user typed”

new macro ‘token’ could contain
and new macro ‘rest’ could contain
and ‘0’ could still contain

or
new macro ‘token’ could contain
and ‘0’ could contain

A simplified syntax of gettoken is

gettoken emnamel [emnameZ]

match (/macname) bind]

emname3 [,

“this”
“ is what the user typed”
“this is what the user typed”

“this”
“ is what the user typed”

parse(pchars) quotes

where emnamel, emname?2, emname3, and Imacname are the names of local macros. (Stata provides
a way to work with global macros, but in practice that is seldom necessary; see [P] gettoken.)

gettoken pulls the first token from emname3 and stores it in emnamel, and if emname2 is
specified, stores the remaining characters from emname3 in emname2. Any of emnamel, emname?2,
and emname3 may be the same macro. Typically, gettoken is coded

gettoken emnamel

: 0 [, options]

gettoken emnamel 0 : O [, options]

208 [U] 18 Programming Stata

because ‘0’ is the macro containing what the user typed. The first coding is used for token lookahead,
should that be necessary, and the second is used for committing to taking the token.

gettoken’s options are

parse("string") for specifying parsing characters
the default is parse(" "), meaning to parse on white space
it is common to specify parse(‘"" "’), meaning to parse on white space
and double quote
(¢"" " is the string double-quote-space in compound double quotes)

quotes to specify that outer double quotes not be stripped

match (Imacname) to bind on parentheses and square brackets
Imacname will be set to contain “(”, “[”, or nothing, depending on
whether emnamel was bound on parentheses or brackets or if match()
turned out to be irrelevant
emnamel will have the outside parentheses or brackets removed

gettoken binds on double quotes whenever a (simple or compound) double quote is encountered
at the beginning of emname3. Specifying parse(‘"" "’) ensures that double-quoted strings are
isolated.

quote specifies that double quotes not be removed from the source in defining the token. For
instance, in parsing “"this is" a test”, the next token is “this is” if quote is not specified and
is “"this is"” if quote is specified.

match() specifies that parentheses and square brackets be matched in defining tokens. The outside
level of parentheses or brackets is stripped. In parsing “(2+3)/2”, the next token is “2+3” if match()
is specified. In practice, match() might be used with expressions, but it is more likely to be used
to isolate bound varlists and time-series varlists.

18.5 Scalars and matrices

In addition to macros, scalars and matrices are provided for programmers; see [U] 14 Matrix
expressions, [P] scalar and [P] matrix.

As far as scalar calculations go, you can use macros or scalars. Remember, macros can hold
numbers. Stata’s scalars are, however, slightly faster and are a little more accurate than macros. The
speed issue is so slight as to be nearly immeasurable. Macros are accurate to a minimum of 12
decimal digits, and scalars are accurate to roughly 16 decimal digits. Which you use makes little
difference except in iterative calculations.

Scalars can hold strings, and, in fact, can hold longer strings than macros can. Scalars can also
hold binary “strings”. See [U] 12.4.14 Notes for programmers.

Stata has a serious matrix programming language called Mata, which is the subject of another
manual. Mata can be used to write subroutines that are called by Stata programs. See the Mata
Reference Manual, and in particular, [M-1] Ado.

[U] 18 Programming Stata 209

18.6 Temporarily destroying the data in memory

It is sometimes necessary to modify the data in memory to accomplish a particular task. A well-
behaved program, however, ensures that the user’s data are always restored. The preserve command
makes this easy:

code before the data need changing

pre serve
code that changes data freely

When you use the preserve command, Stata/MP and Stata/SE make a copy of the user’s data in
memory. Stata/IC makes a copy on disk. There is a setting, max_preservememn, to control how much
memory Stata/MP and Stata/SE will use for such copies before falling back to disk. See [P] preserve.
When your program terminates—no matter how—Stata restores the data and erases the temporary
file.

An alternative to preserve is to use frames to make a copy of the data that need changing,
manipulate the data in the newly copied frame, and then drop that frame afterward. See Example of
use in programs in [D] frame prefix.

18.7 Temporary objects

If you write a substantial program, it will invariably require the use of temporary variables in the
data, or temporary scalars, matrices, or files. Temporary objects are necessary while the program is
making its calculations, and once the program completes they are discarded.

Stata provides three commands to create temporary objects: tempvar creates names for variables
in the dataset, tempname creates names for scalars and matrices, and tempfile creates names for
files. All are described in [P] macro, and all have the same syntax:

{ tempvar | tempname | tempfile } macname [macname ...]

The commands create local macros containing names you may use.

18.7.1 Temporary variables

Say that, in making a calculation, you need to add variables sum_y and sum_z to the data. You
might be tempted to code

generate sum_y
generate sum_z

but that would be poor because the dataset might already have variables named sum_y and sum_z
in it and you will have to remember to drop the variables before your program concludes. Better is

tempvar sum_y
generate ‘sum_y’ = ...
tempvar sum_z
generate ‘sum_z’ = ...

210 [U] 18 Programming Stata

or

tempvar sum_y sum_z
generate ‘sum_y’ = ...
generate ‘sum_z’ = ...

It is not necessary to explicitly drop ‘sum_y’ and ‘sum_z’ when you are finished, although you
may if you wish. Stata will automatically drop any variables with names assigned by tempvar.
After issuing the tempvar command, you must refer to the names with the enclosing quotes, which
signifies macro expansion. Thus, after typing tempvar sum_y—the one case where you do not put
single quotes around the name—refer thereafter to the variable ‘sum_y’, with quotes. tempvar does
not create temporary variables. Instead tempvar creates names that may later be used to create new
variables that will be temporary, and tempvar stores that name in the local macro whose name you
provide.

A full description of tempvar can be found in [P] macro.

18.7.2 Temporary scalars and matrices
tempname works just like tempvar. For instance, a piece of your code might read

tempname YXX XXinv

matrix accum ‘YXX’ = price weight mpg
matrix ‘XXinv’ = invsym(‘YXX’[2..., 2...])
tempname b

matrix ‘b’ = ‘XXinv’*‘YXX’[1..., 1]

The above code solves for the coefficients of a regression on price on weight and mpg; see
[U] 14 Matrix expressions and [P] matrix for more information on the matrix commands.

As with temporary variables, temporary scalars and matrices are automatically dropped at the
conclusion of your program.

18.7.3 Temporary files

In cases where you ordinarily might think you need temporary files, you may not because of
Stata’s ability to preserve and automatically restore the data in memory; see [U] 18.6 Temporarily
destroying the data in memory above.

For more complicated programs, Stata does provide temporary files. A code fragment might read

preserve /* save original data */
tempfile males females

keep if sex==

save "‘males’"

restore, preserve /* get back original data */
keep if sex==0

save "‘females’"

As with temporary variables, scalars, and matrices, it is not necessary to delete the temporary files
when you are through with them; Stata automatically erases them when your program ends.

[U] 18 Programming Stata 211

18.7.4 Temporary frames

You might want a program to temporarily create an additional dataset in memory without disturbing
the dataset in the current frame. You can obtain a temporary name for a frame, copy or load data
into it, and perform manipulations on those data. When your program is done, that frame and the
data in it will automatically be removed from memory. For example, some code might read

tempname frname
frame copy default ‘frname’

frame ‘frname’ {
commands which modify the data in frame ‘frname’

}

When your program exits, successfully or not, any temporary frames it created will automatically
be removed from memory.

18.8 Accessing results calculated by other programs

Stata commands that report results also store the results where they can be subsequently used
by other commands or programs. This is documented in the Stored results section of the particular
command in the reference manuals. Commands store results in one of three places:

1. r-class commands, such as summarize, store their results in r(); most commands are r-class.

2. e-class commands, such as regress, store their results in e(); e-class commands are Stata’s
model estimation commands.

3. s-class commands (there are no good examples) store their results in s (); this is a rarely used
class that programmers sometimes find useful to help parse input.

Commands that do not store results are called n-class commands. More correctly, these commands
require that you state where the result is to be stored, as in generate newvar =

> Example 1

You wish to write a program to calculate the standard error of the mean, which is given by the
formula /s2/n, where s? is the calculated variance. (You could obtain this statistic by using the ci
command, but we will pretend that is not true.) You look at [R] summarize and learn that the mean
is stored in r(mean), the variance in r(Var), and the number of observations in r (N). With that
knowledge, you write the following program:

program meanse

quietly summarize ‘1°

display " mean = " r(mean)

display "SE of mean = " sqrt(r(Var)/r(N))
end

The result of executing this program is

. meanse mpg
mean
SE of mean

21.297297
.67255109

N

If you run an r-class command and type return list or run an e-class command and type
ereturn list, Stata will summarize what was stored:

212 [U] 18 Programming Stata

. use https://www.stata-press.com/data/r16/auto

(1978 Automobile Data)

. regress mpg weight displ

(output omitted)
. ereturn list
scalars:
e(N) = 74
e(df_m) 2
e(df_r) = 71
e(F) 66.78504752026517
e(r2) = .6529306984682528
e(rmse) 3.45606176570828
e(mss) = 1595.409691543724
e(rss) 848.0497679157351
e(r2_a) = .643154098425105
e(11) = -195.2397979466294
e(11_0) -234.3943376482347
e(rank) = 3
macros:
e(cmdline) "regress mpg weight displ"
e(title) "Linear regression"
e(marginsok) "XB default"
e(vce) "ols"
e(depvar) "mpg"
e(cmd) "regress"
e(properties) "o V"
e(predict) "regres_p"
e(model) "ols"
e(estat_cmd) "regress_estat"
matrices:
e(b) 1x3
e (V) 3x3
functions:
e(sample)
. summarize mpg if foreign
Variable | Mean Std. Dev. Min Max
mpg | 24.77273 6.611187 14 41
. return list
scalars:
r(N) = 22
r(sum_w) 22
r(mean) = 24.77272727272727
r(Var) 43.70779220779221

r(sd) = 6.611186898567625
r(min) 14
r(max) = 41
r(sum) = 545

In the example above, we ran regress followed by summarize. As a result, e(N) records the
number of observations used by regress (equal to 74), and r(N) records the number of observations
used by summarize (equal to 22). r(N) and e(N) are not the same.

If we now ran another r-class command—say, tabulate—the contents of r() would change,
but those in e () would remain unchanged. You might, therefore, think that if we then ran another
e-class command, say, probit, the contents of e () would change, but r () would remain unchanged.
Although it is true that e () results remain in place until the next e-class command is executed, do
not depend on r() remaining unchanged. If an e-class or n-class command were to use an r-class

[U] 18 Programming Stata 213

command as a subroutine, that would cause r() to change. Anyway, most commands are r-class, so
the contents of r() change often.

Q Technical note

It is, therefore, of great importance that you access results stored in r() immediately after the
command that sets them. If you need the mean and variance of the variable ‘1’ for subsequent
calculation, do not code

summarize ‘1°
. r(mean) ... r(Var) ...

Instead, code

summarize ‘1°
local mean = r(mean)
local var = r(Var)

. ‘mean’ ... ‘var’ ...

or

tempname mean var
summarize ‘1°

scalar ‘mean’ = r(mean)
scalar ‘var’ = r(Var)
. ‘mean’ ... ‘var’ ...

a

Stored results, whether in r() or e(), come in three types: scalars, macros, and matrices. If you
look back at the ereturn list and return list output, you will see that regress stores examples
of all three, whereas summarize stores just scalars. (regress also stores the “function” e (sample),
as do all the other e-class commands; see [U] 20.7 Specifying the estimation subsample.)

Regardless of the type of e(name) or r(name), you can just refer to e(name) or r(name).
That was the rule we gave in [U] 13.6 Accessing results from Stata commands, and that rule
is sufficient for most uses. There is, however, another way to refer to stored results. Rather than
referring to r(name) and e(name), you can embed the reference in macro-substitution characters
€2 to produce ‘r(name)’ and ‘e(name)’. The result is the same as macro substitution; the stored
result is evaluated, and then the evaluation is substituted:

. display "You can refer to " e(cmd) " or to ‘e(cmd)’"
You can refer to regress or to regress

This means, for instance, that typing ‘e(cmd)’ is the same as typing regress because e(cmd)
contains “regress’:

‘e(cmd)’
Source | SS df MS Number of obs = 74
F(2, 71) = 66.79
Model | 1595.40969 2 797.704846 Prob > F = 0.0000

(remaining output omitted)

In the ereturn list, e(cmd) was listed as a macro, and when you place a macro’s name in single
quotes, the macro’s contents are substituted, so this is hardly a surprise.

214 [U] 18 Programming Stata

What is surprising is that you can do this with scalar and even matrix stored results. e (N) is a
scalar equal to 74 and may be used as such in any expression such as “display e(mss)/e(N)”
or “local meanss = e(mss)/e(N)”. ‘e(N)’ substitutes to the string “74” and may be used in
any context whatsoever, such as “local val‘e(N)’ = e(N)” (which would create a macro named
val74). The rules for referring to stored results are

1. You may refer to r(name) or e(name) without single quotes in any expression and only in
an expression. (Referring to s-class s(name) without single quotes is not allowed.)

1.1 If name does not exist, missing value (.) is returned; it is not an error to refer to a
nonexistent stored result.

1.2 If name is a scalar, the full double-precision value of name is returned.

1.3 If name is a macro, it is examined to determine whether its contents can be interpreted
as a number. If so, the number is returned; otherwise, the string contents of name are
returned.

1.4 If name is a matrix, the full matrix is returned.

2. You may refer to ‘r(name)’, ‘e(name)’, or ‘s(name)’—note the presence of quotes
indicating macro substitution—in any context whatsoever.

2.1 If name does not exist, nothing is substituted; it is not an error to refer to a nonexistent
stored result. The resulting line is the same as if you had never typed °r(name)’,
‘e(name)’, or ‘s(name)’.

2.2 If name is a scalar, a string representation of the number accurate to no less than 12
digits of precision is substituted.

2.3 If name is a macro, the full contents are substituted.
2.4 If name is a matrix, the word matrix is substituted.

In general, you should refer to scalar and matrix stored results without quotes—r (name) and
e (name) —and to macro stored results with quotes— ‘r (name) °, ‘e (name)’, and ‘s (name) >—but
it is sometimes convenient to switch. Say that stored result r (example) contains the number of
periods patients are observed, and assume that r (example) was stored as a macro and not as a
scalar. You could still refer to r (example) without the quotes in an expression context and obtain
the expected result. It would have made more sense for you to have stored r (example) as a scalar,
but really it would not matter, and the user would not even have to know how the stored result was
stored.

Switching the other way is sometimes useful, too. Say that stored result r(N) is a scalar that
contains the number of observations used. You now want to use some other command that has an
option n(#) that specifies the number of observations used. You could not type n(r(N)) because
the syntax diagram says that the n() option expects its argument to be a literal number. Instead, you
could type n(‘r(N)’).

18.9 Accessing results calculated by estimation commands
Estimation results are stored in e (), and you access them in the same way you access any stored
result; see [U] 18.8 Accessing results calculated by other programs above. In summary,
1. Estimation commands—regress, logistic, etc.—store results in e ().

2. Estimation commands store their name in e(cmd). For instance, regress stores “regress”
and poisson stores “poisson” in e(cmd).

[U] 18 Programming Stata 215

3. Estimation commands store the command they executed in e(cmdline). For instance, if you
typed reg mpg displ, stored in e(cmdline) would be “reg mpg displ”.

4. Estimation commands store the number of observations used in e(N), and they identify the
estimation subsample by setting e (sample). You could type, for instance, summarize if
e(sample) to obtain summary statistics on the observations used by the estimator.

5. Estimation commands store the entire coefficient vector and variance—covariance matrix of the
estimators in e (b) and e (V). These are matrices, and they may be manipulated like any other
matrix:

. matrix list e(b)
e(b)[1,3]
weight displ _cons
yl -.00656711 .00528078 40.084522
. matrix y = e(b)*e(V)*e(b)’
. matrix list y
symmetric y[1,1]
yi
yl 6556.982
6. Estimation commands set _b[name] and _se[name] as convenient ways to use coefficients
and their standard errors in expressions; see [U] 13.5 Accessing coefficients and standard
errors.

7. Estimation commands may set other e() scalars, macros, or matrices containing more infor-
mation. This is documented in the Stored results section of the particular command in the
command reference.

> Example 2
If you are writing a command for use after regress, early in your code you should include the
following:
if "‘e(cmd)’" != "regress" {
error 301
}

This is how you verify that the estimation results that are stored have been set by regress and not
by some other estimation command. Error 301 is Stata’s “last estimates not found” error.

4

18.10 Storing results

If your program calculates something, it should store the results of the calculation so that other
programs can access them. In this way, your program not only can be used interactively but also can
be used as a subroutine for other commands.

Storing results is easy:

1. On the program line, specify the rclass, eclass, or sclass option according to whether
you intend to return results in r(), e(), or s().
2. Code
return scalar name = exp (same syntax as scalar without the return)
return local name ... (same syntax as local without the return)
return matrix name matname (moves matname to r(name))

to store results in r ().

216 [U] 18 Programming Stata

3. Code

ereturn name = exp (same syntax as scalar without the ereturn)
ereturn local name ... (same syntax as local without the ereturn)
ereturn matrix name matname (moves matname to e (name))

to store results in e(). You do not store the coefficient vector and variance matrix e(b) and
e (V) in this way; instead you use ereturn post.

4. Code

sreturn local name ... (same syntax as local without the sreturn)

to store results in s(). (The s-class has only macros.)

A program must be exclusively r-class, e-class, or s-class.

18.10.1 Storing results in r()

In [U] 18.8 Accessing results calculated by other programs, we showed an example that reported
the mean and standard error of the mean. A better version would store in r() the results of its
calculations and would read

program meanse, rclass
quietly summarize ‘1°
local mean = r(mean)
local sem = sqrt(r(Var)/r(N))

display " mean = " ‘mean’
display "SE of mean = " ‘sem’
return scalar mean = ‘mean’
return scalar se = ‘sem’

end

Running meanse now sets r(mean) and r(se):

. meanse mpg
mean = 21.297297
SE of mean = .67255109

. return list

scalars:
r(se)
r (mean)

.6725510870764975
21.2972972972973

In this modification, we added the rclass option to the program statement, and we added two
return commands to the end of the program.

Although we placed the return statements at the end of the program, they may be placed at the
point of calculation if that is more convenient. A more concise version of this program would read

program meanse, rclass
quietly summarize ‘1°
return scalar mean = r(mean)
return scalar se = sqrt(r(Var)/r(N))
display " mean = " return(mean)
display "SE of mean = " return(se)
end

[U] 18 Programming Stata 217

The return() function is just like the r () function, except that return() refers to the results that
this program will return rather than to the stored results that currently are returned (which here are due
to summarize). That is, when you code the return command, the result is not immediately posted
to r(). Rather, Stata holds onto the result in return() until your program concludes, and then it
copies the contents of return() to r(). While your program is active, you may use the return()
function to access results you have already “returned”. (return() works just like r() works after
your program returns, meaning that you may code ‘return()’ to perform macro substitution.)

18.10.2 Storing results in e()

Storing in e() is in most ways similar to saving in r(): you add the eclass option to the
program statement, and then you use ereturn ... just as you used return ... to store results.
There are, however, some significant differences:

1. Unlike r (), estimation results are stored in e() the instant you issue an ereturn scalar,
ereturn local, or ereturn matrix command. Estimation results can consume considerable
memory, and Stata does not want to have multiple copies of the results floating around. That
means you must be more organized and post your results at the end of your program.

2. In your code when you have your estimates and are ready to begin posting, you will first
clear the previous estimates, set the coefficient vector e (b) and corresponding variance matrix

e(V),

and set the estimation-sample function e (sample). How you do this depends on how

you obtained your estimates:

2.1

22

2.3

24

If you obtained your estimates by using Stata’s likelihood maximizer m1, this is automat-
ically handled for you; skip to step 3.

If you obtained estimates by “stealing” an existing estimator, e (b), e (V), and e (sample)
already exist, and you will not want to clear them; skip to step 3.

If you write your own code from start to finish, you use the ereturn post com-
mand; see [P] ereturn. You will code something like “ereturn post ‘b’ ‘V’, esam-
ple(‘touse’)”, where ‘b’ is the name of the coefficient vector, ‘V’ is the name of
the corresponding variance matrix, and ‘touse’ is the name of a variable containing 1
if the observation was used and O if it was ignored. ereturn post clears the previous
estimates and moves the coefficient vector, variance matrix, and variable into e (b), e(V),
and e(sample).

A variation on (2.3) is when you use an existing estimator to produce the estimates but
do not want all the other e () results stored by the estimator. Then you code

tempvar touse

tempname b V

matrix ‘b’ = e(b)

matrix ‘V’ = e(V)

quietly generate byte ‘touse’ = e(sample)
ereturn post ‘b’ ‘V’, esample(‘touse’)

3. You now store anything else in e() that you wish by using the ereturn scalar, ereturn
local, or ereturn matrix command.

4. Save e(cmdline) by coding

ereturn local cmdline ‘"cmdname ‘0°"°

This is not required, but it is considered good style.

218 [U] 18 Programming Stata

5. You code ereturn local cmd "cmdname". Stata does not consider estimation results complete
until this command is posted, and Stata considers the results to be complete when this is posted,
so you must remember to do this and to do this last. If you set e(cmd) too early and the user
pressed Break, Stata would consider your estimates complete when they are not.

Say that you wish to write the estimation command with syntax
myest depvar vary vary [if exp] [in range|, optsetl optser2

where optset] affects how results are displayed and optser2 affects the estimation results themselves.
One important characteristic of estimation commands is that, when typed without arguments, they
redisplay the previous estimation results. The outline is

program myest, eclass
local options "optsetl"
if replay() {

if "‘e(cmd)’"!="myest" {
error 301 /* last estimates not found */
}
syntax [, ‘options’]
}
else {

syntax varlist [if] [in] [, ‘options’ optset2]
marksample touse

Code contains either this,
tempnames b V
commands for performing estimation
assume produces ‘b’ and ‘V’
ereturn post ‘b’ ‘V’, esample(‘touse’)
ereturn local depvar "‘depv’"

or this,
ml model ... if ‘touse’ ...

and regardless, concludes,
perhaps other ereturn commands appear here
ereturn local cmdline ‘"myest ‘0’"’
ereturn local cmd "myest"

}
/* (re)display results ... */

code typically reads

code to output header above coefficient table

ereturn display /* displays coefficient table */
or

ml display /* displays header and coef. table */
end

Here is a list of the commonly stored e () results. Of course, you may create any e () results that
you wish.

e(N) (scalar)
Number of observations.

e(df_m) (scalar)
Model degrees of freedom.

e(df_r) (scalar)
“Denominator” degrees of freedom if estimates are nonasymptotic.

e(r2_p) (scalar)
Value of the pseudo-R? if it is calculated. (If a “real” R? is calculated as it would be in linear
regression, it is stored in (scalar) e(r2).)

[U] 18 Programming Stata 219

e (F) (scalar)
Test of the model against the constant-only model, if relevant, and if results are nonasymptotic.

e(11) (scalar)
Log-likelihood value, if relevant.

e(11_0) (scalar)
Log-likelihood value for constant-only model, if relevant.

e(N_clust) (scalar)
Number of clusters, if any.

e(chi2) (scalar)
Test of the model against the constant-only model, if relevant, and if results are asymptotic.

e(rank) (scalar)
Rank of e(V).

e(cmd) (macro)
Name of the estimation command.

e(cmdline) (macro)
Command as typed.

e(depvar) (macro)
Names of the dependent variables.

e(wtype) and e(wexp) (macros)
If weighted estimation was performed, e (wtype) contains the weight type (fweight, pweight,
etc.) and e (wexp) contains the weighting expression.

e(title) (macro)
Title in estimation output.

e(clustvar) (macro)
Name of the cluster variable, if any.

e(vcetype) (macro)
Text to appear above standard errors in estimation output; typically Robust, Bootstrap, Jack-
knife, or "".

e(vce) (macro)
veetype specified in vce ().

e(chi2type) (macro)
LR or Wald or other depending on how e(chi2) was performed.

e(properties) (macro)
Typically contains b V.

e(predict) (macro)
Name of the command that predict is to use; if this is blank, predict uses the default _predict.

e(b) and e (V) (matrices)
The coefficient vector and corresponding variance matrix. Stored when you coded ereturn post.

e(sample) (function)
This function was defined by ereturn post’s esample () option if you specified it. You specified
a variable containing 1 if you used an observation and 0 otherwise. ereturn post stole the
variable and created e (sample) from it.

220 [U] 18 Programming Stata

18.10.3 Storing results in s()

s () is a strange class because, whereas the other classes allow scalars, macros, and matrices, s ()
allows only macros.

s () is seldom used and is for subroutines that you might write to assist in parsing the user’s input
prior to evaluating any user-supplied expressions.

Here is the problem that s() solves: say that you create a nonstandard syntax for some command
so that you have to parse through it yourself. The syntax is so complicated that you want to create
subroutines to take pieces of it and then return information to your main routine. Assume that your
syntax contains expressions that the user might type. Now say that one of the expressions the user
types is, for example, r (mean)/sqrt (r(Var))—perhaps the user is using results left behind by
summarize.

If, in your parsing step, you call subroutines that return results in r (), you will wipe out r (mean)
and r(Var) before you ever get around to seeing them, much less evaluating them. So, you must
be careful to leave r() intact until your parsing is complete; you must use no r-class commands,
and any subroutines you write must not touch r(). You must use s-class subroutines because s-class
routines return results in s() rather than r(). S-class provides macros only because that is all you
need to solve parsing problems.

To create an s-class routine, specify the sclass option on the program line and then use sreturn
local to return results.

S-class results are posted to s() at the instant you issue the sreturn() command, so you must
organize your results. Also, s() is never automatically cleared, so occasionally coding sreturn
clear at appropriate points in your code is a good idea. Few programs need s-class subroutines.

18.11 Ado-files
Ado-files were introduced in [U] 17 Ado-files.

When a user types ‘gobbledygook’, Stata first asks itself if gobbledygook is one of its built-in com-
mands. If so, the command is executed. Otherwise, it asks itself if gobbledygook is a defined program.
If so, the program is executed. Otherwise, Stata looks in various directories for gobbledygook.ado.
If there is no such file, the process ends with the “unrecognized command” error.

If Stata finds the file, it quietly issues to itself the command ‘run gobbledygook .ado’ (specifying the
path explicitly). If that runs without error, Stata asks itself again if gobbledygook is a defined program.
If not, Stata issues the “unrecognized command” error. (Here somebody wrote a bad ado-file.) If the
program is defined, as it should be, Stata executes it.

Thus you can arrange for programs you write to be loaded automatically. For instance, if you were
to create hello.ado containing

begin hello.ado
program hello
display "hi there"
end
end hello.ado

and store the file in your current directory or your personal directory (see [U] 17.5.2 Where is my
personal ado-directory?), you could type hello and be greeted by a reassuring

. hello
hi there

You could, at that point, think of hello as just another part of Stata.

[U] 18 Programming Stata 221

There are two places to put your personal ado-files. One is the current directory, and that is a
good choice when the ado-file is unique to a project. You will want to use it only when you are
in that directory. The other place is your personal ado-directory, which is probably something like
C:\ado\personal if you use Windows, ~/ado/personal if you use Unix, and ~/ado/personal
if you use a Mac. We are guessing.

To find your personal ado-directory, enter Stata and type

. personal

Q Technical note

Stata looks in various directories for ado-files, defined by the c-class value c(adopath), which
contains
BASE;SITE; . ; PERSONAL; PLUS; OLDPLACE

The words in capital letters are codenames for directories, and the mapping from codenames to
directories can be obtained by typing the sysdir command. Here is what sysdir shows on one
particular Windows computer:

. sysdir
STATA: C:\Program Files\Statal6\
BASE: C:\Program Files\Statal6\ado\base\
SITE: C:\Program Files\Statal6\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\

OLDPLACE: C:\ado\

Even if you use Windows, your mapping might be different because it all depends on where you
installed Stata. That is the point of the codenames. They make it possible to refer to directories
according to their logical purposes rather than their physical location.

The c-class value c(adopath) is the search path, so in looking for an ado-file, Stata first looks
in BASE then in SITE, and so on, until it finds the file. Actually, Stata not only looks in BASE
but also takes the first letter of the ado-file it is looking for and looks in the lettered subdirectory.
For files with the extension .style, Stata will look in a subdirectory named style rather than
a lettered subdirectory. Say that Stata was looking for gobbledygook.ado. Stata would look up
BASE (C:\Program Files\Statal6\ado\base in our example) and, if the file were not found
there, it would look in the g subdirectory of BASE (C:\Program Files\Statal6\ado\base\g)
before looking in SITE, whereupon it would follow the same rules. If Stata were looking for
gobbledygook.style, Stata would look up BASE (C:\Program Files\Statal6\ado\base in our
example) and, if the file were not found there, it would look in the style subdirectory of BASE
(C:\Program Files\Statal6\ado\base\style) before looking in SITE, whereupon it would
follow the same rules.

Why the extra complication? We distribute hundreds of ado-files, help files, and other file types
with Stata, and some operating systems have difficulty dealing with so many files in the same directory.
All operating systems experience at least a performance degradation. To prevent this, the ado-directory
we ship is split 28 ways (letters a—z, underscore, and style). Thus the Stata command ci, which
is implemented as an ado-file, can be found in the subdirectory ¢ of BASE.

If you write ado-files, you can structure your personal ado-directory this way, too, but there is no
reason to do so until you have more than, say, 250 files in one directory.
a

222 [U] 18 Programming Stata

Q Technical note

After finding and running gobbledygook . ado, Stata calculates the total size of all programs that it
has automatically loaded. If this exceeds adosize (see [P] sysdir), Stata begins discarding the oldest
automatically loaded programs until the total is less than adosize. Oldest here is measured by the
time last used, not the time loaded. This discarding saves memory and does not affect you, because
any program that was automatically loaded could be automatically loaded again if needed.

It does, however, affect performance. Loading the program takes time, and you will again have to
wait if you use one of the previously loaded-and-discarded programs. Increasing adosize reduces
this possibility, but at the cost of memory. The set adosize command allows you to change this
parameter; see [P] sysdir. The default value of adosize is 1,000. A value of 1,000 for adosize
means that up to 1,000 K can be allocated to autoloaded programs. Experimentation has shown that
this is a good number—increasing it does not improve performance much.

a

18.11.1 Version

We recommend that the first line following program in your ado-file declare the Stata release
under which you wrote the program; hello.ado would read better as

begin hello.ado
program hello

version 16.1

display "hi there"
end

end hello.ado

We introduced the concept of version in [U] 16.1.1 Version. In regular do-files, we recommend that
the version line appear as the first line of the do-file. For ado-files, the line appears after the
program because loading the ado-file is one step and executing the program is another. It is when
Stata executes the program defined in the ado-file that we want to stipulate the interpretation of the
commands.

The inclusion of the version line is of more importance in ado-files than in do-files because
ado-files have longer lives than do-files, so it is more likely that you will use an ado-file with a later
release and ado-files tend to use more of Stata’s features, increasing the probability that any change
to Stata will affect them.

18.11.2 Comments and long lines in ado-files

Comments in ado-files are handled the same way as in do-files: you enclose the text in
/* comment */ brackets, or you begin the line with an asterisk (*), or you interrupt the line
with //; see [U] 16.1.2 Comments and blank lines in do-files.

Logical lines longer than physical lines are also handled as they are in do-files: either you change
the delimiter to a semicolon (;) or you comment out the new line by using /// at the end of the
previous physical line.

[U] 18 Programming Stata 223

18.11.3 Debugging ado-files
Debugging ado-files is a little tricky because it is Stata and not you that controls when the ado-file
is loaded.

Assume that you wanted to change hello to say “Hi, Mary”. You open hello.ado in the Do-file
Editor and change it to read

begin hello.ado
program hello
version 16.1
display "hi, Mary"
end
end hello.ado

After saving it, you try it:

. hello
hi there

Stata ran the old copy of hello—the copy it still has in its memory. Stata wants to be fast about
executing ado-files, so when it loads one, it keeps it around a while—waiting for memory to get
short—before clearing it from its memory. Naturally, Stata can drop hello anytime because it can
always reload it from disk.

You changed the copy on disk, but Stata still has the old copy loaded into memory. You type
discard to tell Stata to forget these automatically loaded things and to force itself to get new copies
of the ado-files from disk:

. discard

. hello
hi, Mary

You had to type discard only because you changed the ado-file while Stata was running. Had you
exited Stata and returned later to use hello, the discard would not have been necessary because
Stata forgets things between sessions anyway.

18.11.4 Local subroutines

An ado-file can contain more than one program, and if it does, the other programs defined in the
ado-file are assumed to be subroutines of the main program. For example,

begin decoy.ado
program decoy

duck ...
end

program duck

end

end decoy.ado

duck is considered a local subroutine of decoy. Even after decoy.ado was loaded, if you typed
duck, you would be told “unrecognized command”. To emphasize what local means, assume that
you have also written an ado-file named duck.ado:

224 [U] 18 Programming Stata

begin duck.ado
program duck

end
end duck.ado

Even so, when decoy called duck, it would be the program duck defined in decoy.ado that was
called. To further emphasize what Iocal means, assume that decoy.ado contains

begin decoy.ado
program decoy

manic ...
duck ...
end
program duck

end
end decoy.ado

and that manic.ado contained

begin manic.ado
program manic

duck ...
end
end manic.ado

Here is what would happen when you executed decoy:
1. decoy in decoy.ado would begin execution. decoy calls manic.
. manic in manic.ado would begin execution. manic calls duck.
. duck in duck.ado (yes) would begin execution. duck would do whatever and return.
. manic regains control and eventually returns.

. decoy is back in control. decoy calls duck.

AN L B~ W N

. duck in decoy.ado would execute, complete, and return.
7. decoy would regain control and return.

When manic called duck, it was the global ado-file duck.ado that was executed, yet when decoy
called duck, it was the local program duck that was executed.

Stata does not find this confusing and neither should you.

18.11.5 Development of a sample ado-command

Below we demonstrate how to create a new Stata command. We will program an influence measure
for use with linear regression. It is an interesting statistic in its own right, but even if you are not
interested in linear regression and influence measures, the focus here is on programming, not on the
particular statistic chosen.

[U] 18 Programming Stata 225

Belsley, Kuh, and Welsch (1980, 24) present a measure of influence in linear regression defined as

Var (gf”)
Var(y;)
which is the ratio of the variance of the ith fitted value based on regression estimates obtained by

omitting the ith observation to the variance of the ith fitted value estimated from the full dataset.
This ratio is estimated using

n—k d;
S (s TR R G N SR
FVARATIO; n—(k+1) { 1-— hn}(Pit)

where n is the sample size; k is the number of estimated coefficients; d? = e?/e’e and e; is the
ith residual; and h;; is the ith diagonal element of the hat matrix. The ingredients of this formula
are all available through Stata, so, after estimating the regression parameters, we can easily calculate
FVARATIO;. For instance, we might type

. regress mpg weight displ

. predict hii if e(sample), hat

. predict ei if e(sample), resid

. quietly count if e(sample)

. scalar nreg = r(N)

. generate eTe = sum(eixei)

. generate di2 = (ei*ei)/eTe[_N]

. generate FVi = (nreg - 3) / (nreg - 4) * (1 - di2/(1-hii)) / (1-hii)

The number 3 in the formula for FVi represents k, the number of estimated parameters (which is an
intercept plus coefficients on weight and displ), and the number 4 represents k + 1.

Q Technical note

Do you understand why this works? predict can create h;; and e;, but the trick is in getting
€’e—the sum of the squared e;s. Stata’s sum() function creates a running sum. The first observation
of eTe thus contains e%; the second, ef + e%; the third, e% + e% + e%; and so on. The last observation,

then, contains Zf\;l eZ, which is e’e. (We specified if e(sample) on our predict commands to
restrict calculations to the estimation subsample, so hii and eii might have missing values, but that
does not matter because sum() treats missing values as contributing zero to the sum.) We use Stata’s
explicit subscripting feature and then refer to eTe [_N], the last observation. (See [U] 13.3 Functions
and [U] 13.7 Explicit subscripting.) After that, we plug into the formula to obtain the result.

a

Assuming that we often wanted this influence measure, it would be easier and less prone to error
if we canned this calculation in a program. Our first draft of the program reflects exactly what we
would have typed interactively:

begin fvaratio.ado, version 1
program fvaratio

version 16.1

predict hii if e(sample), hat

predict ei if e(sample), resid

quietly count if e(sample)

scalar nreg = r(N)

generate eTe = sum(ei*ei)

generate di2 = (ei*ei)/eTe[_N]

generate FVi = (nreg - 3) / (nreg - 4) * (1 - di2/(1-hii)) / (1-hii)

drop hii ei eTe di2

end

end fvaratio.ado, version 1

226 [U] 18 Programming Stata

All we have done is to enter what we would have typed into a file, bracketing it with program
fvaratio and end. Because our command is to be called fvaratio, the file must be named
fvaratio.ado and must be stored in either the current directory or our personal ado-directory (see
[U] 17.5.2 Where is my personal ado-directory?).

Now when we type fvaratio, Stata will be able to find it, load it, and execute it. In addition
to copying the interactive lines into a program, we added the line ‘drop hii ...’ to eliminate the
working variables we had to create along the way.

So, now we can interactively type

. regress mpg weight displ
. fvaratio

and add the new variable FVi to our data.

Our program is not general. It is suitable for use after fitting a regression model on two, and only
two, independent variables because we coded a 3 in the formula for k. Stata statistical commands
such as regress store information about the problem and answer in e (). Looking in Stored results in
[R] regress, we find that e (df _m) contains the model degrees of freedom, which is k£ — 1, assuming
that the model has an intercept. Also, the sample size of the dataset used in the regression is stored
in e(N), eliminating our need to count the observations and define a scalar containing this count.
Thus the second draft of our program reads

begin fvaratio.ado, version 2
program fvaratio

version 16.1

predict hii if e(sample), hat

predict ei if e(sample), resid

gen eTe = sum(ei*ei)

gen di2 = (ei*ei)/eTe[_N]

gen FVi = (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * /// changed this
(1 - di2/(1-hii)) / (1-hii) // version

drop hii ei eTe di2
end
end fvaratio.ado, version 2

In the formula for FVi, we substituted (e (df_m)+1) for the literal number 3, (e (df_m)+2) for the
literal number 4, and e (N) for the sample size.

Back to the substance of our problem, regress also stores the residual sum of squares in e(rss),
so calculating eTe is not really necessary:

begin fvaratio.ado, version 3
program fvaratio

version 16.1

predict hii if e(sample), hat

predict ei if e(sample), resid

gen di2 = (eixei)/e(rss) // changed this version

gen FVi = (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) = /17

(1 - di2/(1-hii)) / (1-hii)

drop hii ei di2

end

end fvaratio.ado, version 3

Our program is now shorter and faster, and it is completely general. This program is probably good
enough for most users; if you were implementing this solely for your own occasional use, you could
stop right here. The program does, however, have the following deficiencies:

[U] 18 Programming Stata 227

1. When we use it with data with missing values, the answer is correct, but we see messages
about the number of missing values generated. (These messages appear when the program is
generating the working variables.)

2. We cannot control the name of the variable being produced—it is always called FVi. Moreover,
when FVi already exists (say, from a previous regression), we get an error message that FVi
already exists. We then have to drop the old FVi and type fvaratio again.

3. If we have created any variables named hii, ei, or di2, we also get an error that the variable
already exists, and the program refuses to run.

Fixing these problems is not difficult. The fix for problem 1 is easy; we embed the entire program
in a quietly block:

begin fvaratio.ado, version 4
program fvaratio
version 16.1
quietly { // new this version
predict hii if e(sample), hat
predict ei if e(sample), resid
gen di2 = (eixei)/e(rss)
gen FVi = (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * /17
(1 - di2/(1-hii)) / (1-hii)
drop hii ei di2
} // new this version
end

end fvaratio.ado, version 4

The output for the commands between the quietly { and } is now suppressed—the result is the
same as if we had put quietly in front of each command.

Solving problem 2—that the resulting variable is always called FVi—requires use of the syntax
command. Let’s put that off and deal with problem 3—that the working variables have nice names
like hii, ei, and di2, and so prevent users from using those names in their data.

One solution would be to change the nice names to unlikely names. We could change hii to
MyHiiVaR, which would not guarantee the prevention of a conflict but would certainly make it unlikely.
It would also make our program difficult to read, an important consideration should we want to change
it in the future. There is a better solution. Stata’s tempvar command (see [U] 18.7.1 Temporary
variables) places names into local macros that are guaranteed to be unique:

begin fvaratio.ado, version 5
program fvaratio
version 16.1
tempvar hii ei di2 // new this version
quietly {
predict ‘hii’ if e(sample), hat // changed, as are other lines
predict ‘ei’ if e(sample), resid
gen ‘di2’ = (‘ei’x‘ei’)/e(rss)
gen FVi = (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * ///
(1 - ‘di2’/(1-‘hii’)) / (1-‘hii’)

end

end fvaratio.ado, version 5

At the beginning of our program, we declare the temporary variables. (We can do it outside or inside
the quietly—it makes no difference—and we do not have to do it at the beginning or even all at
once; we could declare them as we need them, but at the beginning is prettiest.) When we refer to a
temporary variable, we do not refer directly to it (such as by typing hii); we refer to it indirectly by
typing open and close single quotes around the name (‘hii’). And at the end of our program, we

228 [U] 18 Programming Stata

no longer bother to drop the temporary variables—temporary variables are dropped automatically
by Stata when a program concludes.

Q Technical note

Why do we type single quotes around the names? tempvar creates local macros containing the
real temporary variable names. hii in our program is now a local macro, and ‘hii’ refers to the
contents of the local macro, which is the variable’s actual name.

a

We now have an excellent program—its only fault is that we cannot specify the name of the new
variable to be created. Here is the solution to that problem:

begin fvaratio.ado, version 6
program fvaratio
version 16.1
syntax newvarname // new this version
tempvar hii ei di2
quietly {
predict ‘hii’ if e(sample), hat

predict ‘ei’ if e(sample), resid

gen ‘di2’ = (‘ei’*‘ei’)/e(rss)

gen ‘typlist’ ‘varlist’ = /// changed this version
(e(M)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * /17

(1 - “di2’/(1-‘hii’)) / (1-‘hii’)

end

end fvaratio.ado, version 6

It took a change to one line and the addition of another to obtain the solution. This magic all happens
because of syntax (see [U] 18.4.4 Parsing standard Stata syntax above).

‘syntax newvarname’ specifies that one new variable name must be specified (had we typed
‘syntax [newvarname]’, the new varname would have been optional; had we typed ‘syntax
newvarlist’, the user would have been required to specify at least one new variable and allowed
to specify more). In any case, syntax compares what the user types to what is allowed. If what the
user types does not match what we have declared, syntax will issue the appropriate error message
and stop our program. If it does match, our program will continue, and what the user typed will be
broken out and stored in local macros for us. For a newvarname, the new name typed by the user
is placed in the local macro varlist, and the type of the variable (float, double, ...) is placed
in typlist (even if the user did not specify a storage type, in which case the type is the current
default storage type).

This is now an excellent program. There are, however, two more improvements we could make.
First, we have demonstrated that, by the use of ‘syntax newvarname’, we can allow the user to
define not only the name of the created variable but also the storage type. However, when it comes
to the creation of intermediate variables, such as ‘hii’ and ‘di2’, it is good programming practice
to keep as much precision as possible. We want our final answer to be precise as possible, regardless
of how we ultimately decide to store it. Any calculation that uses a previously generated variable
would benefit if the previously generated variable were stored in double precision. Below we modify
our program appropriately:

[U] 18 Programming Stata 229

begin fvaratio.ado, version 7
program fvaratio

version 16.1

syntax newvarname

tempvar hii ei di2

quietly {
predict double ‘hii’ if e(sample), hat // changed, as are
predict double ‘ei’ if e(sample), resid // other lines
gen double ‘di2’ = (‘ei’*‘ei’)/e(rss)
gen ‘typlist’ ‘varlist’ = ///
(e(M)-(e(df_m)+1)) / (e(W)-(e(df_m)+2)) * /17
(1 - “d4i2’/(1-‘hii’)) / (1-‘hii’)
}

end

end fvaratio.ado, version 7

As for the second improvement we could make, fvaratio is intended to be used sometime
after regress. How do we know the user is not misusing our program and executing it after, say,
logistic? e(cmd) will tell us the name of the last estimation command; see [U] 18.9 Accessing
results calculated by estimation commands and [U] 18.10.2 Storing results in e() above. We should
change our program to read

begin fvaratio.ado, version 8
program fvaratio
version 16.1
if "‘e(cmd)’"!="regress" { // new this version
error 301
}
syntax newvarname
tempvar hii ei di2
quietly {
predict double ‘hii’ if e(sample), hat
predict double ‘ei’ if e(sample), resid
gen double ‘di2’ = (‘ei’*‘ei’)/e(rss)
gen ‘typlist’ ‘varlist’ = ///
(e(M)-(e(df_m)+1)) / (e(W)-(e(df_m)+2)) * /17
(1 - “di2’/(1-‘hii’)) / (1-‘hii’)

end

end fvaratio.ado, version 8

The error command issues one of Stata’s prerecorded error messages and stops our program. Error
301 is “last estimates not found”; see [P] error. (Try typing error 301 at the command line.)

In any case, this is a perfect program.

Q Technical note

You do not have to go to all the trouble we did to program the FVARATIO measure of influence or
any other statistic that appeals to you. Whereas version 1 was not really an acceptable solution—it
was too specialized—version 2 was acceptable. Version 3 was better, and version 4 better yet, but
the improvements were of less and less importance.

Putting aside the details of Stata’s language, you should understand that final versions of programs
do not just happen—they are the results of drafts that have been refined. How much refinement
depends on how often and who will be using the program. In this sense, the “official” ado-files that
come with Stata are poor examples. They have been subject to substantial refinement because they
will be used by strangers with no knowledge of how the code works. When writing programs for
yourself, you may want to stop refining at an earlier draft.

a

230 [U] 18 Programming Stata

18.11.6 Writing system help

When you write an ado-file, you should also write a help file to go with it. This file is a standard
text file, named command . sthlp, that you place in the same directory as your ado-file command . ado.
This way, when users type help followed by the name of your new command (or pull down Help),
they will see something better than “help for ... not found”.

You can obtain examples of help files by examining the .sthlp files in the official ado-directory;
type “sysdir” and look in the lettered subdirectories of the directory defined as BASE:

. sysdir
STATA: C:\Program Files\Statal6\
BASE: C:\Program Files\Statal6\ado\base\
SITE: C:\Program Files\Statal6\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\

OLDPLACE: C:\ado\

Here you would find examples of .sthlp files in the a, b, ... subdirectories of C:\Program

Files\Statal6\ado\base.

Help files are physically written on the disk in text format, but their contents are Stata Markup
and Control Language (SMCL). For the most part, you can ignore that. If the file contains a line that
reads

Also see help for the finishup command

it will display in just that way. However, SMCL contains many special directives, so that if the line
in the file were to read

Also see {hi:help} for the {help finishup} command

what would be displayed would be

Also see help for the finishup command

and moreover, finishup would appear as a hypertext link, meaning that if users clicked on it, they
would see help on finishup.

You can read about the details of SMCL in [P] smcl. The following is a SMCL help file:

begin examplehelpfile.sthlp
{smcl}

{* *! version 1.2.1 O07mar2018}{...}

{vieweralsosee "[R] help" "help help "} ...}

{viewerjumpto "Syntax" "examplehelpfile##syntax"}{...}
{viewerjumpto "Description" "examplehelpfile##description"}{...}
{viewerjumpto "Options" "examplehelpfile##options"}{...}
{viewerjumpto "Remarks" "examplehelpfile##remarks"}{...}
{viewerjumpto "Examples" "examplehelpfile##examples"}{...}
{title:Title}

{phang}

{bf :whatever} {hline 2} Calculate whatever statistic

{marker syntax}{...}
{title:Syntax}

{p 8 17 2}
{cmdab:wh:atever}
[{varlist}]
{ifin}

{weight}

[{cmd:,}
{it:options}]

[U] 18 Programming Stata

231

{synoptset 20 tabbed}{...}

{synopthdr}

{synoptline}

{syntab:Main}

{synopt:{opt d:etail}}display additional statistics{p_end}

{synopt:{opt mean:only}}suppress the display; calculate only the mean;
programmer’s option{p_end}

{synopt:{opt f:ormat}}use variable’s display format{p_end}

{synopt:{opt sep:arator(#)}}draw separator line after every {it:#} variables;
default is {cmd:separator(5)}{p_end}

{synopt:{opth g:enerate(newvar)}}create variable name {it:newvar}{p_end}

{synoptline}

{p2colreset}{...}

{p 4 6 2}

{cmd:by} is allowed; see {manhelp by D}.{p_end}
{p 442}

{cmd:fweight}s are allowed; see {help weight}.

{marker description}{...}
{title:Description}

{pstd}
{cmd:whatever} calculates the whatever statistic for the variables in
{varlist} when the data are not stratified.

{marker options}{...}
{title:Options}

{dlgtab:Main}

{phang}
{opt detail} displays detailed output of the calculation.

{phang}
{opt meanonly} restricts the calculation to be based on only the
means. The default is to use a trimmed mean.

{phang}

{opt format} requests that the summary statistics be displayed using the display
formats associated with the variables, rather than the default {cmd:g} display
format; see {bf:[U] 12.5 Formats: Controlling how data are displayed}.

{phang}

{opt separator(#)} specifies how often to insert separation lines

into the output. The default is {cmd:separator(5)}, meaning that a

line is drawn after every 5 variables. {cmd:separator(10)} would

draw a line after every 10 variables. {cmd:separator(0)} suppresses

the separation line.

{phang}

{opth generate(newvar)} creates {it:newvar} containing the whatever values.

{marker remarks}{...}
{title:Remarks}

{pstd}
For detailed information on the whatever statistic, see {bf:[R] intro}.

{marker examples}{...}
{title:Examples}

{phang}{cmd:. whatever mpg weight}{p_end}
{phang}{cmd:. whatever mpg weight, meanonly}{p_end}

end examplehelpfile.sthlp

232 [U] 18 Programming Stata

If you were to select Help > Stata command, and type examplehelpfile and click on OK, or if
you were to type help examplehelpfile, this is what you would see:

Title
whatever — Calculate whatever statistic
Syntax
whatever [varlist] [if] [in] [weight] [, options]
options description
Main
detail display additional statistics
meanonly suppress the display; calculate only the mean;
programmer’s option
format use variable’s display format
separator (#) draw separator line after every # variables; default
is separator(5)
generate (newvar) create variable name newvar

by is allowed; see [D] by.
fweights are allowed; see weight.

Description

whatever calculates the whatever statistic for the variables in varlist when
the data are not stratified.

Options

M

ain

detail displays detailed output of the calculation.

meanonly restricts the calculation to be based on only the means.
The default is to use a trimmed mean.

format requests that the summary statistics be displayed using the display
formats associated with the variables, rather than the default g display
format; see [U] 12.5 Formats: controlling how data are displayed.

separator(#) specifies how often to insert separation lines into the output.
The default is separator(5), meaning that a line is drawn after every 5
variables. separator(10) would draw a line after every 10 variables.
separator(0) suppresses the separation line.

generate(newvar) creates newvar containing the whatever values.

Remarks

For detailed information on the whatever statistic, see [R] intre.

Examples
. whatever mpg weight

. whatever mpg weight, meanonly

[U] 18 Programming Stata 233

Users will find it easier to understand your programs if you document them the same way that we
document ours. We offer the following guidelines:

1. The first line must be
{smcl}
This notifies Stata that the help file is in SMCL format.
2. The second line should be
{* *! version #.#.# date}{...}

The * indicates a comment and the {...} will suppress the blank line. Whenever you edit the
help file, update the version number and the date found in the comment line.

3. The next several lines denote what will be displayed in the quick access toolbar with the three
pulldown menus: Dialog, Also See, and Jump To.

{vieweralsosee "[R] help" "help help "}{...}

{viewerjumpto "Syntax" "examplehelpfile##syntax"}{...}
{viewerjumpto "Description" "examplehelpfile##description"}{...}
{viewerjumpto "Options" "examplehelpfile##options"}{...}
{viewerjumpto "Remarks" "examplehelpfile##remarks"}{...}

{viewerjumpto "Examples" "examplehelpfile##examples"}{...}
4. Then place the title.
{title:Title}
{phang}
{bf :yourcmd} {hline 2} Your title
5. Include two blank lines, and place the Syntax title, syntax diagram, and options table:
{title:Syntax}

{p 8 17 2}
syntax line

{p 8 17 2}
second syntax line, if necessary

{synoptset 20 tabbed}{...}

{synopthdr}

{synoptline}

{syntab:tab}

{synopt : {option}}brief description of option{p_end}
{synoptline}

{p2colreset}{...}

{p 4 6 2}
clarifying text, if required

6. Include two blank lines, and place the Description title and text:
{title:Description}

{pstd}
description text

Briefly describe what the command does. Do not burden the user with details yet. Assume that
the user is at the point of asking whether this is what is wanted.

234 [U] 18 Programming Stata

7.

10.

11.

If your command allows options, include two blank lines, and place the Options title and
descriptions:

{title:0ptions}

{phang}
{opt optionname} option description

{pmore}
continued option description, if necessary

{phang}
{opt optionname} second option description

Options should be included in the order in which they appear in the option table. Option
paragraphs are reverse indented, with the option name on the far left, where it is easily spotted.
If an option requires more than one paragraph, subsequent paragraphs are set using {pmore}.
One blank line separates one option from another.
Optionally include two blank lines, and place the Remarks title and text:

{title:Remarks}

{pstd}
text

Include whatever long discussion you feel necessary. Stata’s official system help files often omit
this because the discussions appear in the manual. Stata’s official help files for features added
between releases (obtained from the Stata Journal, the Stata website, etc.), however, include
this section because the appropriate Stata Journal may not be as accessible as the manuals.

Optionally include two blank lines, and place the Examples title and text:
{title:Examples}

{phang}
{cmd: . first example}

{phang}
{cmd:. second example}

Nothing communicates better than providing something beyond theoretical discussion. Examples
rarely need much explanation.

Optionally include two blank lines, and place the Author title and text:
{title:Author}

{pstd}
Name, affiliation, etc.

Exercise caution. If you include a telephone number, expect your phone to ring. An email
address may be more appropriate.

Optionally include two blank lines, and place the References title and text:
{title:References}

{pstd}
Author. year.
Title. Location: Publisher.

[U] 18 Programming Stata 235

We also warn that it is easy to use too much {hi:highlighting}. Use it sparingly. In text, use
{cmd:. ..} to show what would be shown in typewriter typeface it the documentation were printed
in this manual.

Q Technical note

Sometimes it is more convenient to describe two or more related commands in the same .sthlp
file. Thus xyz.sthlp might document both the xyz and abc commands. To arrange that typing help
abc displays xyz.sthlp, create the file abc.sthlp, containing

begin abc.sthlp
.h xyz

end abc.sthlp

When a .sthlp file contains one line of the form °.h refname’, Stata interprets that as an instruction
to display help for refname.
a

Q Technical note

If you write a collection of programs, you need to somehow index the programs so that users
(and you) can find the command they want. We do that with our contents.sthlp entry. You should
create a similar kind of entry. We suggest that you call your private entry user.sthlp in your
personal ado-directory; see [U] 17.5.2 Where is my personal ado-directory?. This way, to review
what you have added, you can type help user.

We suggest that Unix users at large sites also add site.sthlp to the SITE directory (typically
/usr/local/ado, but type sysdir to be sure). Then you can type help site for a list of the
commands available sitewide.

a

18.11.7 Programming dialog boxes

You not only can write new Stata commands and help files but also can create your own interface,
or dialog box, for a command you have written. Stata provides a dialog box programming language
to allow you to create your own dialog boxes. In fact, most of the dialog boxes you see in Stata’s
interface have been created using this language.

This is not for the faint of heart, but if you want to create your own dialog box for a command,
see [P] Dialog programming. The manual entry contains all the details on creating and programming
dialog boxes.

236 [U] 18 Programming Stata

18.12 Tools for interacting with programs outside Stata and with other
languages

Advanced programmers may wish to interact Stata with other programs or to call programs or
libraries written in other languages from Stata. Stata supports the following:

Shell out synchronously or asynchronously to another program See [D] shell

Call code in libraries written in C, C++, FORTRAN, etc. See [P] plugin

Call code in libraries written in Java See [P] Java intro
Call Python code See [P] python
Control Stata—send commands to it and retrieve See [P] Automation

results from it—from an external program via OLE Automation

18.13 A compendium of useful commands for programmers

You can use any Stata command in your programs and ado-files. Also, some commands are
intended solely for use by Stata programmers. You should see the section under the Programming
heading in the subject table of contents at the beginning of the Glossary and Index.

Also see the Mata Reference Manual for all the details on the Mata language within Stata.

18.14 References

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression Diagnostics: Identifying Influential Data and Sources of
Collinearity. New York: Wiley.

Drukker, D. M. 2015. Programming an estimation command in Stata: Global macros versus local macros. The
Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2015/11/03/programming-an-estimation-command-in-stata-
global-macros-versus-local-macros/.

Gould, W. W. 2001. Statistical software certification. Stata Journal 1: 29-50.
Haghish, E. F. 2019. Seamless interactive language interfacing between R and Stata. Stata Journal 19: 61-82.
Herrin, J. 2009. Stata tip 77: (Re)using macros in multiple do-files. Stata Journal 9: 497-498.

http://www.stata-press.com/books/introduction-stata-programming/
http://blog.stata.com/2015/11/03/programming-an-estimation-command-in-stata-global-macros-versus-local-macros/
http://blog.stata.com/2015/11/03/programming-an-estimation-command-in-stata-global-macros-versus-local-macros/
http://www.stata-journal.com/article.html?article=pr0001
https://doi.org/10.1177/1536867X19830891
http://www.stata-journal.com/article.html?article=pr0047

1 9 Immediate commands

Contents

191 OVeIVIEW ottt e e e e e e e e 237
19.1.1 Examples ...t e 238
19.1.2 A list of the immediate commands uuin.... 240

19.2 The display command e 240

19.3 The power commandttt e 240

19.1 Overview

An immediate command is a command that obtains data not from the data stored in memory but
from numbers typed as arguments. Immediate commands, in effect, turn Stata into a glorified hand
calculator.

There are many instances when you may not have the data, but you do know something about the
data, and what you know is adequate to perform statistical tests. For instance, you do not have to
have individual-level data to obtain the standard error of the mean, and thereby a confidence interval,
if you know the mean, standard deviation, and number of observations. In other instances, you may
actually have the data, and you could enter the data and perform the test, but it would be easier if
you could just ask for the statistic based on a summary. For instance, you flip a coin 10 times, and it
comes up heads twice. You could enter a 10-observation dataset with two ones (standing for heads)
and eight zeros (meaning tails).

Immediate commands are meant to solve those problems. Immediate commands have the following
properties:

1. They never disturb the data in memory. You can perform an immediate calculation as an aside
without changing your data.

2. The syntax for these commands is the same, the command name followed by numbers, which
are the summary statistics from which the statistic is calculated. The numbers are almost always
summary statistics, and the order in which they are specified is in some sense “natural”.

3. Immediate commands all end in the letter i, although the converse is not true. Usually, if there
is an immediate command, there is a nonimmediate form also, that is, a form that works on the
data in memory. For every statistical command in Stata, we have included an immediate form if
it is reasonable to assume that you might know the requisite summary statistics without having
the underlying data and if typing those statistics is not absurdly burdensome.

4. Immediate commands are documented along with their nonimmediate counterparts. Thus, if you
want to obtain a confidence interval, whether it be from summary data with an immediate command
or using the data in memory, use the table of contents or index to discover that [R] ci discusses
confidence intervals. There, you learn that ci calculates confidence intervals by using the data in
memory and that cii does the same with the data specified immediately following the command.

237

238 [U] 19 Immediate commands

19.1.1 Examples

> Example 1

Let’s take the example of confidence intervals. Professional papers often publish the mean, standard
deviation, and number of observations for variables used in the analysis. Those statistics are sufficient
for calculating a confidence interval. If we know that the mean mileage rating of cars in some sample
is 24, that the standard deviation is 6, and that there are 97 cars in the sample, we can calculate

. cii means 97 24 6
Variable | Obs Mean Std. Err. [95% Conf. Intervall

| 97 24 .6092077 22.79073 25.20927

We learn that the mean’s standard error is 0.61 and its 95% confidence interval is [22.8,25.2]. To
obtain this, we typed cii means (the immediate form of the ci means command) followed by the
number of observations, the mean, and the standard deviation. We knew the order in which to specify
the numbers because we had read [R] ci.

We could use the immediate form of the ttest command to test the hypothesis that the true mean
is 22:

. ttesti 97 24 6 22

One-sample t test

Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall

X 97 24 .6092077 6 22.79073 25.20927

mean = mean(x) t = 3.2830

Ho: mean = 22 degrees of freedom = 96
Ha: mean < 22 Ha: mean != 22 Ha: mean > 22

Pr(T < t) = 0.9993 Pr(IT| > It]) = 0.0014 Pr(T > t) = 0.0007

The first three numbers were as we specified in the cii means command. ttesti requires a fourth
number, which is the constant against which the mean is being tested; see [R] ttest.

4

> Example 2

We mentioned flipping a coin 10 times and having it come up heads twice. We can use cii
proportions to compute, for example, the 99% confidence interval:
. cii proportions 10 2, level(99)

— Binomial Exact —
Variable | Obs Proportion Std. Err. [99% Conf. Intervall

| 10 .2 .1264911 .0108505 .6482012

The cii proportions command requires that we specify the number of trials and the number of
successes from a binomial experiment; see [R] ci.

[U] 19 Immediate commands 239
The immediate form of the bitest command performs exact hypothesis testing:
. bitesti 10 2 .5
N Observed k Expected k Assumed p Observed p
10 2 5 0.50000 0.20000
Pr(k >= 2) = 0.989258 (one-sided test)
Pr(k <= 2) = 0.054688 (one-sided test)
Pr(k <= 2 or k >= 8) = 0.109375 (two-sided test)
For a full explanation of this output, see [R] bitest.
d

> Example 3

Stata’s tabulate command makes tables and calculates various measures of association. The
immediate form, tabi, does the same, but we specify the contents of the table following the

command:

. tabi 5 10 \ 2 14

col
row 1 2 Total
1 5 10 15
2 2 14 16
Total 7 24 31
Fisher’s exact = 0.220
1-sided Fisher’s exact = 0.170

The tabi command is slightly different from most immediate commands because it uses ‘\’ to
indicate where one row ends and another begins.

N

240 [U] 19 Immediate commands

19.1.2 A list of the immediate commands

Command Reference Description

bitesti [R] bitest Binomial probability test

cci [R] Epitab Tables for epidemiologists

csi

iri

mcci

cii [R] ci Confidence intervals for means, proportions, and variances
esizei [R] esize Effect size based on mean comparison
prtesti [R] prtest Tests of proportions

sdtesti [R] sdtest Variance comparison tests

symmi [R] symmetry Symmetry and marginal homogeneity tests
tabi [R] tabulate twoway Two-way tables of frequencies

ttesti [R] ttest t tests (mean-comparison tests)

twoway pci
twoway pcarrowi
twoway scatteri

[G-2] graph twoway pci
[G-2] graph twoway pcarrowi
[G-2] graph twoway scatteri

[R] ztest

Paired-coordinate plot with spikes or lines
Paired-coordinate plot with arrows
Twoway scatterplot

ztesti Z tests (mean-comparison tests, known variance)

19.2 The display command

display is not really an immediate command, but it can be used as a hand calculator.

. display 2+5
7

. display sqrt(2+sqrt(372-4*%2%-2))/(2%3)
.44095855

See [R] display.

19.3 The power command

power is not technically an immediate command because it does not do something on typed
numbers that another command does on the dataset. It does, however, work strictly on numbers you
type on the command line and does not disturb the data in memory.

power performs power and sample-size analysis. See Stata Power, Precision, and Sample-Size
Reference Manual.

20 Estimation and postestimation commands

Contents
20.1 All estimation commands work the same way i,
20.2 Standard SYNAXvuven ettt e e e
20.3 Replaying prior reSUltSottt
20.4 Cataloging estimation resultSottt
20.5 Saving estimation resultS e
20.6 Specification search tools
20.7 Specifying the estimation subsamplet
20.8 Specifying the width of confidence intervals
20.9 Formatting the coefficient table
20.10 Obtaining the variance—covariance MatriXo.eueenenennenenenennen..
20.11 Obtaining predicted values i
20.11.1 Using prediCtttt e e e
20.11.2 Making in-sample predictionsiiiiniiiniii i
20.11.3 Making out-of-sample predictions i
20.11.4 Obtaining standard errors, tests, and confidence intervals for predictions
20.12 Accessing estimated coefficients
20.13 Performing hypothesis tests on the coefficients
20.13.1 Linear testS . ..o vttt e
20.13.2 USING LBSE « ot ettt e e e e e e e e e
20.13.3 Likelihood-ratio teStS vu vttt ettt e e e
20.13.4 Nonlinear Wald testSottt e
20.14 Obtaining linear combinations of coefficients,
20.15 Obtaining nonlinear combinations of coefficients
20.16 Obtaining marginal means, adjusted predictions, and predictive margins
20.16.1 Obtaining estimated marginal meanscoeuiereunenen ..
20.16.2 Obtaining adjusted predictionsooiiiiiiiiiiiin.
20.16.3 Obtaining predictive Margingouvenmenenernenenennenenn..
20.17 Obtaining conditional and average marginal effects
20.17.1 Obtaining conditional marginal effects
20.17.2 Obtaining average marginal effects
20.18 Obtaining pairwise COMPATISONS ..t vttt vttt ettt et e et ee e e
20.19 Obtaining contrasts, tests of interactions, and main effects
20.20 Graphing margins, marginal effects, and contrastsc...c.uon..
20.21 Dynamic forecasts and simulations it
20.22 Obtaining robust variance estimatesuiiuiinninninnennann .
20.22.1 Interpreting standard €rTorsu.iit it
20.22.2 Correlated errors: Cluster—robust standard errors
20.23 ODbtaiNINg SCOTES . ..ottt ettt ettt et et e e e e e e e
20.24 Weighted eStMationttt e e ettt
20.24.1 Frequency wWeights it
20.24.2 Analytic weights
20.24.3 Sampling Weightst e
20.24.4 TImportance WeIghtsottt e
20.25 A Ilist of postestimation commands
20.26 REfEICNCES . . vt v ettt et e e e e e e e e e

241

242 [U] 20 Estimation and postestimation commands

20.1 All estimation commands work the same way

All Stata commands that fit statistical models—commands such as regress, logit, sureg, and
so on—work the same way. Most single-equation estimation commands have the syntax

command varlist [if] [m} [weight] [, options}
and most multiple-equation estimation commands have the syntax
command (varlist) (varlist) ... (varlist) [if] [in} [weight] [, options}

Adopt a loose definition of single and multiple equation in interpreting this. For instance, heckman is a
two-equation system, mathematically speaking, yet we categorize it, syntactically, with single-equation
commands because most researchers think of it as a linear regression with an adjustment for the
censoring. The important thing is that most estimation commands have one or the other of these two
syntaxes.

In single-equation commands, the first variable in the varlist is the dependent variable, and the
remaining variables are the independent variables, with some exceptions. For instance, mixed allows
special variable prefixes to identify random factors.

Prefix commands may be specified in front of an estimation command to modify or extend what
it does. The syntax is

prefix: command . ..

See [U] 11.1.10 Prefix commands for the full list of prefix commands. To find out which prefix
commands are available for an estimation command, see the command’s syntax section.

Also, all estimation commands— whether single or multiple equation—share the following features:

1. You can use the standard features of Stata’s syntax—if exp and in range—to specify the
estimation subsample; you do not have to make a special dataset.

2. You can retype the estimation command without arguments to redisplay the most recent estimation
results. For instance, after fitting a model with regress, you can see the estimates again by
typing regress by itself. You do not have to do this immediately—any number of commands
can occur between the estimation and the replaying, and, in fact, you can even replay the last
estimates after the data have changed or you have dropped the data altogether. Stata never
forgets (unless you type discard; see [P] discard).

3. You can specify the 1level() option at the time of estimation, or when you redisplay results
if that makes sense, to specify the width of the confidence intervals for the coefficients. The
default is 1evel (95), meaning 95% confidence intervals. You can reset the default with set
level; see [R] level.

4. You can use the postestimation command margins to display model results in terms of marginal
effects (dy/dz or even df (y)/dz), which can be displayed as either derivatives or elasticities;
see [R] margins.

5. You can use the postestimation command margins to obtain tables of estimated marginal
means, adjusted predictions, and predictive margins; see [U] 20.17 Obtaining conditional and
average marginal effects and [R] margins.

6. You can use the postestimation command pwcompare to obtain pairwise comparisons across levels
of factor variables. You can compare estimated cell means, marginal means, intercepts, marginal
intercepts, slopes, or marginal slopes—collectively called margins. See [U] 20.18 Obtaining
pairwise comparisons, [R] margins, and [R] margins, pwcompare.

[U] 20 Estimation and postestimation commands 243

10.

11.

12.

13.

14.

You can use the postestimation command contrast to obtain contrasts, which is to say,
to compare levels of factor variables and their interactions. This command can also produce
ANOVA-style tests of main effects, interactions effects, simple effects, and nested effects; and
it can be used after most estimation commands. See [U] 20.19 Obtaining contrasts, tests of
interactions, and main effects, [R] contrast, and [R] margins, contrast.

You can use the postestimation command marginsplot to graph any of the results produced
by margins. And because margins can replicate any result produced by pwcompare and
contrast, you can graph any result produced by them, too. See [R] marginsplot.

You can use the postestimation command estat to obtain common statistics associated with
the model. The available statistics are documented in the postestimation section following the
documentation of the estimation command, for instance, in [R] regress postestimation following
[R] regress.

You can always use the postestimation command estat vce to obtain the variance—covariance
matrix of the estimators (VCE), presented as either a correlation matrix or a covariance matrix.
(You can also obtain the estimated coefficients and covariance matrix as vectors and matrices
and manipulate them with Stata’s matrix capabilities; see [U] 14.5 Accessing matrices created
by Stata commands.)

You can use the postestimation command predict to obtain predictions, residuals, influence
statistics, and the like, either for the data on which you just estimated or for some other data.
You can use postestimation command predictnl to obtain point estimates, standard errors,
etc., for customized predictions. See [R] predict and [R] predictnl.

You can use the postestimation command forecast to perform dynamic and static forecasts,
with optional forecast confidence intervals. This includes the ability to produce forecasts from
multiple estimation commands, even when estimates imply simultaneous systems. An example
of a simultaneous system is when y2 predicts y1 in estimation 1 and y1 predicts y2 in
estimation 2. forecast provides many facilities for creating comparative forecast scenarios.
See [TS] forecast.

You can refer to the values of coefficients and standard errors in expressions (such as with
generate) by using standard notation; see [U] 13.5 Accessing coefficients and standard
errors. You can refer in expressions to the values of other estimation-related statistics by using
e (resultname) . For instance, all commands define e (N) recording the number of observations
in the estimation subsample. After estimation, type ereturn list to see a list of all that is
available. See the Stored results section in the estimation command’s documentation for their
definitions.

An especially useful e () result is e(sample): it returns 1 if an observation was used in the
estimation and 0 otherwise, so you can add if e(sample) to the end of other commands
to restrict them to the estimation subsample. You could type, for instance, summarize if
e(sample).

You can use the postestimation command test to perform tests on the estimated parameters
(Wald tests of linear hypotheses), testnl to perform Wald tests of nonlinear hypotheses, and
1lrtest to perform likelihood-ratio tests. You can use the postestimation command lincom
to obtain point estimates and confidence intervals for linear combinations of the estimated
parameters and the postestimation command nlcom to obtain nonlinear combinations.

You can specify the coeflegend option at the time of estimation or when you redisplay results
to see how to type your coefficients in postestimation commands, such as test and lincom
(see [R] test and [R] lincom), and in expressions.

244

[U] 20 Estimation and postestimation commands

15.

16.

17.

18.

19.

20.

You can use the statsby prefix command (see [D] statsby) to fit models over each category
in a categorical variable and collect the results in a Stata dataset.

You can use the postestimation command estimates to store estimation results by name for
later retrieval or for displaying/comparing multiple models by using estimates, or to save
estimation results in a file; see [R] estimates.

You can use the postestimation command _estimates to hold estimates, perform other
estimation commands, and then restore the prior estimates. This is of particular interest to
programmers. See [P] _estimates.

You can use the postestimation command suest to obtain the joint parameter vector and
variance—covariance matrix for coefficients from two different models by using seemingly
unrelated estimation. This is especially useful for testing the equality, say, of coefficients across
models. See [R] suest.

You can use the postestimation command hausman to perform Hausman model-specification
tests by using hausman; see [R] hausman.

With some exceptions, you can specify the vce (robust) option at the time of estimation to obtain
the Huber/White/robust alternate estimate of variance, or you can specify the vce(cluster
clustvar) option to relax the assumption of independence of the observations; see [R] vce _option.

Most estimation commands also allow a vce (veetype) option to specify other alternative variance
estimators—the allowed alternative variance estimators are documented with the estimator—and
usually vce(opg), vce(bootstrap), and vce(jackknife) are available.

Where vce(bootstrap) and vce(jackknife) are available, we recommend using them
instead of the prefix commands bootstrap and jackknife.

As a rule, the points discussed briefly above and in more detail later in this entry do not apply to
the Bayesian analysis commands. For more information about Bayesian analysis commands, see the
Stata Bayesian Analysis Reference Manual.

[U] 20 Estimation and postestimation commands 245

20.2 Standard syntax

You can combine Stata’s if exp and in range with any estimation command. Estimation commands
also allow by varlist:, where it would be sensible.

> Example 1

We have data on 74 automobiles that record the mileage rating (mpg), weight (weight), and
whether the car is domestic or foreign produced (foreign). We can fit a linear regression model of
mpg on weight and the square of weight, using just the foreign-made automobiles, by typing

. use https://www.stata-press.com/data/r16/auto2
(1978 Automobile Data)

. regress mpg weight c.weight#c.weight if foreign

Source SS df MS Number of obs = 22
F(2, 19) = 8.31
Model 428.256889 2 214.128444 Prob > F = 0.0026
Residual 489.606747 19 25.7687762 R-squared = 0.4666
Adj R-squared = 0.4104
Total 917.863636 21 43.7077922 Root MSE = 5.0763
mpg Coef. Std. Err. t P>t [95% Conf. Intervall
weight -.0132182 .0275711 -0.48 0.637 -.0709252 .0444888
c.weight#
c.weight 5.50e-07 5.41e-06 0.10 0.920 -.0000108 .0000119
_cons 52.33775 34.1539 1.53 0.142 -19.14719 123.8227

We use the factor-variable notation c.weight#c.weight to add the square of weight to our
regression; see [U] 11.4.3 Factor variables.

We can run separate regressions for the domestic and foreign-produced automobiles with the by
varlist: prefix:

246 [U] 20 Estimation and postestimation commands

. by foreign: regress mpg weight c.weight#c.weight

-> foreign = Domestic

Source SS df MS Number of obs = 52
F(2, 49) = 91.64
Model 905.395466 2 452.697733 Prob > F = 0.0000
Residual 242.046842 49 4.93973146 R-squared = 0.7891
Adj R-squared = 0.7804
Total 1147.44231 51 22.4988688 Root MSE = 2.2226
mpg Coef. Std. Err. t P>t [95% Conf. Intervall
weight -.0131718 .0032307 -4.08 0.000 -.0196642 -.0066794
c.weight#
c.weight 1.11e-06 4.95e-07 2.26 0.029 1.19e-07 2.11e-06
_cons 50.74551 5.162014 9.83 0.000 40.37205 61.11896

-> foreign = Foreign

Source SS df MS Number of obs = 22
F(2, 19) = 8.31
Model 428.256889 2 214.128444 Prob > F = 0.0026
Residual 489.606747 19 25.7687762 R-squared = 0.4666
Adj R-squared = 0.4104
Total 917.863636 21 43.7077922 Root MSE = 5.0763
mpg Coef. Std. Err. t P>|t] [95% Conf. Intervall
weight -.0132182 .0275711 -0.48 0.637 -.0709252 .0444888
c.weight#
c.weight 5.50e-07 5.41e-06 0.10 0.920 -.0000108 .0000119
_cons 52.33775 34.1539 1.53 0.142 -19.14719 123.8227

Although all estimation commands allow if exp and in range, only some allow the by varlist:
prefix. For by (), the duration of Stata’s memory is limited: it remembers the last set of estimates
only. This means that, if we were to use any of the other features described below, they would use the
last regression estimated, which right now is mpg on weight and square of weight for the Foreign
subsample.

We can instead collect the statistics from each of the by-groups by using the statsby prefix; see
[D] statsby.
. statsby, by(foreign): regress mpg weight c.weight#c.weight
(running regress on estimation sample)
command: regress mpg weight c.weight#c.weight
by: foreign
Statsby groups
—1l—t—2—F—3—F—4—F—5

statsby runs the regression first on domestic cars and then on foreign cars, and it saves the
coefficients by overwriting our dataset. Do not worry; if the dataset has not been previously saved,
statsby will refuse to run unless we also specify the clear option.

[U] 20 Estimation and postestimation commands 247

Here is what we now have in memory.

. list
foreign _b_weight _stat_2 _b_cons
1. Domestic -.0131718 1.11e-06 50.74551
2. Foreign -.0132182 5.50e-07 52.33775

These are the coefficients from the two regressions above. statsby does not know how to name the
coefficient for c.weight#c.weight, so it labels the coefficient with the generic name _stat_2. We
can also save the standard errors and other statistics from the regressions; see [D] statsby.

N

20.3 Replaying prior results

When you type an estimation command without arguments, it redisplays prior results.

> Example 2

To perform a regression of mpg on the variables weight and displacement, we could type

. use https://www.stata-press.com/data/r16/auto2, clear
(1978 Automobile Data)

. regress mpg weight displacement

Source SS df MS Number of obs = 74

F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coef. Std. Err. t P>|t] [95% Conf. Intervall

weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602
_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

We now go on to do other things—summarizing data, listing observations, performing hypothesis
tests, or anything else. If we decide that we want to see the last set of estimates again, we type the
estimation command without arguments.

. regress
Source SS df MS Number of obs = 74
F(2, 71) = 66.79
Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529
Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561
mpg Coef. Std. Err. t P>|t| [95% Conf. Intervall
weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602
_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

248 [U] 20 Estimation and postestimation commands

We can also specify options on replay. For example, if we want to see a legend of terms with
which to refer to the estimated coefficients in subsequent commands, we can type

. regress, coeflegend
(output omitted)

See [U] 20.12 Accessing estimated coefficients for an example using legend terms.

These features work with every estimation command, so we could just as well have used, say,
stcox or logit. q

20.4 Cataloging estimation results

Stata keeps only the results of the most recently fit model in active memory. You can use Stata’s
estimates command, however, to temporarily store estimation results for displaying, comparing,
cross-model testing, etc., during the same session. You can also save estimation results to disk, but
that will be the subject of the next section. You may temporarily store up to 300 sets of estimation
results.

> Example 3

Continuing with our automobile data, we fit four models, give each one a title, and then store
them. We fit the models quietly to minimize output.
. quietly regress mpg weight displ
. estimates title: Linear regression, base model
. estimates store r_base
. quietly regress mpg weight displ foreign
. estimates title: Linear regression, alternate model
. estimates store r_alt
. quietly greg mpg weight displ
. estimates title: Quantile regression, base model
. estimates store q_base
. quietly qreg mpg weight displ foreign
. estimates title: Quantile regression, alternate model

. estimates store g_alt

We saved the four models under the names r_base, r_alt, q_base, and q_alt, but if we forget,
we can ask to see a directory of what is stored:

. estimates dir

name command depvar npar title
r_base | regress mpg 3 Linear regression, base model
r_alt | regress mpg 4 Linear regression, alternate
model
q_base | qreg mpg 3 Quantile regression, base model
q_alt | qreg mpg 4 (Quantile regression, alternate
model

[U] 20 Estimation and postestimation commands 249

We can ask Stata to replay any of the previous models:

. estimates replay r_base

Model r_base (Linear regression, base model)

Source SS df MS Number of obs = 74

F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coef. Std. Err. t P>|t] [95% Conf. Intervall

weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602
_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

Or we can ask to see all the models in a combined table:

. estimates table _all

Variable r_base r_alt q_base q_alt
weight | -.00656711 -.00677449 -.00581172 -.00595056
displacement .00528078 .00192865 .0042841 .00018552
foreign -1.6006312 -2.1326005
_cons 40.084522 41.847949 37.559865 39.213348

estimates displayed just the coefficients, but we could ask for other statistics.

We can also select one of the stored estimates to be made active, making it as if we had just fit
the model:

. estimates restore r_alt
(results r_alt are active now)

. regress
Source SS df MS Number of obs = 74
F(3, 70) = 45.88
Model 1619.71935 3 539.906448 Prob > F = 0.0000
Residual 823.740114 70 11.7677169 R-squared = 0.6629
Adj R-squared = 0.6484
Total 2443.45946 73 33.4720474 Root MSE = 3.4304
mpg Coef. Std. Err. t P>|t| [95% Conf. Intervall
weight -.0067745 .0011665 -5.81 0.000 -.0091011 -.0044479
displacement .0019286 .0100701 0.19 0.849 -.0181556 .0220129
foreign -1.600631 1.113648 -1.44 0.155 -3.821732 .6204699
_cons 41.84795 2.350704 17.80 0.000 37.15962 46.53628

4

You can do a lot more with estimates; see [R] estimates. In particular, estimates makes it
easy to perform cross-model tests, such as the Hausman specification test.

250 [U] 20 Estimation and postestimation commands

20.5 Saving estimation results

estimates can also save estimation results into a file.

. estimates save alt
file alt.ster saved

That saved the active estimation results, meaning the ones we just estimated or, in our case, the ones
we just restored. Later, even in another Stata session, we could reload our estimates:

. estimates use alt

. regress
Source SS df MS Number of obs = 74
F(3, 70) = 45.88
Model 1619.71935 3 539.906448 Prob > F = 0.0000
Residual 823.740114 70 11.76771569 R-squared = 0.6629
Adj R-squared = 0.6484
Total 2443.45946 73 33.4720474 Root MSE = 3.4304
mpg Coef. Std. Err. t P>|t] [95% Conf. Intervall
weight -.0067745 .0011665 -5.81 0.000 -.0091011 -.0044479
displacement .0019286 .0100701 0.19 0.849 -.0181556 .0220129
foreign -1.600631 1.113648 -1.44 0.155 -3.821732 .6204699
_cons 41.84795 2.350704 17.80 0.000 37.15962 46.53628

There is one important difference between storing results in memory and saving them in a file:
e(sample) is lost. We have not discussed e (sample) yet, but it allows us to identify the observations
among those currently in memory that were used in the estimation. For instance, after estimation, we
could type

. summarize mpg weight displ foreign if e(sample)

and see the summary statistics of the relevant data. We could do that after estimates restore, too.
But we cannot do it after estimates use. Part of the reason is that we might not even have the
relevant data in memory. Even if we do, however, here is what will happen:

. summarize mpg weight displ foreign if e(sample)

Variable Obs Mean Std. Dev. Min Max
mpg 0
weight 0
displacement 0
foreign 0

Stata will just assume that none of the data in memory played a role in obtaining the estimation
results.

There is more worth knowing. You could, for instance, type estimates describe to see the
command line that produced the estimates. See [R] estimates.

[U] 20 Estimation and postestimation commands 251

20.6 Specification search tools

Stata’s lasso commands select covariates and fit models for continuous, binary, and count outcomes.
See [LASSO] Lasso intro for an overview of lasso features.

The commands stepwise, fp, and mfp are not really estimation commands but are combined
with estimation commands to assist in specification searches.

stepwise, one of Stata’s prefix commands, provides stepwise estimation. You can use the stepwise
prefix with some, but not all, estimation commands. See [R] stepwise for a list of supported estimation
commands.

fp and mfp are commands to assist you in performing fractional-polynomial functional specification
searches. See [R] fp and [R] mfp for additional information.

20.7 Specifying the estimation subsample

You specify the estimation subsample—the sample to be used in estimation—by specifying the
if exp and in range qualifiers with the estimation command.

Once an estimation command has been run or previous estimates restored, Stata remembers the
estimation subsample, and you can use the qualifier if e (sample) on the end of other Stata commands.
The term estimation subsample refers to the set of observations used to produce the active estimation
results. That might turn out to be all the observations (as it was in the above example) or only some
of the observations:

. regress mpg weight 5.rep78 if foreign

Source SS df MS Number of obs = 21
F(2, 18) = 10.21
Model 423.317154 2 211.658577 Prob > F = 0.0011
Residual 372.96856 18 20.7204756 R-squared = 0.5316
Adj R-squared = 0.4796
Total 796.285714 20 39.8142857 Root MSE = 4.552
mpg Coef. Std. Err. t P>t [95% Conf. Intervall
weight -.0131402 .0029684 -4.43 0.000 -.0193765 -.0069038
rep78
Excellent 5.052676 2.13492 2.37 0.029 .5673764 9.537977
_cons 52.86088 6.540147 8.08 0.000 39.12054 66.60122

. summarize mpg weight 5.rep78 if e(sample)

Variable Obs Mean Std. Dev. Min Max

mpg 21 25.28571 6.309856 17 41

weight 21 2263.333 364.7099 1760 3170
rep78

Excellent 21 .4285714 .5070926 0 1

Twenty-one observations were used in the above regression, and we subsequently obtained the means
for those same 21 observations by typing summarize ... if e(sample). Observations were dropped
for two reasons: we specified if foreign when we ran the regression, and there were observations
for which 5.rep78 was missing. The reason does not matter; e (sample) is true if the observation
was used and is false otherwise.

You can use if e(sample) on the end of any Stata command that allows if exp.

252 [U] 20 Estimation and postestimation commands

Here, Stata has a shorthand command that produces the same results as summarize ... if
e(sample):
. estat summarize, label
Estimation sample regress Number of obs = 21
Variable Mean Std. Dev. Min Max Label
mpg 25.28571 6.309856 17 41 Mileage (mpg)
weight 2263.333 364.7099 1760 3170 Weight (1bs.)
rep78 Repair Record 1978
Excellent .4285714 .5070926 0 1

See [R] estat summarize.

20.8 Specifying the width of confidence intervals
You can specify the width of the confidence intervals for the coefficients by using the level ()
option at estimation or when you play back the results.
> Example 4

To obtain narrower, 90% confidence intervals when we fit the model, we type

. regress mpg weight displ, level(90)

Source SS df MS Number of obs = 74

F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coef. Std. Err. t P>|t] [90% Conf. Intervall

weight -.0065671 .0011662 -5.63 0.000 -.0085108 -.0046234
displacement .0052808 .0098696 0.54 0.594 -.0111679 .0217294
_cons 40.08452 2.02011 19.84 0.000 36.71781 43.45124

If we subsequently typed regress without arguments, 95% confidence intervals would be reported
because that is the default. If we initially fit the model with 95% confidence intervals, we could later
type regress, level(90) to redisplay results with 90% confidence intervals.

Also, we could type set level 90 to make 90% intervals our default; see [R] level.

Stata allows noninteger confidence intervals between 10.00 and 99.99, with a maximum of two
digits following the decimal point. For instance, we could type

[U] 20 Estimation and postestimation commands 253

. regress mpg weight displ, level(92.5)

Source SS df MS Number of obs = 74

F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coef. Std. Err. t P>|t| [92.5% Conf. Intervall

weight -.0065671 .0011662 -5.63 0.000 -.0086745 -.0044597
displacement .0052808 .0098696 0.54 0.594 -.0125535 .023115
_cons 40.08452 2.02011 19.84 0.000 36.43419 43.73485

20.9 Formatting the coefficient table

You can change the formatting of the coefficient table with the sformat(), pformat(), and
cformat () options. The sformat () option changes the output format of test statistics; pformat ()
changes p-values; and cformat() changes coefficients, standard errors, and confidence limits. We
can reduce the number of decimal places by specifying %f fixed-width formats:

. regress mpg weight displ, cformat(%6.3f) sformat(’4.1f) pformat(%4.2f)

Source SS df MS Number of obs = 74

F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coef. Std. Err. t P>|t] [95% Conf. Intervall

weight -0.007 0.001 -5.6 0.00 -0.009 -0.004
displacement 0.005 0.010 0.5 0.59 -0.014 0.025
_cons 40.085 2.020 19.8 0.00 36.057 44.113

The option cformat (%6.3f), for example, fixes a width of six characters with three digits to the
right of the decimal point. For more information on formats, see [U] 12.5.1 Numeric formats.

The formatting options may also be specified when replaying results, so you can try different
formats without refitting the model:

. regress, cformat(%7.4f)

Source SS df MS Number of obs = 74

F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coef. Std. Err. t P>t [95% Conf. Intervall

weight -0.0066 0.0012 -5.63 0.000 -0.0089 -0.0042
displacement 0.0053 0.0099 0.54 0.594 -0.0144 0.0250
_cons 40.0845 2.0201 19.84 0.000 36.0565 44.1125

254 [U] 20 Estimation and postestimation commands

20.10 Obtaining the variance—covariance matrix

Typing estat vce displays the variance—covariance matrix of the estimators in active memory.

> Example 5

In example 2, we typed regress mpg weight displacement. The full variance—covariance
matrix of the estimators can be displayed at any time after estimation:
. estat vce
Covariance matrix of coefficients of regress model

e(V) weight displace~t _cons

weight 1.360e-06
displacement -.0000103 .00009741
_cons -.00207455 .01188356 4.0808455
Typing estat vce with the corr option presents this matrix as a correlation matrix:

. estat vce, corr

Correlation matrix of coefficients of regress model

e(V) weight displa~t _cons
weight 1.0000
displacement -0.8949 1.0000
_cons -0.8806 0.5960 1.0000

See [R] estat vce.

Also, Stata’s matrix commands understand that e (V) refers to the matrix:

. matrix list e(V)

symmetric e(V)[3,3]

weight displacement _cons
weight 1.360e-06
displacement -.0000103 .00009741
_cons -.00207455 .01188356 4.0808455

. matrix Vinv = invsym(e(V))
. matrix list Vinv

symmetric Vinv[3,3]

weight displacement _cons
weight 60175851
displacement 4081161.2 292709.46
_cons 18706.732 1222.3339 6.1953911

See [U] 14.5 Accessing matrices created by Stata commands.

20.11 Obtaining predicted values

Our discussion below, although cast in terms of predicted values, applies equally to the other statistics
generated by predict; see [R] predict.

When Stata fits a model, whether it is regression or anything else, it internally stores the results,
including the estimated coefficients and the variable names. The predict command allows you to
use that information.

[U] 20 Estimation and postestimation commands 255

> Example 6

Let’s perform a linear regression of mpg on weight and the square of weight:

. regress mpg weight c.weight#c.weight

Source SS df MS Number of obs = 74
F(2, 71) = 72.80
Model 1642.52197 2 821.260986 Prob > F = 0.0000
Residual 800.937487 71 11.2808097 R-squared = 0.6722
Adj R-squared = 0.6630
Total 2443.45946 73 33.4720474 Root MSE = 3.3587
mpg Coef. Std. Err. t P>t [95% Conf. Intervall
weight -.0141581 .0038835 -3.65 0.001 -.0219016 -.0064145
c.weight#
c.weight 1.32e-06 6.26e-07 2.12 0.038 7.67e-08 2.57e-06
_cons 51.18308 5.767884 8.87 0.000 39.68225 62.68392

After the regression, predict is defined to be
—0.0141581weight + 1.32 x 10~ %weight? + 51.18308

(Actually, it is more precise because the coefficients are internally stored at much higher precision
than shown in the output.) Thus, we can create a new variable—Ilet’s call it fitted—equal to the
prediction by typing predict fitted and then use scatter to display the fitted and actual values
separately for domestic and foreign automobiles:

. predict fitted
(option xb assumed; fitted values)

. scatter mpg fitted weight, by(foreign, total) c(. 1) m(o i) sort

Domestic Foreign
o
<
.
ER IR . ol
. .
o | L, oo T
« 2 e o4 o
= .
° | -
2000 3000 4000 5000
Total

10 20 30 40
|

2,000 3,000 4,000 5,000
Weight (Ibs.)

‘o Mileage (mpg) Fitted values ‘

Graphs by Car type

predict can calculate much more than just predicted values. For predict after linear regression,
predict can calculate residuals, standardized residuals, Studentized residuals, influence statistics, and
more. In any case, we specify what is to be calculated via an option, so if we wanted the residuals
stored in new variable r, we would type

. predict r, resid

256 [U] 20 Estimation and postestimation commands

The options that may be specified following predict vary according to the estimation command
previously used; the predict options are documented along with the estimation command. For
instance, to discover all the things predict can do following regress, see [R] regress.

4

20.11.1 Using predict

The use of predict is not limited to linear regression. predict can be used after any estimation
command.

> Example 7

You fit a logistic regression model of whether a car is manufactured outside the United States on
the basis of its weight and mileage rating using either the logistic or the logit command; see
[R] logistic and [R] logit. We will use logit.

. use https://www.stata-press.com/data/r16/auto2, clear
. logit foreign weight mpg
Iteration O: log likelihood = -45.03321
Iteration 1: log likelihood = -29.238536
Iteration 2: log likelihood = -27.244139
Iteration 3: log likelihood = -27.175277
4.

Iteration 4: log likelihood = -27.175156
Iteration 5: log likelihood = -27.175156

Logistic regression Number of obs = 74
LR chi2(2) = 35.72

Prob > chi2 = 0.0000

Log likelihood = -27.175156 Pseudo R2 = 0.3966
foreign Coef. Std. Err. z P>|z| [95% Conf. Intervall
weight -.0039067 .0010116 -3.86 0.000 -.0058894 -.001924

mpg -.1685869 .0919175 -1.83 0.067 -.3487418 .011568

_cons 13.70837 4.518709 3.03 0.002 4.851859 22.56487

After logit, predict without options calculates the probability of a positive outcome (we learned
that by looking at [R] logit). To obtain the predicted probabilities that each car is manufactured outside
the United States, we type

. predict probhat
(option pr assumed; Pr(foreign))
. summarize probhat
Variable | Obs Mean Std. Dev. Min Max

probhat | 74 .2972973 .3052979 .000729 .8980594
. list make mpg weight foreign probhat in 1/5

make mpg weight foreign probhat
1. AMC Concord 22 2,930 Domestic .1904363
2. AMC Pacer 17 3,350 Domestic .0957767
3. AMC Spirit 22 2,640 Domestic .4220815
4. Buick Century 20 3,250 Domestic .0862625
5. Buick Electra 15 4,080 Domestic .0084948

[U] 20 Estimation and postestimation commands 257

20.11.2 Making in-sample predictions

predict does not retrieve a vector of prerecorded values—it calculates the predictions on the
basis of the recorded coefficients and the data currently in memory. In the above examples, when we
typed things like

. predict probhat

predict filled in the prediction everywhere that it could be calculated.

We sometimes have more data in memory than were used by the estimation command, either
because we explicitly ignored some of the observations by specifying an if exp with the estimation
command or because there are missing values. In such cases, if we want to restrict the calculation to
the estimation subsample, we would do that in the usual way by adding if e(sample) to the end
of the command:

. predict probhat if e(sample)

20.11.3 Making out-of-sample predictions

Because predict makes its calculations on the basis of the recorded coefficients and the data in
memory, predict can do more than calculate predicted values for the data on which the estimation
took place—it can make out-of-sample predictions, as well.

If you fit your model on a subset of the observations, you could then predict the outcome for all
the observations:

. logit foreign weight mpg if rep78 > 3
. predict pall

If you do not specify if e(sample) at the end of the predict command, predict calculates the
predictions for all observations possible.

In fact, because predict works from the active estimation results, you can use predict with
any dataset that contains the necessary variables.

> Example 8

Continuing with our previous logit example, assume that we have a second dataset containing
the mpg and weight of a different sample of cars. We have just fit your model and now continue:

. use otherdat, clear
(Different cars)

. predict probhat Stata remembers the previous model
(option pr assumed; Pr(foreign))

. summarize probhat foreign

Variable | Obs Mean Std. Dev. Min Max
probhat 12 .2505068 .3187104 .0084948 .8920776
foreign 12 .1666667 .3892495 0 1

258 [U] 20 Estimation and postestimation commands

> Example 9

We can obtain out-of-sample predictions in many ways. Above, we estimated on one dataset and
then used another. If our first dataset had contained both sets of cars, marked, say, by the variable
difcars being O if from the first sample and 1 if from the second, we could type

. logit foreign weight mpg if difcars==
same output as above appears

. predict probhat
(option pr assumed; Pr(foreign))

. summarize probhat foreign if difcars==
same output as directly above appears

If we just had a few additional cars, we could even input them after estimation. Assume that
our data once again contain only the first sample of cars, and assume that we are interested in an
additional sample of only two cars; we could type

. use https://www.stata-press.com/data/r16/auto2
(1978 Automobile Data)
. keep make mpg weight foreign

. logit foreign weight mpg
same output as above appears

. input
make mpg weight foreign
75. "Merc. Zephyr" 20 2830 0 we type in our new data
76. "VW Dasher" 23 2160 1
77. end
. predict probhat obtain all the predictions

(option pr assumed; Pr(foreign))
. list in -2/1

make mpg weight foreign probhat

75. | Merc. Zephyr 20 2,830 Domestic .3275397
76. VW Dasher 23 2,160 Foreign .8009743

20.11.4 Obtaining standard errors, tests, and confidence intervals for predictions

When you use predict, you create, for each observation in the prediction sample, a statistic that
is a function of the data and the estimated model parameters. You also could have generated your
own customized predictions by using generate. In either case, to get standard errors, Wald tests,
and confidence intervals for your predictions, use predictnl. For example, if we want the standard
errors for our predicted probabilities, we could type

. drop probhat
. predictnl probhat = predict(), se(phat_se)

. list in 1/5
make mpg weight foreign probhat phat_se
1. | AMC Concord 22 2,930 Domestic .1904363 .0658387
2. | AMC Pacer 17 3,350 Domestic .0957767 .0536297
3. | AMC Spirit 22 2,640 Domestic .4220815 .0892845
4. | Buick Century 20 3,250 Domestic .0862625 .0461928
5. | Buick Electra 15 4,080 Domestic .0084948 .0093079

[U] 20 Estimation and postestimation commands 259

Comparing this output with our previous listing of the first five predicted probabilities, you will notice
that the output is identical except that we now have an additional variable, phat_se, which contains
the estimated standard error for each predicted probability.

We first had to drop probhat because predictnl will regenerate it. Note also the use of
predict() within predictnl—it specified that we wanted to generate a point estimate (and
standard error) for the default prediction after logit; see [R] predictnl for more details.

20.12 Accessing estimated coefficients

You can access coefficients and standard errors after estimation by referring to _b[name] and
_se[name]l; see [U] 13.5 Accessing coefficients and standard errors.

> Example 10

Let’s return to linear regression. We are doing a study of earnings of men and women at a particular
company. In addition to each person’s earnings, we have information on their educational attainment
and tenure with the company. We type the following:

. regress lnearn ed tenure i.female female#(c.ed c.tenure)
(output omitted)

If you are not familiar with the # notation, see [U] 11.4.3 Factor variables.

We now wish to predict everyone’s income as if they were male and then compare these as-if
earnings with the actual earnings:

. generate asif = _b[_cons] + _b[ed]*ed + _b[tenure]*tenure

> Example 11

We are analyzing the mileage of automobiles and are using a slightly more sophisticated model
than any we have used so far. As we have previously, we will fit a linear regression model of mpg on
weight and the square of weight, but we also add the interaction of foreign with weight, the car’s
gear ratio (gear_ratio), and foreign interacted with gear_ratio. We will use factor-variable
notation to create the squared term and the interactions; see [U] 11.4.3 Factor variables.

260

[U] 20 Estimation and postestimation commands

. use https://www.stata-press.com/data/r16/auto2, clear
(1978 Automobile Data)

. regress mpg weight c.weight#c.weight i.foreign#c.weight gear_ratio
> i.foreign#c.gear_ratio

Source SS df MS Number of obs 74
F(5, 68) = 33.44
Model 1737.05293 5 347.410585 Prob > F = 0.0000
Residual 706.406534 68 10.3883314 R-squared = 0.7109
Adj R-squared = 0.6896
Total 2443.45946 73 33.4720474 Root MSE = 3.2231
mpg Coef. Std. Err. t P>|t| [95% Conf. Intervall
weight -.0118517 .0045136 -2.63 0.011 -.0208584 -.002845
c.weight#
c.weight 9.81e-07 7.04e-07 1.39 0.168 -4.25e-07 2.39e-06
foreign#
c.weight
Foreign -.0032241 .0015577 -2.07 0.042 -.0063326 -.0001157
gear_ratio 1.1569741 1.553418 0.75 0.458 -1.940057 4.259539
foreign#
c.gear_ratio
Foreign 1.597462 1.205313 1.33 0.189 -.8077036 4.002627
_cons 44.61644 8.387943 5.32 0.000 27.87856 61.35432

If you are not experienced in both regression technology and automobile technology, you may find it
difficult to interpret this regression. Putting aside issues of statistical significance, we find that mileage
decreases with a car’s weight but increases with the square of weight; decreases even more rapidly
with weight for foreign cars; increases with higher gear ratio; and increases even more rapidly with
higher gear ratio in foreign cars.

Thus, do foreign cars yield better or worse gas mileage? Results are mixed. As the foreign cars’
weight increases, they do more poorly in relation to domestic cars, but they do better at higher gear
ratios. One way to compare the results is to predict what mileage foreign cars would have if they
were manufactured domestically. The regression provides all the information necessary for making
that calculation. Mileage for domestic cars is estimated to be

—0.012weight + 9.81 x 10~ weight? + 1.160 gear_ratio + 44.6

We can use that equation to predict the mileage of foreign cars and then compare it with the true
outcome. The _b[] function simplifies reference to the estimated coefficients. We can type

. generate asif=_b[weight]*weight + _b[c.weight#c.weight]*c.weight#c.weight +
> _blgear_ratio]l*gear_ratio + _b[_cons]

_b[weight] refers to the estimated coefficient on weight, _b[c.weight#c.weight] to the estimated
coefficient on c.weight#c.weight, and so on.

[U] 20 Estimation and postestimation commands 261

We might now ask how the actual mileage of a Honda compares with the asif prediction:

. list make asif mpg if strpos(make,"Honda")

make asif mpg

61. Honda Accord 26.52597 25
62. Honda Civic 30.62202 28

Notice the way we constructed our if clause to select Hondas. strpos() is the string function that
returns the location in the first string where the second string is found or, if the second string does
not occur in the first, returns 0. Thus any recorded make that contains the string “Honda” anywhere
in it would be listed; see [FN] String functions.

We find that both Honda models yield slightly lower gas mileage than the asif domestic car—based
prediction. (We do not endorse this model as a complete model of the determinants of mileage, nor
do we single out Honda for any special scorn. In fact, please note that the observed values are within
the root mean squared error of the average prediction.)

We might wish to compare the overall average mpg and the asif prediction over all foreign cars
in the data:

. summarize mpg asif if foreign

Variable | Obs Mean Std. Dev. Min Max
mpg 22 24.77273 6.611187 14 41
asif 22 26.67124 3.142912 19.70466 30.62202

We find that, on average, foreign cars yield slightly lower mileage than our asif prediction. This
might lead us to ask if any foreign cars do better than the asif prediction:

. list make asif mpg if foreign & mpg>asif, sep(0)

make asif mpg
55. BMW 320i 24.31697 25
57. Datsun 210 28.96818 35
63. Mazda GLC 29.32015 30
66. Subaru 28.85993 35
68. Toyota Corolla 27.01144 31
71. VW Diesel 28.90355 41

We find six such automobiles.

262 [U] 20 Estimation and postestimation commands

20.13 Performing hypothesis tests on the coefficients

20.13.1

Linear tests

After estimation, test is used to perform tests of linear hypotheses on the basis of the variance—

covariance matrix of the estimators (Wald tests).

> Example 12

Using the automobile data, we perform the following regression:

. use https://www.stata-press.com/data/r16/auto2, clear
(1978 Automobile Data)

. generate weightsq=weight~2

. regress mpg weight weightsq foreign

Source SS df MS Number of obs = 74
F(3, 70) = 52.25

Model 1689.15372 3 563.05124 Prob > F 0.0000
Residual 754.30574 70 10.7757963 R-squared = 0.6913
Adj R-squared 0.6781

Total 2443.45946 73 33.4720474 Root MSE = 3.2827
mpg Coef. Std. Err. t P>|t] [95% Conf. Intervall
weight -.0165729 .0039692 -4.18 0.000 -.0244892 -.0086567
weightsq 1.59e-06 6.25e-07 2.55 0.013 3.45e-07 2.84e-06
foreign -2.2035 1.059246 -2.08 0.041 -4.3161 -.0909002
_cons 56.53884 6.197383 9.12 0.000 44.17855 68.89913

(Note: test has many syntaxes and features, so do not use this example as an excuse for not reading
[R] test.) We can use the test command to calculate the joint significance of weight and weightsq:

. test weight weightsq

(1) weight =0
(2) weightsq = 0
F(2, 70) = 60.83
Prob > F = 0.0000

We are not limited to testing whether the coefficients are 0. We can test whether the coefficient
on foreign is —2 by typing

. test foreign = -2
(1) foreign = -2
FC 1, 70) = 0.04
Prob > F = 0.8482

We can even test more complicated hypotheses because test can perform basic algebra. Here is
an absurd hypothesis:

. test 2x(weight+weightsq)=-3*(foreign-(weight-weightsq))

(1) - weight + b*weightsq + 3*foreign = 0
FC 1, 70) = 4.31
Prob > F = 0.0416

test simplified the algebra of our hypothesis and then presented the test results. We can also use
test’s accumulate option to combine this test with another test:

[U] 20 Estimation and postestimation commands 263

. test foreign+weight=0, accum

(1) - weight + b*weightsq + 3*foreign = 0
(2) weight + foreign = 0
FC 2, 70) = 9.12
Prob > F = 0.0003

There are limitations. test can test only linear hypotheses. If we attempt to test a nonlinear
hypothesis, test will tell us that it is not possible:

. test weight/foreign=0
not possible with test
r(131);

Testing nonlinear hypotheses is discussed in [U] 20.13.4 Nonlinear Wald tests below.

20.13.2 Using test

test bases its results on the estimated variance—covariance matrix of the estimators (that is, it
performs a Wald test), so it can be used after any estimation command. For maximum likelihood
estimation, test’s results for a single variable are generally equivalent to the asymptotic z statistic
presented in the coefficient table for that variable because test bases its results on the information
matrix.

> Example 13

Let’s examine the repair records of the cars in our automobile data as rated by Consumer Reports:

. tabulate rep78 foreign

Repair

Record Car type
1978 Domestic Foreign Total
Poor 2 0 2
Fair 8 0 8
Average 27 3 30
Good 9 9 18
Excellent 2 9 11
Total 48 21 69

The values are coded 1-5, corresponding to Poor, Fair, Average, Good, and Excellent. We will fit
this variable by using a maximum-likelihood ordered logit model (the nolog option suppresses the
iteration log, saving some space):

264 [U] 20 Estimation and postestimation commands

. ologit rep78 price foreign weight weightsq displ, nolog

Ordered logistic regression Number of obs = 69
LR chi2(5) = 33.12

Prob > chi2 = 0.0000

Log likelihood = -77.133082 Pseudo R2 = 0.1767
rep78 Coef. Std. Err. z P>|z| [95% Conf. Interval]

price -.000034 .0001188 -0.29 0.775 -.0002669 .000199
foreign 2.685647 .9320404 2.88 0.004 .8588817 4.512413
weight -.0037447 .0025609 -1.46 0.144 -.0087639 .0012745
weightsq 7.87e-07 4.50e-07 1.75 0.080 -9.43e-08 1.67e-06
displacement -.0108919 .0076805 -1.42 0.156 -.0259455 .0041617
/cutl -9.417196 4.298202 -17.84152 -.992874

/cut2 -7.581864 4.234091 -15.88053 .7168028

/cut3 -4.82209 4.14768 -12.95139 3.307214

/cut4 -2.793441 4.156221 -10.93948 5.352602

We now wonder whether all our variables other than foreign are jointly significant. We test the
hypothesis just as we would after linear regression:

. test weight weightsq displ price

(1) [rep78lweight = 0

(2) [rep78lweightsq = 0

(3) [rep78ldisplacement = 0
(4) [rep78lprice = 0

chi2(4) = 3.63
Prob > chi2 = 0.4590

You will have to decide whether you want to perform tests on the basis of the information matrix
instead of constraining the equation, reestimating it, and then calculating the likelihood-ratio test. To
compare this with the results performed by a likelihood-ratio test, see [U] 20.13.3 Likelihood-ratio
tests below. Results will differ little.

d

20.13.3 Likelihood-ratio tests

After maximum likelihood estimation, you can obtain likelihood-ratio tests by fitting both the
unconstrained and the constrained models, storing the results using estimates store, and then
running lrtest. See [R] Irtest for the full details.

> Example 14
In [U] 20.13.2 Using test above, we fit an ordered logit on rep78 and then tested the significance
of all the explanatory variables except foreign.

To obtain the likelihood-ratio test, sometime after fitting the full model, we type estimates store
SJull_model _name, where full_model_name is just a label that we assign to these results.

. ologit rep78 price foreign weight weightsq displ
(output omitted)

. estimates store myfullmodel

This command saves the current model results with the name myfullmodel.

[U] 20 Estimation and postestimation commands 265

s

Next, we fit the constrained model. After that, typing ‘lrtest myfullmodel
current model with the model we saved:

compares the

. ologit rep78 foreign

Iteration O: log likelihood = -93.692061
Iteration 1: log likelihood = -79.696089
Iteration 2: log likelihood = -79.034005
Iteration 3: log likelihood = -79.029244

Iteration 4: log likelihood = -79.029243

Ordered logistic regression Number of obs = 69
LR chi2(1) = 29.33

Prob > chi2 = 0.0000

Log likelihood = -79.029243 Pseudo R2 = 0.1565
rep78 Coef. Std. Err. z P>|z| [95% Conf. Intervall
foreign 2.98155 .6203644 4.81 0.000 1.765658 4.197442
/cutl -3.158382 . 7224269 -4.574313 -1.742452

/cut2 -1.362642 .3557343 -2.059868 -.6654154

/cut3 1.232161 .3431227 .5596532 1.90467

/cut4d 3.246209 .5556657 2.1567124 4.335293

. lrtest myfullmodel .

Likelihood-ratio test LR chi2(4) = 3.79
(Assumption: . nested in myfullmodel) Prob > chi2 = 0.4348

When we tested the same constraint with test (which performed a Wald test), we obtained a 2 of
3.63 and a significance level of 0.4590. We used . (the dot) to specify the results in active memory,
although we could have stored them with estimates store and referred to them by name instead.
Also, the order in which you specify the two models to 1rtest doesn’t matter; lrtest is smart
enough to know the full model from the constrained model.

N

Two other postestimation commands work in the same way as 1lrtest, meaning that they accept
names of stored estimation results as their input: hausman for performing Hausman specification
tests and suest for seemingly unrelated estimation. We do not cover these commands here; see
[R] hausman and [R] suest for more details.

20.13.4 Nonlinear Wald tests

testnl can be used to test nonlinear hypotheses about the parameters of the active estimation
results. testnl, like test, bases its results on the variance—covariance matrix of the estimators (that
is, it performs a Wald test), so it can be used after any estimation command; see [R] testnl.

> Example 15
We fit the model

. regress price mpg weight foreign
(output omitted)

266 [U] 20 Estimation and postestimation commands

and then type

. testnl (38*_b[mpgl~2 = _blforeign]) (_blmpgl/_blweight]=4)

(1) 38x_b[mpgl "2 = _b[foreign]
(2) _blmpgl/_blweight] = 4
chi2(2) = 0.04
Prob > chi2 = 0.9806

We performed this test on linear regression estimates, but tests of this type could be performed after
any estimation command.

4

20.14 Obtaining linear combinations of coefficients

lincom computes point estimates, standard errors, ¢ or z statistics, p-values, and confidence
intervals for a linear combination of coefficients after any estimation command. Results can optionally
be displayed as odds ratios, incidence-rate ratios, or relative-risk ratios.

> Example 16

We fit a linear regression:

. use https://www.stata-press.com/data/r16/regress, clear

. regress y x1 x2 x3

Source Ss df MS Number of obs = 148
F(3, 144) = 96.12

Model 3259.3561 3 1086.45203 Prob > F = 0.0000
Residual 1627.56282 144 11.3025196 R-squared = 0.6670
Adj R-squared = 0.6600

Total 4886.91892 147 33.2443464 Root MSE = 3.3619
y Coef. Std. Err. t P>t [95% Conf. Intervall

x1 1.457113 1.07461 1.36 0.177 -.666934 3.581161

x2 2.221682 .8610358 2.58 0.011 .5197797 3.923583

x3 -.006139 .00056543 -11.08 0.000 -.0072345 -.0050435
_cons 36.10135 4.382693 8.24 0.000 27.43863 44.76407

Suppose that we want to see the difference of the coefficients of x2 and x1. We type

. lincom x2 - x1
(1) -x1+x2=0

y Coef. Std. Err. t P>|t] [95% Conf. Intervall

1 . 7645682 .9950282 0.77 0.444 -1.20218 2.731316

lincom is handy for computing the odds ratio of one covariate group relative to another.

[U] 20 Estimation and postestimation commands 267

> Example 17

We estimate the parameters of a logistic model of low birthweight:

. use https://www.stata-press.com/data/r16/1bw3
(Hosmer & Lemeshow data)

. logit low age lwd i.race smoke ptd ht ui

Iteration O: log likelihood = -117.336
Iteration 1: log likelihood = -99.3982
Iteration 2: log likelihood = -98.780418
Iteration 3: log likelihood = -98.777998

Iteration 4: log likelihood = -98.777998

Logistic regression Number of obs = 189
LR chi2(8) = 37.12
Prob > chi2 = 0.0000
Log likelihood = -98.777998 Pseudo R2 = 0.1582
low Coef. Std. Err. z P>|z| [95% Conf. Intervall
age -.0464796 .0373888 -1.24 0.214 -.1197603 .0268011
lwd .8420615 .4055338 2.08 0.038 .0472299 1.636893
race
black 1.073456 .5150753 2.08 0.037 .0639273 2.082985
other .815367 .4452979 1.83 0.067 -.0574008 1.688135
smoke .8071996 .404446 2.00 0.046 .0145001 1.599899
ptd 1.281678 .4621157 2.77 0.006 .3759478 2.187408
ht 1.435227 .6482699 2.21 0.027 .1646414 2.705813
ui .6576256 .4666192 1.41 0.159 -.2569313 1.572182
_cons -1.216781 .9556797 -1.27 0.203 -3.089878 .656317

Level 1 of race designates white, level 2 designates black, and level 3 designates other.

If we want to obtain the odds ratio for black smokers relative to white nonsmokers (the reference
group), we type

. lincom 2.race + smoke, or

(1) [low]l2.race + [low]lsmoke = 0
low | Odds Ratio Std. Err. z P>zl [95% Conf. Intervall]
(¢D) 6.557805 4.744692 2.60 0.009 1.588176 27.07811

lincom computed eXp(ﬂQ.race + ﬁsmoke) = 6.56.

20.15 Obtaining nonlinear combinations of coefficients

lincom is limited to estimating linear combinations of coefficients, for example, 2.race + smoke,
or exponentiated linear combinations, as in the above. For general nonlinear combinations, use nlcom.

268 [U] 20 Estimation and postestimation commands

> Example 18

Continuing our previous example, suppose that we want the ratio of the coefficients (and standard
errors, Wald test, confidence interval, etc.) of blacks and races other than white and black:
. nlcom _b[2.race]/_b[3.racel
_nl_1: _b[2.race]/_b[3.race]

low Coef. Std. Err. z P>|z| [95% Conf. Intervall]

_nl_1 1.316531 . 7359262 1.79 0.074 -.1258574 2.75892

The Wald test given is that of the null hypothesis that the nonlinear combination is 0 versus the
two-sided alternative—this is probably not informative for a ratio. If we would instead like to test
whether this ratio is 1, we can rerun nlcom, this time subtracting 1 from our ratio estimate.
. nlcom _b[2.race]/_b[3.race] - 1
_nl_1: _b[2.racel/_b[3.race] - 1

low Coef. Std. Err. z P>|z| [95% Conf. Intervall]

_nl_1 .3165314 . 7359262 0.43 0.667 -1.125857 1.75892

We can interpret this as not much evidence that the ratio minus 1 is different from O, meaning that
we cannot reject the null hypothesis that the ratio equals 1.

When using nlcom, we needed to refer to the model coefficients by their “proper” names, for
example, _b[2.race], and not by the shorthand 2.race, such as when using lincom. If we had
typed

. nlcom 2.race/3.race
Stata would have reported an error.

If you have difficulty determining what to type for a coefficient when using lincom or nlcom,
replay your results by using the coeflegend option. Here are the results for our current estimates:

. logit, coeflegend

Logistic regression Number of obs = 189
LR chi2(8) = 37.12
Prob > chi2 = 0.0000
Log likelihood = -98.777998 Pseudo R2 = 0.1582
low Coef. Legend
age -.0464796 _blagel
1lwd .8420615 _b[lwd]
race
black 1.073456 _b[2.racel
other .815367 _bl[3.race]
smoke .8071996 _bl[smoke]
ptd 1.281678 _blptd]
ht 1.435227 _b[ht]
ui .6576256 _b[uil
_cons -1.216781 _b[_cons]

[U] 20 Estimation and postestimation commands 269

20.16 Obtaining marginal means, adjusted predictions, and predictive
margins

predict uses the current estimation results (the coefficients and the VCE) to estimate the value of
statistics for observations in the data. 1incom and nlcom use the current estimation results to estimate
a specific linear or nonlinear expression of the coefficients. The margins command combines aspects
of both and estimates margins of responses.

margins answers the question “What does my model have to say about such-and-such”, where
such-and-such might be

e my estimation sample or another sample

e a sample with the values of some covariates fixed

e a sample evaluated at each level of a treatment

e a population represented by a complex survey sample

e someone who looks like the fifth person in my sample

e someone who looks like the mean of the covariates in my sample

e someone who looks like the median of the covariates in my sample

e someone who looks like the 25th percentile of the covariates in my sample
e someone who looks like some other function of the covariates in my sample
e a standardized population

e a balanced experimental design

e any combination of the above

e any comparison of the above

margins answers these questions either conditionally on fixed values of all covariates or averaged
over the observations in a sample. It answers these questions about almost any predictions or any
other response that you can calculate as a function of your estimated parameters—Ilinear responses,
probabilities, hazards, survival times, odds ratios, risk differences, etc. You can even make multiple
predictions at the same time when appropriate. For example, you may want the predicted probabilities
and the linear prediction after logit.

margins answers these questions in terms of the response given covariate levels, or in terms of
the change in the response for a change in levels (also known as marginal effects). It answers these
questions providing standard errors, test statistics, and confidence intervals; and those statistics can
take the covariates as given or adjust for sampling, also known as predictive margins and survey
statistics.

A margin is a statistic based on a response for a fitted model calculated over a dataset in which
some of or all the covariates are fixed at values different from what they really are.

Margins go by different names in different fields, and they can estimate many interesting statistics
related to a fitted model. We discuss some common uses below; see [R] margins for more applications.

20.16.1 Obtaining estimated marginal means

A classic application of margins is to estimate the expected marginal means from a linear estimator
as though the design for the covariates were balanced—assuming an equal number of observations
for each unique combination of levels for the factor-variable covariates. These means have a long
history in the study of ANOVA and MANOVA but are of limited use with nonexperimental data. For a

270 [U] 20 Estimation and postestimation commands

discussion, see Obtaining margins as though the data were balanced in [R] margins and example 4
in [R] anova.

Estimated marginal means are also called least-squares means.

Consider an analysis of variance of the change in systolic blood pressure as determined by one of
four drug treatments and adjusting for the patient’s disease (Afifi and Azen 1979).

. use https://www.stata-press.com/data/r16/systolic
(Systolic Blood Pressure Data)

. tabulate drug disease

Patient’s Disease
Drug Used 1 2 3 Total
1 6 4 5 15
2 5 4 6 15
3 3 5 4 12
4 5 6 5 16
Total 19 19 20 58
. anova systolic drug##disease
Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259
Source | Partial SS df MS F Prob>F
Model 4259.3385 11 387.21259 3.561 0.0013
drug 2997.4719 3 999.15729 9.05 0.0001
disease 415.87305 2 207.93652 1.88 0.1637
drug#disease 707.26626 6 117.87771 1.07 0.3958
Residual 5080.8167 46 110.45254
Total 9340.1552 57 163.86237

Despite having randomized on drug, we see in the tabulation that our data are not balanced—for
example, 12 patients were administered drug 3, whereas 16 were administered drug 4. The diseases
are also not balanced across drugs. To estimate the marginal mean for each level of drug while treating
the design as though it were balanced, we type

. margins drug, asbalanced

Adjusted predictions Number of obs = 58
Expression : Linear prediction, predict()
at : drug (asbalanced)
disease (asbalanced)

Delta-method
Margin Std. Err. t P>t [95% Conf. Intervall
drug

1 25.99444 2.751008 9.45 0.000 20.45695 31.53194

2 26.55556 2.751008 9.65 0.000 21.01806 32.09305

3 9.744444 3.100558 3.14 0.003 3.503344 15.98554

4 13.54444 2.637123 5.14 0.000 8.236191 18.8527

Assuming everyone in the sample were treated with drug 4 and that the diseases were equally
distributed across the drug treatments, the expected mean change in pressure resulting from treatment
with drug 4 is 13.54. Because we are treating the data as balanced, we could also say that 13.54 is

[U] 20 Estimation and postestimation commands 271

the expected mean change resulting from drug 4 for any sample where an equal number of patients
has each of the three diseases.

If we want an estimate of the mean that uses the distribution of diseases observed in the sample,
we would remove the asbalanced option:

. margins drug

Predictive margins Number of obs = 58
Expression : Linear prediction, predict()
Delta-method
Margin Std. Err. t P>|t] [95% Conf. Intervall
drug
1 25.89799 2.750533 9.42 0.000 20.36145 31.43452
2 26.41092 2.742762 9.63 0.000 20.89003 31.93181
3 9.722989 3.099185 3.14 0.003 3.484652 15.96132
4 13.55575 2.640602 5.13 0.000 8.24049 18.871

We can now say that a pressure change of 13.56 is expected if everyone in the sample is given drug
4 and the distribution of diseases is as observed in the sample.

The second set of margins are not usually called estimated marginal means because they do not
impose a balanced design when estimating the mean. They are adjusted predictions that just happen
to be means because the response is linear.

Neither of these values is the average pressure change for those taking drug 4 in our sample
because margins treats everyone in the sample as having taken drug 4. Treating everyone as though
they have taken each drug is what makes the means comparable. We are essentially standardizing on
the values of all the other covariates in our model (in this example, just disease).

To obtain the observed mean for those taking drug 4, we must tell margins to treat drug 4 as its
sample, which we do with the over () option.

. summarize systolic if drug==

Variable | Obs Mean Std. Dev. Min Max
systolic | 16 13.5 9.323805 -5 27
. margins, over(drug)
Predictive margins Number of obs = 58
Expression : Linear prediction, predict()
over : drug
Delta-method
Margin Std. Err. t P>|t] [95% Conf. Intervall
drug
1 26.06667 2.713577 9.61 0.000 20.60452 31.52881
2 25.53333 2.713577 9.41 0.000 20.07119 30.99548
3 8.75 3.033872 2.88 0.006 2.643133 14.85687
4 13.5 2.62741 5.14 0.000 8.211298 18.7887

The margin in the last line of the table matches the mean from summarize.

For many questions, we prefer one of the first two estimates of margins to the last one. If we
compare drugs 3 and 4 from the last results, the 8.75 and 13.5 include both the effect from the drug
and the differing distribution of diseases among patients taking drug 3 and drug 4 in our sample.

272 [U] 20 Estimation and postestimation commands

Our first set of margins, those from margins drug, asbalanced, assumed that for both drug 3 and
drug 4, we had an equal number of patients with each disease. Our second set of margins, those
from margins drug, assumed that for both drug 3 and drug 4, we wanted the observed distribution
of patients from the whole sample. By assuming a common distribution of diseases across the drugs,
our first two sets of margins remove the effect of disease when we compare across drugs.

20.16.2 Obtaining adjusted predictions

We will use the term adjusted predictions to refer to margins that are evaluated at fixed values for
all covariates. The margins command has a great deal of flexibility in letting you choose what those
fixed values are. Consider a model of high blood pressure as a function of sex, age group, and body
mass index (BMI, a common measure of weight relative to height; variable bmi). We will allow the
effect of age to differ for males and females by interacting the age group and sex variables. We will
also allow the effect of BMI to differ across all combinations of age group and sex by specifying a
full factorial model.

[U] 20 Estimation and postestimation commands 273

. use https://www.stata-press.com/data/r16/nhanes2
. logistic highbp sex##agegrp##c.bmi

Logistic regression Number of obs = 10,351
LR chi2(23) = 2521.83
Prob > chi2 = 0.0000
Log likelihood = -5789.851 Pseudo R2 = 0.1788
highbp | 0dds Ratio Std. Err. z P>|z| [95% Conf. Intervall
sex
Female .4012124 .2695666 -1.36 0.174 .107515 1.497199
agegrp
30-39 .8124869 .6162489 -0.27 0.784 .1837399 3.592768
40-49 1.346976 1.101181 0.36 0.716 .2713222 6.687051
50-59 5.415758 4.254136 2.15 0.032 1.161532 25.2515
60-69 16.31623 10.09529 4.51 0.000 4.852423 54.86321
70+ 161.2491 130.7332 6.27 0.000 32.9142 789.9717
sex#agegrp
Female#30-39 1.441256 1.44721 0.36 0.716 .2013834 10.31475
Female#40-49 6.29497 6.575021 1.76 0.078 .8126879 48.75998
Female#50-59 4.377185 4.43183 1.46 0.145 .6016818 31.84366
Female#60-69 1.790026 1.502447 0.69 0.488 .3454684 9.27492
Female#70+ .1958758 .2165763 -1.47 0.140 .0224297 1.710562
bmi 1.18539 .0221872 9.09 0.000 1.142692 1.229684
sex#c.bmi
Female .9809543 .0250973 -0.75 0.452 .9329775 1.031398

agegrp#c.bmi

30-39 1.021812 .0299468 0.74 0.462 .9647712 1.082225

40-49 1.00982 .0315328 0.31 0.754 .9498702 1.073554

50-59 .979291 .0298836 -0.69 0.493 .9224373 1.039649

60-69 .9413883 .0228342 -2.49 0.013 .8976813 .9872234

70+ .8738056 .0278416 -4.23 0.000 .8209061 .930114
sex#agegrp#
c.bmi

Female#30-39 1.000676 .0377954 0.02 0.986 .9292736 1.077564

Female#40-49 .9702656 .0382854 -0.76 0.444 .8980559 1.048281

Female#50-59 .9852929 .0380345 -0.38 0.701 .9134969 1.062732

Female#60-69 1.028896 .0330473 0.89 0.375 .9661212 1.09575

Female#70+ 1.12236 .0480541 2.70 0.007 1.032019 1.220609

_cons .0052191 .0024787 -11.07 0.000 .0020575 .0132388

Note: _cons estimates baseline odds.

274 [U] 20 Estimation and postestimation commands

We can evaluate the probability of having high blood pressure for each age group while holding
the proportion of males and females and the value of bmi to its average by specifying the covariate
agegrp to margins and including the option atmeans:

. margins agegrp, atmeans

Adjusted predictions Number of obs = 10,351
Model VCE : 0IM
Expression : Pr(highbp), predict()
at : 1.sex = .4748333 (mean)
2.sex = .5251667 (mean)
1.agegrp = .2241329 (mean)
2.agegrp = .1566998 (mean)
3.agegrp .1228867 (mean)
4.agegrp = .1247222 (mean)
5.agegrp .2763018 (mean)
6.agegrp = .0952565 (mean)
bmi = 25.5376 (mean)
Delta-method
Margin Std. Err. z P>|z| [95% Conf. Intervall
agegrp
20-29 .1611491 .0091135 17.68 0.000 .1432869 .1790113
30-39 .2487466 .0121649 20.45 0.000 .2249038 .2725893
40-49 .3679695 .0144456 25.47 0.000 .3396567 .3962823
50-59 .5204507 .0146489 35.53 0.000 .4917394 .549162
60-69 .5714605 .0095866 59.61 0.000 .55626711 .5902499
70+ .6637982 .0154566 42.95 0.000 .6335038 .6940927

The header of the table showed us the mean values of each covariate. These are the values at which
the probabilities were evaluated. The mean values for the levels of agegrp appear in the header even
though they were not used. agegrp assumed the values 1, 2, 3, 4, 5, and 6, as shown in the table.
The means of the levels of agegrp are shown because we might have asked for more margins in the
table, for example, margins sex agegrp.

The modeled probability is just below 25% for those under 40 years of age, and it then increases
fairly rapidly to 52% in the 50-59 age group. Above age 59, the probability remains under 67%. It is
often easier for nonstatisticians to interpret the statistics computed by margins than it is to interpret

the coefficients of a fitted model.

20.16.3 Obtaining predictive margins

Rather than evaluate the probability of having high blood pressure at one fixed point (the means),
as we did above, we can evaluate the probability at the covariate values for each observation in our
data and average those probabilities. Here is the modeled probability averaged over our sample:

. margins
Predictive margins Number of obs = 10,351
Model VCE : 0IM
Expression : Pr(highbp), predict()
Delta-method
Margin Std. Err. z P>|z| [95% Conf. Intervall
_cons .4227611 .0042939 98.46 0.000 .4143451 .4311771

[U] 20 Estimation and postestimation commands 275

If we fix the level of agegrp to 1, compute the probability for each observation, and then average
those probabilities, the result is the predictive margin for level 1 of agegrp. margins, by default,
computes these margins for each level of each variable specified on the command line. Let’s compute
the predictive margins for agegrp:

. margins agegrp

Predictive margins Number of obs = 10,351
Model VCE : 0IM
Expression : Pr(highbp), predict()
Delta-method
Margin Std. Err. z P>|z| [95% Conf. Intervall
agegrp
20-29 .2030932 .0087166 23.30 0.000 .1860089 .2201774
30-39 .2829091 .010318 27.42 0.000 .2626862 .3031319
40-49 .3769536 .0128744 29.28 0.000 .3517202 .4021871
50-59 .5153439 .0136201 37.84 0.000 .4886491 .5420387
60-69 .5641065 .009136 61.75 0.000 .5462003 .5820127
70+ .6535679 .0151371 43.18 0.000 .6238997 .683236

One way of looking at predictive margins is that they answer the question “What would the average
response (probability) be in my sample if everyone were in one age group?” Another way of looking
at predictive margins is that they standardize the effect of being in an age group with the distribution
of other covariate values in our sample. The margins above are comparable because only the level of
agegrp is changing across the margins. They represent our sample because all the other covariates
take on their values in the sample when the margins are evaluated.

The predictive margins in this table differ from the adjusted predictions we estimated in
[U] 20.16.2 Obtaining adjusted predictions because the probability is a nonlinear function of
the coefficients in a logistic model; see Example 3: Average response versus response at average in
[R] margins for details.

Our analysis so far has been a bit naive. The dataset we are using is from the Second National
Health and Nutrition Examination Survey (NHANES II). It has weights to make it representative of
the population from which it was drawn as well as other survey characteristics—strata and primary
sampling units. The data have already been svyset; see [SVY] svyset. We should take note of these
characteristics and use the svy prefix when fitting our model.

. svy: logistic highbp sex##agegrp##c.bmi
(output omitted)

If we were to repeat the command margins agegrp, we would see that our point estimates differ
only a little, but our standard errors are generally larger.

We are not restricted to margining over a single factor variable. Let’s see if the pattern of high
blood pressure over age groups differs for men and women. We do that by specifying the interaction
of sex and agegrp to margins. We add the vce(unconditional) option to accommodate the
survey design.

276 [U] 20 Estimation and postestimation commands

. margins sex#agegrp, vce(unconditional)

Predictive margins

Number of strata = 31 Number of obs = 10,351
Number of PSUs = 62 Population size = 117,157,513
Design df = 31
Expression : Pr(highbp), predict()
Linearized
Margin Std. Err. t P>|t] [95% Conf. Intervall
sex#agegrp
Male#20-29 .2931664 .0204899 14.31 0.000 .251377 .3349557
Male#30-39 .3664032 .0241677 15.16 0.000 .3171128 .4156936
Male#40-49 .3945619 .0240343 16.42 0.000 .3455435 .4435802
Male#50-59 .5376423 .0295377 18.20 0.000 4773997 .5978849
Male#60-69 .5780997 .0224681 25.73 0.000 .5322756 .6239237
Male#70+ .6507023 .0209322 31.09 0.000 .6080109 .6933938
Female#20-29 .1069761 .0135978 7.87 0.000 .0792432 .1347091
Female#30-39 .1898006 .0143975 13.18 0.000 .1604367 .2191646
Female#40-49 .3250246 .0236775 13.73 0.000 .276734 .3733152
Female#50-59 .4855339 .03364 14.43 0.000 .4169247 .5541431
Female#60-69 .5441773 .0186243 29.22 0.000 .5061928 .5821618
Female#70+ .6195342 .0275568 22.48 0.000 .5633317 .6757367

Each line in the table corresponds to holding both sex and agegrp to fixed values while using
the observed level of bmi to evaluate the probability and then averaging over the observations in the
sample. To calculate the results in the first line of the table, margins fixed sex = 1 and agegrp =1,
evaluated the probability for each observation, and then averaged the probabilities. All of these margins
reflect the observed distribution of bmi in the sample.

The first six lines represent males, and the second six lines represent females. Comparing males
with females for the same age groups, males are almost three times as likely to have high blood
pressure in the first age group (0.293/0.107 = 2.7); they are almost twice as likely in the second
age group; and while the relative gap narrows, it is not until above age 70 that the probability for
males drops below the probability for females.

Can the pattern of probabilities be affected by controlling one’s bmi? Let’s reevaluate the proba-
bilities while holding bmi to two levels—20 (which is well within the normal range) and 30 (which
is at the boundary between overweight and obese). We add the option at (bmi=(20 30)) to set bmi
first to 20 and then to 30.

[U] 20 Estimation and postestimation commands 277

. margins sex#agegrp, at(bmi=(20 30)) vce(unconditional)

Adjusted predictions

Number of strata = 31 Number of obs = 10,351
Number of PSUs = 62 Population size = 117,157,513
Design df = 31
Expression : Pr(highbp), predict()
1._at : bmi = 20
2._at : bmi = 30
Linearized
Margin Std. Err. t P>|t| [95% Conf. Interval]
_at#sex#

agegrp
1#Male#20-29 .1392353 .0217328 6.41 0.000 .094911 .1835596
1#Male#30-39 1714727 .0241469 7.10 0.000 .1222249 .2207205
1#Male#40-49 .1914061 .0366133 5.23 0.000 .1167329 .2660794
1#Male#50-59 .3380778 .0380474 8.89 0.000 .2604797 .4156759
1#Male#60-69 .4311378 .0371582 11.60 0.000 .3553532 .5069225

1#Male#70+ .6131166 .0521657 11.75 0.000 .506724 .7195092
1#
Female #
20-29 .0439911 .0061833 7.11 0.000 .0313802 .056602
1#
Female #
30-39 .075806 .0134771 5.62 0.000 .0483193 .1032926
1#
Female #
40-49 .1941274 .0231872 8.37 0.000 .1468367 .2414181
1#
Female #
50-59 .3493224 .0405082 8.62 0.000 .2667055 .4319394
1#
Female #

60-69 .3897998 .0226443 17.21 0.000 .3436165 .4359831
1#Female#70+ .4599175 .0338926 13.57 0.000 .3907931 .5290419
2#Male#20-29 .4506376 .0370654 12.16 0.000 .3750422 .526233
2#Male#30-39 .569466 .04663 12.21 0.000 .4743635 .6645686
2#Male#40-49 .6042078 .039777 15.19 0.000 .5230821 .6853334
2#Male#50-59 . 7268547 .0339618 21.40 0.000 .657589 .7961203
2#Male#60-69 .7131811 .0271145 26.30 0.000 .6578807 . 7684816

2#Male#70+ .6843337 .0357432 19.15 0.000 .611435 . 7572323
2 #
Female #
20-29 .1638185 .024609 6.66 0.000 .1136282 .2140088
2 #
Female #
30-39 .3038899 .0271211 11.20 0.000 .2485761 .3592037
2 #
Female #
40-49 .4523337 .0364949 12.39 0.000 .3779019 .5267655
2 #
Female #
50-59 .6132219 .0376898 16.27 0.000 .536353 .6900908
2 #
Female #

60-69 .68786 .0274712 25.04 0.000 .631832 . 7438879

2#Female#70+ . 7643662 .0343399 22.26 0.000 .6943296 .8344029

278 [U] 20 Estimation and postestimation commands

That is a lot of margins, but they are in sets of six age groups. The first six margins are men
with a BMI of 20, the second six are women with a BMI of 20, the third six are men with a BMI
of 30, and the last six are women with a BMI of 30. These margins tell a more complete story. The
probability of high blood pressure is much lower for both men and women who maintain a BMI of 20.
More interesting is that the relationship between men and women differs depending on BMI. While
young men who maintain a BMI of 20 are still twice as likely as young women to have high blood
pressure (0.139/0.044) and youngish men are over 50% more likely (0.171/0.076), the gap narrows
substantially for men in the four older groups. The story is worse for those with a BMI of 30. Both
men and women with a high BMI have a substantially increased risk of high blood pressure, with men
ages 50-69 almost 10 percentage points higher than women. Before you dismiss these differences as
caused by the usual attenuation of the logistic curve in the tails, recall that when we fit the model,
we allowed the effect of bmi to be different for each combination of sex and agegrp.

You may have noticed that the header of the prior results says “Adjusted predictions” rather than
“Predictive margins”. That is because our model has only three covariates, and we have fixed the
values of each. margins is no longer averaging over the data, but is instead evaluating the margins
at fixed points that we have requested. It lets us know that by changing the header.

We could post the results of margins and form linear combinations or perform tests about any of
the assertions above; see Example 10: Testing margins—contrasts of margins in [R] margins.

There is much more to know about margins and the margins command. Consider the headings
for the Remarks and examples section of [R] margins:

Introduction
Obtaining margins of responses
Example 1: A simple case after regress
Example 2: A simple case after logistic
Example 3: Average response versus response at average
Example 4: Multiple margins from one command
Example 5: Margins with interaction terms
Example 6: Margins with continuous variables
Example 7: Margins of continuous variables
Example 8: Margins of interactions
Example 9: Decomposing margins
Example 10: Testing margins—contrasts of margins
Example 11: Margins of a specified prediction
Example 12: Margins of a specified expression
Example 13: Margins with multiple outcomes (responses)
Example 14: Margins with multiple equations
Example 15: Margins evaluated out of sample
Obtaining margins of derivatives of responses (a.k.a. marginal effects)
Use at() freely, especially with continuous variables
Expressing derivatives as elasticities
Derivatives versus discrete differences
Example 16: Average marginal effect (partial effects)
Example 17: Average marginal effect of all covariates
Example 18: Evaluating marginal effects over the response surface
Obtaining margins with survey data and representative samples
Example 19: Inferences for populations, margins of response
Example 20: Inferences for populations, marginal effects
Example 21: Inferences for populations with svyset data
Standardizing margins
Obtaining margins as though the data were balanced
Balancing using asbalanced
Balancing by standardization
Balancing nonlinear responses
Treating a subset of covariates as balanced
Using fvset design
Balancing in the presence of empty cells

[U] 20 Estimation and postestimation commands 279

Obtaining margins with nested designs
Introduction
Margins with nested designs as though the data were balanced
Coding of nested designs
Special topics
Requirements for model specification
Estimability of margins
Manipulability of tests
Using margins after the estimates use command
Syntax of at()
Estimation commands that may be used with margins
Video examples
Glossary

20.17 Obtaining conditional and average marginal effects

Marginal effects measure the change in a response given a change in a covariate, which is to say
that marginal effects are derivatives. As used here, marginal effects can also be the discrete change
in a response as an indicator goes from O to 1. Some authors reserve the term marginal effect for
the continuous change and use the term partial effect for the discrete change. We will not make that
distinction. Regardless, marginal effects are most often used to make it easier to interpret how changes
in covariates affect a nonlinear response from a fitted model—a probability, a censored dependent
variable, a survival time, a hazard, etc.

Marginal effects can either be evaluated at a specified point for all the covariates in our model
(conditional marginal effects) or be evaluated at the observed values of the covariates in a dataset
and then averaged (average marginal effects).

To Stata, marginal effects are just margins whose response happens to be the derivative of another
response. Those interested in marginal effects will be interested in all or most of [R] margins.

20.17.1 Obtaining conditional marginal effects

We call a marginal effect conditional when we fix the values of all the covariates and then take
the derivative of the response with respect to a covariate. The mean of all covariates is often used as
the fixed point, and this is sometimes called the marginal effect at the means.

Consider a simple probit model of union membership for women as a function of having graduated
from college (collgrad), living in the South (south), tenure on the job (tenure), and the interaction
of south and tenure. We are interested in how being in the South affects union membership. We fit
the model by using an extract from 1988 of the U.S. National Longitudinal Survey of Labor Market
Experience (see [XT] xt).

280 [U] 20 Estimation and postestimation commands

. use https://www.stata-press.com/data/r16/nlsw88b, clear
(NLSW, 1988 extract)

. probit union i.collgrad i.south tenure south#c.tenure
Iteration O: log likelihood = -1042.6816
Iteration 1: log likelihood = -997.71809

Iteration 2: log likelihood = -997.60984
Iteration 3: log likelihood = -997.60983

Probit regression Number of obs = 1,868

LR chi2(4) = 90.14

Prob > chi2 = 0.0000

Log likelihood = -997.60983 Pseudo R2 = 0.0432

union Coef. Std. Err. z P>zl [95% Conf. Intervall]
collgrad

not grad .2783278 .0726167 3.83 0.000 .1360018 .4206539

1.south -.2534964 .1050552 -2.41 0.016 -.4594008 -.0475921

tenure .0362944 .0068205 5.32 0.000 .0229264 .0496624
south#
c.tenure

1 -.0239785 .0119533 -2.01 0.045 -.0474065 -.0005504

_cons -.8497418 .0664524 -12.79 0.000 -.9799862 -.7194974

Clearly, being located in the South decreases union membership. Using the dydx() and atmeans
options of margins, we can ask how much it decreases membership by evaluating the marginal effect
of being southern at the means of all covariates:

. margins, dydx(south) atmeans

Conditional marginal effects Number of obs = 1,868
Model VCE : 0IM
Expression : Pr(union), predict()
dy/dx w.r.t. : 1l.south
at : 0.collgrad = .7521413 (mean)
1.collgrad = .2478587 (mean)
0.south = .5744111 (mean)
1.south = .4255889 (mean)
tenure = 6.571065 (mean)

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Intervall

1.south -.1236055 .019431 -6.36 0.000 -.1616896 -.0855215

Note: dy/dx for factor levels is the discrete change from the base level.

At the means of all the covariates, southern women are 12 percentage points less likely to be members
of a union. This marginal effect includes both the direct effect of i.south and the interaction
south#c.tenure.

As margins reports below the table, this change in the response is for the discrete change of
going from not southern (0) to southern (1).

The header of margins tells us where the marginal effect was estimated. This margin fixes tenure
to be 6.6 years. There is nothing special about this point. We could also evaluate the marginal effect
at the median of tenure:

[U] 20 Estimation and postestimation commands 281

. margins, dydx(south) atmeans at((medians) _continuous)

Conditional marginal effects Number of obs = 1,868
Model VCE : 0IM
Expression : Pr(union), predict()
dy/dx w.r.t. 1.south
at : 0.collgrad = .7521413 (mean)
1.collgrad = .2478587 (mean)
0.south = .5744111 (mean)
1.south = .4255889 (mean)
tenure = 4.666667 (median)
Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Intervall
1.south -.1061338 .0201722 -5.26 0.000 -.1456706 -.066597

Note: dy/dx for factor levels is the discrete change from the base level.

With tenure at its median of 4.67, the marginal effect is about 2 percentage points less than it
was at the mean of 6.6.

When examining conditional marginal effects, it is often useful to evaluate them at a range of values
for the covariates. We can do that by asking both for values of the indicator covariate collgrad and
for a range of values for tenure:

. margins collgrad, dydx(south) at(tenure=(0(5)25))

Conditional marginal effects Number of obs = 1,868
Model VCE : 0IM
Expression : Pr(union), predict()
dy/dx w.r.t. : 1l.south
1._at : tenure =
2._at : tenure =
3._at : tenure = 10
4. _at : tenure = 15
5._at : tenure = 20
6._at : tenure = 25
Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Intervall
0.south (base outcome)
1.south
_at#collgrad
l#grad -.0627725 .0254161 -2.47 0.014 -.112587 -.0129579
1#not grad -.0791483 .0321151 -2.46 0.014 -.1420928 -.0162038
2#grad -.1031957 .0189184 -5.45 0.000 -.140275 -.0661164
2#not grad -.1256566 .0232385 -5.41 0.000 -.1712031 -.0801101
3#grad -.1496772 .022226 -6.73 0.000 -.1932392 -.1061151
3#not grad -.1760137 .0266874 -6.60 0.000 -.2283202 -.1237073
4#tgrad -.2008801 .036154 -56.56 0.000 -.2717407 -.1300196
4#not grad -.2282 .0419237 -5.44 0.000 -.310369 -.146031
S#grad -.2549707 .0546355 -4.67 0.000 -.3620543 -.1478872
5#not grad -.2799495 .0613127 -4.57 0.000 -.4001201 -.1597789
6#grad -.3097656 .0747494 -4.14 0.000 -.4562717 -.1632594
6#not grad -.3289702 .0816342 -4.03 0.000 -.4889703 -.1689701

Note: dy/dx for factor levels is the discrete change from the base level.

282 [U] 20 Estimation and postestimation commands

We now have a more complete picture of the effect that being in the South has on union participation.
For those with no tenure and without a college degree (the first line in the table), being in the South
decreases union participation by only 6 percentage points. For those with 25 years of tenure and with
a college degree (the last line in the table), being in the South decreases participation by almost 33
percentage points. We can read the effect for any combination of tenure and college graduation status
from the other lines in the table.

20.17.2 Obtaining average marginal effects

To compute average marginal effects, the marginal effect is first computed for each observation
in the dataset and then averaged. If the sample over which we compute the average marginal effect
represents a population, then we have estimated the marginal effect for the population.

We continue with our example of labor union participation.

. use https://www.stata-press.com/data/r16/nlsw88b
(NLSW, 1988 extract)

. probit union i.collgrad i.south tenure south#c.tenure
(output omitted)

To estimate the average marginal effect for each of our regressors, we type

. margins, dydx(*)

Average marginal effects Number of obs = 1,868
Model VCE : 0IM
Expression : Pr(union), predict()
dy/dx w.r.t. : l.collgrad 1.south tenure
Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]
collgrad
not grad .0878847 .0238065 3.69 0.000 .0412248 .1345447
1.south -.126164 .0191504 -6.59 0.000 -.1636981 -.0886299
tenure .0083571 .0016521 5.06 0.000 .005119 .0115951

Note: dy/dx for factor levels is the discrete change from the base level.

For this sample, the average marginal effect is very close to the marginal effect at the mean that
we computed earlier. That is not always true; it depends on the distribution of the other covariates.
The results also tell us that on average, for populations like the one from which our sample was
drawn, union participation increases 0.8 percentage points for every year of tenure on the job. College
graduates are, on average, 8.8 percentage points more likely to participate.

In the examples above, we treated the covariates in the sample as fixed and known. We could have
accounted for the fact that this sample was drawn from a population and the covariates represent just
one sample from that population. We do that by adding the vce (robust) or vce(cluster clustvar)
option when fitting the model and the vce(unconditional) option when estimating the margins;
see Obtaining margins with survey data and representative samples in [R] margins. It makes little
difference in the examples above.

[U] 20 Estimation and postestimation commands 283

20.18 Obtaining pairwise comparisons

pwcompare performs pairwise comparisons across the levels of factor variables. pwcompare can
compare estimated cell means, marginal means, intercepts, marginal intercepts, slopes, or marginal
slopes—collectively called margins. pwcompare reports comparisons as contrasts (differences) of
margins along with significance tests or confidence intervals for the contrasts. The tests and confidence
intervals can be adjusted for multiple comparisons.

pwcompare is for use after an estimation command in which you have used factor variables in
specifying the model. You could not use pwcompare after typing

. regress yield fertilizerl-fertilizerb

but you could use pwcompare after typing

. regress yield i.fertilizer

Below, we fit a linear regression of wheat yield on type of fertilizer, and then we compare the mean
yields for each pair of fertilizers and obtain p-values and confidence intervals adjusted for multiple
comparisons by using Tukey’s honestly significant difference.

. use https://www.stata-press.com/data/r16/yield
(Artificial wheat yield dataset)

. regress yield i.fertilizer

Source Ss df MS Number of obs = 200
F(4, 195) = 5.33
Model 1078.84207 4 269.710517 Prob > F = 0.0004
Residual 9859.55334 195 50.561812 R-squared = 0.0986
Adj R-squared = 0.0801
Total 10938.3954 199 54.9668111 Root MSE = 7.1107
yield Coef. Std. Err. t P>|t| [95% Conf. Intervall
fertilizer
10-08-22 3.62272 1.589997 2.28 0.024 .4869212 6.758518
16-04-08 .4906299 1.589997 0.31 0.758 -2.645169 3.626428
18-24-06 4.922803 1.589997 3.10 0.002 1.787005 8.058602
29-03-04 -1.238328 1.589997 -0.78 0.437 -4.374127 1.89747
_cons 41.36243 1.124298 36.79 0.000 39.14509 43.57977

284 [U] 20 Estimation and postestimation commands

. pwcompare fertilizer, effects mcompare(tukey)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced
Number of
Comparisons
fertilizer 10
Tukey Tukey
Contrast Std. Err. t P>|t] [95% Conf. Intervall
fertilizer
10-08-22
vs
10-10-10 3.62272 1.589997 2.28 0.156 -.7552913 8.000731
16-04-08
vs
10-10-10 .4906299 1.589997 0.31 0.998 -3.887381 4.868641
18-24-06
vs
10-10-10 4.922803 1.589997 3.10 0.019 .5447922 9.300815
29-03-04
vs
10-10-10 -1.238328 1.589997 -0.78 0.936 -5.616339 3.139683
16-04-08
vs
10-08-22 -3.13209 1.589997 -1.97 0.285 -7.510101 1.245921
18-24-06
vs
10-08-22 1.300083 1.589997 0.82 0.925 -3.077928 5.678095
29-03-04
vs
10-08-22 -4.861048 1.589997 -3.06 0.021 -9.239059 -.4830368
18-24-06
vs
16-04-08 4.432173 1.589997 2.79 0.046 .0541623 8.810185
29-03-04
vs
16-04-08 -1.728958 1.589997 -1.09 0.813 -6.106969 2.649053
29-03-04
vs
18-24-06 -6.161132 1.589997 -3.87 0.001 -10.53914 -1.78312

See [R] pwcompare and [R] margins, pwcompare.

20.19 Obtaining contrasts, tests of interactions, and main effects

contrast estimates and tests contrasts—comparisons of levels of factor variables. It also performs
joint tests of these contrasts and can produce ANOVA-style tests of main effects, interaction effects,
simple effects, and nested effects. It can be used after most estimation commands.

contrast provides a set of contrast operators such as r., ar., and p.. These operators are
prefixed onto variable names—for example, r.varname—to specify the contrasts to be performed.
The operators can be used with the contrast and margins commands.

[U] 20 Estimation and postestimation commands 285

Below, we fit a regression of cholesterol level on age group category.
. regress chol i.agegrp
The reported coefficients on i.agegrp will themselves be contrasts, namely, contrasts on the reference

category. After estimation, if we wanted to compare the cell mean of each age group with that of the
previous group, we would perform a reverse-adjacent contrast by typing

. contrast ar.agegrp

That is exactly what we will do:

. use https://www.stata-press.com/data/r16/cholesterol
(Artificial cholesterol data)

. regress chol i.agegrp

Source SS df MS Number of obs = 75
F(4, 70) = 35.02
Model 14943.3997 4 3735.84993 Prob > F = 0.0000
Residual 7468.21971 70 106.688853 R-squared = 0.6668
Adj R-squared = 0.6477
Total 22411.6194 74 302.859722 Root MSE = 10.329
chol Coef. Std. Err. t P>|t]| [95% Conf. Intervall]
agegrp
20-29 8.203575 3.771628 2.18 0.033 .6812991 15.72585
30-39 21.54105 3.771628 5.71 0.000 14.01878 29.06333
40-59 30.15067 3.771628 7.99 0.000 22.6284 37.67295
60-79 38.76221 3.771628 10.28 0.000 31.23993 46.28448
_cons 180.5198 2.666944 67.69 0.000 175.2007 185.8388

. contrast ar.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
agegrp
(20-29 vs 10-19) 1 4.73 0.0330
(30-39 vs 20-29) 1 12.51 0.0007
(40-59 vs 30-39) 1 5.21 0.0255
(60-79 vs 40-59) 1 5.21 0.0255
Joint 4 35.02 0.0000
Denominator 70
Contrast Std. Err. [95% Conf. Intervall
agegrp
(20-29 vs 10-19) 8.203575 3.771628 .6812991 15.72585
(30-39 vs 20-29) 13.33748 3.771628 5.815204 20.85976
(40-59 vs 30-39) 8.60962 3.771628 1.087345 16.1319
(60-79 vs 40-59) 8.611533 3.771628 1.089257 16.13381

We could use orthogonal polynomial contrasts to test whether there is a linear, quadratic, or even
higher-order trend in the estimated cell means.

286 [U] 20 Estimation and postestimation commands

. contrast p.agegrp, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F
agegrp

(linear) 1 139.11 0.0000
(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448
(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Denominator 70

You are not limited to using contrast in one-way models. Had we fit

. regress chol agegrp##race

we could contrast to obtain tests of the main effects and interaction effects.

. contrast agegrp##irace

These results would be the same as would be reported by anova. We mention this because you can
use contrast after any estimation command that allows factor variables and works with margins.
You could type

. logistic highbp agegrp##race
. contrast agegrp##irace

See [R] contrast and [R] margins, contrast.

20.20 Graphing margins, marginal effects, and contrasts

Using marginsplot, you can graph any of the results produced by margins, and because margins
can replicate any of the results produced by pwcompare and contrast, you can graph any of the
results produced by them, too.

In [U] 20.16.3 Obtaining predictive margins, we did the following:
. use https://www.stata-press.com/data/r16/nhanes?2

. svy: logistic highbp sex##agegrp##c.bmi
. margins sex#agegrp, vce(unconditional)

[U] 20 Estimation and postestimation commands 287

We can now graph those results by typing

. marginsplot, xdimension(agegrp)
Variables that uniquely identify margins: sex agegrp

Predictive Margins of sex#agegrp with 95% Cls

Pr(Highbp)
4
1

o

20-29 3039 40249 50-59 60-69 70+
Age Group

‘—0— Male —e— Female ‘

See [R] marginsplot. Mitchell (2021) shows how to make similar graphs for a variety of predictions
and models.

20.21 Dynamic forecasts and simulations

The forecast suite of commands lets you obtain forecasts from forecast models, collections of
equations that jointly determine the outcomes of one or more endogenous variables. You fit stochastic
equations using estimation commands such as regress or var, and then you add those results to your
forecast model. You can also specify identities that define variables in terms of other variables, and
you can also specify exogenous variables whose values are already known or otherwise determined
by factors outside your model. forecast then solves the resulting system of equations to obtain
forecasts.

forecast works with time-series and panel datasets, and you can obtain either dynamic or static
forecasts. Dynamic forecasts use previous periods’ forecast values wherever lags appear in the model’s
equations and thus allow you to obtain forecasts for multiple periods in the future. Static forecasts
use previous periods’ actual values wherever lags appear in the model’s equations, so if you use lags,
you cannot make predictions much beyond the end of the time horizon in your dataset. However,
static forecasts are useful during model development.

You can incorporate outside information into your forecasts, and you can specify a future path for
some of the model’s variables and obtain forecasts for the other variables conditional on that path.
These features allow you to produce forecasts under different scenarios, and they allow you to explore
how different policy interventions would affect your forecasts.

forecast also has the capability to produce confidence intervals around the forecasts. You can
have forecast account for the sampling variance of the estimated parameters in the stochastic
equations. There are two ways to account for an additive stochastic error term in the stochastic
equations. You can request either that forecast assume the error terms are normally distributed and
take draws from a random-number generator or that forecast take random samples from the pool
of static-forecast residuals.

See [TS] forecast.

288 [U] 20 Estimation and postestimation commands

20.22 Obtaining robust variance estimates

Many Stata estimation commands provide robust and cluster-robust variance estimates. To ob-
tain these estimates, you simply specify option vce(robust) to obtain robust standard errors or
vce(cluster clustvar) to obtain cluster-robust standard errors. Below, we provide a general discus-
sion of why you might specify one of these options, how to interpret standard errors with and without
vce(robust) specified, and an overview of important concepts relating to cluster-robust standard
errors.

Estimates of variance refer to estimated standard errors or, more completely, the estimated variance—
covariance matrix of the estimators of which the standard errors are a subset, being the square root of
the diagonal elements. Call this matrix the variance. All estimation commands produce an estimate
of variance and, using that, produce confidence intervals and significance tests.

In addition to the conventional estimator of variance, there is another estimator that has been
called by various names because it has been derived independently in different ways by different
authors. Two popular names associated with the calculation are Huber and White, but it is also known
as the sandwich estimator of variance (because of how the calculation formula physically appears)
and the robust estimator of variance (because of claims made about it). Also, this estimator has an
independent and long tradition in the survey literature.

The conventional estimator of variance is derived by starting with a model. Let’s start with the
regression model

Yi = X8+ €, € ~ N(0,0%)

although it is not important for the discussion that we are using regression. Under the model-based
approach, we assume that the model is true and thereby derive an estimator for 3 and its variance.

The estimator of the standard error of ,@ we develop is based on the assumption that the model is
true in every detail. y; is not exactly equal to x;3 (so that we would only need to solve an equation
to obtain precisely that value of (3) because the observed y; has noise ¢; added to it, the noise is
Gaussian, and it has constant variance. That noise leads to the uncertainty about 3, and it is from

the characteristics of that noise that we are able to calculate a sampling distribution for 3.

The key thought here is that the standard error of B arises because of € and is valid only because
the model is absolutely, without question, true; we just do not happen to know the particular values of
B3 and o2 that make the model true. The implication is that, in an infinite-sized sample, the estimator

B for B3 would converge to the true value of 3 and that its variance would go to 0.

Now here is another interpretation of the estimation problem: We are going to fit the model
Yi = x;b+e;
and, to obtain estimates of b, we are going to use the calculation formula
b= (X'X)"'X'y

We have made no claims that the model is true or any claims about e; or its distribution. We shifted
our notation from (3 and ¢; to b and e; to emphasize this. All we have stated are the physical actions
we intend to carry out on the data. Interestingly, it is possible to calculate a standard error for b
here. At least, it is possible if you will agree with us on what the standard error measures are.

We are going to define the standard error as measuring the standard error of the calculated b if
we were to repeat the data collection followed by estimation over and over again.

[U] 20 Estimation and postestimation commands 289

This is a different concept of the standard error from the conventional, model-based ideas, but it
is related. Both measure uncertainty about b (or 3). The regression model-based derivation states
from where the variation arises and so can make grander statements about the applicability of the
measured standard error. The weaker second interpretation makes fewer assumptions and so produces
a standard error suitable for one purpose.

There is a subtle difference in interpretation of these identically calculated point estimates. 3 is

the estimate of 3 under the assumption that the model is true. b is the estimate of b, which is merely
what the estimator would converge to if we collected more and more data.

Is the estimate of b unbiased? If we mean, “Does b = 37?” that depends on whether the model
is true. b is, however, an unbiased estimate of b, which admittedly is not saying much.

What if x and e are correlated? Don’t we have a problem then? We may have an interpretation

problem—b may not measure what we want to measure, namely, 3—but we measure b to be
such-and-such and expect, if the experiment and estimation were repeated, that we would observe
results in the range we have reported.

So, we have two different understandings of what the parameters mean and how the variance in
their estimators arises. However, both interpretations must confront the issue of how to make valid
statistical inference about the coefficient estimates when the data do not come from a simple random
sample or the distribution of (x;, €;) is not independent and identically distributed (i.i.d.). In essence,
we need an estimator of the standard errors that is robust to this deviation from the standard case.

Hence, the name the robust estimate of variance; its associated authors are Huber (1967) and White
(1980, 1982) (who developed it independently), although many others have extended its development,
including Gail, Tan, and Piantadosi (1988); Kent (1982); Royall (1986); and Lin and Wei (1989). In the
survey literature, this same estimator has been developed; see Kish and Frankel (1974), Fuller (1975),
and Binder (1983). Most of Stata’s estimation commands can produce this alternative estimate of
variance and do so via the vce (robust) option.

20.22.1 Interpreting standard errors

Without vce (robust), we get one measure of variance:

. use https://www.stata-press.com/data/r16/auto?
(1978 Automobile Data)

. regress mpg weight foreign

Source SS df MS Number of obs = 74
F(2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627
Adj R-squared = 0.6532

Total 2443.45946 73 33.4720474 Root MSE = 3.4071
mpg Coef. Std. Err. t P>t [95% Conf. Intervall
weight -.0065879 .0006371 -10.34 0.000 -.00785683 -.0053175
foreign -1.650029 1.075994 -1.53 0.130 -3.7955 .4954422
_cons 41.6797 2.165547 19.25 0.000 37.36172 45.99768

290 [U] 20 Estimation and postestimation commands

With vce (robust), we get another:

. regress mpg weight foreign, vce(robust)

Linear regression Number of obs = 74
F(2, 71) = 73.81
Prob > F = 0.0000
R-squared = 0.6627
Root MSE = 3.4071

Robust
mpg Coef. Std. Err. t P>|t] [95% Conf. Intervall
weight -.0065879 .0005462 -12.06 0.000 -.007677 -.0054988
foreign -1.650029 1.132566 -1.46 0.150 -3.908301 .6082424
_cons 41.6797 1.797553 23.19 0.000 38.09548 45.26392

Either way, the point estimates are the same. (See [R] regress for an example where specifying
vce(robust) produces strikingly different standard errors.)

How do we interpret these results? Let’s consider the model-based interpretation. Suppose that
Yi =XB+e€

where (x;,¢;) are i.i.d. with variance o2, For the model-based interpretation, we also must assume
that x; and €; are uncorrelated. With these assumptions and a few technical regularity conditions,
our first regression gives us consistent parameter estimates and standard errors that we can use for
valid statistical inference about the coefficients. Now suppose that we weaken our assumptions so that
(xi,€;) are independent and—but not necessarily—identically distributed. Our parameter estimates
are still consistent, but the standard errors from the first regression can no longer be used to make
valid inference. We need estimates of the standard errors that are robust to the fact that the error term
is not identically distributed. The standard errors in our second regression are just what we need. We
can use them to make valid statistical inference about our coefficients, even though our data are not
identically distributed.

Now consider a non—model-based interpretation. If our data come from a survey design that ensures
that (x;,e;) are i.i.d., then we can use the nonrobust standard errors for valid statistical inference
about the population parameters b. For this interpretation, we do not need to assume that x; and e;
are uncorrelated. If they are uncorrelated, the population parameters b and the model parameters 3
are the same. However, if they are correlated, then the population parameters b that we are estimating
are not the same as the model-based 3. So, what we are estimating is different, but we still need
standard errors that allow us to make valid statistical inference. If the process that we used to collect
the data caused (x;,e;) to be independent but not identically distributed, then we need to use the
robust standard errors to make valid statistical inference about the population parameters b.

20.22.2 Correlated errors: Cluster-robust standard errors

The robust estimator of variance has one feature that the conventional estimator does not have:
the ability to relax the assumption of independence of the observations. That is, if you specify the
vce(cluster clustvar) option, it can produce “correct” standard errors (in the measurement sense),
even if the observations are correlated.

For the automobile data, it is difficult to believe that the models of the various manufacturers are
truly independent. Manufacturers, after all, use common technology, engines, and drive trains across
their model lines. The VW Dasher in the above regression has a measured residual of —2.80. Having

[U] 20 Estimation and postestimation commands 291

been told that, do you really believe that the residual for the VW Rabbit is as likely to be above 0 as
below? (The residual is —2.32.) Similarly, the measured residual for the Chevrolet Malibu is 1.27.
Does that provide information about the expected value of the residual of the Chevrolet Monte Carlo
(which turns out to be 1.53)?

We need to be careful about picking examples from data; we have not told you about the Datsun
210 and 510 (residuals +8.28 and —1.01) or the Cadillac Eldorado and Seville (residuals —1.99 and
+7.58), but you should at least question the assumption of independence. It may be believable that the
measured mpg given the weight of one manufacturer’s vehicles is independent of other manufacturers’
vehicles, but it is at least questionable whether a manufacturer’s vehicles are independent of one
another.

In commands with the vce (robust) option, another option—vce (cluster clustvar) —relaxes
the independence assumption and requires only that the observations be independent across the clusters:

. regress mpg weight foreign, vce(cluster manufacturer)

Linear regression Number of obs = 74
F(2, 22) = 90.93
Prob > F = 0.0000
R-squared = 0.6627
Root MSE = 3.4071
(Std. Err. adjusted for 23 clusters in manufacturer)

Robust
mpg Coef. Std. Err. t P>|t| [95% Conf. Intervall
weight -.0065879 .0005339 -12.34 0.000 -.0076952 -.0054806
foreign -1.650029 1.039033 -1.59 0.127 -3.804852 .5047939
_cons 41.6797 1.844559 22.60 0.000 37.85432 45.50508

It turns out that, in these data, whether or not we specify vce(cluster clustvar) makes little
difference. The VW and Chevrolet examples above were not representative; had they been, the
confidence intervals would have widened. (In the above, manuf is a variable that takes on values
such as “Chev.” or “VW”, recording the manufacturer of the vehicle. This variable was created from
variable make, which contains values such as “Chev. Malibu” or “VW Rabbit”, by extracting the first
word.)

As a demonstration of how well clustering can work, in [R] regress we fit a random-effects model
with regress, vce(robust) and then compared the results with ordinary least squares and the
generalized least squares (GLS) random-effects estimator. Here we will simply summarize the results.

We start with a dataset on 4,711 women aged 14—46 years. Subjects appear an average of 6.057
times in the data; there are a total of 28,534 observations. The model we use is log wage on age,
age-squared, and job tenure. The focus of the example is the estimated coefficient on tenure. We
obtain the following results:

Estimator Point estimate Confidence interval
(Inappropriate) least squares 0.039 [0.038, 0.041]
Robust clustered 0.039 [0.036, 0.042]
GLS random effects 0.026 [0.025, 0.027]

Notice how well the robust clustered estimate does compared with the GLS random-effects model.
We then run a Hausman specification test, obtaining x2(3) = 336.62, which casts grave doubt on the
assumptions justifying the use of the GLS estimator and hence on the GLS results. At this point, we
will simply quote our comments:

292 [U] 20 Estimation and postestimation commands

Meanwhile, our robust regression results still stand, as long as we are careful about the
interpretation. The correct interpretation is that if the data collection were repeated (on
women sampled the same way as in the original sample) and if we were to refit the
model, then 95% of the time we would expect the estimated coefficient on tenure to be
in the range [0.036,0.042].

Even with robust regression, we must be careful about going beyond that statement. Here
the Hausman test is probably picking up something that differs within- and between-
person, which would cast doubt on our robust regression model in terms of interpreting
[0.036,0.042] to contain the rate of return for keeping a job, economywide, for all
women, without exception.

The formula for the robust estimator of variance is
N
S5 PG
V=V (Z ujuJ)V
j=1

where V = (—=0°InL/ 3ﬂ2)*1 (the conventional estimator of variance) and u; (a row vector) is the
contribution from the jth observation to dln L/J/3.

In the example above, observations are assumed to be independent. Assume for a moment that
the observations denoted by j are not independent but that they can be divided into M groups G,

G, ..., Gy that are independent. The robust estimator of variance is
M
DV (Z ui:G)'uch)) v
k=1
where u,(cG) is the contribution of the kth group to dln L/9B3. That is, application of the robust variance
formula merely involves using a different decomposition of dln L/J/3, namely, uéG), k=1,..., M,
rather than u;, j = 1,..., N. Moreover, if the log-likelihood function is additive in the observations

denoted by j,

N
InL = Z InL;
j=1

then u; = 0ln L; /98, so

™ = Z U

JEGK

That is what the vce(cluster clustvar) option does. (This point was first made in writing by
Rogers [1993], although he considered the point an obvious generalization of Huber [1967] and the
calculation—implemented by Rogers—had appeared in Stata a year earlier.)

Q Technical note

What is written above is asymptotically correct but ignores a finite-sample adjustment to). For
maximum likelihood estimators, when you specify vce(robust) but not vce(cluster clustvar),

a better estimate of variance is V* = {N/(N — 1)}V. When you also specify the vce (cluster
clustvar) option, this becomes V* = {M /(M — 1)}V.

[U] 20 Estimation and postestimation commands 293

For linear regression, the finite-sample adjustment is N/(N — k) without vce(cluster clust-
var) —where k is the number of regressors—and is {M/(M — 1)}{(N — 1)/(N — k)} with

vce(cluster clustvar). Also, two data-dependent modifications to the calculation for V*, suggested
by MacKinnon and White (1985), are provided by regress; see [R] regress. Angrist and Pis-
chke (2009, chap. 8) is devoted to robust covariance matrix estimation and offers practical guidance
on the use of vce(robust) and vce(cluster clustvar) in both cross-sectional and panel-data
applications.

a

Halbert Lynn White Jr. (1950-2012) was born in Kansas City. After receiving economics degrees
at Princeton and MIT, he taught and researched econometrics at the University of Rochester and,
from 1979, at the University of California in San Diego. He also co-founded an economics and
legal consulting firm known for its rigorous use of econometrics methods. His 1980 paper on
heteroskedasticity introduced the use of robust covariance matrices to economists and passed
16,000 citations in Google Scholar in 2012. His 1982 paper on maximum likelihood estimation
of misspecified models helped develop the now-common use of quasi-maximum likelihood
estimation techniques. Later in his career, he explored the use of neural networks, nonparametric
models, and time-series modeling of financial markets.

Among his many awards and distinctions, White was made a fellow of the American Academy
of Arts and Sciences and the Econometric Society, and he won a fellowship from the John
Simon Guggenheim Memorial Foundation. Had he not died prematurely, many scholars believe
he would have eventually been awarded the Sveriges Riksbank Prize in Economic Sciences in
Memory of Alfred Nobel.

Aside from his academic work, White was an avid jazz musician who played with well-known
jazz trombonist and fellow University of California at San Diego teacher Jimmy Cheatam.

Peter Jost Huber (1934—) was born in Wohlen (Aargau, Switzerland). He gained mathematics
degrees from ETH Ziirich, including a PhD thesis on homotopy theory, and then studied statistics
at Berkeley on postdoctoral fellowships. This visit yielded a celebrated 1964 paper on robust
estimation, and Huber’s later monographs on robust statistics were crucial in directing that field.
Thereafter, his career took him back and forth across the Atlantic, with periods at Cornell, ETH
Ziirich, Harvard, MIT, and Bayreuth. His work has touched several other major parts of statistics,
theoretical and applied, including regression, exploratory multivariate analysis, large datasets, and
statistical computing. Huber also has a major long-standing interest in Babylonian astronomy.

20.23 Obtaining scores

Many of the estimation commands that provide the vce (robust) option also provide the ability to
generate equation-level score variables via the predict command. With the score option, predict
returns an important ingredient into the robust variance calculation that is sometimes useful in its
own right. As explained above in [U] 20.22 Obtaining robust variance estimates, ignoring the
finite-sample corrections, the robust estimate of variance is

N
V= \A/'(; u;uj>\7

https://www.stata.com/giftshop/bookmarks/series5/white/

294 [U] 20 Estimation and postestimation commands

where V = (—0%In L/0B%)" is the conventional estimator of variance. If we consider likelihood
functions that are additive in the observations

N
InL = Z InL;
j=1

then u; = JInL;/9B. In general, function L; is a function of x; and B, L;(8;x;). For many
likelihood functions, however, it is only the linear form x;3 that enters the function. In those cases,

8lnLj(xj,8) _ 8lnLj(X]ﬂ) 8(X],3) _ 6lnLj(Xj/3)X‘
B ox;B8) 0B ax;8)

By writing u; = 0ln L;(x;3)/0(x;8), this becomes simply u;x;. Thus the formula for the robust
estimate of variance can be rewritten as

N
V= V(Z u?x;xj){/'
i=1

We refer to u; as the equation-level score (in the singular), and it is u; that is returned when you
use predict with the score option. u; is like a residual in that

L > u;=0and
2. correlation of u; and x;, calculated over j = 1,..., N, is 0.
In fact, for linear regression, u; is the residual, normalized,
5'lnLj 8 {
= Infq (y; —x;B8)/0
I(x;B8) 9(x;8) T
= (y; —x;B)/0

where f(-) is the standard normal density.

> Example 19

probit provides the vce(robust) option and predict, score. Equation-level scores play an
important role in calculating the robust estimate of variance, but we can use predict, score
regardless of whether we specify vce (robust):

[U] 20 Estimation and postestimation commands 295

. use https://www.stata-press.com/data/r16/auto2
. probit foreign mpg weight

Iteration O: log likelihood = -45.03321
Iteration 1: log likelihood = -27.914626
Iteration 2: log likelihood = -26.858074
Iteration 3: log likelihood = -26.844197
Iteration 4: log likelihood = -26.844189
Iteration 5: log likelihood = -26.844189
Probit regression Number of obs = 74
LR chi2(2) = 36.38
Prob > chi2 = 0.0000
Log likelihood = -26.844189 Pseudo R2 = 0.4039
foreign Coef. Std. Err. z P>|z| [95% Conf. Intervall
mpg -.1039503 .0515689 -2.02 0.044 -.2050235 -.0028772
weight -.0023355 .0005661 -4.13 0.000 -.003445 -.0012261
_cons 8.275464 2.554142 3.24 0.001 3.269437 13.28149
. predict double u, score
. summarize u
Variable Obs Mean Std. Dev. Min Max
u 74 -6.64e-14 .59883256 -1.655439 1.660787
. correlate u mpg weight
(obs=74)
u mpg weight
u 1.0000
mpg 0.0000 1.0000
weight -0.0000 -0.8072 1.0000
. list make foreign mpg weight u if abs(u)>1.65
make foreign mpg weight u
24, Ford Fiesta Domestic 28 1,800 -1.6554395
64. Peugeot 604 Foreign 14 3,420 1.6607871

The light, high-mileage Ford Fiesta is surprisingly domestic, whereas the heavy, low-mileage Peugeot
604 is surprisingly foreign. q

Q Technical note

For some estimation commands, one score is not enough. Consider a likelihood that can be
written as L;(x;8,2;3,), a function of two linear forms (or linear equations). Then Oln L;/083
can be written as (OlnL;/0B,,0lnL;/0B3,). Each of the components can in turn be written as
[Oln L;/0(f1x)]x = wix and [0lnL;/0(B22)]z = usz. There are then two equation-level scores,
u1 and ug, and, in general, there could be more.

296 [U] 20 Estimation and postestimation commands

Stata’s streg, distribution(weibull) command is an example of this: it estimates 3 and a
shape parameter, Inp, the latter of which can be thought of as a degenerate linear form (Inp)z with
z = 1. After this command, predict, scores requires that you specify two new variable names,
or you can specify stub*, which will generate new variables stub1 and stub2; the first will be defined
containing wq —the score associated with 3—and the second will be defined containing us—the

score associated with Inp.
a

Q Technical note

Using Stata’s matrix commands—see [P] matrix—we can make the robust variance calculation
for ourselves and then compare it with that made by Stata.

. use https://www.stata-press.com/data/r16/auto2, clear
(1978 Automobile Data)

. quietly probit foreign mpg weight
. predict double u, score
. matrix accum S = mpg weight [iweight=u"2%74/73]
(obs=26.53642547)
. matrix rV = e(V)*S*e(V)
. matrix list rV
symmetric rV[3,3]
foreign: foreign: foreign:
mpg weight _cons
foreign:mpg .00352299

foreign:weight .00002216 2.434e-07
foreign:_cons -.14090346 -.00117031 6.4474174

. quietly probit foreign mpg weight, vce(robust)
. matrix list e(V)

symmetric e(V)[3,3]
foreign: foreign: foreign:
mpg weight _cons
foreign:mpg .00352299
foreign:weight .00002216 2.434e-07
foreign:_cons -.14090346 -.00117031 6.4474174

The results are the same.

There is an important lesson here for programmers. Given the scores, conventional variance estimates
can be easily transformed to robust estimates. If we were writing a new estimation command, it
would not be difficult to include a vce (robust) option.

It is, in fact, easy if we ignore clustering. With clustering, it is more work because the calculation
involves forming sums within clusters. For programmers interested in implementing robust variance
calculations, Stata provides a _robust command to ease the task. This is documented in [P] _robust.

To use _robust, you first produce conventional results (a vector of coefficients and covariance
matrix) along with a variable containing the scores u; (or variables if the likelihood function has more
than one stub). You then call _robust, and it will transform your conventional variance estimate into
the robust estimate. _robust will handle the work associated with clustering and the details of the
finite-sample adjustment, and it will even label your output so that the word Robust appears above
the standard error when the results are displayed.

[U] 20 Estimation and postestimation commands 297

Of course, this is all even easier if you write your commands with Stata’s m1 maximum likelihood
optimization, in which case you merely pass the vce(robust) option on to ml. Then, m1 will call
_robust itself and do all the work for you.

a

Q Technical note

For some estimation commands, predict, score computes parameter-level scores 0L;/0/
instead of equation-level scores 8Lj / 8xj (. Those estimation commands, such as cmclogit, stcox,
and the multilevel mixed-effects commands, share the characteristic that there are multiple observations
per independent event.

In making the robust variance calculation, parameter-level scores 9L ;/0/3 are really needed, and so
you may be asking yourself why predict, score does not always produce parameter-level scores. In
the usual case, we can obtain them from equation-level scores via the chain rule, and fewer variables
are required if we adopt this approach. In the cases above, however, the likelihood is calculated at
the group level and is not split into contributions from the individual observations. Thus, the chain
rule cannot be used, and we must use the parameter level scores directly.

_robust can be tricked into using them if each parameter appears to be in its own equation as a
constant. This requires resetting the row and column stripes on the covariance matrix before _robust
is called. The equation names for each row and column must be unique, and the variable names must
all be _cons.

a

20.24 Weighted estimation

The syntax for weights was introduced in [U] 11.1.6 weight. Stata provides four kinds of weights:
fweights, or frequency weights; pweights, or sampling weights; aweights, or analytic weights;
and iweights, or importance weights. The syntax for using each is the same. Type

. regress y x1 x2

and you obtain unweighted estimates; type

. regress y x1 x2 [pweight=pop]

and you obtain (in this example) pweighted estimates.

The sections below explain how each type of weight is used in estimation.

20.24.1 Frequency weights

Frequency weights—fweights—are integers and are nothing more than replication counts. The
weight is statistically uninteresting, but from a data-processing perspective it is important. Consider
the following data,

y x
22
22
22
23
23
23

OO O R KL R K
B R R, RP,OO0ON

298 [U] 20 Estimation and postestimation commands

and the estimation command

. regress y x1 x2

Equivalent is the following, more compressed data,

y x1 x2 pop
22 1 0 2
22 1 1 1
23 0 1 3

and the corresponding estimation command

. regress y x1 x2 [fweight=pop]

When you specify frequency weights, you are treating each observation as one or more real observations.

Q Technical note

You might occasionally run across a command that does not allow weights at all, especially among
community-contributed commands. You can use expand (see [D] expand) with such commands to
obtain frequency-weighted results. The expand command duplicates observations so that the data
become self-weighting. Suppose that you want to run the command usercmd, which does something
or other, and you would like to type usercmd y x1 x2 [fw=pop]. Unfortunately, usercmd does not
allow weights. Instead, you type

. expand pop

. usercmd y x1 x2

to obtain your result. Moreover, there is an important principle here: the results of running any
command with frequency weights should be the same as running the command on the unweighted,
expanded data. Unweighted, duplicated data and frequency-weighted data are merely two ways of
recording identical information.

a

20.24.2 Analytic weights

Analytic weights—analytic is a term we made up—statistically arise in one particular problem:
linear regression on data that are themselves observed means. That is, think of the model

Yi = X8+ €, € ~ N(0,0%)

and now think about fitting this model on data (yj,ij) that are themselves observed averages. For
instance, a piece of the underlying data for (y;,x;) might be (3,1), (4,2), and (2,2), but you do
not know that. Instead, you have one observation {(3 +4 +2)/3,(14+2+2)/3} = (3,1.67) and
know only that the (3,1.67) arose as the average of three underlying observations. All your data are
like that.

regress with aweights is the solution to that problem:

. regress y x [aweight=pop]

[U] 20 Estimation and postestimation commands 299

There is a history of misusing such weights. A researcher does not have cell-mean data but instead has a
probability-weighted random sample. Long before Stata existed, some researchers were using aweights
to produce estimates from such samples. We will come back to this point in [U] 20.24.3 Sampling
weights below.

Anyway, the statistical problem that aweights resolve can be written as
2
yi = X8+ €, € ~ N(0,0° /w;)

where the w; are the analytic weights. The details of the solution are to make linear regression
calculations using the weights as if they were fweights but to normalize them to sum to N before
doing that.

Most commands that allow aweights handle them in this manner. That is, if you specify aweights,
they are

1. normalized to sum to N and then

2. inserted in the calculation formulas in the same way as fweights.

20.24.3 Sampling weights

Sampling weights— probability weights or pweights—refer to probability-weighted random sam-
ples. Actually, what you specify in [pweight=...] is a variable recording the number of subjects in
the full population that the sampled observation in your data represents. That is, an observation that
had probability 1/3 of being included in your sample has pweight 3.

Some researchers have used aweights with these kinds of data. If they do, they are probably
making a mistake. Consider the regression model

Yi = X8+ ¢, Ez‘NN(O702)

Begin by considering the exact nature of the problem of fitting this model on cell-mean data—for
which aweights are the solution: heteroskedasticity arising from the grouping. The error term ¢; is
homoskedastic (meaning that it has constant variance o2). Say that the first observation in the data
is the mean of three underlying observations. Then,

y1 =x18+ €, e ~ N(0,0?)

Y2 = X2+ €2, e ~ N(0,0?)

ys =xsB+es, &~ N(0,0%)

and taking the mean,

(1 +y2 +y3)/3 ={(x1 +x2+x3)/3}8+ (e1 + €2+ €3)/3

For another observation in the data—which may be the result of summing a different number of
observations—the variance will be different. Hence, the model for the data is

Y, =T;8+¢, € ~ N(0,0%/N;)

This makes intuitive sense. Consider two observations, one recording means over 2 subjects and the
other recording means over 100,000 subjects. You would expect the variance of the residual to be
less in the 100,000-subject observation; that is, there is more information in the 100,000-subject
observation than in the 2-subject observation.

300 [U] 20 Estimation and postestimation commands

Now instead say that you are fitting the same model, y; = X;8+¢;, €; ~ N(0,5?), on probability-
weighted data. Each observation in your data is one subject, but the different subjects have different
chances of being included in your sample. Therefore, for each subject in your data,

yi = x; 8+ €, e ~ N(0,07)

That is, there is no heteroskedasticity problem. The use of the aweighted estimator cannot be justified
on these grounds.

As a matter of fact, from the argument just given, you do not need to adjust for the weights at
all, although the argument does not justify not making an adjustment. If you do not adjust, you are
holding tightly to the assumed truth of your model. Two issues arise when considering adjustment
for sampling weights:

1. the efficiency of the point estimate B of B and

2. the reported standard errors (and, more generally, the variance matrix of B).

Efficiency argues in favor of adjustment, and that, by the way, is why many researchers have used
aweights with pweighted data. The adjustment implied by pweights to the point estimates is the
same as the adjustment implied by aweights.

With regard to the second issue, the use of aweights produces incorrect results because it interprets
larger weights as designating more accurately measured points. For pweights, however, the point
is no more accurately measured—it is still just one observation with one residual €; and variance
2. In [U] 20.22 Obtaining robust variance estimates above, we introduced another estimator of
variance that measures the variation that would be observed if the data collection followed by the
estimation were repeated. Those same formulas provide the solution to pweights, and they have
the added advantage that they are not conditioned on the model being true. If we have any hopes
of measuring the variation that would be observed were the data collection followed by estimation
repeated, we must include the probability of the observations being sampled in the calculation.

In Stata, when you type

. regress y x1 x2 [pw=popl]

the results are the same as if you had typed

. regress y x1 x2 [pw=pop], vce(robust)

That is, specifying pweights implies the vce(robust) option and, hence, the robust variance
calculation (but weighted). In this example, we use regress simply for illustration. The same is
true of probit and all of Stata’s estimation commands. Estimation commands that do not have a
vce(robust) option (there are a few) do not allow pweights.

pweights are adequate for handling random samples where the probability of being sampled varies.
pweights may be all you need. If, however, the observations are not sampled independently but are
sampled in groups—called clusters in the jargon—you should specify the estimator’s vce (cluster
clustvar) option as well:

. regress y x1 x2 [pw=popl, vce(cluster block)

There are two ways of thinking about this:

1. The robust estimator answers the question of which variation would be observed were the data
collection followed by the estimation repeated; if that question is to be answered, the estimator
must account for the clustered nature of how observations are selected. If observations 1 and
2 are in the same cluster, then you cannot select observation 1 without selecting observation 2
(and, by extension, you cannot select observations like 1 without selecting observations like 2).

[U] 20 Estimation and postestimation commands 301

2. If you prefer, you can think about potential correlations. Observations in the same cluster
may not really be independent—that is an empirical question to be answered by the data.
For instance, if the clusters are neighborhoods, it would not be surprising that the individual
neighbors are similar in their incomes, their tastes, and their attitudes, and even more similar
than two randomly drawn persons from the area at large with similar characteristics, such as
age and sex.

Either way of thinking leads to the same (robust) estimator of variance.

Sampling weights usually arise from complex sampling designs, which often involve not only
unequal probability sampling and cluster sampling but also stratified sampling. There is a family of
commands in Stata designed to work with the features of complex survey data, and those are the
commands that begin with svy. To fit a linear regression model with stratification, for example, you
would use the svy: regress command.

Non-svy commands that allow pweights and clustering give essentially identical results to the
svy commands. If the sampling design is simple enough that it can be accommodated by the non-svy
command, that is a fine way to perform the analysis. The svy commands differ in that they have
more features, and they do all the little details correctly for real survey data. See [SVY] Survey for
a brief discussion of some of the issues involved in the analysis of survey data and for a list of all
the differences between the svy and non-svy commands.

Not all model estimation commands in Stata allow pweights. This is often because they are
computationally or statistically difficult to implement.

20.24.4 Importance weights

Stata’s iweights—importance weights—are the emergency exit. These weights are for those who
want to take control and create special effects. For example, programmers have used regress with
iweights to compute iteratively reweighted least-squares solutions for various problems.

iweights are treated much like aweights, except that they are not normalized. Stata’s iweight
rule is that

1. the weights are not normalized and

2. they are generally inserted into calculation formulas in the same way as fweights. There are
exceptions; see the Methods and formulas for the particular command.

iweights are used mostly by programmers who are often on the way to implementing one of the
other kinds of weights.

302 [U] 20 Estimation and postestimation commands

20.25 A list of postestimation commands

The following commands can be used after estimation:

[R] contrast contrasts and ANOVA-style joint tests of estimates

[R] estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)

[R] estat summarize summary statistics for the estimation sample

[R] estat vce variance—covariance matrix of the estimators (VCE)

[R] estimates cataloging estimation results

[TS] forecast dynamic forecasts and simulations

[R] hausman Hausman specification test

[R] lincom point estimates, standard errors, testing, and inference for linear
combinations of coefficients

[R] linktest specification link test for single-equation models

[R] Irtest likelihood-ratio test

[R] margins marginal means, predictive margins, and marginal effects

[R] marginsplot graph the results from margins (profile plots, interaction plots, etc.)

[R] nlcom point estimates, standard errors, testing, and inference for generalized
predictions

[R] predict predictions, residuals, influence statistics, and other diagnostic measures

[R] predictnl point estimates, standard errors, testing, and inference for generalized
predictions

[R] pwcompare pairwise comparisons of estimates

[R] suest seemingly unrelated estimation

[R] test Wald tests of simple and composite linear hypotheses

[R] testnl Wald tests of nonlinear hypotheses

Also see [U] 13.5 Accessing coefficients and standard errors for accessing coefficients and standard
errors.

The commands above are general-purpose postestimation commands that can be used after almost
all estimation commands. Many estimation commands provide other estimator-specific postestimation
commands.

To see which postestimation commands are available, launch the Postestimation Selector by selecting
Statistics > Postestimation. You will see a list of all postestimation features that are available for
the active estimation results. This list is automatically updated when a new estimation command is
run or estimates are restored from memory or disk. See [R] postest for more details.

You can also see the full list of postestimation commands available for an estimator by looking
in the entry titled estimator postestimation that immediately follows each estimator’s entry in the
reference manuals.

[U] 20 Estimation and postestimation commands 303

20.26 References
Afifi, A. A, and S. P. Azen. 1979. Statistical Analysis: A Computer Oriented Approach. 2nd ed. New York: Academic
Press.

Angrist, J. D., and J.-S. Pischke. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton, NJ:
Princeton University Press.

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Binder, D. A. 1983. On the variances of asymptotically normal estimators from complex surveys. International
Statistical Review 51: 279-292.

Buja, A., and H. R. Kiinsch. 2008. A conversation with Peter Huber. Statistical Science 23: 120-135.

Daniels, L., and N. Minot. 2020. An Introduction to Statistics and Data Analysis Using Stata. Thousand Oaks, CA:
SAGE.

Deaton, A. S. 1997. The Analysis of Household Surveys: A Microeconometric Approach to Development Policy.
Baltimore, MD: Johns Hopkins University Press.

Fuller, W. A. 1975. Regression analysis for sample survey. Sankhya, Series C 37: 117-132.

Gail, M. H., W. Y. Tan, and S. Piantadosi. 1988. Tests for no treatment effect in randomized clinical trials. Biometrika
75: 57-64.

Hampel, F. R. 1992. Introduction to Huber (1964) “Robust estimation of a location parameter”. In Breakthroughs in
Statistics. Volume II: Methodology and Distribution, ed. S. Kotz and N. L. Johnson, 479—491. New York: Springer.

Huber, P. J. 1967. The behavior of maximum likelihood estimates under nonstandard conditions. In Vol. 1 of Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 221-233. Berkeley: University of
California Press.

——. 2011. Data Analysis: What Can Be Learned from the Past 50 Years. Hoboken, NJ: Wiley.
Kaufman, R. L. 2013. Heteroskedasticity in Regression: Detection and Correction. Thousand Oaks, CA: SAGE.
Kent, J. T. 1982. Robust properties of likelihood ratio tests. Biometrika 69: 19-27.

Kish, L., and M. R. Frankel. 1974. Inference from complex samples. Journal of the Royal Statistical Society, Series
B 36: 1-37.

Lin, D. Y, and L. J. Wei. 1989. The robust inference for the Cox proportional hazards model. Journal of the American
Statistical Association 84: 1074-1078.

MacKinnon, J. G., and H. L. White, Jr. 1985. Some heteroskedasticity-consistent covariance matrix estimators with
improved finite sample properties. Journal of Econometrics 29: 305-325.

McAleer, M., and T. Pérez-Amaral. 2012. Professor Halbert L. White, 1950-2012. Journal of Economic Surveys 26:
551-554.

Mitchell, M. N. 2021. Interpreting and Visualizing Regression Models Using Stata. 2nd ed. College Station, TX:
Stata Press.

Pedace, R. 2013. Econometrics for Dummies. Hoboken, NJ: Wiley.

Rogers, W. H. 1993. sgl17: Regression standard errors in clustered samples. Stata Technical Bulletin 13: 19-23.
Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 88-94. College Station, TX: Stata Press.

Royall, R. M. 1986. Model robust confidence intervals using maximum likelihood estimators. International Statistical
Review 54: 221-226.

White, H. L., Jr. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity.
Econometrica 48: 817-838.

——. 1982. Maximum likelihood estimation of misspecified models. Econometrica 50: 1-25.

Williams, R. 2012. Using the margins command to estimate and interpret adjusted predictions and marginal effects.
Stata Journal 12: 308-331.

http://www.stata.com/bookstore/mhe.html
http://www.stata-press.com/books/introduction-stata-programming/
http://www.stata.com/bookstore/introduction-to-statistics-and-data-analysis-using-stata/
http://www.stata.com/bookstore/heteroskedasticity-in-regression/
http://www.stata-press.com/books/interpreting-visualizing-regression-models/
http://www.stata.com/bookstore/econometrics-for-dummies/
http://www.stata.com/products/stb/journals/stb13.pdf
http://www.stata-journal.com/article.html?article=st0260

21 Creating reports

21,

21,

Contents

211 OVEIVIEW oottt et e e e e e e e e e e e 304
21.2 The dynamic document commandsouerirminenenninenenaaen. 304
21.3 The putdocx, putpdf, and putexcel commands, 305
1 Overview

Stata’s commands for report generation allow you to create complete Word, Excel, PDF, and HTML
documents that include formatted text, summary statistics, regression results, and graphs.

There are two varieties of commands for creating reports. The first includes the full output from
Stata commands in the document and allows you to format the text using Markdown. The second
uses stored results from Stata commands and inserts these results into text and tables in the document.

With either variety, you can create reports that are reproducible. Save the do-file or text file that
runs the Stata commands and generates the report. Then rerun your commands at any time in the
future to reproduce the Stata results and re-create the report. Make sure you include the version
command so that your results are reproducible; see [U] 16.1.1 Version.

These documents can also be dynamic. If your data change, simply rerun the do-file using the
updated dataset. All Stata results in the report will be automatically updated.

2 The dynamic document commands

Stata’s dynamic document commands allow you to embed Stata output in text files and to create
HTML files and Word documents from Markdown text and Stata output. Dynamic tags are used to
process Stata commands in a text file; they run the code and export the output to the destination file.

To create text files with Stata output, you simply enclose Stata commands within these dynamic
tags throughout your source file and then use dyntext to create the output file. For instance, suppose
we fit a regression model by typing

. sysuse auto
. regress mpg weight length i.foreign

and we want to create a simple report that includes the output from the regression in a plain-text file.
In addition, we want a heading that says “Regression results” and a sentence explaining the model.
We can create this text file as follows:

begin dynex1.txt

Regression results

Linear regression of mpg on weight, length, and foreign.
<<dd_do>>

sysuse auto, clear

regress mpg weight length i.foreign

<</dd_do>>

end dynex1.txt

304

[U] 21 Creating reports 305

The <<dd_do>> and <</dd_do> dynamic tags tell Stata to execute the commands between them
and to put the output in the output.txt file that is created when we type

dyntext dynexl.txt, saving(output.txt)

We might instead want to create an HTML document with the regression results. We can use
Markdown to format the heading and to bold the variable names in our text file as follows:

begin dynex2.txt

Regression results

Linear regression of **mpg** on **weight**, **length**, and **foreignx.
<<dd_do>>

sysuse auto, clear

regress mpg weight length i.foreign

<</dd_do>>

end dynex2.txt

Then we create an HTML file, dynex2.html, with the Markdown-formatted text and the regression
results by typing

. dyndoc dynex2.txt

Alternatively, we could type

. dyndoc dynex2.txt, docx

to create a Word document named dynex2.docx with the same results.

If you prefer a PDF document, you can first create a Word document and then use docx2pdf to
convert the Word document to a PDF file.

For further introduction to the dynamic document commands, including examples of the text files,
HTML documents, and Word documents created by these commands, see [RPT| Dynamic documents
intro. See [RPT] Dynamic tags for information on including graphs, results of expressions, and more
in dynamic documents. Also see [RPT] dyndoc for examples that demonstrate how to write a single,
flexible text file that dyndoc can use to create similar reports but with different variables and even
different datasets.

21.3 The putdocx, putpdf, and putexcel commands

The putdocx, putpdf, and putexcel commands create customized Word, PDF, and Excel files,
respectively, that include Stata results. Unlike the dynamic document commands discussed in the
previous section, these commands do not include Stata output directly in the document. Instead, they
place the results of Stata commands into tables and text. With a series of commands when creating a
document, you can specify formatting for the entire document or specific elements of the document,
what text and graphs to include, and how to incorporate the statistical results from Stata commands.

Let’s say we want to create a Word document with the results from the regression

. sysuse auto
. regress mpg weight length i.foreign

306

We also want a header and a sentence explaining the results. We could type

. sysuse auto

. putdocx begin

. putdocx paragraph, style(Headingl)

. putdocx text ("Regression results")

. putdocx paragraph

. putdocx text ("Linear regression of mpg on weight, length, and foreign.")
. regress mpg weight length i.foreign

. putdocx table regtable = e(table)

. putdocx save myreg

This creates a Word document named myreg.docx that includes a header with the text “Regression
results” and a standard paragraph with the sentence about the regression. The putdocx table
regtable = e(table) command creates a table in Word using the results returned from the
regress command. The table includes coefficients, standard errors, tests, and confidence intervals
for each of the covariates in the model.

Creating a PDF document works in much the same way. We could type

. sysuse auto

. putpdf begin

. putpdf paragraph, font("",20)

. putpdf text ("Regression results")

. putpdf paragraph

. putpdf text ("Linear regression of mpg on weight, length, and foreign.")
. regress mpg weight length i.foreign

. putpdf table regtable = e(table)

. putpdf save myreg

to create myreg.pdf. We replaced each putdocx command with putpdf, and we specified a font
size of 20 points for the heading instead of using one of Word’s heading styles.

We can, similarly, put results in an Excel file.

. sysuse auto

. putexcel set myreg

. regress mpg weight length i.foreign
. putexcel A3 = etable

This creates myreg.x1sx with the header and table of regression results.

For more information on putdocx, including more extensive examples and suggested workflows, see
[RPT] putdocx intro. For more information on putpdf, see [RPT] putpdf intro. For more information
on putexcel, see [RPT| putexcel.

22

23

24

25

26

27

28

29

Advice

Entering and importing datat e 308
Combining dataselsiuniinii e 317
Working with StrINZS . ..ottt e 319
Working with dates and timesttt 323
Working with categorical data and factor variables 332
Overview of Stata estimation commandsitniinitetnenenennenen .. 350
Commands everyone should know i 383
Using the Internet to keep up to date i, 385

307

22 Entering and importing data

Contents

221 OVEIVIEW o\ttt ettt e e e e e e e e e e e e e 308

22.2 Determining which method to use 309
22.2.1 Entering data interactively 310
22.2.2 Copying and pasting datac.i.iiiii e 310

22.2.2.1 Video exampleotn it e 310

22.2.3 If the dataset is in binary format 310
22.2.4 If the data are simplettt e 311
22.2.5 If the dataset is formatted and the formatting is significant 312
22.2.6 If there are no string variablesot ernnnenan .. 313
22.2.7 If all the string variables are enclosed in quotes 314
22.2.8 If the undelimited strings have no blanks 315
2229 If you have EBCDIC datac.iiiniiniiniiiiiniinennen.. 315
22.2.10 If you make it to hereo 315

223 If you run out of MEMOTY oottt e 315

224 ODBEC SOUICES &ttt ettt ettt e e e e e e e e e e e e e e e e e e 316

22.1 Overview

To enter or import data into Stata, you can use the following:

[D] edit and [D] input enters data from the keyboard

[D] import delimited reads delimited text data

[D] import excel reads Excel files

[D] import sas reads SAS files

[D] import sasxportS reads data in SAS XPORT Version 5 format

[D] import sasxport8 reads data in SAS XPORT Version 8 format

[D] import spss reads SPSS files

[D] infile (free format) reads unformatted text data

[D] infile (fixed format) or [D] infix (fixed format) reads formatted text data

[D] infile (fixed format) reads EBCDIC data

[D] odbe reads from an ODBC source

[D] import fred reads Federal Reserve Economic Data

[D] import haver reads data in Haver Analytics’s format

[D] import dbase reads dBase files

[SP] spshape2dta converts shapefiles into a form Stata can use

Because dataset formats differ, you should familiarize yourself with each method.

[D] infile (fixed format) and [D] infix (fixed format) are two different commands that do the same
thing. Read about both, and then use whichever appeals to you.

Alternatively,
Data Editor, and

edit and input both allow you to enter data from the keyboard. edit opens a
input allows you to type at the command line.

After you have read this chapter, also see [D] import for more examples of the different commands

to input data.

308

[U] 22 Entering and importing data 309

Q Technical note

Strings in Stata are stored in UTF-8 format, the most common string storage format across software
packages. You probably do not need to take any special steps when importing strings from other
packages. However, if you are importing data with strings that are stored as extended ASCII, including
extended ASCII strings in Stata 13 and earlier datasets, you need to convert those strings to UTF-8. You
will know whether you have extended ASCII strings that need conversion, because if you do, you will
not see the characters you expect in your strings after you import them. Stata provides the command
unicode translate to help you. See [D] unicode translate, [U] 12.4.2 Handling Unicode strings,
and [D] unicode for more information.

a

22.2 Determining which method to use

Below are several rules that, when applied sequentially, will direct you to the appropriate method
for entering your data. After the rules is a description of each command, as well as a reference to
the corresponding entry in the Reference manuals.

1. If you have a few data and simply wish to type the data directly into Stata at the keyboard, see
[D] edit—doing so should be easy. Also see [D] input.

2. If your dataset is in binary format or the internal format of some software package, you have
several options:

a.

If the data are in a spreadsheet, copy and paste the data into Stata’s Data Editor; see
[D] edit for details.

. If the data are in an Excel spreadsheet, use import excel to read them; see [D] import

excel.

c. If the data are in a SAS file, use import sas to read the data; see [D] import sas.

. If the data are in SAS XPORT Version 5 or Version 8 format, use import sasxportb or

import sasxport8 to read the data; see [D] import sasxport5 and [D] import sasxport8.

. If the data are in an SPSS file, use import spss to read the data; see [D] import spss.

. If you wish to import data from the online Federal Reserve Economic Data (FRED)

database, use import fred; see [D] import fred.

. If the data are in Haver Analytics’s .dat format (Haver Analytics provides economics

and financial databases), and you are using Stata for Windows, use import haver to
read the data; see [D] import haver.

. If the data are in a dBase file, use import dbase; see [D] import dbase.

. Translate the data into text format by using the other software. For instance, in most

software, you can save data as tab-delimited or comma-separated text. Then, see [D] import
delimited.

. If the data are located in an ODBC source, which typically includes databases and

spreadsheets, you can use the odbc load command to import the data; see [D] odbc.

. If you wish to use shapefile data with Stata, use spshape2dta to convert it to a form

Stata can use; see [SP] spshape2dta.

. Other software packages are available that will convert non—Stata format data files into

Stata-format files.

310 [U] 22 Entering and importing data

3. If the dataset has one observation per line and the data are tab- or comma separated, use import
delimited; see [D] import delimited. This is the easiest way to read text data.

4. If the dataset is formatted and that formatting information is required to interpret the data, you
can use infile with a dictionary or infix; see [D] infile (fixed format) or [D] infix (fixed
format).

5. If there are no string variables, you can use infile without a dictionary: see [D] infile (free
format).

6. If all the string variables in the data are enclosed in (single or double) quotes, you can use
infile without a dictionary; see [D] infile (free format).

7. If the string variables have no blanks and are whitespace-delimited, you can use infile without
a dictionary; see [D] infile (free format).

8. If the data are in EBCDIC format, see [D] infile (fixed format).
9. If you make it to here, see [D] infile (fixed format) or [D] infix (fixed format).

22.2.1 Entering data interactively

If you have a few data, you can type the data directly into Stata; see [D] edit or [D] input.
Otherwise, we assume that your data are stored on disk.

22.2.2 Copying and pasting data

If your data are in another program and you wish to analyze them with Stata, first see if the
program you are using allows you to copy the data to the clipboard. If it does, do so, and then open
the Data Editor in Stata and select Edit > Paste to paste the data into Stata.

22.2.2.1 Video example

Copy/paste data from Excel into Stata

22.2.3 If the dataset is in binary format

Stata can read text datasets, which is technical jargon for datasets composed of characters—datasets
that can be typed on your screen or printed on your printer. The alternative, binary datasets, can only
sometimes be read by Stata. Binary datasets are popular, and almost every software package has its
own binary format. Stata .dta datasets are an example of a binary format that Stata can read. The
Excel .x1ls and .x1lsx formats are other binary formats that Stata can read. The OpenOffice .ods
format is a binary format that Stata cannot read.

If your dataset is in binary format or in the internal format of another software package that Stata
cannot import, you must translate it into plain text or use some other program for conversion to
Stata format. If this dataset is an Excel .x1ls or .x1sx file, you can read it by using Stata’s import
excel command; see [D] import excel. If this dataset is located in a database or an ODBC source, see
[U] 22.4 ODBC sources. If the dataset is in SAS format, you can read it by using import sas. If the
data are in SAS XPORT Version 5 format or in SAS XPORT Version 8 format, you can read the data by
using Stata’s import sasxportb or import sasxport8 command; see [D] import sasxport5 and
[D] import sasxport8. You can read data in SPSS .sav format by using import spss; see [D] import
spss. If the data are available via the Federal Reserve Economic Data (FRED) online database, you can

https://www.youtube.com/watch?v=iCvZ9pvPy-8

[U] 22 Entering and importing data 311

read the data by using Stata’s import fred command; see [D] import fred. If the dataset is in Haver
Analytics’s .dat format, you can read it by using Stata’s import haver command; see [D] import
haver. If the dataset is in dBase format, you can read it by using Stata’s import dbase command;
see [D] import dbase. If you have a shapefile and wish to use it with Stata, use spshape2dta to
convert it to a form that can be used with Stata; see [SP] spshape2dta. If the dataset is in EBCDIC
format, you can read it by using Stata’s infile command; see [D] infile (fixed format).

Detecting whether data are stored in binary format can be tricky. For instance, many Windows
users wish to read data that have been entered into a word processor—let’s assume Word. Unwittingly,
they have stored the dataset as a Word document. The dataset looks like text to them: When they
look at it in Word, they see readable characters. The dataset seems to even pass the printing test in
that Word can print it. Nevertheless, the dataset is not text; it is stored in an internal Word format,
and the data cannot really pass the printing test because only Word can print it. To read the dataset,
Windows users must use it in Word and then store it as a plain text (.txt) file.

So, how do you know whether your dataset is binary? Here’s a simple test: regardless of the
operating system you use, start Stata and type type followed by the name of the file:

. type myfile.raw
output will appear

You do not have to list the entire file; press Break when you have seen enough.
Do you see things that look like hieroglyphics? If so, the dataset is binary.
If it looks like data, however, the file is (probably) plain text.

Let’s assume that you have a text dataset that you wish to read. The data’s format will determine
the command you need to use. The different formats are discussed in the following sections.

22.2.4 If the data are simple

The easiest way to read text data is with import delimited; see [D] import delimited.

import delimited is smart: it looks at the dataset, determines what it contains, and then reads
it. That is, import delimited is smart given certain restrictions, such as that the dataset has one
observation per line and that the values are tab- or comma separated. import delimited can read
this

begin datal.csv
M,Joe Smith,288,14

M,K Marx,238,12

F,Farber,211,7

end datal.csv

or this (which has variable names on the first line)

begin data2.csv
sex, name, dept, division

M, Joe Smith,288,14

M,K Marx,238,12

F,Farber,211,7

end data2.csv

312 [U] 22 Entering and importing data

or this (which has one tab character separating the values):

begin data3.txt

M Joe Smith 288 14
M K Marx 238 12
F Farber 211 7

end data3.txt

This looks odd because of how tabs work; data3.txt could similarly have a variable header, but
import delimited cannot read

begin data4.txt

M Joe Smith 288 14
M K Marx 238 12
F Farber 211 7

end data4.txt

which has spaces rather than tabs.

There is a way to tell data3.txt from data4.txt: Ask Stata to type the data and show the tabs
by typing
. type data3.txt, showtabs

M<T>Joe Smith<T>288<T>14
M<T>K Marx<T>238<T>12

F<T>Farber<T>211<T>7

. type data4.txt, showtabs

M Joe Smith 288 14
M K Marx 238 12
F Farber 211 7

22.2.5 If the dataset is formatted and the formatting is significant

If the dataset is formatted and formatting information is required to interpret the data, see [D] infile
(fixed format) or [D] infix (fixed format).

Using infix or infile with a data dictionary is something new users want to avoid if at all
possible.

The purpose of this section is only to take you to the most complicated of all cases if there is
no alternative. Otherwise, you should wait and see if it is necessary. Do not misinterpret this section
and say, “Ah, my dataset is formatted, so at last I have a solution.”

Just because a dataset is formatted does not mean that you have to exploit the formatting information.
The following dataset is formatted

begin data5.raw
1 27.39 12
2 1.00 4
3 100.10 100
end data5.raw

in that the numbers line up in neat columns, but you do not need to know the information to read it.
Alternatively, consider the same data run together:

begin data6.raw
1 27.39 12
2 1.00 4
3100.10100
end data6.raw

[U] 22 Entering and importing data 313

This dataset is formatted, too, and you must know the formatting information to make sense of
“3100.10100”. You must know that variable 2 starts in column 4 and is six characters long to extract
the 100.10. It is datasets like data6.raw that you should be looking for at this stage—datasets that
make sense only if you know the starting and ending columns of data elements. To read data such
as data6.raw, you must use either infix or infile with a data dictionary.

Reading unformatted data is easier. If you need the formatting information to interpret the data,
then you must communicate that information to Stata, which means that you will have to type it.
This is the hardest kind of data to read, but Stata can do it. See [D] infile (fixed format) or [D] infix
(fixed format).

Looking back at data4.raw,

begin datad.raw

M Joe Smith 288 14
M K Marx 238 12
F Farber 211 7

end datad.raw

you may be uncertain whether you have to read it with a data dictionary. If you are uncertain, do
not jump yet.

Finally, here is an obvious example of unformatted data:

begin data7.raw
1 27.39 12

214

3 100.1 100

end data7.raw

Here blanks separate one data element from the next and, in one case, many blanks, although there
is no special meaning attached to more than one blank.

The following sections discuss datasets that are unformatted or formatted in a way that do not
require a data dictionary.

22.2.6 If there are no string variables

If there are no string variables, see [D] infile (free format).

Although the dataset data7.raw is unformatted, it can still be read using infile without a
dictionary. This is not the case with data4.raw because this dataset contains undelimited string
variables with embedded blanks.

Q Technical note

Some Stata users prefer to read data with a data dictionary, even when we suggest differently,
as above. They like the convenience of the data dictionary—they can sit in front of an editor and
carefully compose the list of variables and attach variable labels rather than having to type the variable
list (correctly) on the Stata command line. However, they can create a do-file containing the infile
statement and thus have all the advantages of a data dictionary without some of the (extremely
technical) disadvantages of data dictionaries.

Nevertheless, we do tend to agree with such users—we, too, prefer data dictionaries. Our recom-
mendations, however, are designed to work in all cases. If the dataset is unformatted and contains no
string variables, it can always be read without a data dictionary, whereas only sometimes can it be
read with a data dictionary.

314 [U] 22 Entering and importing data

The distinction is that infile without a data dictionary performs stream /O, whereas with a data
dictionary it performs record I/O. The difference is intentional—it guarantees that you will be able to
read your data into Stata somehow. Some datasets require stream 1/O, others require record /O, and
still others can be read either way. Recommendations 1-5 identify datasets that either require stream

I/O or can be read either way.
a

We are now left with datasets that contain at least one string variable.

22.2.7 If all the string variables are enclosed in quotes

If all the string variables in the data are enclosed in (single or double) quotes, see [D] infile (free
format).

See [U] 24 Working with strings for a formal definition of strings, but as a quick guide, a string
variable is a variable that takes on values like “bob” or “joe”, as opposed to numeric variables that
take on values like 1, 27.5, and —17.393. Undelimited strings—strings not enclosed in quotes—can
be difficult to read.

Here is an example including delimited string variables:

begin data8.raw
"M" "Joe Smith" 288 14

"M" "K Marx" 238 12

"F" "Farber" 211 7

end data8.raw

or

begin data8.raw, alternative format
"M" "Joe Smith" 288 14
"M" "K Marx" 238 12
"F" "Farber" 211 7
end data8.raw, alternative format

Both of these are merely variations on data4.raw except that the strings are enclosed in quotes.
Here infile without a dictionary can be used to read the data.

Here is another version of data4.raw without delimiters or even formatting:

begin data9.raw
M Joe Smith 288 14

M K Marx 238 12

F Farber 211 7

end data9.raw

What makes these data difficult? Blanks sometimes separate values and sometimes are nothing more
than a blank within a string. For instance, you cannot tell whether Farber has first initial F with
missing sex or is instead female with a missing first initial.

Fortunately, such data rarely happen. Either the strings are delimited, as we showed in data8.raw,
or the data are in columns, as in data4.raw.

[U] 22 Entering and importing data 315

22.2.8 If the undelimited strings have no blanks

There is a case in which uncolumnized, undelimited strings cause no confusion—when they contain
no blanks. For instance, if our data contained only last names,

begin datalO.raw
Smith 288 14
Marx 238 12
Farber 211 7

end datalQ.raw
Stata could read it without a data dictionary. Caution: the last names must contain no blanks—no
Van Owen’s or von Beethoven’s.

If the undelimited string variables have no blanks, see [D] infile (free format).

22.2.9 If you have EBCDIC data
You may rarely encounter data from a mainframe that is encoded in extended binary coded decimal
interchange code (EBCDIC). EBCDIC is used on some IBM mainframe operating systems.

If you have EBCDIC data, you should have information on that data specifying where each field
begins and ends and what type of data is in that field. You can read EBCDIC data in the same way
that you read fixed-format text data, using infile (see [D] infile (fixed format). You create a data
dictionary that tells Stata which columns to read for each field, and you merely specify the ebcdic
option with the infile command to read the data.

Alternatively, you can convert an EBCDIC file to an ASCII text file with the filefilter command.
See [D] filefilter.

22.2.10 If you make it to here

If you make it to here, see [D] infile (fixed format) or [D] infix (fixed format).

Remember datad.raw?

begin datad.raw

M Joe Smith 288 14
M K Marx 238 12
F Farber 211 7

end datad4.raw

It can be read using either infile with a dictionary or infix.

22.3 If you run out of memory

You may need to tweak a setting; see [U] 6 Managing memory and [D] memory.
You can also try to conserve memory.

When you read the data, did you specify variable types? Stata can store integers more compactly
than floats and small integers more compactly than large integers; see [U] 12 Data.

If that is not sufficient, you will have to resort to reading the data in pieces. Both infile and
infix allow you to specify an in range qualifier, and, here the range is interpreted as the observation
range to read. Thus, infile ... in 1/100 would read observations 1-100 of your data and stop.

316 [U] 22 Entering and importing data

infile ... in 101/200 would read observations 101-200. The end of the range may be specified
as larger than the actual number of observations in the data. If the dataset contained only 150
observations, infile ... in 101/200 would read observations 101—150.

Another way of reading the data in pieces is to specify the if exp qualifier. Say that your data
contained an equal number of males and females, coded as the variable sex (which you will read)
being O or 1, respectively. You could type infile ... if sex==0 to read the males. infile will
read an observation, determine if sex is zero, and if not, throw the observation away. You could read
just the females by typing infile ... if sex==1.

If the dataset is really big, perhaps you need only a random sample of the data—you never
intended to analyze the entire dataset. Because infile and infix allow if exp, you could type
infile ... if runiform()<.1. runiform() is the uniformly distributed random-number generator;
see [FN] Random-number functions. This method would read an approximate 10% sample of the
data. If you are serious about using random samples, do not forget to set the seed before using
runiform(); see [R] set seed.

The final approach is to read all the observations but only some of the variables. When reading
data without a data dictionary, you can specify _skip for variables, indicating that the variable is to
be skipped. When reading with a data dictionary or using infix, you can specify the actual columns
to read, skipping any columns you wish to ignore.

If you are using import excel, you can read a subset of an Excel worksheet by using the
cellrange () option. See [D] import excel.

22.4 ODBC sources

If your dataset is located in a network database or shared spreadsheet, you may be able to import
your data via ODBC. Open Database Connectivity (ODBC) is a standard for exchanging data between
programs. Stata supports the ODBC standard for importing data via the odbc command and can read
from any ODBC source on your computer.

This process requires a data source, such as a database located on a network. To use the odbc
command to import data from a database requires that the database first be set up as an ODBC source on
the same machine that is running Stata. The database itself does not have to be on the same machine,
just the definition of that database as the ODBC source. On a Windows machine, an ODBC source is
added via a Control Panel called “Data Sources”. Also, typing odbc 1ist from Stata displays all the
ODBC sources that are provided by the computer.

If the database is functioning and the appropriate data source has been set up on the same machine
as Stata, one call using odbc load is all that is needed to import data. For a more thorough description
of this process, see [D] odbc.

23 Combining datasets

You have two datasets that you wish to combine. Below, we will draw a dataset as a box where,
in the box, the variables go across and the observations go down.

See [D] append if you want to combine datasets vertically:

append adds observations to the existing variables. That is an oversimplification because append
does not require that the datasets have the same variables. append is appropriate, for instance, when
you have data on hospital patients and then receive data on more patients.

See [D] merge if you want to combine datasets horizontally:

merge adds variables to the existing observations. That is an oversimplification because merge does
not require that the datasets have the same observations. merge is appropriate, for instance, when
you have data on survey respondents and then receive data on part 2 of the questionnaire.

There is another way to combine datasets horizontally, or more precisely, hierarchically, by loading
them into separate frames and linking them. See [D] frlink for a discussion of when you might want
to use merge versus frlink.

See [D] joinby when you want to combine datasets horizontally but form all pairwise combinations
within group:

317

318 [U] 23 Combining datasets

joinby is similar to merge but forms all combinations of the observations where it makes sense.
joinby would be appropriate, for instance, where A contained data on parents and B contained data
on their children. joinby familyid would form a dataset of each parent joined with each of his or
her children.

Also see [D] cross for a less frequently used command that forms every pairwise combination of
two datasets.

See Mitchell (2020, chap. 7) for more information on combining datasets in Stata.

23.1 References
Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152-156.

Gould, W. W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/04/18/merging-data-part- 1 -merges-gone-bad/.

——. 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata
Press.

http://www.stata-journal.com/article.html?article=dm0046
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://www.stata-press.com/books/data-management-using-stata/

24 Working with strings

Contents

24,1 DESCIIPHOM vttt ettt et e e e e e e e e e e e e e e 319
242 Categorical string variables i 319
24.3 Mistaken string variables 320
244 Complex SIINEZS .ottt ittt et e e e e e e e 321
245 RefEIENCESttt e 322

Please read [U] 12 Data before reading this entry.

24.1 Description

LLINT3

The word string is shorthand for a string of characters. “Male” and “Female”, “yes” and “no”,
and “R. Smith” and “P. Jones” are examples of strings. The alternative to strings is numbers—0, 1,
2, 5.7, and so on. Variables containing strings—called string variables—occur in data for a variety
of reasons. Four of these reasons are listed below.

A variable might contain strings because it is an identifying variable. Employee names in a payroll
file, patient names in a hospital file, and city names in a city data file are all examples of this. This
is a proper use of string variables.

A variable might contain strings because it records categorical information. “Male” and “Female”
and “yes” and “no” are examples of such use, but this is not an appropriate use of string variables.
It is not appropriate because the same information could be coded numerically, and, if it were, it
would take less memory to store the data and the data would be more useful. We will explain how
to convert categorical strings to categorical numbers below.

Also, a variable might contain strings because of a mistake. For example, the variable contains
things like 1, 5, 8.2, but because of an error in reading the data, the data were mistakenly put into a
string variable. We will explain how to fix such mistakes.

Finally, a variable might contain strings because the data simply could not be coerced into being
stored numerically. “15 Jan 1992”, “1/15/92”, and “1A73” are examples of such use. We will explain
how to deal with such complexities.

In addition to the advice presented here, read [U] 12.4.2 Handling Unicode strings if your strings
contain Unicode characters.

24.2 Categorical string variables

A variable might contain strings because it records categorical information.

Suppose that you have read in a dataset that contains a variable called sex, recorded as “male”
and “female”, yet when you attempt to run a linear regression, the following message is displayed:

. use https://www.stata-press.com/data/r16/hbp2

. regress hbp sex
no observations
r(2000) ;

319

320 [U] 24 Working with strings

There are no observations because regress, along with most of Stata’s “analytic” commands, cannot
deal with string variables. Commands want to see numbers, and when they do not, they treat the
variable as if it contained numeric missing values. Despite this limitation, it is possible to obtain
tables:

. encode sex, generate(gender)

. regress hbp gender

Source SS df MS Number of obs = 1,128
F(1, 1126) = 14.04

Model .644485682 1 .644485682 Prob > F = 0.0002
Residual 51.6737767 1,126 .045891454 R-squared = 0.0123
Adj R-squared = 0.0114

Total 52.3182624 1,127 .046422593 Root MSE = .21422
hbp Coef. Std. Err. t P>t [95% Conf. Intervall
gender .0491501 .0131155 3.75 0.000 .0234166 .0748837
_cons -.0306744 .0221353 -1.39 0.166 -.0741054 .0127566

The magic here is to convert the string variable sex into a numeric variable called gender with an
associated value label, a trick accomplished by encode; see [U] 12.6.3 Value labels and [D] encode.

24.3 Mistaken string variables

A variable might contain strings because of a mistake.

Suppose that you have numeric data in a variable called x, but because of a mistake, x was made
a string variable when you read the data. When you 1ist the variable, it looks fine:

. list x
X
1. 2
2. 2.5
3 17

(output omitted)
[

Yet, when you attempt to obtain summary statistics on x,

. summarize x

Variable | Obs Mean Std. Dev. Min Max

bd | 0

[U] 24 Working with strings 321

If this happens to you, type describe to confirm that x is stored as a string:

. describe

Contains data

obs: 10
vars: 3
storage display value
variable name type format label variable label
X str4 %9s
y float %9.0g
z float %9.0g

Sorted by:

x is stored as a str4.

The problem is that summarize does not know how to calculate the mean of string variables—how
to calculate the mean of “Joe” plus “Bill” plus “Roger”—even when the string variable contains what
could be numbers. By using the destring command ([D] destring), the variable mistakenly stored
as a str4 can be converted to a numeric variable.

. destring x, replace
. summarize x

Variable | Obs Mean Std. Dev. Min Max

newx | 10 1.76 .8071899 7 3

An alternative to using the destring command is to use generate with the real() function;
see [FN] String functions.

24.4 Complex strings

A variable might contain strings because the data simply could not be coerced into being stored
numerically.

A complex string is a string that contains more than one piece of information. Complex strings may
be very long and may contain binary information. Stata can store strings up to 2-billion characters
long and can store strings containing binary information, including binary 0 (\0). You can read more
about this in [U] 12.4 Strings. The most common example of a complex string, however, is a date:
“15 Jan 1992 contains three pieces of information—a day, a month, and a year. If your complex
strings are dates or times, see [U] 25 Working with dates and times.

Although Stata has functions for dealing with dates, you will have to deal with other complex
strings yourself. Assume that you have data that include part numbers:

. list partno

partno
1. 5A2713
2. 2B1311
3 8D2712

(output omitted)
1

322 [U] 24 Working with strings

The first digit of the part number is a division number, and the character that follows identifies the
plant at which the part was manufactured. The next three digits represent the major part number and
the last digit is a modifier indicating the color. This complex variable can be decomposed using the
substr() and real() functions described in [FN] String functions:

. generate byte div = real(substr(partno,1,1))
. generate strl plant = substr(partno,2,1)
. generate int part = real(substr(partno,3,3))

. generate byte color = real(substr(partno,6,1))

We use the substr() function to extract pieces of the string and use the real() function, when
appropriate, to translate the piece into a number. See [U] 12.4.2.1 Unicode string functions.

For a gentle tutorial on problems with string variables containing many tips, see Cox and
Schechter (2018). For an extended discussion of numeric and string data types and how to convert
from one kind to another, see Cox (2002).

24.5 References
Cox, N. J. 2002. Speaking Stata: On numbers and strings. Stata Journal 2: 314-329.

Cox, N. J, and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:
981-994.

Schwarz, C. 2019. Isemantica: A command for text similarity based on latent semantic analysis. Stata Journal 19:
129-142.

http://www.stata-journal.com/article.html?article=pr0006
http://www.stata-journal.com/article.html?article=dm0098
https://doi.org/10.1177/1536867X19830910

25 Working with dates and times

Contents

251 OVEIVIEW .ttt e e e e e 323
25.2 Inputting dates and tMESottt e 325
25.3 Displaying dates and tMEStiuitntin it 328
25.4 Typing dates and times (datetime literals)ot 329
25.5 Extracting components of dates and times i 329
25.6 Converting between date and time values 330
257 Business dates and calendars e 330
25.8 REfEIeNCESttt 331

25.1 Overview

A complete overview of Stata’s date and time capabilities can be found in [D] Datetime. It discusses
functions used to obtain Stata dates, including string-to-numeric conversions and conversions among
different types of dates and times.

For an alphabetical listing of all the datetime functions, see [FN] Date and time functions.

Stata can work with dates such as 21nov2006, with times such as 13:42:02.213, and with dates
and times such as 21nov2006 13:42:02.213. You can write these dates and times however you wish,
such as 11/21/2006, November 21, 2006, and 1:42 p.m.

Stata stores dates, times, and dates and times as integers such as —4,102, 0, 82, 4,227, and
1,479,735,745,213. It works like this:

1. You begin with the datetime variables in your data however they are recorded, such as 21nov2006
or 11/21/2006 or November 21, 2006, or 13:42:02.213 or 1:42 p.m. The original values are
usually best stored in string variables.

2. Using functions we will describe below, you convert the original into the integers that Stata
understands and store those values in a new variable.

3. You specify the appropriate display format for the new variable so that, rather than displaying
as the integer values that they are, they display in a way you can read them such as 21nov2006
or 11/21/2006 or November 21, 2006, or 13:42:02.213 or 1:42 p.m.

The numeric encoding that Stata uses is centered on the first millisecond of 01jan1960, that is,
01jan1960 00:00:00.000. That datetime is assigned integer value O.

Integer value 1 is the millisecond after that: 01jan1960 00:00:00.001.
Integer value —1 is the millisecond before that: 31dec1959 23:59:59.999.

By that logic, 21nov2006 13:42:02.213 is integer value 1,479,735,722,213, or at least it is if
we ignore the leap seconds that have been inserted to keep clocks in alignment with astronomical
observation. If we account for leap seconds, 21nov2006 13:42:02.213 would be 23 seconds later,
namely, 1,479,735,745,213. Stata can work either way.

Obtaining the number of milliseconds associated with a datetime is easy because Stata pro-
vides functions that convert things like 21nov2006 13:42:02.213 (written however you wish) to
1,479,735,722,213 or 1,479,735,745,213.

323

324 [U] 25 Working with dates and times

Just remember, Stata records datetime values as the number of milliseconds since the first millisecond
of 01jan1960.

Stata records pure time values (clock times independent of date) the same way. Rather than thinking
of the numeric value as the number of milliseconds since 01jan1960, however, think of it as the
number of milliseconds since the beginning of the day. For instance, at 2 p.m. every day, the airplane
takes off from Houston for London. The numeric value associated with 2 p.m. is 50,400,000 because
there are that many milliseconds between the beginning of the day (00:00:00.000) and 2 p.m.

The advantage of thinking this way is that you can add dates and times. What is the datetime value
for when the plane takes off on 21nov2006? Well, 21nov2006 00:00:00.000 is 1,479,686,400,000
(ignoring leap seconds), and 1,479,686,400,000 + 50,400,000 is 1,479,736,800,000.

Subtracting datetime values is useful, too. How many hours are there between 21jan1952 7:23
am. and 21nov2006 3:14 p.m.? Answer: {1,479,741,240,000 — (—250,706,220,000)} /3,600,000 =
480,679.85 hours.

Variables that record the number of milliseconds since 01jan1960 and ignore leap seconds are
called datetime/c variables.

Variables that record the number of milliseconds since 01jan1960 and account for leap seconds
are called datetime/C variables.

Stata has seven other kinds of date and time variables.

In many applications, calendar dates by themselves are sufficient. The applicant was hired on
15jan2006, for instance. You could use a datetime/c variable to record that value, assigning some
arbitrary time that you would ignore, but it is better and easier to use simply a date variable. In date
variables, O still corresponds to 01jan1960, but a unit change now represents an entire day rather
than a millisecond. The value 1 represents 02jan1960. The value —1 represents 31dec1959. When
you subtract date variables, you obtain the number of days between dates.

In a financial application, you might use quarterly variables. In quarterly variables, O represents
the first quarter of 1960, 1 represents the second quarter, and —1 represents the last quarter of 1959.
When you subtract quarterly variables, you obtain the number of quarters between dates.

Stata understands nine date and time formats:

Format Base Units Comment

%tc 01jan1960 milliseconds ignores leap seconds

#tC 01jan1960 milliseconds accounts for leap seconds

%td 01jan1960 days calendar date format

htw 1960-w1 weeks 52nd week may have more than 7 days
%tm jan1960 months calendar month format

htq 1960-q1 quarters financial quarter

%th 1960-h1 half-years 1 half-year = 2 quarters

ity AD 0 year 1960 means year 1960

%tb - days user-defined business calendar format

All formats except %ty and %tb are based on the beginning of January 1960. The value 0 means the
first millisecond, day, week, month, quarter, or half-year of 1960, depending on format. The value 1
is the millisecond, day, week, month, quarter, or half-year after that. The value —1 is the millisecond,
day, week, month, quarter, or half-year before that.

Stata’s %ty format records years as numeric values, and it codes them the natural way: rather
than 0 meaning 1960, 1960 means 1960, and so 2006 also means 2006.

[U] 25 Working with dates and times 325

25.2 Inputting dates and times

Date and time variables are best read as strings. You then use one of the string-to-numeric conversion
functions to convert the string to an appropriate numeric value:

Format String-to-numeric conversion function
%tc clock(string, mask)
%tC Clock(string, mask)
%td date (string, mask)
htw weekly (string, mask)
%tm monthly (string, mask)
%tq quarterly (string, mask)
%th halfyearly (string, mask)
hty yearly (string, mask)

The full documentation of these functions can be found in [D] Datetime conversion.

In the above table, string is the string variable to be translated, and mask specifies the order in
which the components of the date or time, or both, appear in string. For instance, the mask in %td
function date () is made up of the letters M, D, and Y.

date(string, "DMY") specifies string contain dates in the order of day, month, year. With that
specification, date () can convert 21nov2006, 21 November 2006, 21-11-2006, 21112006, and other
strings that contain dates in the order day, month, year.

date(string, "MDY") specifies string contain dates in the order of month, day, year. With that
specification, date () can convert November 21, 2006, 11/21/2006, 11212006, and other strings that
contain dates in the order month, day, year.

You can specify a two-digit prefix in front of Y to handle two-digit years. date (string, "MD19Y")
specifies that string contain dates in the order of month, day, and year and that if the year contains
only two digits, it is to be prefixed with 19. With that specification, date () could convert not only
November 21, 2006, 11/21/2006, and 11212006 but also Feb. 15 ’98, 2/15/98, and 21598.

There is another way to deal with two-digit years so that 98 becomes 1998 while 06 becomes 2006.
It involves specifying an optional third argument. See Working with two-digit years in [D] Datetime
conversion.

Let’s consider some daily data. We have the following raw-data file:

begin bdays.raw
Bill 21 Jan 1952 22
May 11 Jul 1948 18
Sam 12 Nov 1960 25
Kay 9 Aug 1975 16

end bdays.raw

We could read these data by typing

. infix str name 1-5 str bday 7-17 x 20-21 using bdays
(4 observations read)

326 [U] 25 Working with dates and times

We read the date not as three separate variables but as one variable. Variable bday contains the entire

date:
. list
name bday X
1. Bill 21 Jan 1952 22
2. May 11 Jul 1948 18
3. Sam 12 Nov 1960 25
4. Kay 9 Aug 1975 16

The data look fine, but if we set about using them, we would quickly discover there is not much we
could do with variable bday. Variable bday looks like a date, but it is just a string. We need to turn

bday into a numeric value that Stata understands:

. generate birthday = date(bday, "DMY")

. list
name bday x birthday
1. Bill 21 Jan 1952 22 -2902
2. May 11 Jul 1948 18 -4191
3. Sam 12 Nov 1960 25 316
4. Kay 9 Aug 1975 16 5699

New variable birthday is a numeric date variable. The problem now is that, whereas the new variable
is perfectly understandable to Stata, it is not understandable to us. So we apply the corresponding

format for a calendar date, %td:

. format birthday %td

. list
name bday X birthday
1. Bill 21 Jan 1952 22 21jan1952
2. May 11 Jul 1948 18 11jull1948
3. Sam 12 Nov 1960 25 12nov1960
4. Kay 9 Aug 1975 16 09augl975

Using our newly formatted variable, we can create a variable recording how old each of these
subjects was on 01jan2000 using the age () function:

. generate age2000 = age(birthday, td(01jan2000))

. list
name bday X birthday age2000
1. Bill 21 Jan 1952 22 21jan1952 a7
2. May 11 Jul 1948 18 11jull1948 51
3. Sam 12 Nov 1960 25 12nov1960 39
4. Kay 9 Aug 1975 16 09augl975 24

The arguments to age () are numeric dates. The first is the date of birth, and the second the date for
which age is calculated. See [D] Datetime durations.

[U] 25 Working with dates and times 327

td() is a function that converts a single date typed out (01jan2000 in this example) into its
equivalent numeric date value. There are also functions tc(), tC(Q), tw(), tm(), tq(), and th()
for the other types of dates and times; see [D] Datetime.

Let’s consider one more example. We have the following data:

. use https://www.stata-press.com/data/r16/datexmpl2, clear

. list

id timestamp action
1. 1001 Tue Nov 14 08:59:43 CST 2006 15
2. 1002 Wed Nov 15 07:36:49 CST 2006 15
3. 1003 Wed Nov 15 09:21:07 CST 2006 11
4. 1002 Wed Nov 15 14:57:36 CST 2006 16
5. 1005 Thu Nov 16 08:22:53 CST 2006 12
6. 1001 Thu Nov 16 08:36:44 CST 2006 16

Variable timestamp is a string that we want to convert to a datetime/c variable. From the table
above, we know we will use function clock(). The mask in clock() uses the letters D, M, Y and
h, m, s, which specify the order of the day, month, year and hours, minutes, seconds. timestamp,
however, contains more than that. It also contains the day of the week and CST. We want to ignore
those, so we specify the mask element #, which is a placeholder for something we want ignored.

timestamp can be converted using clock(ts, "# MD hms # Y"), which specifies that the order
of the components in ts is something-to-be-ignored, month, day, hours, minutes, seconds, something-
to-be-ignored, and year. There is no meaning to the spaces; we could just as well have specified
clock(ts, "#MDhms#Y"). You can specify spaces when they help to make what you type more
readable.

Because datetime values can be so large, whenever you use the function clock(), you must store
the results in a double, as we do below:

. generate double dt = clock(timestamp, "# MD hms # Y")
. list id dt action

id dt action
1. 1001 1.479e+12 15
2. 1002 1.479e+12 15
3. 1003 1.479e+12 11
4. 1002 1.479e+12 16
5. 1005 1.479e+12 12
6. 1001 1.479e+12 16

Don’t panic. New variable dt contains numeric values, and large ones, which is why it was so
important that we stored the values as doubles. That output above just shows us what a datetime
variable looks like with default formatting. If we wanted to see the numeric values better, we could
change dt to have a %20.0gc format. We would then see that the first value is 1,479,113,983,000,
the second 1,479,195,409,000, and so on. We will not do that. Instead, we will put a %tc format on
our datetime variable:

328 [U] 25 Working with dates and times

. format dt Ytc
. list id dt action

id dt action
1. 1001 14nov2006 08:59:43 15
2. 1002 15nov2006 07:36:49 15
3. 1003 15n0ov2006 09:21:07 11
4. 1002 15nov2006 14:57:36 16
5. 1005 16nov2006 08:22:53 12
6. 1001 16nov2006 08:36:44 16

Variable dt is a variable we can use in calculations. Say we wanted to know how many hours it had
been since the previous action:

. sort dt

. generate hours = hours(dt - dt[_n-1])

(1 missing value generated)

. format hours %9.2f

. list id dt action hours

id dt action hours

1. 1001 14nov2006 08:59:43 15 .
2. 1002 15nov2006 07:36:49 15 22.62
3. 1003 15nov2006 09:21:07 11 1.74
4. 1002 15n0ov2006 14:57:36 16 5.61
5. 1005 16nov2006 08:22:53 12 17.42
6. 1001 16nov2006 08:36:44 16 0.23

We subtracted the previous value of dt from dt, which results in the number of milliseconds. Converting
milliseconds to hours is easy enough: we just have to divide by 60 x 60 x 1,000 = 3,600,000. It is easy
to forget or mistype that constant, so we used Stata’s hours () function, which converts milliseconds
to hours. hours (), and other useful functions, is documented in [D] Datetime durations.

25.3 Displaying dates and times

A calendar date variable should have a %td format and a datetime variable should have a %tc
format. Every type of date and time variable has a corresponding display format. You apply that
format by typing format varname %td, format varname %tc, etc.

Formats %tc, %tC, %td, %tw, %tm, %tq, %th, and %ty are called the default %t formats. By
specifying codes following them, you can control how the variable is to be displayed.

In the previous example, we started with a string variable that contained a time stamp and looked
like “Tue Nov 14 08:59:43 CST 2006”. After we created a datetime variable from it and put the
default %tc format on it, our datetimes looked like “14nov2006 08:59:43”. Below, we specify a
%tc format that makes our new variable look just like the original:

[U] 25 Working with dates and times 329

. format dt %tcDay_Mon_DD_HH:MM:SS_!C!S!T_CCYY

. list id dt action hours

id dt action hours
1. 1001 Tue Nov 14 08:59:43 CST 2006 15 .
2. 1002 Wed Nov 15 07:36:49 CST 2006 15 22.62
3. 1003 Wed Nov 15 09:21:07 CST 2006 11 1.74
4. 1002 Wed Nov 15 14:57:36 CST 2006 16 5.61
5. 1005 Thu Nov 16 08:22:53 CST 2006 12 17.42
6. 1001 Thu Nov 16 08:36:44 CST 2006 16 0.23

%t display formats are documented in [D] Datetime display formats.

25.4 Typing dates and times (datetime literals)

You will sometimes need to type dates and times in expressions. When we needed to calculate
the age of subjects as of 01jan2000 in a previous example, for instance, we typed

. generate age2000 = age(birthday, td(01jan2000))

although we could just as well have typed

. generate age2000 = age(birthday, 14610)

because 14,610 is the numeric value corresponding to the calendar date 01jan2000. Typing
td(1jan2000) is easier and less error prone.

Similarly, if we needed 10:55 a.m. on 01jan1960 as a datetime value, rather than typing 39,300,000,
we could type tc(01jan1960 10:55). See Typing dates into expressions in [D] Datetime for details.

25.5 Extracting components of dates and times

Once you have a numeric date or datetime variable, you can use the extraction functions to obtain
components of the variable. For instance, the following functions are appropriate for use with daily

date variables:

year (date)
month (date)
day (date)
halfyear (date)
quarter (date)
week (date)
dow (date)
doy (date)

returns four-digit year; for example, 1980, 2002
returns month; 1, 2, ..., 12

returns day within month; 1, 2, ..., 31

returns the half of year; 1 or 2

returns quarter of year; 1, 2, 3, or 4

returns week of year; 1, 2, ..., 52

returns day of week; 0, 1, ..., 6; 0 = Sunday
returns day of year; 1, 2, ..., 366

There are other functions useful with datetime variables. See Extracting time-of-day components
from datetimes and Extracting date components from daily dates in [D] Datetime.

330 [U] 25 Working with dates and times

25.6 Converting between date and time values

You can convert between date and time values. For instance, the cofd() function converts a daily
date to a datetime/c value. cofd() of 17,126 (21nov2006) returns 1,479,686,400,000 (21nov2006
00:00:00). Function dofc () of 1,479,736,920,000 (21nov2006 14:02) returns 17,126 (21nov2006).

There are other functions for converting between other date and time values; see Converting among
units in [D] Datetime.

25.7 Business dates and calendars

Besides the built-in date types above, such as datetime/c and calendar dates, Stata provides a type
you can define, called business dates. Business dates are dates that appear on a business calendar,
and their corresponding business calendar format is denoted %tb.

A business calendar is like an ordinary calendar with some dates crossed out. The crossed-out
dates correspond to the dates on which the business is closed:

November 2011
Su Mo Tu We Th Fr Sa

1 2 3 4 X
7 &8 9 10 11 X
14 15 16 17 18 19
21 22 23 X 25 X
28 29 30

el Rl

With respect to a business date, yesterday is the last day the business was open, and tomorrow is
the next day the business will be open.

Consider date = 25n0v2011. If date is a regular date variable,

yesterday = date — 1 = 24nov2011
tomorrow = date + 1 = 26nov2011
If date is a business (%tb) date variable,

yesterday = date — 1 = 23nov2011

tomorrow = date + 1 = 28nov2011

Business dates work just like regular dates; it is just that some dates are crossed out. That is important
because variables containing dates are often used with Stata’s lag and lead operators; see [U] 13.10 Time-
series operators. If variable trading_date is an ordinary date variable, then L. trading._date really
is yesterday, and F.trading_date really is tomorrow. But if trading_date has an appropriately
defined %tb format, L. trading_date is the previous trading date, and F.trading_date is the next
trading date.

You can use bcal create to create a business calendar based on the current dataset. Alternatively,
you can create a file named calname.stbcal, such as nyse.stbcal. After that, Stata deeply
understands the new format %tbnyse. For more information, see [D] Datetime business calendars.

[U] 25 Working with dates and times 331

25.8 References
Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682—685.
——. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565-569.
——. 2018. Stata tip 130: 106610 and all that: Date variables that need to be fixed. Stata Journal 18: 755-757.
Samuels, S. J., and N. J. Cox. 2012. Stata tip 105: Daily dates with missing days. Stata Journal 12: 159-161.

http://www.stata-journal.com/article.html?article=dm0052
http://www.stata-journal.com/article.html?article=dm0065
http://www.stata-journal.com/article.html?article=dm0096
http://www.stata-journal.com/article.html?article=dm0062

26 Working with categorical data and factor variables

Contents

26.1 Continuous, categorical, and indicator variables 332
26.1.1 Converting continuous variables to indicator variables 333
26.1.2 Converting continuous variables to categorical variables 334

26.2 Estimation with factor variables i i 336
26.2.1 Including factor variablest 337
26.2.2 Specifying base levels 337
26.2.3 Setting base levels permanently 338
26.2.4 Testing significance of a main effect 339
26.2.5 Specifying indicator (dummy) variables as factor variables 339
26.2.6 Including interactionseuuueuienen e, 340
26.2.7 Testing significance of interactionscoi i 342
26.2.8 Including factorial specifications 342
26.2.9 Including squared terms and polynomials 343
26.2.10 Including interactions with continuous variables 343
26.2.11 Parentheses binding i 345
26.2.12 Including indicators for single levels 346
26.2.13 Including subgroups of levels i, 348
26.2.14 Combining factor variables and time-series operators 348
26.2.15 Treatment of empty cellsot 348

26.3 REfEIENCES ..ottt 349

26.1 Continuous, categorical, and indicator variables

Although to Stata a variable is a variable, it is helpful to distinguish among three conceptual types:

A continuous variable measures something. Such a variable might measure a person’s age, height,
or weight; a city’s population or land area; or a company’s revenues or costs.

The term “continuous” here is deliberately broad and includes variables that are discrete by
convention (ages in years) or by definition (counts of people). Even for such variables, reported
values are points on continuous scales with natural origins, and not arbitrary codes.

A categorical variable identifies a group to which the thing belongs. You could categorize persons
according to their race or ethnicity, cities according to their geographic location, or companies
according to their industry. Sometimes, categorical variables are stored as strings.

An indicator variable denotes whether something is true. For example, is a person a veteran, does
a city have a mass transit system, or is a company profitable?

Indicator variables are a special case of categorical variables. Consider a variable that records

whether or not a person is employed. Examined one way, it is a categorical variable. A categorical
variable identifies the group to which a thing belongs, and here the thing is a person and the basis for
categorization is employment. Looked at another way, however, it is an indicator variable. It indicates
whether the person is employed. In this example, and most others, there is much scope for a finer
or otherwise different categorization, but bear with us.

We can use the same logic on any categorical variable that divides the data into two groups. It is

a categorical variable because it identifies whether an observation is a member of this or that group;

332

[U] 26 Working with categorical data and factor variables 333

it is an indicator variable because it denotes the truth value of the statement “the observation is in
this group”.

All indicator variables are categorical variables, but the opposite is not true. A categorical variable
might divide the data into more than two groups. For clarity, let’s reserve the term categorical variable
for variables that divide the data into more than two groups, and let’s use the term indicator variable
for categorical variables that divide the data into exactly two groups.

Stata can convert continuous variables to categorical and indicator variables and categorical variables
to indicator variables.

26.1.1 Converting continuous variables to indicator variables

Stata treats logical expressions as taking on the values true or false, which it identifies with the
numbers 1 and 0; see [U] 13 Functions and expressions. For instance, if you have a continuous
variable measuring a person’s age and you wish to create an indicator variable denoting persons aged
21 and over, you could type

. generate age2lp = age>=21
The variable age21p takes on the value 1 for persons aged 21 and over and O for persons under 21.

Because age21p can take on only O or 1, it would be more economical to store the variable as a
byte. Thus it would be better to type

. generate byte age2lp = age>=21

This solution has a problem. The value of age21 is set to 1 for all persons whose age is missing
because Stata defines missing to be larger than all other numbers. In our data, we might have no
such missing ages, but it still would be safer to type

. generate byte age2lp = age>=21 if age<.

That way, persons whose age is missing would also have a missing age21p.

Q Technical note

Put aside missing values and consider the following alternative to generate age2lp = age>=21
that may have occurred to you:

. generate age2lp = 1 if age>=21
That does not produce the desired result. This statement makes age21p 1 (true) for all persons aged
21 and above but makes age21p missing for everyone else.
If you followed this second approach, you would have to combine it with

. replace age2lp = 0 if age<21

334 [U] 26 Working with categorical data and factor variables

26.1.2 Converting continuous variables to categorical variables

Suppose that you wish to categorize persons into four groups on the basis of their age. You want
a variable to denote whether a person is 21 or under, between 22 and 38, between 39 and 64, or
65 and above. Although most people would label these categories 1, 2, 3, and 4, there is really no
reason to restrict ourselves to such a meaningless numbering scheme. Let’s call this new variable
agecat and make it so that it takes on the topmost value for each group. Thus persons in the first
group will be identified with an agecat of 21, persons in the second with 38, persons in the third
with 64, and persons in the last (drawing a number out of the air) with 75. Here is a way to create
the variable that will work, but it is not the best method for doing so:

. use https://www.stata-press.com/data/r16/agexmpl

. generate byte agecat=21 if age<=21
(176 missing values generated)

. replace agecat=38 if age>21 & age<=38
(148 real changes made)

. replace agecat=64 if age>38 & age<=64
(24 real changes made)

. replace agecat=75 if age>64 & age<.
(4 real changes made)

We created the categorical variable according to the definition by using the generate and replace
commands. The only thing that deserves comment is the opening generate. We (wisely) told Stata
to generate the new variable agecat as a byte, thus conserving memory.

We can create the same result with one command using the recode () function:

. use https://www.stata-press.com/data/r16/agexmpl, clear

. generate byte agecat=recode(age,21,38,64,75)

recode() takes three or more arguments. It examines the first argument (here age) against the
remaining arguments in the list. It returns the first element in the list that is greater than or equal to
the first argument or, failing that, the last argument in the list. Thus, for each observation, recode ()
asked if age was less than or equal to 21. If so, the value is 21. If not, is it less than or equal to 38?
If so, the value is 38. If not, is it less than or equal to 64? If so, the value is 64. If not, the value is
75.

Most researchers typically make tables of categorical variables, so we will tabulate the result:

. tabulate agecat

agecat Freq. Percent Cum.
21 28 13.73 13.73
38 148 72.55 86.27
64 24 11.76 98.04
75 4 1.96 100.00
Total 204 100.00

[U] 26 Working with categorical data and factor variables 335

There is another way to convert continuous variables into categorical variables, and it is even more
automated: autocode () works like recode (), except that all you tell the function is the range and
the total number of cells that you want that range broken into:

. use https://wuw.stata-press.com/data/r16/agexmpl, clear
. generate agecat=autocode(age,4,18,65)

. tabulate agecat

agecat Freq. Percent Cum.
29.75 82 40.20 40.20
41.5 96 47.06 87.25
53.25 16 7.84 95.10
65 10 4.90 100.00
Total 204 100.00

In one instruction, we told Stata to break age into four evenly spaced categories from 18 to 65.
When we tabulate agecat, we see the result. In particular, we see that the breakpoints of the
four categories are 29.75, 41.5, 53.25, and 65. The first category contains everyone aged 29.75 years
or less; the second category contains persons over 29.75 who are 41.5 years old or less; the third
category contains persons over 41.5 who are 53.25 years old or less; and the last category contains
all persons over 53.25.

Q Technical note

We chose the range 18—65 arbitrarily. Although you cannot tell from the table above, there are
persons in this dataset who are under 18, and there are persons over 65. Those persons are counted
in the first and last cells, but we have not divided the age range in the data evenly. We could split
the full age range into four categories by obtaining the overall minimum and maximum ages (by
typing summarize) and substituting the overall minimum and maximum for the 18 and 65 in the
autocode () function:

. use https://www.stata-press.com/data/r16/agexmpl, clear
. summarize age

Variable | Obs Mean Std. Dev. Min Max

age | 204 31.57363 10.28986 2 66
. generate agecat2=autocode(age,4,2,66)

We could also sort the data into ascending order of age and tell Stata to construct four categories
over the range age[1] (the minimum) to age [_N] (the maximum):
. use https://www.stata-press.com/data/r16/agexmpl, clear
. sort age
. generate agecat2=autocode(age,4,agel[1],agel[_N])
. tabulate agecat2

agecat2 Freq. Percent Cum.

18 10 4.90 4.90

34 138 67.65 72.55

50 41 20.10 92.65

66 15 7.35 100.00
Total 204 100.00

336 [U] 26 Working with categorical data and factor variables

26.2 Estimation with factor variables

Stata handles categorical variables as factor variables; see [U] 11.4.3 Factor variables. Categorical
variables refer to the variables in your data that take on categorical values, variables such as sex,
group, and region. Factor variables refer to Stata’s treatment of categorical variables. Factor variables
create indicator variables for the levels (categories) of categorical variables and, optionally, for their
interactions.

In what follows, the word level means the value that a categorical variable takes on. The variable
employed might take on levels 0 and 1, with O representing not employed and 1 representing
employed. We could say that employed is a two-level factor variable.

The regressors created by factor variables are called indicators or, more explicitly, virtual indicator
variables. They are called virtual because the machinery for factor variables seldom creates new
variables in your dataset, even though the indicators will appear just as if they were variables in your
estimation results.

To be used as a factor variable, a categorical variable must take on nonnegative integer values. If
you have variables with negative values, recode them; see [D] recode. If you have string variables,
you can use egen’s group() function to recode them,

. egen newcatvar= group (mystringcatvar)

If you also specify the label option, egen will create a value label for the numeric code it
produces so that your output will be subsequently more readable:

. egen newcatvar= group (mystringcatvar) , label

Alternatively, you can use encode to convert string categorical variables to numeric ones:
. encode mystringcatvar, generate (newcatvar)
egen group(), label and encode do the same thing. We tend to use egen group(), label.
See [D] egen and [D] encode.

In the unlikely event that you have a noninteger categorical variable, use the egen solution. More
likely, however, is that you need to read [U] 26.1.2 Converting continuous variables to categorical
variables.

Q Technical note

If you should ever need to create your own indicator variables from a string or numeric variable—and
it is difficult to imagine why you would—type

. tabulate var, gen(newstub)

Typing that will create indicator variables named newstubl, newstub2, . . .; see [R] tabulate oneway.
Q

We will be using linear regression in the examples that follow just because it is so easy to explain
and to interpret. We could, however, just as well have used logistic regression, Heckman selectivity,
or even Cox proportional-hazards regression with shared frailties. Stata’s factor-variable features work
with nearly every estimation command.

[U] 26 Working with categorical data and factor variables 337

26.2.1 Including factor variables

The fundamental building block of factor variables is the treatment of each factor variable as if
it represented a collection of indicators, with one indicator for each level of the variable. To treat a
variable as a factor variable, you add i. in front of the variable’s name:
. use https://www.stata-press.com/data/r16/fvex, clear
(Artificial factor variables’ data)

. regress y 1i.group age

Source SS df MS Number of obs = 3,000

F(3, 2996) = 31.67

Model 42767.8126 3 14255.9375 Prob > F = 0.0000

Residual 1348665.19 2,996 450.155272 R-squared = 0.0307

Adj R-squared = 0.0298

Total 1391433.01 2,999 463.965657 Root MSE = 21.217

y Coef. Std. Err. t P>t [95% Conf. Intervall
group

2 -2.395169 .9497756 -2.52 0.012 -4.257447 -.5328905

3 .2966833 1.200423 0.25 0.805 -2.057054 2.65042

age -.318005 .039939 -7.96 0.000 -.3963157 -.2396943

_cons 83.2149 1.963939 42.37 0.000 79.3641 87.06571

In these data, variable group takes on the values 1, 2, and 3.
Because we typed
. regress y i.group age
rather than
. regress y group age
instead of fitting the regression as a continuous function of group’s values, regress fit the regression
on indicators for each level of group included as a separate covariate. In the left column of the
coefficient table in the output, the numbers 2 and 3 identify the coefficients that correspond to the
values of 2 and 3 of the group variable. Using the more precise terminology of [U] 11.4.3 Factor

variables, the coefficients reported for 2 and 3 are the coefficients for virtual variables 2. group and
3.group, the indicator variables for group = 2 and group = 3.

If group took on the values 2, 10, 11, and 125 rather than 1, 2, and 3, then we would see 2,
10, 11, and 125 below group in the table, corresponding to virtual variables 2.group, 10.group,
11.group, and 125.group.

We can use as many sets of indicators as we need in a varlist. Thus we can type

. regress y i.group i.sex i.arm ...

26.2.2 Specifying base levels

In the above results, group = 1 was used as the base level and regress omitted reporting that
fact in the output. Somehow, you are just supposed to know that, and usually you do. We can see
base levels identified explicitly, however, if we specify the baselevels option, either at the time we
estimate the model or, as we do now, when we replay results:

338 [U] 26 Working with categorical data and factor variables

. regress, baselevels
Source SS df MS Number of obs = 3,000
F(3, 2996) = 31.67
Model 42767 .8126 3 14255.9375 Prob > F = 0.0000
Residual 1348665.19 2,996 450.155272 R-squared = 0.0307
Adj R-squared = 0.0298
Total 1391433.01 2,999 463.965657 Root MSE = 21.217
y Coef. Std. Err. t P>|t] [95% Conf. Intervall
group

1 0 (base)
2 -2.395169 .9497756 -2.52 0.012 -4.257447 -.5328905
3 .2966833 1.200423 0.25 0.805 -2.057054 2.65042
age -.318005 .039939 -7.96 0.000 -.3963157 -.2396943
_cons 83.2149 1.963939 42.37 0.000 79.3641 87.06571

The smallest value of the factor variable is used as the base by default. Using the notation explained
in [U] 11.4.3.2 Base levels, we can request another base level, such as group = 2, by typing

. regress y 1ib2.group age

or, such as the largest value of group,

. regress y 1ib(last).group age

Changing the base does not fundamentally alter the estimates in the sense that predictions from
the model would be identical no matter which base levels we use. Changing the base does change
the interpretation of coefficients. In the regression output above, the reported coefficients measure the
differences from group = 1. Group 2 differs from group 1 by —2.4, and that difference is significant
at the 5% level. Group 3 is not significantly different from group 1.

If we fit the above using group = 3 as the base,

. regress y 1ib3.group age
(output omitted)

the coefficients on group = 1 and group = 2 would be —0.297 and —2.692. Note that the difference
between group 2 and group 1 would still be —2.692 — (—0.296) = —2.4. Results may look different,
but when looked at correctly, they are the same. Similarly, the significance of group = 2 would now
be 0.805 rather than 0.012, but that is because what is being tested is different. In the output above,
the test against O is a test of whether group 2 differs from group 1. In the output that we omit, the
test is whether group 2 differs from group 3. If, after running the ib3.group specification, we were
to type

. test 2.group = 1.group

we would obtain the same 0.012 result. Similarly, after running the shown result, if we typed test
3.group = 1.group, we would obtain 0.805.

26.2.3 Setting base levels permanently

As explained directly above, you can temporarily change the base level by using the ib. operator;
also see [U] 11.4.3.2 Base levels. You can change the base level permanently by using the fvset
command; see [U] 11.4.3.3 Setting base levels permanently.

[U] 26 Working with categorical data and factor variables 339

26.2.4 Testing significance of a main effect

In the example we have been using,

. use https://www.stata-press.com/data/r16/fvex

. regress y i.group age

many disciplines refer to the coefficients on the set of indicators for i.group as a main effect.
Because we have no interactions, the main effect of i.group refers to the effect of the levels of
group taken as a whole. We can test the significance of the indicators by using contrast (see
[R] contrast):

. contrast group

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
group 2 4.89 0.0076
Denominator 2996

When we specify the name of a factor variable used in the previous estimation command in the
contrast command, it will perform a joint test on the effects of that variable. Here we are testing
whether the coefficients for the group indicators are jointly zero. We reject the hypothesis.

26.2.5 Specifying indicator (dummy) variables as factor variables

We are using the model
. use https://www.stata-press.com/data/r16/fvex
. regress y 1i.group age
We are going to add sex to our model. Variable sex is a 0/1 variable in our data, a type of

variable we call an indicator variable and which many people call a dummy variable. We could type

. regress y sex i.group age

but we are going to type

. regress y 1i.sex i.group age

It is better to include indicator variables as factor variables, which is to say, to include indicator
variables with the i. prefix.

You will obtain the same estimation results either way, but by specifying i.sex rather than sex,
you will communicate to postestimation commands that care that sex is not a continuous variable,
and that will save you typing later should you use one of those postestimation commands. margins
(see [R] margins) is an example of a postestimation command that cares.

Below we type regress y i.sex i.group age, and we will specify the baselevels option
just to make explicit how regress is interpreting our request. Ordinarily, we would not specify the
baselevels option.

340 [U] 26 Working with categorical data and factor variables

. regress y 1i.sex i.group age, baselevels
Source SS df MS Number of obs 3,000
F(4, 2995) 136.51
Model 214569.509 4 53642.3772 Prob > F 0.0000
Residual 1176863.5 2,995 392.942737 R-squared 0.1542
Adj R-squared 0.1531
Total 1391433.01 2,999 463.965657 Root MSE 19.823
y Coef. Std. Err. t P>|t| [95% Conf. Intervall
sex
male 0 (base)
female 18.44069 .8819175 20.91 0.000 16.71146 20.16991
group
1 0 (base)
2 5.178636 .9584485 5.40 0.000 3.299352 7.057919
3 13.45907 1.286127 10.46 0.000 10.93729 15.98085
age -.3298831 .0373191 -8.84 0.000 -.4030567 -.2567094
_cons 68.63586 1.962901 34.97 0.000 64.78709 72.48463

As with all factor variables, by default the first level of sex serves as its base, so the coefficient
18.4 measures the increase in y for sex = 1 as compared with sex = 0. In these data, sex =1
represents females and sex = 0 represents males.

Notice that in the above output male and female were displayed rather than 0 and 1. The variable
sex has the value label sexlab associated with it, so Stata used the value label in its output.
Stata has three options, nofvlabel, fvwrap(#), and fvwrapon(word | width), that control how
factor-variable value labels are displayed; see [R] Estimation options.

26.2.6 Including interactions

We are using the model

. use https://www.stata-press.com/data/r16/fvex

. regress y i.sex i.group age

If we are not certain that the levels of group have the same effect for females as they do for
males, we should add to our model interactions for each combination of the levels in sex and group.
We would need to add indicators for

sex = male and group =1
sex = male and group =2
sex = male and group =3
sex = female and group =1
sex = female and group =2
sex = female and group =3

Doing this would allow each combination of sex and group to have a different effect on y.
Interactions like those listed above are produced using the # operator. We could type

. regress y 1i.sex i.group i.sex#i.group age

[U] 26 Working with categorical data and factor variables 341

The # operator assumes that the variables on either side of it are factor variables, so we can omit
the i. prefixes and obtain the same result by typing

. regress y 1i.sex i.group sex#group age
We must continue to specify the prefix on the main effects i.sex and i.group, however.

In the output below, we add the allbaselevels option to that. The allbaselevels option is
much like baselevels, except allbaselevels lists base levels in interactions as well as in main
effects. Specifying allbaselevels will make the output easier to understand the first time, and after
that, you will probably never specify it again.

. regress y 1i.sex i.group sex#group age, allbaselevels

Source SS df MS Number of obs = 3,000
F(6, 2993) = 92.52
Model 217691.706 6 36281.9511 Prob > F = 0.0000
Residual 1173741.3 2,993 392.162145 R-squared = 0.1565
Adj R-squared = 0.1548
Total 1391433.01 2,999 463.965657 Root MSE = 19.803
y Coef. Std. Err. t P>|t| [95% Conf. Intervall
sex
male 0 (base)
female 21.71794 1.490858 14.57 0.000 18.79473 24.64115
group
1 0 (base)
2 8.420661 1.588696 5.30 0.000 5.305615 11.53571
3 16.47226 1.6724 9.85 0.000 13.19309 19.75143
sex#group
male#1 0 (base)
male#2 0 (base)
male#3 0 (base)
female#1 0 (base)
female#2 -4.658322 1.918195 -2.43 0.015 -8.419436 -.8972081
female#3 -6.736936 2.967391 -2.27 0.023 -12.55527 -.9186038
age -.3305546 .0373032 -8.86 0.000 -.4036972 -.2574121
_cons 65.97765 2.198032 30.02 0.000 61.66784 70.28745

Look at the sex#group term in the output. There are six combinations of sex and group, just
as we expected. That four of the cells are labeled base and that only two extra coefficients were
estimated should not surprise us, at least after we think about it. There are 3 X 2 sex#age groups,
and thus 3 X 2 = 6 means to be estimated, and we indeed estimated six coefficients, including a
constant, plus a seventh for continuous variable age. Now look at which combinations were treated
as base. Treated as base were all combinations that were the base of sex, plus all combinations that
were the base of group. The combination of sex = 0 (male) and group = 1 was omitted for both
reasons, and the other combinations were omitted for one or the other reason.

We entered a two-way interaction between sex and group. If we believed that the effects of
sex#tgroup were themselves dependent on the treatment arm of an experiment, we would want the
three-way interaction, which we could obtain by typing sex#group#arm. Stata allows up to eight-way
interactions among factor variables and another eight-ways of interaction among continuous covariates.

342 [U] 26 Working with categorical data and factor variables

Q Technical note

The virtual variables associated with the interaction terms have the names 1.sex#2.group and
1.sex#3.group.
a

26.2.7 Testing significance of interactions

We are using the model
. use https://www.stata-press.com/data/r16/fvex
. regress y 1i.sex i.group sex#group age
We can test the overall significance of the sex#group interaction by typing

. contrast sex#group

Contrasts of marginal linear predictions

Margins : asbalanced
daf F P>F
sex#group 2 3.98 0.0188
Denominator 2993

We can type the interaction term to be tested—sex#group—in the same way as we typed it to
include it in the regression. The interaction is significant beyond the 5% level. That is not surprising
because both interaction indicators were significant in the regression.

26.2.8 Including factorial specifications

We have the model
. use https://www.stata-press.com/data/r16/fvex

. regress y 1i.sex i.group sex#group age

The above model is called a factorial specification with respect to sex and group because sex
and group appear by themselves and an interaction. Were it not for age being included in the model,
we could call this model a full-factorial specification. In any case, Stata provides a shorthand for
factorial specifications. We could fit the model above by typing

. regress y sex##igroup age

When you type A##B, Stata takes that to mean A B A#B.
When you type A##B##C, Stata takes that to mean A B C A#B A#C B#C A#B#C.
And so on. Up to eight-way interactions are allowed.

The ## notation is just a shorthand. Estimation results are unchanged. This time we will not
specify the allbaselevels option:

[U] 26 Working with categorical data and factor variables 343

. regress y sex##igroup age
Source SS df MS Number of obs = 3,000
F(6, 2993) = 92.52
Model 217691.706 6 36281.9511 Prob > F = 0.0000
Residual 1173741.3 2,993 392.162145 R-squared = 0.1565
Adj R-squared = 0.1548
Total 1391433.01 2,999 463.965657 Root MSE = 19.803
y Coef. Std. Err. t P>|t] [95% Conf. Intervall
sex
female 21.71794 1.490858 14.57 0.000 18.79473 24.64115
group
2 8.420661 1.588696 5.30 0.000 5.305615 11.53571
3 16.47226 1.6724 9.85 0.000 13.19309 19.75143
sex#group
female#2 -4.658322 1.918195 -2.43 0.015 -8.419436 -.8972081
female#3 -6.736936 2.967391 -2.27 0.023 -12.555627 -.9186038
age -.3305546 .0373032 -8.86 0.000 -.4036972 -.2574121
_cons 65.97765 2.198032 30.02 0.000 61.66784 70.28745

26.2.9

may be used to interact continuous variables if you specify the c. indicator in front of them.

The command

. regress y age c.age#c.age

fits y as a quadratic function of age. Similarly,

. regress y age c.age#c.age c.age#c.age#c.age

fits a third-order polynomial.

Including squared terms and polynomials

Using the # operator is preferable to generating squared and cubed variables of age because when #
is used, Stata understands the relationship between age and c.age#c.age and c.age#c.age#c.age.
Postestimation commands can take advantage of this to produce smarter answers; see, for example,
Requirements for model specification in [R] margins.

26.2.10 Including interactions with continuous variables

and ## may be used to create interactions of categorical variables with continuous variables if
the continuous variables are prefixed with c., such as sex#c.age in

. regress y 1i.sex age sex#c.age

. regress y sex##c.age

. regress y 1i.sex sex#c.age

The result of fitting the first of these models (equivalent to the second) is shown below. We include
allbaselevels to make results more understandable the first time you see them.

344 [U] 26 Working with categorical data and factor variables

. regress y 1i.sex age sex#c.age, allbaselevels
Source SS df MS Number of obs = 3,000
F(3, 2996) = 139.91
Model 170983.675 3 56994.5583 Prob > F = 0.0000
Residual 1220449.33 2,996 407.35959 R-squared = 0.1229
Adj R-squared = 0.1220
Total 1391433.01 2,999 463.965657 Root MSE = 20.183
y Coef. Std. Err. t P>|t] [95% Conf. Intervall
sex
male 0 (base)
female 14.92308 2.789012 5.35 0.000 9.454508 20.39165
age -.4929608 .0480944 -10.25 0.000 -.5872622 -.3986595
sex#c.age
male 0 (base)
female -.0224116 .0674167 -0.33 0.740 -.1545994 .1097762
_cons 82.36936 1.812958 45.43 0.000 78.8146 85.92413

The coefficient on the interaction (—0.022) is the difference in the slope of age for females
(sex = 1) as compared with the slope for males. It is far from significant at any reasonable level, so
we cannot distinguish the two slopes.

A different but equivalent parameterization of this model would be to omit the main effect of age,
the result of which would be that we would estimate the separate slope coefficients of age for males
and females:

. regress y 1i.sex sex#c.age

Source SS df MS Number of obs = 3,000
F(3, 2996) = 139.91
Model 170983.675 3 56994.5583 Prob > F = 0.0000
Residual 1220449.33 2,996 407.35959 R-squared = 0.1229
Adj R-squared = 0.1220
Total 1391433.01 2,999 463.965657 Root MSE = 20.183
y Coef. Std. Err. t P>|t] [95% Conf. Intervall

sex
female 14.92308 2.789012 5.35 0.000 9.454508 20.39165

sex#c.age
male -.4929608 .0480944 -10.25 0.000 -.5872622 -.3986595
female -.5153724 .0472435 -10.91 0.000 -.6080054 -.4227395
_cons 82.36936 1.812958 45.43 0.000 78.8146 85.92413

It is now easier to see the slopes themselves, although the test of the equality of the slopes no longer
appears in the output. We can obtain the comparison of slopes by using the lincom postestimation
command:

[U] 26 Working with categorical data and factor variables 345

. lincom 1.sex#c.age - O.sex#c.age
(1) - Ob.sexi#c.age + l.sexi#tc.age = 0

y Coef. Std. Err. t P>t [95% Conf. Intervall

(1) -.0224116 .0674167 -0.33 0.740 -.1545994 .1097762

As noted earlier, it can be difficult at first to know how to refer to individual parameters when
you need to type them on postestimation commands. The solution is to replay your estimation results
specifying the coeflegend option:

. regress, coeflegend

Source SS daf MS Number of obs = 3,000
F(3, 2996) = 139.91
Model 170983.675 3 56994.5583 Prob > F = 0.0000
Residual 1220449.33 2,996 407.35959 R-squared = 0.1229
Adj R-squared = 0.1220
Total 1391433.01 2,999 463.965657 Root MSE = 20.183
y Coef. Legend
sex
female 14.92308 _bl[1l.sex]
sex#c.age
male -.4929608 _b[Ob.sex#c.agel
female -.5153724 _b[1.sex#c.agel
_cons 82.36936 _b[_cons]

The legend suggests that we type
. lincom _b[l.sex#c.age]l - _b[Ob.sex#c.agel
instead of 1incom 1.sex#c.age - 0.sex#c.age. That is, the legend suggests that we bracket terms
in _b[] and explicitly recognize base levels. The latter does not matter. Concerning bracketing, some

commands allow you to omit brackets, and others do not. All commands will allow bracketing, which
is why the legend suggests it.

26.2.11 Parentheses binding
Factor-variable operators can be applied to groups of variables if those variables are bound in
parentheses. For instance, you can type

. regress y sex##(group c.age c.age#c.age)

rather than
. regress y 1i.sex i.group sex#group age sex#c.age c.age#c.age sex#c.age#c.age
Parentheses may be nested. The parenthetically bound notation does not let you specify anything

you could not specify without it, but it can save typing and, as importantly, make what you type
more understandable. Consider
. regress y 1i.sex i.group sex#group age sex#c.age c.age#c.age sex#c.age#c.age

. regress y sex##(group c.age c.age#c.age)

The second specification is shorter and easier to read. We can see that all the covariates have
different parameters for males and females.

346 [U] 26 Working with categorical data and factor variables

26.2.12

Including indicators for single levels

Consider the following regression of statewide marriage rates (marriages per 100,000) on the

median age in the state of the United States:

. use https://www.stata-press.com/data/r16/censusfv
(1980 Census data by state)

. regress marriagert medage

Source SS daf MS Number of obs 50
F(1, 48) = 0.00

Model 148.944706 1 148.944706 Prob > F = 0.9949
Residual 173402855 48 3612559.48 R-squared = 0.0000
Adj R-squared = -0.0208

Total 173403004 49 3538836.82 Root MSE = 1900.7
marriagert Coef. Std. Err. t P>|t] [95% Conf. Intervall
medage 1.029541 160.3387 0.01 0.995 -321.35631 323.4122
_cons 1301.307 4744.027 0.27 0.785 -8237.199 10839.81

There appears to be no effect of median age. We know, however, that couples from around the
United States flock to Nevada to be married in Las Vegas, which biases our results. We would like
to add a single indicator for the state of Nevada. We describe our data, see the value label for state
is st, and then type label list st to discover the label for Nevada. We find it is 30; thus we can

now type

. regress marriagert medage i30.state

Source SS df MS Number of obs = 50
F(2, 47) = 2311.15
Model 171657575 2 85828787.6 Prob > F = 0.0000
Residual 1745428.85 47 37136.784 R-squared = 0.9899
Adj R-squared = 0.9895
Total 173403004 49 3538836.82 Root MSE = 192.71
marriagert Coef. Std. Err. t P>t [95% Conf. Intervall
medage -61.23095 16.2825 -3.76 0.000 -93.98711 -28.47479
state
Nevada 13255.81 194.9742 67.99 0.000 12863.57 13648.05
_cons 2875.366 481.5533 5.97 0.000 1906.606 3844.126

These results are more reasonable.

There is a subtlety to specifying individual levels. Let’s add another indicator, this time for
California. The following will not produce the desired results, and we specify the baselevels option
to help you understand the issue. First, however, here is the result:

[U] 26 Working with categorical data and factor variables 347

. regress marriagert medage i5.state i30.state, baselevels

Source SS df MS Number of obs = 50
F(2, 47) = 2311.15
Model 171657575 2 8b6828787.6 Prob > F = 0.0000
Residual 1745428.85 47 37136.784 R-squared = 0.9899
Adj R-squared = 0.9895
Total 173403004 49 3538836.82 Root MSE = 192.71
marriagert Coef. Std. Err. t P>t [95% Conf. Intervall
medage -61.23095 16.2825 -3.76 0.000 -93.98711 -28.47479
state
California 0 (base)
Nevada 13255.81 194.9742 67.99 0.000 12863.57 13648.05
_cons 2875.366 481.5533 5.97 0.000 1906.606 3844.126

Look at the result for state. Rather than obtaining a coefficient for 5.state as we expected,

Stata instead chose to omit it as the base category.

Stata considers all the individual specifiers for a factor variable together as being related. In our

command, we specified that we wanted i5.state and 130.state by typing

. regress marriagert medage ib5.state i30.state

and Stata put that together as “include state, levels 5 and 30”. Then Stata applied its standard logic

for dealing with factor variables: treat the smallest level as the base category.

To achieve the desired result, we need to tell Stata that we want no base, which we do by typing

the “base none” (bn) modifier:

. regress marriagert medage ibbn.state i30.state

We need to specify bn only once, and it does not matter where we specify it. We could type

. regress marriagert medage i5.state i30bn.state

and we would obtain the same result. We can specify bn more than once:

. regress marriagert medage ibbn.state i30bn.state

The result of typing any one of these commands is

. regress marriagert medage ibbn.state i30.state, baselevels

Source SS df MS Number of obs = 50
F(3, 46) = 1529.59
Model 171681987 3 57227328.9 Prob > F = 0.0000
Residual 1721017.33 46 37413.4203 R-squared = 0.9901
Adj R-squared = 0.9894
Total 173403004 49 3538836.82 Root MSE = 193.43
marriagert Coef. Std. Err. t P>t [95% Conf. Intervall
medage -60.80985 16.35134 -3.72 0.001 -93.7234 -27.8963
state
California -157.9413 195.5294 -0.81 0.423 -551.5214 235.6389
Nevada 13262.3 195.7472 67.70 0.000 12858.28 13646.32
_cons 2866.156 483.478 5.93 0.000 1892.965 3839.346

348 [U] 26 Working with categorical data and factor variables

26.2.13 Including subgroups of levels

We just typed

. regress marriagert medage ibbn.state i30.state

You can specify specific levels by using numlists. We could have typed

. regress marriagert medage i(5 30)bn.state

By including i(5 30)bn.state, we have added indicators for levels 5 and 30 to the regression.
We can also specify levels within an interaction term. Consider the regression

. regress y i.arm i.agegroup arm#i(3/4)bn.agegroup
Although unusual, it is possible to include different levels of agegroup in the main effect and the

interaction. In this case, all levels of agegroup are used in the main effect but only levels 3 and 4
of agegroup are included in the interaction term.

26.2.14 Combining factor variables and time-series operators

You can combine factor-variable operators with the time-series operators L. and F. to lag and
lead factor variables. Terms like iL.group (or Li.group), cL.age#cL.age (or Lc.age#Lc.age),
and F.arm#L.group are all legal as long as the data are tsset or xtset. See [U] 11.4.3.6 Using
factor variables with time-series operators.

26.2.15 Treatment of empty cells

Consider the following data:

. use https://www.stata-press.com/data/r16/estimability, clear
(margins estimability)

. table sex group

group

sex 1 2 3 4 5

male 2 9 27 8 2
female 9 9 3

In these data, there are no observations for sex = female and group = 4, and for sex = female
and group = 5. Here is what happens when you use these data to fit an interacted model:

[U] 26 Working with categorical data and factor variables 349

. regress y sex##group
note: 1.sex#4.group identifies no observations in the sample
note: 1.sex#5.group identifies no observations in the sample

Source SS df MS Number of obs = 69
F(7, 61) = 4.88
Model 839.550121 7 119.935732 Prob > F = 0.0002
Residual 1500.65278 61 24.6008652 R-squared = 0.3588
Adj R-squared = 0.2852
Total 2340.2029 68 34.4147485 Root MSE = 4.9599
y Coef. Std. Err. t P>t [95% Conf. Intervall
sex
female -5.666667 3.877352 -1.46 0.149 -13.41991 2.086579
group
2 -13.55556 3.8773562 -3.50 0.001 -21.3088 -5.80231
3 -13 3.634773 -3.58 0.001 -20.26818 -5.731822
4 -12.875 3.921166 -3.28 0.002 -20.71586 -5.034145
5 -11 4.959926 -2.22 0.030 -20.91798 -1.082015
sex#group
female#2 12.11111 4.527772 2.67 0.010 3.057271 21.16495
female#3 10 4.913786 2.04 0.046 .1742775 19.82572
female#4 0 (empty)
female#5 0 (empty)
_cons 32 3.507197 9.12 0.000 24.98693 39.01307

Stata reports that the results for sex = female and group = 4 and for sex = female and
group = 5 are empty; no coefficients can be estimated. The notes refer to 1.sex#4.group and
1.sex#5.group because level 1 corresponds to female.

Empty cells are of no concern when fitting models and interpreting results. If, however, you
subsequently perform tests or form linear or nonlinear combinations involving any of the coefficients
in the interaction, you should be aware that those tests or combinations may depend on how you
parameterized your model. See Estimability of margins in [R] margins.

26.3 References
Cox, N. J. 2018. Speaking Stata: From rounding to binning. Stata Journal 18: 741-754.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indicator or dummy variables. Stata
Journal 19: 246-259.

http://www.stata-journal.com/article.html?article=dm0095
https://doi.org/10.1177/1536867X19830921

27 Overview of Stata estimation commands

Contents
27.1 INtroductionttt e 351
27.2 Means, proportions, and related Statisticst 351
27.3 ContinUOUS OULCOMES .« o e vt e e et et et et et et e e e e et e et et e et ee s 352
27.3.1 ANOVA and ANCOVA ... e e e 352
27.3.2 Linear re@ressSiONttt 352
27.3.3 Regression with heteroskedastic errors 353
27.3.4 Estimation with correlated errorscouiiiinniininenn.. 353
27.3.5 Regression with censored and truncated outcomes 353
27.3.6 Multiple-equation modelst 354
27.3.7 Stochastic frontier models 354
27.3.8 Nonlinear regressionoouiuniineineiee . 355
27.3.9 NonparametriC TeZreSSIONo .vuntu e en et eie e, 355
27.4 BINAry OULCOMES . ..o v vttt ettt et e e e e e e e e et e e e et 356
274.1 Logistic, probit, and complementary log-log regression 356
27.4.2 Conditional logiStiC T€ZIresSIONottt 357
27.43 ROC analySiSvve ettt et e e e e 357
27.5 Fractional OULCOMESt ttttt ettt e et e e e e 358
27.6 Ordinal OULCOMES ...ttt t ettt ettt e e e e e e e e e e 358
27.7 Categorical OULCOMES . .« ottt ettt e e e e e e e e e e et 358
27.8 COUNL OULCOMES . e\ vt vttt et ettt e et e e e e e e et e e e e e 359
27.9 Generalized linear models 360
27.10 Choice MOdEeLSt e 360
27.10.1 Models for discrete choiCesc.c.iiiinininiinnnenenen .. 361
27.10.2 Models for rank-ordered alternatives, 361
27.11 EXact eStIMALOTS ... vttt ettt ettt e et e e e e e e e 361
27.12 Models with endogenous COVariatesouuiineinnennennennann.n 362
27.13 Models with endogenous sample selection i, 363
27.14 Time-series MOdEISt 363
27.15 Panel-data models e 364
27.15.1 Continuous outcomes with panel data 364
27.15.2 Censored outcomes with panel data o. .. 366
27.15.3 Discrete outcomes with panel data 366
27.15.4 Generalized linear models with panel data 367
27.15.5 Survival models with panel data, 367
27.15.6 Dynamic and autoregressive panel-data models 367
27.16 Multilevel mixed-effects models i 368
27.17 Survival analysis models 369
27.18 Meta-analysisttt 369
27.19 Spatial autoregressive models e 370
27.20 Treatment-effects models i 371
27.21 Pharmacokinetic datat e 372
27.22 Multivariate analysist ettt e 373
27.23 Generalized method of moments (GMM) i, 374
27.24 Structural equation modeling (SEM) i 374
27.25 Latent class modelst 375
27.26 Finite mixture models (FMMS) e e et e e 376

[U] 27 Overview of Stata estimation commands 351

27.27 Ttem response theory (IRT) i 376
27.28 Dynamic stochastic general equilibrium (DSGE) models 3717
2729 LSS0 ottt e e e e e e 377
27.30 Survey data e 378
27.31 Multiple IMPUtationttt et e e 379
27.32 Power, precision, and sample-size analysis L. 380

27.32.1 Power and sample-size analysis i 380

27.32.2 Precision and sample-size analysisc...iiiii i, 381
27.33 Bayesian analySiS 381
27.34 REfEICNCE . .ottt ettt e e e e e e e 382

27.1 Introduction

Stata has many estimation commands that compute summary statistics and fit statistical models,
so it is easy to overlook a few. Some of these commands differ greatly from each other, others are
gentle variations on a theme, and still others are equivalent to each other.

There are also estimation prefixes that modify the calculation performed by the command, such
as svy:, mi:, bayes:, and fmm:.

The majority of Stata’s estimation commands share features that this chapter will not discuss; see
[U] 20 Estimation and postestimation commands. Especially see [U] 20.22 Obtaining robust variance
estimates, which discusses an alternative calculation for the estimated variance matrix (and hence
standard errors) that many of Stata’s estimation commands provide. Also see [U] 20.13 Performing
hypothesis tests on the coefficients. This overview chapter, however, will put all that aside and deal
solely with matching commands to their statistical concepts.

This chapter discusses all the official estimation commands included in Stata 16. Users may have
written their own estimation commands that they are willing to share. Type search estimation,
ssc new, or ssc hot to discover more estimation commands; see [R] ssc. And, of course, you can
always write your own commands.

27.2 Means, proportions, and related statistics

This group of estimation commands computes summary statistics rather than fitting regression
models. However, being estimation commands, they share the features discussed in [U] 20 Estimation
and postestimation commands, such as allowing the use of postestimation commands.

mean, proportion, ratio, and total provide estimates of population means, proportions, ratios,
and totals, respectively. Each of these commands allows for obtaining separate estimates within
subpopulations, groups defined by a separate categorical variable. In addition, mean, proportion,
and ratio can report statistics adjusted by direct standardization.

pwmean provides another option for computing means of one variable for each level of one or more
categorical variables. In addition, pwmean computes all pairwise differences in these means along
with the corresponding tests and confidence intervals, which can optionally be adjusted to account
for multiple comparisons.

352 [U] 27 Overview of Stata estimation commands

27.3 Continuous outcomes

27.3.1 ANOVA and ANCOVA

ANOVA and ANCOVA fit general linear models and are related to the linear regression models discussed
in [U] 27.3.2 Linear regression, but we classify them separately. The related Stata commands are
anova, oneway, and loneway.

anova fits ANOVA and ANCOVA models, one-way and up—including two-way factorial, three-way
factorial, etc.—and fits nested and mixed-design models as well as repeated-measures models.

oneway fits one-way ANOVA models. It reports Bartlett’s test for equal variance and can also report
multiple-comparison tests. After anova, use pwcompare to perform multiple-comparison tests.

loneway is an alternative to oneway. The results are numerically the same, but loneway can
deal with more levels, limited only by dataset size (oneway is limited to 376 levels). loneway also
reports some additional statistics, such as the intraclass correlation.

For MANOVA and MANCOVA, see [U] 27.22 Multivariate analysis.

27.3.2 Linear regression

Consider models of the form
Yj =XjB+¢
2

for a continuous y variable and where o is constant across observations j. The model is called the
linear regression model, and the estimator is often called the (ordinary) least-squares (OLS) estimator.

regress is Stata’s linear regression command. regress produces the robust estimate of variance
as well as the conventional estimate, and regress has a collection of commands that can be run
after it to explore the nature of the fit.

The following commands will also do linear regressions, but they offer special features:

1. areg fits models y; = x;8+d;v+¢€;, where d; is a mutually exclusive and exhaustive dummy
variable set. areg obtains estimates of 3 (and assocmted statistics) without ever forming d;,
meaning that it also does not report the estimated -. If your interest is in fitting fixed-effects
models, Stata has a better command—zxtreg—discussed in [U] 27.15.1 Continuous outcomes
with panel data. Most users who find areg appealing will probably want to use xtreg because
it provides more useful summary and test statistics. areg duplicates the output that regress
would produce if you were to generate all the dummy variables. This means, for instance, that
the reported R? includes the effect of ~.

2. cnsreg allows you to place linear constraints on the coefficients.
3. eivreg adjusts estimates for errors in variables.

4. rreg fits robust regression models, which are not to be confused with regression with robust
standard errors. Robust standard errors are discussed in [U] 20.22 Obtaining robust variance
estimates. Robust regression concerns point estimates more than it does standard errors, and it
implements a data-dependent method for downweighting outliers.

[U] 27 Overview of Stata estimation commands 353

27.3.3 Regression with heteroskedastic errors

We now consider the model y; = x;3 + €;, where the variance of ¢; is nonconstant.

hetregress fits models with multiplicative heteroskedasticity, that is, models in which the variance
of €; is an exponential function of one or more covariates. The heteroskedasticity can be modeled
using either maximum likelihood or Harvey’s two-step generalized least-squares method.

When not much is known about the functional form of the variance of €¢;, regress with the
vce(robust) option is preferred because it provides unbiased estimates. What Stata calls robust is
also known as the White correction for heteroskedasticity.

vwls (variance-weighted least squares) produces estimates of y; = x;3 + ¢;, where the variance
of €; is calculated from group data or is known a priori. vwls is therefore of most interest to
categorical-data analysts and physical scientists.

qreg performs quantile regression, which in the presence of heteroskedasticity is most of in-
terest. Median regression (one of qreg’s capabilities) is an estimator of y; = x;3 + ¢; when ¢;
is heteroskedastic. Even more useful, you can fit models of other quantiles and so model the het-
eroskedasticity. bsqreg is identical to qreg but reports bootstrap standard errors. Also see the sqreg
and iqreg commands; sqreg estimates multiple quantiles simultaneously, and iqreg estimates
differences in quantiles.

27.3.4 Estimation with correlated errors

By correlated errors, we mean that observations are grouped; within a group, the observations might
be correlated, but across groups, they are uncorrelated. regress with the vce(cluster clustvar)
option can produce “correct” estimates, that is, inefficient estimates with correct standard errors
and a lot of robustness; see [U] 20.22 Obtaining robust variance estimates. Alternatively, you can
model the within-group correlation using xtreg, xtgls, or mixed; we discuss these commands in
[U] 27.15.1 Continuous outcomes with panel data and [U] 27.16 Multilevel mixed-effects models.

Estimation in the presence of autocorrelated errors is discussed in [U] 27.14 Time-series models.

27.3.5 Regression with censored and truncated outcomes

1. tobit allows estimation of linear regression models when y; has been subject to left-censoring,
right-censoring, or both. Say that y; is not observed if y; < 1000, but for those observations, it
is known that g; < 1000. tobit fits such models.

2. intreg (interval regression) is a generalization of tobit. In addition to allowing open-ended
intervals, intreg allows closed intervals. Rather than observing y;, intreg assumes that yo; and
11, are observed, where y0; < y; < y1;. Survey data might report that a subject’s monthly income
was in the range $1,500-$2,500. intreg allows such data to be used to fit a regression model.
intreg allows yp; = y1; and so can reproduce results reported by regress. intreg allows yg;
to be —oo and y1; to be +00 and so can reproduce results reported by tobit.

3. truncreg fits the regression model when the sample is drawn from a restricted part of the
population and so is similar to tobit, except that here the independent variables are not observed.
Under the normality assumption for the whole population, the error terms in the truncated regression
model have a truncated-normal distribution.

4. churdle allows estimation of linear or exponential hurdle models when y; is subject to a lower
boundary ¢/, an upper boundary uf, or both. The dependent variable is a mixture of discrete
observations at the boundary points and continuous observations over the interior. Both boundary

354 [U] 27 Overview of Stata estimation commands

and interior observations on y; are actual realizations. In contrast, censored-data models such as
tobit and intreg treat interior observations as actual realizations and treat boundary observations
as indicating only that the actual realizations lie beyond the boundary. Hurdle models use one
model to determine whether an observation is on the boundary or in the interior and another model
for the values in the interior.

27.3.6 Multiple-equation models

When we have errors that are correlated across equations but not correlated with any of the
right-hand-side variables, we can write the system of equations as

Y1 = X1;B+ €15

Yoj = X2, 3 + €3,

Ymj = ijﬂ + €mj

where €. and ¢;. are correlated with correlation py;, a quantity to be estimated from the data. This
is called Zellner’s seemingly unrelated regression, and sureg fits such models. When x1; = Xg; =
“++ = Xy , the model is known as multivariate regression, and the corresponding command is mvreg.

The equations need not be linear. If they are not linear, use nlsur; see [U] 27.3.8 Nonlinear
regression.

27.3.7 Stochastic frontier models

frontier fits stochastic production or cost frontier models on cross-sectional data. The model
can be expressed as
Yi = XiB+ v — sy
where
_ { 1 for production functions
—1 for cost functions

u; is a nonnegative disturbance standing for technical inefficiency in the production function or
cost inefficiency in the cost function. Although the idiosyncratic error term wv; is assumed to have
a normal distribution, the inefficiency term is assumed to be one of the three distributions: half-
normal, exponential, or truncated-normal. Also, when the nonnegative component of the disturbance
is assumed to be either half-normal or exponential, frontier can fit models in which the error
components are heteroskedastic conditional on a set of covariates. When the nonnegative component
of the disturbance is assumed to be from a truncated-normal distribution, frontier can also fit a
conditional mean model, where the mean of the truncated-normal distribution is modeled as a linear
function of a set of covariates.

For panel-data stochastic frontier models, see [U] 27.15.1 Continuous outcomes with panel data.

[U] 27 Overview of Stata estimation commands 355

27.3.8 Nonlinear regression

nl provides the nonlinear least-squares estimator of y; = f(x;,8) + €;, where f(x;,3) is an
arbitrary nonlinear regression function such as the exponential or the lognormal. nlsur fits a system
of nonlinear equations by feasible generalized nonlinear least squares. It can be viewed as a nonlinear
variant of Zellner’s seemingly unrelated regression model.

A special case of a nonlinear model is the Box—Cox transform. boxcox obtains maximum likelihood
estimates of the coefficients and the Box—Cox transform parameters in a model of the form

y = o+ Bral) + Bazly) + o+ Braly) + iz + y2zin + o+ iz e

where € ~ N(0,02). Here the y is subject to a Box—Cox transform with parameter 6. Each of
the x1,xs,...,x; is transformed by a Box—Cox transform with parameter \. The z1,zo,..., 2
are independent variables that are not transformed. In addition to the general form specified above,
boxcox can fit three other versions of this model defined by the restrictions A = 6, A = 1, and § = 1.

For nonlinear mixed-effects models, see [U] 27.16 Multilevel mixed-effects models.

27.3.9 Nonparametric regression

All the models discussed so far have specified a particular functional form for the relationship
between the outcome and the covariates in the model. Nonparametric regression allows you to model
the mean of an outcome given the covariates when you are uncertain about its functional form.
Stata’s commands for nonparametric estimation are npregress kernel and npregress series.
In general, for any outcome that you would be comfortable modeling using regress, you can use
npregress kernel or npregress series. The difference is that you no longer have to assume a
linear relationship. However, you need more observations for nonparametric estimators than you need
for the parametric estimators.

npregress kernel implements two nonparametric kernel-based estimators—a local-linear estima-
tor and a local-constant estimator. These kernel-based estimators rely on finding an optimal bandwidth
parameter that balances the tradeoff between bias and variance. Both of these kernel-based estimators
provide equivalent estimators of the mean, but there are some important differences to consider. The
local-linear estimator lets you obtain marginal effects for continuous covariates. Also, if the model
is linear, the local-linear estimator will recover a linear mean, whereas the local constant may not.
For cases in which your outcome is nonnegative, the local-constant estimator will yield nonnegative
predictions. The local-linear estimator may result in negative predictions in such cases.

npregress series implements nonparametric series estimators using a B-spline, spline, or
polynomial basis. In series estimation, the unknown mean function is approximated by a linear
combination of elements in the basis function. For instance, we can consider a polynomial basis.
We can approximate the unknown mean function using a polynomial. The more complex the mean
function, the more polynomial terms (x, %2, x3, ...) we need to include to approximate the mean
consistently. Likewise, as the complexity of the the mean function increases, we need more terms in
a B-spline or spline basis function. npregress series selects the number of terms that optimally
balances the tradeoff between bias and variance. Once the terms are selected, we fit a least-squares
regression. Having a linear representation of the approximating function and using it to construct
inferences makes series estimation appealing.

See [R] npregress intro for more information about nonparametric regression.

356 [U] 27 Overview of Stata estimation commands

27.4 Binary outcomes

27.4.1 Logistic, probit, and complementary log-log regression

There are many ways to write these models, one of which is
Pr(y; #0) = F(x;)

where F' is some cumulative distribution. Two popular choices for F'(+) are the normal and logistic, and
the models are called the probit and logit (or logistic regression) models. The two parent commands
for the maximum likelihood estimator of probit and logit are probit and logit. logit has a sibling,
logistic, that provides the same estimates but displays results in a slightly different way. There is
also an exact logistic estimator; see [U] 27.11 Exact estimators.

A third choice for F'(-) is the complementary log—log function. Maximum likelihood estimates
are obtained by Stata’s cloglog command.

Do not read anything into the names logit and logistic. Logit and logistic have two interchanged
definitions in two scientific camps. In the medical sciences, logit means the minimum X2 estimator,
and logistic means maximum likelihood. In the social sciences, it is the other way around. From our
experience, it appears that neither reads the other’s literature, because both assert that logit means
one thing and logistic the other. Our solution is to provide both logit and logistic, which do the
same thing, so that each camp can latch on to the maximum likelihood command under the name
each expects.

There are two slight differences between logit and logistic. logit reports estimates in the
coefficient metric, whereas logistic reports exponentiated coefficients—odds ratios. This is in
accordance with the expectations of each camp and makes no substantial difference. The other
difference is that logistic has a family of post-logistic commands that you can run to explore the
nature of the fit. Actually, that is not exactly true because all the commands for use after logistic
can also be used after logit.

If you have not already selected logit or logistic as your favorite, we recommend that you
try logistic. Logistic regression (logit) models are more easily interpreted in the odds-ratio metric.

binreg can be used to model either individual-level or grouped data in an application of the
generalized linear model. The family is assumed to be binomial, and each link provides a distinct
parameter interpretation. Also, binreg offers several options for setting the link function according to
the desired biostatistical interpretation. The available links and interpretation options are the following:

Option Implied link Parameter
or logit Odds ratios = exp(3)
rr log Risk ratios = exp(5)
hr log complement Health ratios = exp(53)
rd identity Risk differences = 3

Related to logit, the skewed logit estimator scobit adds a power to the logit link function and is
estimated by Stata’s scobit command.

hetprobit fits heteroskedastic probit models. In these models, the variance of the error term is
parameterized.

Also, Stata’s biprobit command fits bivariate probit models, meaning models with two correlated
outcomes. biprobit also fits partial-observability models in which only the outcomes (0,0) and
(1,1) are observed.

[U] 27 Overview of Stata estimation commands 357

27.4.2 Conditional logistic regression

clogit is Stata’s conditional logistic regression estimator. In this model, observations are assumed
to be partitioned into groups, and a predetermined number of events occur in each group. The model
measures the risk of the event according to the observation’s covariates, X;. The model is used in
matched case—control studies (clogit allows 1 : 1, 1 : k, and m : k matching) and is used in natural
experiments whenever observations can be grouped into pools in which a fixed number of events
occur. clogit is also used to fit logistic regression with fixed group effects.

27.4.3 ROC analysis

ROC stands for “receiver operating characteristics”. ROC deals with specificity and sensitivity, the
number of false positives and undetected true positives of a diagnostic test. The term “ROC” dates
back to the early days of radar when there was a knob on the radar receiver labeled “ROC”. If you
turned the knob one way, the receiver became more sensitive, which meant it was more likely to show
airplanes that really were there and, simultaneously, more likely to show returns where there were no
airplanes (false positives). If you turned the knob the other way, you suppressed many of the false
positives, but unfortunately, you also suppressed the weak returns from real airplanes (undetected
positives). These days, in the statistical applications we imagine, one does not turn a knob but instead
chooses a value of the diagnostic test, above which is declared to be a positive and below which, a
negative.

ROC analysis is applied to binary outcomes such as those appropriate for probit or logistic regression.
After fitting a model, one can obtain predicted probabilities of a positive outcome. One chooses a
value, above which the predicted probability is declared a positive and below which, a negative.

ROC analysis is about modeling the tradeoff of sensitivity and specificity as the threshold value is
chosen.

Stata’s suite for ROC analysis consists of six commands: roctab, roccomp, rocfit, rocgold,
rocreg, and rocregplot.

roctab provides nonparametric estimation of the ROC curve and produces Bamber and Hanley
confidence intervals for the area under the curve.

roccomp provides tests of equality of ROC areas. It can estimate nonparametric and parametric
binormal ROC curves.

rocfit fits maximum likelihood models for a single classifier, an indicator of the latent binormal
variable for the true status.

rocgold performs tests of equality of ROC areas against a “gold standard” ROC curve and can
adjust significance levels for multiple tests across classifiers via Siddk’s method.

rocreg performs ROC regression; it can adjust both sensitivity and specificity for prognostic factors
such as age and gender. It is by far the most general of all the ROC commands.

rocregplot graphs ROC curves as modeled by rocreg. ROC curves can be drawn across covariate
values, across classifiers, and across both.

See [R] roc.

358 [U] 27 Overview of Stata estimation commands

27.5 Fractional outcomes

Fractional response data occur when the outcome of interest is measured as a fraction, proportion,
or rate. Two widely used methods for modeling these outcomes are beta regression and fractional
regression.

betareg can be used to estimate the parameters of a beta-regression model for fractional responses
that are strictly greater than zero and less than one.

fracreg can be used to estimate the parameters of a fractional logistic model, a fractional probit
model, or a fractional heteroskedastic probit model for fractional responses that are greater than or
equal to zero and less than or equal to one.

Both commands use quasimaximum likelihood estimation. When the dependent variable is between
zero and one, betareg provides more flexibility than fracreg in the distribution of the conditional
mean of the dependent variable.

27.6 Ordinal outcomes

For ordered outcomes, Stata provides ordered logit, ordered probit, zero-inflated ordered probit,
and rank-ordered logit, as well as alternative-specific rank-ordered logit regression.

oprobit and ologit provide maximum-likelihood ordered probit and logit. These are general-
izations of probit and logit models known as the proportional odds model and are used when the
outcomes have a natural ordering from low to high. The idea is that there is an unmeasured z; = x;/3,
and the probability that the kth outcome is observed is Pr(cx—; < zj < ck), where ¢y = —o0,
cx = 400, and ¢4, ..., cp—1 along with 3 are estimated from the data.

hetoprobit fits heteroskedastic ordered probit models to ordinal outcomes. It is a generalization
of an ordered probit model that allows the variance to be modeled as a function of independent
variables and to differ between subjects or population groups.

zioprobit fits zero-inflated ordered probit models. It is used to model an ordered outcome with
a higher fraction of observations in the lowest category than would be expected from an ordered
probit model. Representing the lowest value with a zero is common. The outcome is a result of two
processes. First a probit process describes the presence of excess zeros, which is a negative outcome.
Second, an ordered probit process, conditional on a positive outcome from the probit process, describes
the ordered outcome.

cmrologit fits the rank-ordered logit model for rankings. This model is also known as the
Plackett—Luce model, the exploded logit model, and choice-based conjoint analysis.

cmroprobit fits the probit model for rankings, a more flexible estimator than cmrologit because
cmroprobit allows covariances among the rankings. The as in the name signifies that cmroprobit
also allows alternative-specific regressors—yvariables that have different coefficients for each alternative.

27.7 Categorical outcomes

For categorical outcomes, Stata provides multinomial logistic regression, multinomial probit re-
gression, stereotype logit regression, nested logistic regression, McFadden’s choice model (conditional
fixed-effects logistic regression), alternative-specific multinomial probit regression, and alternative-
specific mixed logit regression.

mlogit fits maximum-likelihood multinomial logistic models, also known as polytomous logistic
regression. mprobit is similar but instead is a generalization of the probit model. Both models are
intended for use when the outcomes have no natural ordering and you know only the characteristics
of the outcome chosen (and, perhaps, the chooser).

[U] 27 Overview of Stata estimation commands 359

slogit fits the stereotype logit model for data that are not truly ordered, as data are for ologit,
but for which you are not sure that they are unordered, in which case mlogit would be appropriate.

cmclogit fits McFadden’s choice model, also known as conditional logistic regression. In the
context denoted by the name McFadden’s choice model, the model is used when the outcomes have
no natural ordering, just as in multinomial logistic regression, but the characteristics of the outcomes
chosen and not chosen are known (along with, perhaps, the characteristics of the chooser).

In the context denoted by the name conditional logistic regression—mentioned above—subjects
are members of pools, and one or more are chosen, typically to be infected by some disease or to
have some other unfortunate event befall them. Thus, the characteristics of the chosen and not chosen
are known, and the issue of the characteristics of the chooser never arises. Either way, it is the same
model.

In their choice-model interpretations, mlogit and cmclogit assume that the odds ratios are
independent of other alternatives, known as the independence of irrelevant alternatives (IIA) assumption.
This assumption is often rejected by the data, and the nested logit model relaxes this assumption.
nlogit is also popular for fitting the random utility choice model.

cmmprobit is for use with outcomes that have no natural ordering and with regressors that are
alternative specific. cmmixlogit is a generalization of mlogit that allows for correlation of choices
across outcomes. Unlike mlogit, cmmprobit and cmmixlogit do not assume the IIA. The random
coefficients that are used by cmmixlogit to relax the IIA also directly model the heterogeneity in
choices given covariates.

27.8 Count outcomes

These models concern dependent variables that count the occurrences of an event. In this category,
we include Poisson and negative binomial regression. For the Poisson model,

E(count) = E; exp(x;3)

where F; is the exposure time. poisson fits this model. There is also an exact Poisson estimator;
see [U] 27.11 Exact estimators.

Negative binomial regression refers to estimating with data that are a mixture of Poisson counts.
One derivation of the negative binomial model is that individual units follow a Poisson regression
model but that there is an omitted variable that follows a gamma distribution with parameter c.
Negative binomial regression estimates 3 and . nbreg fits such models. A variation on this, unique
to Stata, allows you to model . gnbreg fits those models.

Sometimes, the value of the outcome variable is not observed when it falls outside a known range,
and it is observed inside that range. This limitation comes in two flavors—censoring and truncation.
It is called censoring when we have an observation for the outcome but know only that the value of
the outcome is outside the range. It is called truncation when we do not even have an observation
when the value of the outcome is outside the range. The cpoisson command can be used to fit
models for censored count data. Commands tpoisson and tnbreg can be used to fit models for
truncated count data.

Zero inflation refers to count models in which the number of zero counts is more than would
be expected in the regular model. The excess zeros are explained by a preliminary probit or logit
process. If the preliminary process produces a positive outcome, the usual counting process occurs,
and otherwise, the count is zero. Thus, whenever the preliminary process produces a negative outcome,
excess zeros are produced. The zip and zinb commands fit such models.

360 [U] 27 Overview of Stata estimation commands

27.9 Generalized linear models

The generalized linear model is

9By} =x;8, y;~F

where g(-) is called the link function and F' is a member of the exponential family, both of which
you specify before estimation. glm fits this model.

The GLM framework encompasses a surprising array of models known by other names, including
linear regression, Poisson regression, exponential regression, and others. Stata provides dedicated
estimation commands for many of these. For instance, Stata has regress for linear regression,
poisson for Poisson regression, and streg for exponential regression, and that is not all the overlap.

glm by default uses maximum likelihood estimation and alternatively estimates via iterated
reweighted least squares (IRLS) when the irls option is specified. For each family, F', there is
a corresponding link function, g(+), called the canonical link, for which IRLS estimation produces
results identical to maximum likelihood estimation. You can, however, match families and link func-
tions as you wish, and when you match a family to a link function other than the canonical link,
you obtain a different but valid estimator of the standard errors of the regression coefficients. The
estimator you obtain is asymptotically equivalent to the maximum likelihood estimator, which, in
small samples, produces slightly different results.

For example, the canonical link for the binomial family is logit. glm, irls with that combination
produces results identical to the maximum-likelihood logit (and logistic) command. The binomial
family with the probit link produces the probit model, but probit is not the canonical link here. Hence,
glm, irls produces standard-error estimates that differ slightly from those produced by Stata’s
maximum-likelihood probit command.

Many researchers feel that the maximum-likelihood standard errors are preferable to IRLS estimates
(when they are not identical), but they would have a difficult time justifying that feeling. Maximum
likelihood probit is an estimator with (solely) asymptotic properties; glm, irls with the binomial
family and probit link is an estimator with (solely) asymptotic properties, and in finite samples, the
standard errors differ a little.

Still, we recommend that you use Stata’s dedicated estimators whenever possible. IRLS (the theory)
and glm, irls (the command) are all encompassing in their generality, meaning that they rarely use
the right jargon or provide things in the way you wish they would. The narrower commands, such
as logit, probit, and poisson, focus on the issue at hand and are invariably more convenient.

glm is useful when you want to match a family to a link function that is not provided elsewhere.

glm also offers several estimators of the variance—covariance matrix that are consistent, even when
the errors are heteroskedastic or autocorrelated. Another advantage of a glm version of a model
over a model-specific version is that many of these VCE estimators are available only for the glm
implementation. You can also obtain the ML-based estimates of the VCE from glm.

27.10 Choice models

Choice models are models for data with outcomes that are choices. For instance, we could model
choices made by consumers who select a breakfast cereal from several different brands. Stata’s
choice model commands come in two varieties—-commands for modeling for discrete choices and
commands for modeling rank-ordered alternatives. When each individual selects a single alternative,
say, a shopper purchasing one box of cereal, the data are discrete choice data. When each individual
ranks the choices, say, that shopper orders cereals from most favorite to least favorite, the data are
rank-ordered data.

[U] 27 Overview of Stata estimation commands 361

Commands for binary outcomes, categorical outcomes, panel data, multilevel models, Bayesian
estimation, and more can be useful in modeling choice data in addition to other types of data; see
[cM] Intro 4. The commands described below are designed specifically for choice data. Each of these
commands allows alternative-specific covariates—covariates that differ across alternatives (cereals in
our example) and possibly across cases (individuals). In addition, these models properly account for
unbalanced data in which some individuals choose from only a subset of the alternatives.

27.10.1 Models for discrete choices

For discrete choice data, Stata provides conditional logit (McFadden’s choice), multinomial probit,
mixed logit, panel-data mixed logit, and nested logit regression. For an overview of these models,
see [CM] Intro 5.

cmclogit fits McFadden’s choice model, also known as conditional logistic regression. cmclogit
relies on the independence of irrelevant alternatives (IIA) assumption, which implies that the relative
probability of selecting alternatives should not change if we introduce or eliminate another alternative;
see [CM] Intro 8.

The mixed logit model, the multinomial probit model, and the nested logit model relax the 1A
assumption in different ways.

cmmixlogit fits a mixed logit regression for choice models. This model allows random coefficients
on one or more of the alternative-specific predictors in the model. Through these random coefficients,
the model allows correlation across alternatives and, thus, relaxes the IIA assumption. cmxtmixlogit
extends this model for panel data.

cmmprobit fits a multinomial probit choice model. Like cmclogit, this command estimates fixed
coefficients for all predictors. It does not require an IIA assumption because it directly models the
correlation between the error terms for the different alternatives.

nlogit fits a nested logit choice model. With this model, similar alternatives—alternatives whose
errors are likely to be correlated—can be grouped into nests. This model then accounts for correlation
of alternatives within the same nest.

27.10.2 Models for rank-ordered alternatives

For rank-ordered alternatives, Stata provides the rank-ordered logit and rank-ordered probit model.
For an overview of these models, see [CM] Intro 6.

cmrologit fits the rank-ordered logit model. This model is also known as the Plackett-Luce
model, the exploded logit model, and choice-based conjoint analysis. This model requires the 1A
assumption. It is unique because alternatives are not specified. They are instead identified only by
the characteristics in alternative-specific covariates.

cmroprobit fits the rank-ordered probit model, an extension of the multinomial probit choice
model for rank-ordered alternatives. It allows both alternative-specific and case-specific predictors. It
does not assume ITA; instead, it models the correlation of errors across alternatives.

27.11 Exact estimators

Exact estimators refer to models that, rather than being estimated by asymptotic formulas, are
estimated by enumerating the conditional distribution of the sufficient statistics and then computing
the maximum likelihood estimate using that distribution. Standard errors cannot be estimated, but
confidence intervals can be and are obtained from the enumerations.

362 [U] 27 Overview of Stata estimation commands

exlogistic fits logistic models of binary data in this way.
expoisson fits Poisson models of count data in this way.

In small samples, exact estimates have better coverage than the asymptotic estimates, and exact
estimates are the only way to obtain estimates, tests, and confidence intervals of covariates that
perfectly predict the observed outcome.

27.12 Models with endogenous covariates

A covariate is endogenous if it is correlated with the unobservable components of a model.
Endogeneity encompasses cases such as measurement error, omitted variables correlated with included
regressors, and simultaneity. Stata offers several commands to address endogeneity depending on your
outcome of interest and how you wish to model the correlation that generates the endogeneity problem.

Solutions to endogeneity rely on the use of instrumental variables. Instrumental variables are
uncorrelated with the unobservable components of a model and are related to the outcome of interest
only through their relationships with the endogenous variables.

Instrumental-variable models use instrumental variables to model endogeneity. Alternatively, a
control function approach can be used. In this case, instrumental variables are used to directly model
the correlation between unobservable components in the model.

ivregress fits linear outcome models with endogenous variables using the two-stage least-squares
form of instrumental variables, the limited-information form of maximum likelihood, and a version of
the generalized method of moments (GMM). The three estimators differ in the efficiency and robustness
to additional assumptions such as constraints on the variances of the error terms.

ivprobit fits a probit outcome model where one or more of the covariates are endogenously
determined. ivtobit is like ivregress but allows for censored outcomes. ivpoisson fits a Poisson
outcome model where one or more of the covariates are endogenously determined. It can also be
used for modeling nonnegative continuous outcomes instead of counts.

The GMM estimator implemented in ivregress is a special case of the estimators implemented
in gmm. For other functional forms, you can write your own moment-evaluator program or supply
the moment conditions as substitutable expressions to gmm; see [U] 27.23 Generalized method of
moments (GMM).

The extended regression commands fit models with endogenous covariates that are binary, ordinal,
or censored, as well as continuous. eregress fits a linear model with endogenous covariates, eintreg
fits tobit and interval regression models with endogenous covariates, eprobit fits a probit model with
endogenous covariates, and eoprobit fits an ordered probit model with endogenous covariates. You
may also use these commands to accommodate endogenous sample selection (see [U] 27.13 Models
with endogenous sample selection) and treatment effects (see [U] 27.20 Treatment-effects models)
in combination with endogenous covariates.

For systems of linear equations with endogenous covariates, the three-stage least-squares (3SLS)
estimator in reg3 can produce constrained and unconstrained estimates. Structural equation models
discussed in [U] 27.24 Structural equation modeling (SEM) and GMM estimators discussed in
[U] 27.23 Generalized method of moments (GMM) are also widely used for such systems.

[U] 27 Overview of Stata estimation commands 363

27.13 Models with endogenous sample selection

When unobservable factors that affect who is included in a sample are correlated with unobservable
factors that affect the outcome, we say that there is endogenous sample selection. When present,
endogenous sample selection should be modeled; consider using one of the commands discussed
below.

What has become known as the Heckman model refers to linear regression in the presence of
endogenous sample selection: y; = X;3 + €; is not observed unless some event occurs that itself
has probability p; = F(z;+ + v;), where € and v might be correlated and z; and x; may contain
variables in common. heckman fits such models by maximum likelihood or Heckman’s original
two-step procedure.

This model has been generalized to replace the linear regression equation with another probit
equation, and that model is fit by heckprobit. The command heckoprobit fits an ordered probit
model in the presence of sample selection. Finally, heckpoisson is used to model count data subject
to endogenous sample selection.

Stata’s extended regression commands allow you to model endogenous sample selection along with
endogenous covariates and treatment effects. These commands are discussed in [U] 27.12 Models
with endogenous covariates.

27.14 Time-series models

ARIMA refers to models with autoregressive integrated moving-average processes, and Stata’s arima
command fits models with ARIMA disturbances via the Kalman filter and maximum likelihood. These
models may be fit with or without covariates. arima also fits ARMA models.

ARFIMA, or autoregressive fractionally integrated moving average, handles long-memory processes.
ARFIMA generalizes the ARMA and ARIMA models. ARMA models assume short memory; after a shock,
the process reverts to its trend relatively quickly. ARIMA models assume shocks are permanent and
memory never fades. ARFIMA provides a middle ground in the length of the process’s memory. The
arfima command fits ARFIMA models. In addition to one-step and dynamic forecasts, arfima can
predict fractionally integrated series.

UCM, or unobserved components model, decomposes a time series into trend, seasonal, cyclic, and
idiosyncratic components after controlling for optional exogenous variables. UCM provides a flexible
and formal approach to smoothing and decomposition problems. The ucm command fits UCM models.

The estimated parameters of ARIMA, ARFIMA, and UCM are sometimes more easily interpreted in
terms of the implied spectral density. psdensity transforms results.

Band-pass and high-pass filters are also used to decompose a time series into trend and cyclic
components, even though the tsfilter commands are not estimation commands. Provided are
Baxter—King, Butterworth, Christiano—Fitzgerald, and Hodrick—Prescott filters.

Stata’s prais command performs regression with AR(1) disturbances using the Prais—Winsten or
Cochrane—Orcutt transformation. Both two-step and iterative solutions are available, as well as a
version of the Hildreth—Lu search procedure.

newey produces linear regression estimates with the Newey—West variance estimates that are robust
to heteroskedasticity and autocorrelation of specified order.

Stata provides estimators for ARCH, GARCH, univariate, and multivariate models. These models are
for time-varying volatility. ARCH models allow for conditional heteroskedasticity by including lagged
variances. GARCH models also include lagged second moments of the innovations (errors). ARCH
stands for “autoregressive conditional heteroskedasticity”. GARCH stands for “generalized ARCH”.

364 [U] 27 Overview of Stata estimation commands

arch fits univariate ARCH and GARCH models, and the command provides many popular extensions,
including multiplicative conditional heteroskedasticity. Errors may be normal or Student’s ¢ or may
follow a generalized error distribution. Robust standard errors are optionally provided.

mgarch fits multivariate ARCH and GARCH models, including the diagonal vech model and the
constant, dynamic, and varying conditional correlation models. Errors may be multivariate normal or
multivariate Student’s £. Robust standard errors are optionally provided.

Stata provides VAR, SVAR, and VEC estimators for modeling multivariate time series. VAR and
SVAR deal with stationary series, and SVAR places additional constraints on the VAR model that
identifies the impulse—response functions. VEC is for cointegrating VAR models. VAR stands for
“vector autoregression”; SVAR, for “structural VAR”; and VEC, for “vector error-correction” model.

var fits VAR models, svar fits SVAR models, and vec fits VEC models. These commands share many
of the same features for specification testing, forecasting, and parameter interpretation; see [TS] var
intro for both var and svar, [TS] vec intro for vec, and [TS] irf for all three impulse—response
functions and forecast-error variance decomposition. For lag-order selection, residual analysis, and
Granger causality tests, see [TS] var intro (for var and svar) and [TS] vec intro.

sspace estimates the parameters of multivariate state-space models using the Kalman filter. The
state-space representation of time-series models is extremely flexible and can be used to estimate
the parameters of many different models, including vector autoregressive moving-average (VARMA)
models, dynamic-factor (DF) models, and structural time-series (STS) models. It can also solve some
stochastic dynamic-programming problems.

dfactor estimates the parameters of dynamic-factor models. These flexible models for multivariate
time series provide for a vector-autoregressive structure in both observed outcomes and unobserved
factors. They also allow exogenous covariates for observed outcomes or unobserved factors.

Sometimes time-series data are characterized by shifts in the mean or variance. Linear autoregressive
models may not adequately capture these peculiarities of the data. Stata provides Markov-switching
and threshold models to fit such series.

Markov-switching models are used for series that transition over a finite set of unobserved states
where the transitions occur according to a Markov process. The time of transition from one state
to another and the duration between changes in state are random. By contrast, threshold models are
used for series that transition over regions determined by threshold values. You can use the mswitch
command to fit Markov-switching dynamic-regression (MSDR) and Markov-switching autoregression
(MSAR) models. MSDR models can accommodate higher autoregressive lags than MSAR models because
the state vector does not depend on the autoregressive lags in an MSDR model. You can use threshold
to fit threshold regression models.

27.15 Panel-data models

Commands in this class begin with the letters xt. You must xtset your data before you can use
an xt command.

27.15.1 Continuous outcomes with panel data

xtreg fits models of the form
Yit = XitB+ Vi + €t

xtreg can produce the between-regression estimator, the within-regression (fixed-effects) estimator,
or the generalized least-squares (GLS) random-effects (matrix-weighted average of between and within
results) estimator. It can also produce the maximum-likelihood random-effects estimator.

[U] 27 Overview of Stata estimation commands 365

xtgee fits population-averaged models, and it optionally provides robust estimates of variance.
Moreover, xtgee allows other correlation structures. One of particular interest to those with a lot
of data goes by the name “unstructured”. The within-panel correlations are simply estimated in an
unconstrained way. [U] 27.15.4 Generalized linear models with panel data will discuss this estimator
further because it is not restricted to linear regression models.

xtfrontier fits stochastic production or cost frontier models for panel data. You may choose from
a time-invariant model or a time-varying decay model. In both models, the nonnegative inefficiency
term is assumed to have a truncated-normal distribution. In the time-invariant model, the inefficiency
term is constant within panels. In the time-varying decay model, the inefficiency term is modeled as
a truncated-normal random variable multiplied by a specific function of time. In both models, the
idiosyncratic error term is assumed to have a normal distribution. The only panel-specific effect is
the random inefficiency term.

xtheckman fits random-effects models that account for endogenous sample selection. Random
effects are included in the equation for the main outcome and in the selection equation and are allowed
to be correlated.

xtivreg contains the between-2SLS estimator, the within-2SLS estimator, the first-differenced-2SLS
estimator, and two GLS random-effects-2SLS estimators to handle cases in which some of the covariates
are endogenous.

xteregress fits random-effects models that account for any combination of endogenous covariates,
endogenous sample selection, and nonrandom treatment assignment.

xthtaylor uses instrumental-variables estimators to estimate the parameters of panel-data random-
effects models of the form

Yir = X148y + Xoit By + L1361 + Zii02 + u; + ey

The individual effects u; are correlated with the explanatory variables Xo;; and Zs; but are uncorrelated
with X1, and Zy;, where Z; and Zo are constant within the panel.

xtgls produces GLS estimates for models of the form
Yit = XitB + €t

where you may specify the variance structure of €;;. If you specify that €;; is independent for all
7’s and 1t’s, xtgls produces the same results as regress up to a small-sample degrees-of-freedom
correction applied by regress but not by xtgls.

You may choose among three variance structures concerning ¢ and three concerning ¢, producing
a total of nine different models. Assumptions concerning ¢ deal with heteroskedasticity and cross-
sectional correlation. Assumptions concerning ¢ deal with autocorrelation and, more specifically, AR(1)
serial correlation.

In the jargon of GLS, the random-effects model fit by xtreg has exchangeable correlation
within —xtgls does not model this particular correlation structure. xtgee, however, does.

Alternative methods report the OLS coefficients and a version of the GLS variance—covariance
estimator. xtpcse produces panel-corrected standard error (PCSE) estimates for linear cross-sectional
time-series models, where the parameters are estimated by OLS or Prais—Winsten regression. When
you are computing the standard errors and the variance—covariance estimates, the disturbances are,
by default, assumed to be heteroskedastic and contemporaneously correlated across panels.

xtrc fits Swamy’s random-coefficients linear regression model. In this model, rather than only
the intercept varying across groups, all the coefficients are allowed to vary.

366 [U] 27 Overview of Stata estimation commands

See [U] 27.16 Multilevel mixed-effects models for a generalization of xtreg and xtrc that allows
for multiple levels of panels, random coefficients, and variance-component estimation in general.
xtrc is a special case of mixed.

27.15.2 Censored outcomes with panel data

xttobit fits random-effects tobit models and generalizes that to observation-specific censoring.

xtintreg performs random-effects interval regression and generalizes that to observation-specific
censoring. Interval regression, in addition to allowing open-ended intervals, allows closed intervals.

xteintreg fits random-effects interval regression models that account for any combination of
endogenous covariates, endogenous sample selection, and nonrandom treatment assignment.

These models are generalizable to multilevel data; see [U] 27.16 Multilevel mixed-effects models.

27.15.3 Discrete outcomes with panel data

xtprobit fits random-effects probit regression via maximum likelihood. It also fits population-
averaged models via GEE.

xtlogit fits random-effects logistic regression models via maximum likelihood. It also fits
conditional fixed-effects models via maximum likelihood and population-averaged models via GEE.

xtcloglog estimates random-effects complementary log-log regression via maximum likelihood.
It also fits population-averaged models via GEE.

xteprobit fits random-effects probit models that account for any combination of endogenous
covariates, endogenous sample selection, and nonrandom treatment assignment.

xtologit and xtoprobit are multiple-outcome models. xtologit fits a random-effects ordered
logistic model, and xtoprobit fits a random-effects ordered probit model.

xteoprobit fits random-effects ordered probit models that account for any combination of
endogenous covariates, endogenous sample selection, and nonrandom treatment assignment.

xtpoisson fits two different random-effects Poisson regression models via maximum likelihood.
The two distributions for the random effects are gamma and normal. xtpoisson also fits conditional
fixed-effects models, and it fits population-averaged models via GEE.

xtnbreg fits random-effects negative binomial regression models via maximum likelihood (the
distribution of the random effects is assumed to be beta). xtnbreg also fits conditional fixed-effects
models, and it fits population-averaged models via GEE.

xtprobit, xtlogit, xtcloglog, xtpoisson, and xtnbreg are nothing more than xtgee with
the appropriate family and link and an exchangeable error structure. See [U] 27.15.4 Generalized
linear models with panel data.

These models are generalizable to multilevel data; see [U] 27.16 Multilevel mixed-effects models.

[U] 27 Overview of Stata estimation commands 367

27.15.4 Generalized linear models with panel data

[U] 27.9 Generalized linear models discussed the model

HEW)} =x;8, y;~F

where g(-) is the link function and F is a member of the exponential family, both of which you
specify before estimation.

There are two ways to extend the generalized linear model to panel data. They are the generalized
linear mixed model (GLMM) and generalized estimation equations (GEE).

GEE uses a working correlation structure to model within-panel correlation. GEEs may be fit with
the xtgee command.

For generalized linear models with multilevel data, including panel data, see [U] 27.16 Multilevel
mixed-effects models.

27.15.5 Survival models with panel data

xtstreg fits a random-effects parametric survival-time model by maximum likelihood. The con-
ditional distribution of the response given the random effects is assumed to be exponential, Weibull,
lognormal, loglogistic, or gamma. Depending on the selected distribution, xtstreg can fit models
using a proportional hazards (PH) or accelerated failure-time (AFT) parameterization. Unlike the other
panel-data commands, xtstreg requires that the data be xtset and stset.

These models are generalizable to multilevel data; see [U] 27.16 Multilevel mixed-effects models.

27.15.6 Dynamic and autoregressive panel-data models

xtregar can produce the within estimator and a GLS random-effects estimator when the €;; are
assumed to follow an AR(1) process.

xtabond is for use with dynamic panel-data models (models in which there are lagged dependent
variables) and can produce the one-step, one-step robust, and two-step Arellano—Bond estimators.
xtabond can handle predetermined covariates, and it reports both the Sargan and autocorrelation tests
derived by Arellano and Bond.

xtdpdsys is an extension of xtabond and produces estimates with smaller bias when the coefficients
of the AR process are large. xtdpdsys is also more efficient than xtabond. Whereas xtabond uses
moment conditions based on the differenced errors, xtdpdsys uses moment conditions based on both
the differenced errors and their levels.

xtdpd is an extension of xtdpdsys and can be used to estimate the parameters of a broader class
of dynamic panel-data models. xtdpd can be used to fit models with serially correlated idiosyncratic
errors, whereas xtdpdsys and xtabond assume no serial correlation. xtdpd can also be used with
models where the structure of the predetermined variables is more complicated than that assumed by
xtdpdsys or xtabond.

368 [U] 27 Overview of Stata estimation commands

27.16 Multilevel mixed-effects models

In multilevel data, observations—subjects, for want of a better word—can be divided into groups
that have something in common. Perhaps the subjects are students, and the groups attended the same
high school, or they are patients who were treated at the same hospital, or they are tractors that were
manufactured at the same factory. Whatever they have in common, it may be reasonable to assume
that the shared attribute affects the outcome being modeled.

With regard to students and high school, perhaps you are modeling later success in life. Some
high schools are better (or worse) than others, so it would not be unreasonable to assume that the
identity of the high school had an effect. With regard to patients and hospital, the argument is much
the same if the outcome is subsequent health: some hospitals are better (or worse) than others, at
least with respect to particular health problems. With regard to tractors and factory, it would hardly
be surprising if tractors from some factories were more reliable than tractors from other factories.

Described above is two-level data. The first level is the student, patient, or tractor, and the second
level is the high school, hospital, or factory. Observations are said to be nested within groups: students
within a high school, patients within a hospital, or tractors within a factory.

Even though the effect on outcome is not directly observed, one can control for the effect if one
is willing to assume that the effect is the same for all observations within a group and that, across
groups, the effect is a random draw from a statistical distribution that is uncorrelated with the overall
residual of the model and other group effects.

We have just described multilevel models.

A more complicated scenario might have three levels: students nested within teachers within a
high school, patients nested within doctors within a hospital, or tractors nested within an assembly
line within a factory.

An alternative to three-level hierarchical data is crossed data. We have workers and their occupation
and the industry in which they work.

Stata provides a suite of multilevel estimation commands. The estimation commands are the
following:

Command Outcome variable Equivalent to

mixed continuous linear regression

metobit censored tobit regression

meintreg censored interval regression

meprobit binary probit regression

melogit binary logistic regression

mecloglog binary complementary log-log regression
meoprobit ordered categorical ordered probit regression
meologit ordered categorical ordered logistic regression
mepoisson count Poisson regression

menbreg count negative binomial regression
mestreg survival-time parametric survival-time regression
meglm various generalized linear models

menl continuous nonlinear regression

[U] 27 Overview of Stata estimation commands 369

The above estimators provide random intercepts and random coefficients and allow constraints to
be placed on coefficients and on variance components. (The QR decomposition estimators and menl
do not allow constraints.)

See the Stata Multilevel Mixed-Effects Reference Manual; in particular, see [ME] me.

27.17 Survival analysis models

Commands are provided to fit Cox proportional hazards models, competing-risks regression, and
several parametric survival models, including exponential, Weibull, Gompertz, lognormal, loglogistic,
and generalized gamma. The command for Cox regression is stcox. Parametric models may be fit to
right-censored survival-time data by using the streg command and to interval-censored survival-time
data by using the stintreg command.

stcox and streg support single- or multiple-failure-per-subject data. The command for competing-
risks regression, stcrreg, and stintreg support only single-failure data. Conventional, robust,
bootstrap, and jackknife standard errors are available with all four commands, with the exception that
for stcrreg, robust standard errors are the conventional standard errors.

Both the Cox model and the parametric models (as fit using Stata) allow for two additional
generalizations. First, the models may be modified to allow for latent random effects, or frailties.
Second, the models may be stratified in that the baseline hazard function may vary completely over
a set of strata. The parametric models also allow for the modeling of ancillary parameters.

Competing-risks regression, as fit using Stata, is a useful alternative to Cox regression for datasets
where more than one type of failure occurs, in other words, for data where failure events compete
with one another. In such situations, competing-risks regression allows you to easily assess covariate
effects on the incidence of the failure type of interest without having to make strong assumptions
concerning the independence of failure types.

stcox, stcrreg, and streg require that the data be stset so that the proper response variables
can be established. After you stset the data, the time/censoring response is taken as understood,
and you need supply only the regressors (and other options) to stcox, stcrreg, and streg. With
stcrreg, one required option deals with specifying which events compete with the failure event of
interest that was previously stset. stintreg requires that you specify the interval-censored time
variables with the command and thus ignores any st settings.

Stata also provides commands to estimate average treatment effects and average treatment effects
on the treated from observational survival-time data. See [U] 27.20 Treatment-effects models.

We discuss panel-data survival-time models in [U] 27.15.5 Survival models with panel data.
These models generalize to multilevel data; see [U] 27.16 Multilevel mixed-effects models.

27.18 Meta-analysis

Meta-analysis is a statistical method for combining the results from several different studies that
answer similar research questions. The goal of the meta-analysis is to compare the study results and,
if possible, provide a unified conclusion based on an overall estimate of the effect of interest. Stata
provides a suite of commands for conducting meta-analysis.

Study-specific effect sizes and their corresponding standard errors are two main components of the
meta-analysis. They are specified during the declaration step ([META] meta data) using meta set or
meta esize; see [META] meta set and [META] meta esize.

370 [U] 27 Overview of Stata estimation commands

Basic meta-analysis summary, which includes the overall effect-size estimate and its confidence
interval and heterogeneity statistics, can be displayed in a table ([META] meta summarize) or on
a forest plot ([META] meta forestplot). Three meta-analysis models—random-effects, fixed-effects,
and common-effect—and several estimation methods, such as restricted maximum likelihood and
Mantel-Haenszel, are supported.

Heterogeneity or between-study variation arises frequently in meta-analysis. It can be explored
via meta-regression and subgroup analysis. See [META] meta regress and the subgroup() option in
[META] meta summarize and [META] meta forestplot. You can also use meta summarize or meta
forestplot to perform cumulative meta-analysis by specifying the cumulative() option with the
command.

The presence of publication bias is another concern in meta-analysis. It typically arises when
the decision of whether to publish the results of a study depends on the statistical significance of
its results. Smaller studies with nonsignificant findings are commonly more prone to publication
bias. Standard and contour-enhanced funnel plots ([META] meta funnelplot), tests for funnel-plot
asymmetry ([META] meta bias), and the trim-and-fill method ([META] meta trimfill) can all be used
to explore publication bias and assess its impact on the meta-analysis results. More generally, meta
funnelplot and meta bias are used to explore the so-called small-study effects or the tendency of
smaller studies to report different, often larger, effect sizes compared with larger studies.

Other features that are available in the meta suite are L’Abbé plots ([META] meta labbeplot)
and various postestimation tools, such as predictions after meta-regression and bubble plots (see
[META] meta regress postestimation and [META] estat bubbleplot).

27.19 Spatial autoregressive models

Stata’s Sp estimation commands fit spatial autoregressive (SAR) models, also known as simultaneous
autoregressive models. The commands allow spatial lags of the dependent and independent variables
and spatial autoregressive errors. In time-series analysis, lags refer to recent times. In spatial analysis,
lags mean nearby areas.

An essential part of the model specification for SAR models is the formulation of spatial lags.
Spatial lags are specified using spatial weighting matrices. Because of the potentially large dimensions
of the weighting matrices, Stata provides commands for creating, using, and saving spatial weighting
matrices.

Spatial models estimate indirect or spillover effects from one spatial unit (area) to another. The
models estimate direct effects, too, just as nonspatial models would. Direct effects are the effects
within a spatial unit. Viewing estimates of the direct effects, indirect effects, and total effects is
done by running estat impact after any of the Sp estimation commands. estat impact makes
interpreting results easy.

Datasets for SAR models contain observations on geographical areas or other units; the only
requirement is some measure of distance that distinguishes which units are close to each other. Spatial
data for geographic areas are typically based on shapefiles. The Sp system converts standard-format
shapefiles to Stata .dta files so they can be merged with other Stata .dta datasets.

The Sp system will also work without shapefiles. Data can contain (x,y) coordinates, or data
need not be geographic at all. For example, Sp can be used to analyze social networks.

Read [SP] Intro and the introductory sections that follow it for an overview of SAR models and a
tutorial with examples for preparing your data and creating spatial weighting matrices.

[U] 27 Overview of Stata estimation commands 371

The available Sp estimation commands are as follows:

Command Description Equivalent to
spregress, gs2sls SAR with GS2SLS estimator regress
spregress, ml SAR with ML estimator regress
spivregress SAR with endogenous regressors ivregress
spxtregress, fe fixed-effects SAR for panel data xtreg, fe
spxtregress, re random-effects SAR for panel data xtreg, re
spxtregress, re sarpanel random-effects SAR alternative

spregress, gs2sls and spivregress will fit multiple spatial lags of the dependent variable,
multiple spatial autoregressive error terms, and multiple spatial lags of covariates. The other Sp
estimation commands will fit only one spatial lag of the dependent variable and only one spatial
autoregressive error term, but will allow multiple spatial lags of covariates.

27.20 Treatment-effects models

teffects, stteffects, and eteffects estimate treatment effects from observational data.

A treatment effect is the change in an outcome caused by an individual getting one treatment
instead of another. We can estimate average treatment effects, but not individual-level treatment effects,
because we observe each individual getting only one or another treatment.

teffects, stteffects, and eteffects use methods that specify what the individual-level
outcomes would be for each treatment level, even though only one of them can be realized. This
approach is known as the potential-outcome framework. See [TE] teffects intro for a basic introduction
to the key concepts associated with observational data analysis. See [TE] teffects intro advanced for
a more advanced introduction that provides the intuition behind the potential-outcome framework.
[TE] stteffects intro extends the concepts in the two earlier introductions to survival-time data.

Suppose we want to use observational data to learn about the effect of exercise on blood pressure.
The potential-outcome framework provides the structure to estimate what would be the average effect
of everyone exercising instead of everyone not exercising, an effect known as average treatment effect
(ATE). Similarly, we can estimate the average effect, among those who exercise, of exercising instead
of not exercising, which is known as the average treatment effect on the treated (ATET). Finally, we
could estimate the average blood pressure that would be obtained if everyone exercised or if no one
exercised, parameters known as potential-outcome means (POMs).

teffects can estimate the ATE, the ATET, and the POMs. The estimators implemented in teffects
impose the structure of the potential-outcome framework on the data in different ways.

e Regression-adjustment estimators use models for the potential outcomes. See [TE] teffects ra.
e Inverse-probability-weighted estimators use models for treatment assignment. See [TE] teffects
ipw.

e Augmented inverse-probability-weighted estimators and inverse-probability-weighted regression-
adjustment estimators use models for the potential outcomes and for treatment assignment. These
estimators have the double-robust property; they correctly estimate the treatment effect even if
only one of the two models is correctly specified. See [TE] teffects aipw and [TE] teffects ipwra.

372 [U] 27 Overview of Stata estimation commands

e Nearest-neighbor matching (NNM) and propensity-score matching (PSM) estimators compare the
outcomes of individuals who are as similar as possible except that one gets the treatment and the
other does not. NNM uses a nonparametric similarity measure, while PSM uses estimated treatment
probabilities to measure similarity. See [TE] teffects nnmatch and [TE] teffects psmatch.

stteffects can estimate the ATE, the ATET, and the POMs. The estimators implemented in
stteffects impose the structure of the potential-outcome framework on the data in different ways.

e Regression-adjustment estimators use models for the potential outcomes, and censoring is adjusted
for the log-likelihood function. See [TE] stteffects ra.

e Inverse-probability-weighted estimators use models for treatment assignment and for the censoring
time. See [TE] stteffects ipw.

e Inverse-probability-weighted regression-adjustment (IPWRA) estimators use models for the potential
outcomes and for treatment assignment. IPWRA estimators can adjust for censoring in the outcome
model or with a separate censoring model. These estimators have the double-robust property: they
correctly estimate the treatment effect even if only the outcome model or the treatment-assignment
model is correctly specified. If a censoring model is specified, both the treatment-assignment
model and the censoring model must be correctly specified for the estimator to be double robust.
See [TE] stteffects ipwra.

e Weighted regression-adjustment estimators model the outcome and the time to censoring. See
[TE] stteffects wra.

teffects and stteffects can estimate treatment effects from multivalued treatments; see
[TE] teffects multivalued.

It is not appropriate to use teffects or stteffects when a treatment is endogenously determined
(the potential outcomes are not conditionally independent). When the treatment is endogenous, an
endogenous treatment-effects model can be used to estimate the ATE. These models consider the effect
of an endogenously determined binary treatment variable on the outcome.

eteffects can estimate the ATE, the ATET, and the POMs. It fits endogenous treatment-effects
models by using either a linear or a nonlinear (probit, fractional probit, or exponential) model for the
outcome. eteffects implements control-function regression-adjustment estimators.

etregress and etpoisson also fit endogenous treatment-effects models and can be used to
estimate the ATE and the ATET. See [TE] etregress and [TE] etpoisson. etregress fits an endogenous
treatment-effects model by using a linear model for the outcome. etpoisson fits an endogenous
treatment-effects model by using a nonlinear (exponential) model for the outcome.

When the outcome is censored, eintreg estimates effects of endogenously or exogenously assigned
treatments. eregress, eprobit, and eoprobit estimate effects of endogenously or exogenously
assigned treatments, when the outcome is continuous, binary, or ordinal, respectively. All four
commands can account for endogenous sample selection and endogenous covariates in combination
with endogenous or exogenous treatment. See [U] 27.13 Models with endogenous sample selection
and [U] 27.12 Models with endogenous covariates.

27.21 Pharmacokinetic data

There are four estimation commands designed for analyzing pharmacokinetic data. See [R] pk for
an overview of the pk system.

1. pkexamine calculates pharmacokinetic measures from time-and-concentration subject-level data.
pkexamine computes and displays the maximum measured concentration, the time at the maximum
measured concentration, the time of the last measurement, the elimination time, the half-life, and
the area under the concentration-time curve (AUC).

[U] 27 Overview of Stata estimation commands 373

. pksumm obtains the first four moments from the empirical distribution of each pharmacokinetic

measurement and tests the null hypothesis that the distribution of that measurement is normally
distributed.

. pkcross analyzes data from a crossover design experiment. When one is analyzing pharmaceutical

trial data, if the treatment, carryover, and sequence variables are known, the omnibus test for
separability of the treatment and carryover effects is calculated.

. pkequiv performs bioequivalence testing for two treatments. By default, pkequiv calculates a

standard confidence interval symmetric about the difference between the two treatment means.
pkequiv also calculates confidence intervals symmetric about zero and intervals based on Fieller’s
theorem. Also, pkequiv can perform interval hypothesis tests for bioequivalence.

See [ME] menl for fitting pharmacokinetic models using nonlinear mixed-effects models.

27.22 Multivariate analysis

Stata’s multivariate capabilities can be found in the Multivariate Statistics Reference Manual.

1.
2.

10.

11.
12.

13.

mvreg fits multivariate regressions.

manova provides MANOVA and MANCOVA (multivariate ANOVA and ANCOVA). The command fits
MANOVA and MANCOVA models, one-way and up—including two-way factorial, three-way factorial,
etc.—and it fits nested and mixed-design models.

. canon estimates canonical correlations and their corresponding loadings. Canonical correlation

attempts to describe the relationship between two sets of variables.

. pca extracts principal components and reports eigenvalues and loadings. Some people consider

principal components a descriptive tool—in which case standard errors as well as coefficients are
relevant—and others look at it as a dimension-reduction technique.

. factor fits factor models and provides principal factors, principal-component factors, iterated

principal-component factors, and maximum likelihood solutions. Factor analysis is concerned with
finding few common factors z, k = 1,...,q, that linearly reconstruct the original variables y;,
i=1,...,L.

. tetrachoric, in conjunction with pca or factor, allows you to perform PCA or factor analysis

on binary data.

. rotate provides a wide variety of orthogonal and oblique rotations after factor and pca.

Rotations are often used to produce more interpretable results.

. procrustes performs Procrustes analysis, one of the standard methods of multidimensional scaling.

It can perform orthogonal or oblique rotations as well as translation and dilation.

. mds performs metric and nonmetric multidimensional scaling for dissimilarity between observations

with respect to a set of variables. A wide variety of dissimilarity measures are available and, in
fact, are the same as those for cluster.

ca performs correspondence analysis, an exploratory multivariate technique for analyzing cross-
tabulations and the relationship between rows and columns.

mca performs multiple correspondence analysis (MCA) and joint correspondence analysis (JCA).

mvtest performs tests of multivariate normality along with tests of means, covariances, and
correlations.

cluster provides cluster analysis; both hierarchical and partition clustering methods are available.
Strictly speaking, cluster analysis does not fall into the category of statistical estimation. Rather, it

374 [U] 27 Overview of Stata estimation commands

is a set of techniques for exploratory data analysis. Stata’s cluster environment has many different
similarity and dissimilarity measures for continuous and binary data.

14. discrim and candisc perform discriminant analysis. candisc performs linear discriminant
analysis (LDA). discrim also performs LDA, and it performs quadratic discriminant analysis
(QDA), kth nearest neighbor (KNN), and logistic discriminant analysis. The two commands differ
in default output. discrim shows the classification summary, candisc shows the canonical linear
discriminant functions, and both will produce either.

27.23 Generalized method of moments (GMM)

gmm fits models using generalized method of moments (GMM). With the interactive version of the
command, you enter your moment equations directly into the dialog box or command line using
substitutable expressions just like with nl or nlsur. The moment-evaluator program version gives
you greater flexibility in exchange for increased complexity; with this version, you write a program
that calculates the moments based on a vector of parameters passed to it.

gmm can fit both single- and multiple-equation models, and you can combine moment conditions of
the form E{z;u;(3)} = 0, where z; is a vector of instruments and u;(/3) is often an additive regression
error term, as well as more general moment conditions of the form E{h;(z;; 3)} = 0. In the former
case, you specify the expression for u;(3) and use the instruments() and xtinstruments()
options to specify z;. In the latter case, you specify the expression for h;(z;; 8); because that
expression incorporates your instruments, you do not use the instruments() or xtinstruments ()
option.

gmm supports cross-sectional, time-series, and panel data. You can request weight matrices and VCEs
that are suitable for independent and identically distributed errors, that are suitable for heteroskedastic
errors, that are appropriate for clustered observations, or that are heteroskedasticity- and autocorrelation-
consistent (HAC). For HAC weight matrices and VCEs, gmm lets you specify the bandwidth or request
an automatic bandwidth selection algorithm.

27.24 Structural equation modeling (SEM)

SEM stands for “structural equation modeling”. The sem and gsem commands fit SEM.

sem fits standard linear SEMs. gsem fits what we call generalized SEMs, generalized to allow for
generalized linear responses and multilevel modeling.

Generalized linear means, among other types of responses, binary responses such as probit and logit,
count responses such as Poisson and negative binomial, categorical responses such as multinomial
logit, ordered responses such as ordered probit and ordered logit, censored responses such as tobit,
and survival responses such as exponential and Weibull. Generalized linear includes linear responses.

Multilevel modeling allows for nested effects, such as patient within doctor and patients within
doctor within hospital, and crossed effects, such as occupation and industry.

Let’s start with sem. sem can fit models ranging from linear regression to measurement models to
simultaneous equations, including confirmatory factor analysis (CFA) models, correlated uniqueness
models, latent growth models, and multiple indicators and multiple causes (MIMIC) models. You can
obtain standardized or unstandardized results, direct and indirect effects, goodness-of-fit statistics,
modification indices, score tests, Wald tests, linear and nonlinear tests of estimated parameters, and
linear and nonlinear combinations of estimated parameters with confidence intervals. You can perform
estimation across groups with easy model specification and easy-to-use tests for group invariance.
This can all be done using raw or summary statistics data. In addition, sem optionally can use full
information maximume-likelihood (FIML) estimation to handle observations containing missing values.

[U] 27 Overview of Stata estimation commands 375

gsem extends the types of models that can be fit. Responses may be continuous, ordinal, count,
categorical, or survival time, and gsem allows for multilevel modeling. Latent variables can be included
at any level. This allows for fitting models with random intercepts and random slopes. These random
effects may be nested or crossed.

There is considerable overlap in the capabilities of sem and gsem. Whenever there is overlap, sem
is faster and sometimes easier to use.

The generalized response variables allowed by gsem permit fitting measurement models with
different types of responses, latent growth models with different types of responses, and so on.

gsem can also fit item response theory (IRT) models, multilevel CFA models, models for latent
class analysis (LCA), finite mixture models (FMMs), multilevel mixed-effects models, and multilevel
structural equation models. See [U] 27.27 Item response theory (IRT), [U] 27.25 Latent class models,
and [U] 27.26 Finite mixture models (FMMs).

Where appropriate, results can be reported in exponentiated form to provide odds ratios, incidence-
rate ratios, and relative-risk ratios. You can also obtain predictions, likelihood-ratio tests, Wald tests,
predictive margins, contrasts, and pairwise comparisons.

Whether fitting a model with sem or gsem, you can specify your model by typing the command
or by using the SEM Builder to draw path diagrams.

For those of you unfamiliar with SEM, it is worth your time to learn about it if you ever fit linear
regressions, logistic regressions, ordered logit regressions, ordered probit regressions, Poisson regres-
sions, seemingly unrelated regressions, multivariate regressions, simultaneous systems, measurement
error models, selection models, endogenous treatment-effects models, tobit models, survival models,
fractional response models, or multilevel mixed-effects models.

You may also want to learn about SEM if you are interested in GMM. sem and gsem fit many of
the same models by maximum likelihood and quasimaximum likelihood that you can fit by GMM.

sem and gsem can be used to fit many models that can be fit by other Stata commands. The
advantage of using sem and gsem is in the extensions they can provide. They allow for introduction
of latent variables to account for measurement error, simultaneous equations with different types of
responses, multilevel versions of popular models such as selection models, and more.

See the Stata Structural Equation Modeling Reference Manual; in particular, see [SEM] Intro 5.

27.25 Latent class models

Latent class models (LCMs) are used to identify and understand unobserved groups in a population.
Individuals in the population are assumed to be divided among these unobserved subpopulations
called classes. The classes are represented by one or more categorical latent variables. LCMs often
include a group of observed variables that are thought of as being measurements or indicators of class
membership. The parameters in the models for these observed variables are allowed to vary across
classes. In addition to modeling the observed variables, we also model the probability of being in
each class.

After fitting an LCM, we can estimate the proportion of individuals in the population who belong
to each class. We can also predict each individual’s probability of belonging to each class.

We use LCM to refer to any model that includes categorical latent variables. In some literature, LCMs
are more narrowly defined to include only categorical latent variables and the binary or categorical
observed measurement variables, but we do not make such a restriction. Other labels closely associated
with LCMs are latent class analysis, latent cluster models, latent cluster analysis, latent profile models,
latent profile analysis, and finite mixture models. Each of these models can be fit as an LCM in Stata.
See [SEM] Intro 5.

376 [U] 27 Overview of Stata estimation commands

You fit latent class models in Stata by specifying the 1class() option with gsem. See the Stata
Structural Equation Modeling Reference Manual; in particular, see [SEM] Intro 1, [SEM] Intro 2,
[SEM] Intro 5, [SEM] Example 50g, and [SEM] Example 52g.

27.26 Finite mixture models (FMMs)

Finite mixture models (FMMs) are used to classify observations, to adjust for clustering, and to
model unobserved heterogeneity. In finite mixture modeling, the observed data are assumed to belong
to unobserved subpopulations called classes, and mixtures of probability densities or regression models
are used to model the outcome of interest.

You can use FMMs to estimate the means and variances of the underlying densities for each unobserved
subpopulation. Along with densities, they allow mixtures of regression models for continuous, binary,
ordinal, categorical, count, fractional, and survival outcomes, where parameters are allowed to vary
across subpopulations. You also can use FMMs to estimate each subpopulation’s proportion in the
overall population. In addition, FMMs allow the inclusion of covariates that model the probability of
being in each subpopulation.

You fit FMMs in Stata by specifying the fmm prefix with the number of subpopulations; see
[FMM] fmm estimation for models that can be specified as FMMs.

The Stata Finite Mixture Models Reference Manual provides complete documentation of Stata’s
finite mixture modeling features. See [FMM] fmm intro for an overview of FMMs and an introductory
example.

27.27 Item response theory (IRT)

Item response theory (IRT) is used in the design, analysis, scoring, and comparison of tests and
similar instruments whose purpose is to measure a latent trait. Latent traits cannot be measured
directly because they are unobservable, but they can be quantified with an instrument. An instrument
is simply a collection of items designed to measure a person’s level of the latent trait. For example,
a researcher interested in measuring mathematical ability (latent trait) may design a test (instrument)
consisting of 100 questions (items).

When designing the instrument or analyzing data from the instrument, the researcher is interested
in how each individual item relates to the trait and how the group of items as a whole relates to the
trait. IRT models allow us to study these relationships.

Stata provides a suite of IRT estimation commands to fit a variety of models for binary responses
and categorical responses. Models can also be combined. The available commands are the following:

Command Description Response
irt 1pl One-parameter logistic model binary
irt 2pl Two-parameter logistic model binary
irt 3pl Three-parameter logistic model binary
irt grm Graded response model categorical
irt nrm Nominal response model categorical
irt pcm Partial credit model categorical
irt rsm Rating scale model categorical

irt hybrid Hybrid IRT model combination

[U] 27 Overview of Stata estimation commands 377

A major concept in IRT is the item characteristic curve (ICC). The ICC maps the relationship
between the latent trait and the probability that a person “succeeds” on a given item (individual test
question). irtgraph icc can be used to plot the ICCs for items after any of the models above.

irtgraph tcc is used to plot the test characteristic curve (TCC), which shows the relationship
between the expected score on the whole test and the latent trait. Plots of the item information and
test information can be obtained with irtgraph iif and irtgraph tif.

Researchers are often interested in determining whether an instrument measures the latent trait
in the same way for different groups. Multiple-group IRT models allow parameters to differ across
groups and can be fit by adding the group () option to any of the irt commands.

See [IRT] irt for more information.

27.28 Dynamic stochastic general equilibrium (DSGE) models

DSGE models are time-series models used in economics for policy analysis and forecasting. The
models are derived from macroeconomic theory and include multiple equations. A key feature of
these models is that expectations of future variables affect variables today; this distinguishes DSGE
models from other multivariate time-series models. Another key feature is that, being derived from
theory, the parameters can usually be interpreted in terms of that theory.

The dsge and dsgenl commands fit DSGE models. dsgenl fits nonlinear DSGE models, and dsge
fits linear DSGE models. See the Stata Dynamic Stochastic General Equilibrium Models Reference
Manual; in particular, [DSGE] Intro 1.

27.29 Lasso

Lasso simultaneously performs model selection and estimation. The set of candidate models for
which you may consider using lasso is much larger than what can be evaluated with traditional model
selection techniques, such as comparisons of Akaike or Bayesian information criteria. Because it
allows simultaneous model selection and estimation and is feasible for very large models, lasso is
one of the most popular and widely used machine learning tools.

Lasso is a solution to a penalized optimization problem for continuous, binary, and count outcomes.
Without the penalty, lasso would give the same solutions as traditional likelihood-based estimators.
The penalty forces some of the variables to be excluded from the model. In other words, the penalty
is what determines the model selection properties of the lasso. For more information on the lasso
penalty, see [LASSO] lasso.

Related to lasso are the elastic net and the square-root lasso estimators. Both the elastic net and
the square-root lasso have the model selection and estimation characteristics of lasso. The difference
between lasso, elastic net, and square-root lasso is how they penalize the model. The elastic net
penalty yields an estimator that works better than lasso when groups of variables are highly correlated.
The square-root lasso is equivalent to the lasso but allows for easier computation of the penalty
parameters. For more information on elastic net and square-root lasso, see [LASSO] elasticnet and
[LASSO] sqrtlasso.

With Stata, you may use lasso, elasticnet, and sqrtlasso to implement the estimators
mentioned above and to do out-of-sample predictions. You may also use these commands with random
subsamples of the data used for training, validation, and prediction. You can use splitsample to
easily split your data into such subsamples.

378 [U] 27 Overview of Stata estimation commands

You can also go beyond prediction. You can use lasso to obtain inferences with double-selection
lasso, partialing-out lasso, and cross-fit partialing-out lasso. These estimators allow you to estimate
effects and perform tests on coefficients for a fixed and known set of covariates, while also performing
model selection using lasso for a potentially large set of control variables. The following inferential
lasso commands fit models with continuous, binary, and count outcomes:

Command Description

dsregress Double-selection lasso linear regression

dslogit Double-selection lasso logistic regression
dspoisson Double-selection lasso Poisson regression
poregress Partialing-out lasso linear regression

pologit Partialing-out lasso logistic regression

popoisson Partialing-out lasso Poisson regression
poivregress Partialing-out lasso instrumental-variables regression
Xporegress Cross-fit partialing-out lasso linear regression
xpologit Cross-fit partialing-out lasso logistic regression
Xpopoisson Cross-fit partialing-out lasso Poisson regression
xpoivregress Cross-fit partialing-out lasso instrumental-variables regression

27.30 Survey data

Stata’s svy command fits statistical models for complex survey data. svy is a prefix command,
so to obtain linear regression, you type

. SVy: regress ...
or to obtain probit regression, you type
. svy: probit ...

but you must first type a svyset command to define the survey design characteristics. Prefix svy
works with many estimation commands, and everything is documented together in the Stata Survey
Data Reference Manual.

[U] 27 Overview of Stata estimation commands 379

svy supports the following variance-estimation methods:
o Taylor-series linearization
e Bootstrap
e Balanced repeated replication (BRR)
e Jackknife
e Successive difference replication (SDR)
See [SVY] Variance estimation for details.
svy supports the following survey design characteristics:

e With- and without-replacement sampling

Observation-level sampling weights
e Stage-level sampling weights

Stratification

Poststratification

Clustering

Multiple stages of clustering without replacement
e BRR and jackknife replication weights

See [SVY] svyset for details. For an application of the svy prefix with stage-level sampling weights,
see example 6 in [ME] meglm.

Subpopulation estimation is available for all estimation commands.

Tabulations and summary statistics are also available, including means, proportions, ratios, and
totals over multiple subpopulations and direct standardization of means, proportions, and ratios.

See [SVY] Survey.

27.31 Multiple imputation

Multiple imputation (MI) is a statistical technique for estimation in the presence of missing data.
If you estimate the parameters of y on x;, x2, and x3 using any of the other Stata estimation
commands, parameters are estimated on the data for which ¥y, x1, x2, and x3 contain no missing
values. This process is known as listwise or casewise deletion because observations for which any of
Y, T1, T2, OF T3 contain missing values are ignored or, said differently, deleted from consideration. MI
is a technique to recover the information in those ignored observations when the missing values are
missing at random (MAR) or missing completely at random (MCAR). Data are MAR if the probability
that a value is missing may depend on observed data but not on unobserved data. Data are MCAR if
the probability of missingness is not even a function of the observed data.

MI is named for the imputations it produces to replace the missing values in the data. MI does not
just form replacement values for the missing data; it produces multiple replacements. The purpose is
not to create replacement values as close as possible to the true ones but to handle missing data in a
way resulting in valid statistical inference.

There are three steps in an MI analysis. First, one forms M imputations for each missing value
in the data. Second, one fits the model of interest separately on each of the M resulting datasets.
Finally, one combines those M estimation results into the desired single result.

380 [U] 27 Overview of Stata estimation commands

The mi command does this for you. It can be used with most of Stata’s estimation commands,
including with survey, survival, and panel and multilevel models. See [MI] Intro.

27.32 Power, precision, and sample-size analysis

Sample-size determination is important for planning a study. It helps allocate the necessary resources
to achieve the research objective of a study.

When a study uses hypothesis testing to make inference about parameters of interest, power and
sample-size (PSS) analysis is used to investigate the optimal allocation of study resources to increase the
likelihood of detecting the desired magnitude of the effect of interest. When a study uses confidence
intervals (CIs) for inference, precision and sample-size (PrSS) analysis is used to estimate the required
sample size to achieve the desired precision of a CI in a future study.

27.32.1 Power and sample-size analysis

PSS analysis is used to plan studies that will use hypothesis testing for inference. For example,
suppose that we want to design a study to evaluate a new drug for lowering blood pressure. We want
to test whether the mean blood pressure of the experimental group, which will receive the new drug,
is the same as the mean blood pressure of the control group, which will receive the old drug. The
post hoc analysis will use a two-sample ¢ test to test the difference between the two means. How
many subjects do we need to enroll in our study to detect a difference between means that is of
clinical importance? PSS analysis can answer this question.

PSS analysis can also answer other questions that may arise during the planning stage of a study.
For example, what is the power of a test given an available sample size, and how likely is it to detect
an effect of interest given limited study resources? The answers to these questions may help reduce
the cost of a study by preventing an overpowered study or may help avoid wasting resources on an
underpowered study.

See [PSS-2] Intro (power) for more information about PSS analysis.

The power command performs PSS analysis. It provides PSS analysis for comparison of means,
variances, proportions, correlations, and contingency tables. It also provides PSS analysis for simple
and multiple linear regression and for survival analysis. One-sample, two-sample, and paired analyses
of means, variances, proportions, and correlations are supported. Contingency table analyses may be
performed for matched samples, 2 x 2 x K tables, or 2 x J tables. For survival-time data, one-sample
analysis is supported for Cox proportional hazards models; two-sample analysis is supported for
parametric or nonparametric comparison of survivor functions.

The power command can also account for a cluster randomized design (CRD) for some analyses,
such as one- and two-sample analyses of means and proportions. In a CRD, groups of subjects or
clusters are randomized instead of individual subjects. As a result, observations within a cluster are
usually correlated, which must be accounted for when performing PSS analysis.

You can also add your own PSS methods to the power command; see [PSS-2] power usermethod.

power provides both tabular output and graphical output, or power curves; see [PSS-2] power,
table and [PSS-2] power, graph for details.

See [PSs-2] power for a full list of supported methods and the description of the command.

You can work with power commands either interactively or via a convenient point-and-click
interface; see [PSS-2] GUI (power) for details.

[U] 27 Overview of Stata estimation commands 381

27.32.2 Precision and sample-size analysis

PrSS analysis is used to plan studies that will use confidence intervals for inference. For example,
suppose again that we want to design a study to evaluate a new drug for lowering blood pressure.
We now want to estimate the difference in the mean blood pressure of the experimental group, which
will receive the new drug, and the mean blood pressure of the control group, which will receive the
old drug. We will compute a two-sided 95% confidence interval for the difference between the two
means. How many subjects do we need to enroll in our study to obtain a confidence interval that is
narrow enough to draw inferences that are meaningful? PrSS analysis can answer this question.

PrSS analysis can also answer other questions that may arise during the planning stage of a study.
For example, what is the width of a confidence interval that can be obtained given an available sample
size, and how likely is it that we obtain a confidence interval of a specific width given limited study
resources? The answers to these questions may help reduce costs by limiting the number of subjects
in a study. They may also help prevent completing a study only to find that it had too few subjects
to obtain a confidence interval narrow enough to be useful.

See [PSS-3] Intro (ciwidth) for more information about PrSS analysis.

The ciwidth command performs PrSS analysis. It provides PrSS analysis for confidence intervals for
a mean or a variance. It also provides PrSS analysis for the difference in two means from independent
samples and the difference in two means from paired samples.

You can also add your own PrSS methods to the ciwidth command; see [PSS-3] ciwidth usermethod.

ciwidth provides both tabular output and graphical output, or sample-size curves; see [PSS-3] ci-
width, table and [PSS-3] ciwidth, graph for details.

See [PSS-3] ciwidth for a full list of supported methods and the description of the command.

You can work with ciwidth commands either interactively or via a convenient point-and-click
interface; see [PSS-3] GUI (ciwidth) for details.

27.33 Bayesian analysis

Bayesian analysis is a statistical analysis that answers research questions about unknown parameters
of statistical models by using probability statements. Bayesian analysis rests on the assumption that
all model parameters are random quantities and are subject to prior knowledge. This assumption is in
sharp contrast with more traditional, frequentist analysis where all parameters are considered unknown
but fixed quantities.

Bayesian analysis is based on modeling and summarizing the posterior distribution of parameters
conditional on the observed data. The posterior distribution is composed of a likelihood distribution
of the data and the prior distribution of the model parameters. Many posterior distributions do not
have a closed form and must be approximated using, for example, Markov chain Monte Carlo
(MCMC) methods such as Metropolis—Hastings (MH) methods, the Gibbs method, or sometimes their
combination. The convergence of MCMC must be verified before any inference can be made. Once
convergence is established, model checking can be performed by comparing various aspects of the
distribution of the observed data with those of data that are simulated based on the fitted Bayesian
model.

In Bayesian analysis, marginal posterior distributions of parameters are used for inference. They are
summarized using point estimators, such as posterior mean and median, and using interval estimators,
such as equal-tailed credible intervals and highest-posterior density intervals.

382 [U] 27 Overview of Stata estimation commands

Stata provides a suite of commands for conducting Bayesian analysis. Bayesian estimation
([BAYES] Bayesian estimation) consists of the bayes prefix for fitting a variety of Bayesian re-
gression models and the bayesmh command for fitting general Bayesian models. Both commands
offer three MCMC sampling methods: an adaptive MH sampling, a Gibbs sampling, or a combination
of the two. You can choose from a variety of supported Bayesian models, including multilevel
models, or you can program your own Bayesian models; see [BAYES] bayes, [BAYES] bayesmh, and
[BAYES] bayesmh evaluators.

Convergence of MCMC can be assessed visually using bayesgraph, and Gelman—Rubin convergence
diagnostics can be computed using bayesstats grubin. Model checking can be performed using
bayespredict and bayesstats ppvalues. Marginal summaries can be obtained using bayesstats
summary, and hypothesis testing can be performed using bayestest; see [BAYES] Bayesian postes-
timation.

See [BAYES] Bayesian commands for more information about commands and for a quick Overview
example.

27.34 Reference

Gould, W. W. 2011. Use poisson rather than regress; tell a friend. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/08/22/use-poisson-rather-than-regress-tell-a-friend/.

http://blog.stata.com/2011/08/22/use-poisson-rather-than-regress-tell-a-friend/
http://blog.stata.com/2011/08/22/use-poisson-rather-than-regress-tell-a-friend/

28 Commands everyone should know

Putting aside the statistical commands that might particularly interest you, here is a list of commands
that everyone should know:

Getting help
help, net search, search [U] 4 Stata’s help and search facilities

Keeping Stata up to date

ado, net, update [U] 29 Using the Internet to keep up to date
ado update [R] ado update
Operating system interface
pwd, cd [D] cd
Using and saving data from disk
save [D] save
use [D] use
compress [D] compress
Inputting data into Stata [U] 22 Entering and importing data
import [D] import
edit [D] edit
Basic data reporting
describe [D] describe
codebook [D] codebook
list [D] list
browse [D] edit
count [D] count
inspect [D] inspect
table [R] table
tabulate [R] tabulate oneway and [R] tabulate twoway
summarize [R] summarize
Data manipulation [U] 13 Functions and expressions
append, merge [U] 23 Combining datasets
generate, replace [D] generate
egen [D] egen
rename [D] rename, [D] rename group
clear [D] clear
drop, keep [D] drop
sort [D] sort
encode, decode [D] encode
order [D] order
by [U] 11.5 by varlist: construct
reshape [D] reshape
frames [D] frames

383

384 [U] 28 Commands everyone should know

Graphing data
graph
Keeping track of your work
log
notes
various

Convenience
display

Stata Graphics Reference Manual

[U] 15 Saving and printing output—log files
[D] notes
Stata Reporting Reference Manual

[R] display

29 Using the Internet to keep up to date

Contents

20.1 OVEIVIEW .ottt ettt e e e e e e e e e e e 385

29.2 Sharing datasets (and other files) i 386

29.3 Official updatest 386
29.3.1 Frequently asked questions about updating 386

29.4 Downloading and managing additions by users 387
29.4.1 Downloading filest e 387
29.42 Managing files 388
29.4.3 Finding files to download il 389
29.4.4 Updating additions by USEISc.uuiuniiniinninenen .. 390
29.4.5 Video exampleot 390

29.5 Making your own download Site i 390

29.1 Overview

Stata can read files over the Internet. Just to prove that to yourself, type the following:

. use https://www.stata.com/manual/chapter28, clear

You have just reached out and gotten a dataset from our website. The dataset is not in HTML format, nor
does this have anything to do with your browser. We just copied the Stata data file chapter28.dta
onto our server, and now people all over the world can use it. If you have a website, you can do the
same thing. It is a convenient way to share datasets with colleagues.

Now type the following:

. update query

We promise that nothing bad will happen. update will read a short file from www.stata.com that
will allow Stata to report whether your copy of Stata is up to date. Is your copy up to date? Now
you know. If it is not, we will show you how to update it—it is no harder than typing update.

Now type the following:

. net from https://www.stata.com

That will go to www.stata.com and tell you what is available from our user-download site. The
material there is not official, but it is useful. More useful is to type

. search kernel regression, net
or equivalently,
. net search kernel regression

That will search the entire web for additions to Stata having to do with kernel regression, whether
the additions are from the Stata Journal, Stata Technical Bulletin, Statalist, archive sites, or private
user sites.

385

386 [U] 29 Using the Internet to keep up to date

To summarize: Stata can read files over the Internet:

1. You can share datasets, do-files, etc., with colleagues all over the world. This requires no special
expertise, but you do need to have a website.

2. You can update Stata; it is free and easy.
3. You can find and add new features to Stata; it is also free and easy.

Finally, you can create a site to distribute new features for Stata.

29.2 Sharing datasets (and other files)

There is just nothing to it: you copy the file as-is (in binary) onto the server and then let your
colleagues know the file is there. This works for .dta files, .do files, .ado files, and, in fact, all
files.

On the receiving end, you can use the file (if it is a .dta dataset) or you can copy it:

. use https://www.stata.com/manual/chapter28, clear

. copy https://www.stata.com/manual/chapter28.dta mycopy.dta

Stata includes a copy-file command and it works over the Internet just as use does; see [D] copy.

29.3 Official updates

Although we follow no formal schedule for the release of updates, we typically provide updates
to Stata approximately once a month. You do not have to update that often, although we recommend
that you do. There are two ways to check whether your copy of Stata is up to date:

select or type

Help > Check for updates . update query
After that if an update is available, you should

click on or type

Install available updates . update all
After you have updated your Stata, to find out what has changed

select or type

Help > What’s new? . help whatsnew

29.3.1 Frequently asked questions about updating

1. Could something go wrong and make my Stata become unusable?

No. The updates are copied to a temporary place on your computer, Stata examines them
to make sure they are complete before copying them to the official place. Thus either the
updates are installed or they are not.

2. I do not have access to the Internet from within Stata. Is there a way to update Stata manually?

Yes. Open your web browser to https://www.stata.com/support/updates/ and follow the
instructions on that page.

[U] 29 Using the Internet to keep up to date 387

29.4 Downloading and managing additions by users

Try the following:

select
Help > SJ and community-contributed commands

or type
. net from https://www.stata.com

and click on one of the links.

29.4.1 Downloading files

We are not the only ones developing additions to Stata. Stata is supported by a large and highly
competent user community. An important part of this is the Stata Journal (SJ) and the Stata Technical
Bulletin (STB). The Stata Journal is a refereed, quarterly journal containing articles of interest
to Stata users. For more details and subscription information, visit the Stata Journal website at
https://www.stata-journal.com.

The Stata Journal is a printed and electronic journal with corresponding software. If you want the
journal, you must subscribe, but the software is available for free; see the instructions below.

The predecessor to the Stata Journal was the Stata Technical Bulletin (STB). The STB was also
a printed and electronic journal with corresponding software. Individual STB issues are available for
free at https://www.stata.com/bookstore/individual-stata-technical-bulletin-issues/. The STB software is
available for free; see the instructions below.

Installing software from the Stata Journal
1. From within Stata, select Help > SJ and community-contributed commands.
Click on Stata Journal.
Click on sj2-2.
Click on st0001_1.

Click on click here to install.

A

or
Type . net from https://www.stata-journal.com/software

Type . net cd sj2-2

e

Type . net describe st0001_1
4. Type . net install st0001_1
The above could be shortened to

. net from https://www.stata-journal.com/software/sj2-2
. net describe st0001_1
. net install st0001_1

You could also type

. net sj 2-2
. net describe st0001_1
. net install st0001_1

https://www.stata-journal.com
https://www.stata.com/bookstore/individual-stata-technical-bulletin-issues/

388 [U] 29 Using the Internet to keep up to date

Installing software from the STB
1. From within Stata, select Help > SJ and community-contributed commands.
2. Click on STB.
3. Click on stb58.
4. Click on sg84_3.
5. Click on click here to install.
or
1. Type . net from https://www.stata.com
Type . net cd stb
Type . net cd stb58

e O

Type . net describe sg84_3
5. Type . net install sg84_3
The above could be shortened to

. net from https://www.stata.com/stb/stb58
. net describe sg84_3
. net install sg84_3

29.4.2 Managing files
You now have the concord command, because we just downloaded and installed it. Convince
yourself of this by typing
. help concord
and you might try it out, too. Let’s now list the additions you have installed—that is probably just
concord—and then get rid of concord.
In command mode, you can type

. ado dir

[1] package sg84_3 from https://www.stata.com/stb/stb58
STB-58 sg84_3. Concordance correlation coefficient: minor corrections

If you had more additions installed, they would be listed. Now knowing that you have sg84_3 installed,
you can obtain a more thorough description by typing

[U] 29 Using the Internet to keep up to date 389

. ado describe sg84_3

[1] package sg84_3 from https://www.stata.com/stb/stb58

TITLE
STB-58 sg84_3. Concordance correlation coefficient: minor corrections

DESCRIPTION/AUTHOR(S)
STB insert by Thomas J. Steichen, RJRT
Nicholas J. Cox, University of Durham, UK
Support: steicht@rjrt.com, n.j.cox@durham.ac.uk
After installation, see help concord

INSTALLATION FILES
c/concord.ado
c/concord.sthlp

INSTALLED ON
5 Oct 2002

You can erase sg84_3 by typing

. ado uninstall sg84_3

package sg84_3 from https://www.stata.com/stb/stb58
STB-58 sg84_3. Concordance correlation coefficient: minor corrections

(package uninstalled)

You can do all of this from the point-and-click interface, too. Pull down Help and select SJ and
community-contributed commands and then click on List. From there, you can click on sg84_3 to
see the detailed description of the package and from there you can click on click here to uninstall if
you want to erase it.

For more information on the ado command and the corresponding menu, see [R] net.

29.4.3 Finding files to download

There are two ways to find useful files to download. One is simply to thumb through sites. That
is inefficient but entertaining. If you want to do that,

1. Select Help > SJ and community-contributed commands.
2. Click on Other Locations.
3. Click on links.

What you are doing is starting at our download site and then working out from there. We maintain
a list of other sites and those sites will have more links. You can do this from command mode, too:

. net from https://www.stata.com
. net cd links

The efficient way to find files is to search; that is, use Stata’s search command:

. search concordance correlation

Equivalently, you could select Help > Search.... Either way, you will learn about sg&§4_3 and you
can even click to install it.

390 [U] 29 Using the Internet to keep up to date

29.4.4 Updating additions by users

After you have installed some community-contributed features, you should periodically check
whether any updates or bug fixes are available for those commands. You can do this with the ado
update command. Simply type ado update to see if any updates are available, and if they are, type
ado update, update to obtain the updates. See [R] ado update for more details.

29.45 Video example

How to download and install user-written commands in Stata

29.5 Making your own download site

There are two reasons you may wish to create your own download site:

1. You have datasets and the like, you want to share them with colleagues, and you want to make
it easier for colleagues to download the files.

2. You have written Stata programs, etc., that you wish to share with the Stata user community.

Before you create your own download site, you may wish to submit a command you have written
to the Statistical Software Components (SSC) archive. The SSC archive contains the largest repository
of community-contributed Stata software on the web. Stata has a command (see [R] ssc) that makes
it easy to find and install packages from the SSC.

For information about submitting a command you have written to the SSC, see
http://repec.org/bocode/s/sscsubmit.html.

If you do wish to create your own download site, making one is easy; the full instructions are
found in [R] net.

At the beginning of this chapter, we pretended that you had a dataset you wanted to share with
colleagues. We said you just had to copy the dataset onto your server and then let your colleagues
know the dataset is there.

Let’s now pretend that you had two datasets, dsl.dta and ds2.dta, and you wanted your
colleagues to be able to learn about and fetch the datasets by using the net command or by pulling
down Help and selecting SJ and community-contributed commands.

First, you would copy the datasets to your home page just as before. Then you would create three
more files, one to describe your site named stata.toc and two more to describe each “package”
you want to provide:

begin stata.toc
v 3

d My name and affiliation (or whatever other title I choose)

d Datasets for the PAR study

p dsl The base dataset

p ds2 The detail dataset

end stata.toc

https://www.youtube.com/watch?v=3CJ-BTmuFws
http://repec.org/bocode/s/sscsubmit.html

[U] 29 Using the Internet to keep up to date 391

begin ds1.pkg

v 3
d dsl. The base dataset
d My name or whatever else I wanted to put
d This dataset contains the baseline values for ...
d Distribution-Date: 26sep2011
p dsil.dta
end ds1.pkg
begin ds2.pkg
v 3
d ds1. The detail dataset
d My name or whatever else I wanted to put
d This dataset contains the follow-up information ...
d Distribution-Date: 26sep2011
p ds2.dta
end ds2.pkg

The Distribution-Date line in the description should be changed whenever you change your
package. This line is used by ado update to determine if a user who has installed your package
needs to update it.

Here is what users would see when they went to your site:

. net from http://www.myuni.edu/hande/~aparker

http://www.myuni.edu/hande/~aparker
My name and whatever else I wanted to put

Datasets for the PAR study

PACKAGES you could -net describe-:
ds1 The base dataset
ds2 The detail dataset

. net describe dsl

package dsl from http://www.myuni.edu/hande/~aparker

TITLE
dsl. The base dataset

DESCRIPTION/AUTHOR(S)
My name and whatever else I wanted to put
This dataset contains the baseline values for ...
Distribution-Date: 26sep2011

ANCILLARY FILES (type net get dsl)
dsl.dta

. net get dsi
checking dsl consistency and verifying not already installed...

copying into current directory...
copying dsl.dta
ancillary files successfully copied.

See [R] net.

Glossary

ASCIIL. AscHl stands for American Standard Code for Information Interchange. It is a way of
representing text and the characters that form text in computers. It can be divided into two sections:
plain, or lower, ASCII, which includes numbers, punctuation, plain letters without diacritical marks,
whitespace characters such as space and tab, and some control characters such as carriage return;
and extended ASCII, which includes letters with diacritical marks as well as other special characters.

Before Stata 14, datasets, do-files, ado-files, and other Stata files were encoded using ASCII.

binary 0. Binary 0, also known as the null character, is traditionally used to indicate the end of a
string, such as an ASCII or UTF-8 string.

Binary O is obtained by using char(0) and is sometimes displayed as \0. See [U] 12.4.10 strL
variables and binary strings for more information.

binary string. A binary string is, technically speaking, any string that does not contain text. In Stata,
however, a string is only marked as binary if it contains binary 0, or if it contains the contents of
a file read in using the fileread () function, or if it is the result of a string expression containing
a string that has already been marked as binary.

In Stata, strL variables, string scalars, and Mata strings can store binary strings.
See [U] 12.4.10 strL variables and binary strings for more information.

BLOB. BLOB is database jargon for binary large object. In Stata, BLOBs can be stored in strLs.
Thus strLs can contain BLOBs such as Word documents, JPEG images, or anything else. See strL.

byte. Formally, a byte is eight binary digits (bits), the units used to record computer data. Each byte
can also be considered as representing a value from 0 through 255. Do not confuse this with Stata’s
byte variable storage type, which allows values from —127 to 100 to be stored. With regard to
strings, all strings are composed of individual characters that are encoded using either one byte or
several bytes to represent each character.
For example, in UTF-8, the encoding system used by Stata, byte value 97 encodes “a”. Byte values

g9

195 and 161 in sequence encode “a”.

characteristics. Characteristics are one form of metadata about a Stata dataset and each of the
variables within the dataset. They are typically used in programming situations. For example, the
xt commands need to know the name of the panel variable and possibly the time variable. These
variable names are stored in characteristics within the dataset. See [U] 12.8 Characteristics for
an overview and [P] char for a technical description.

code pages. A code page maps extended ASCII values to a set of characters, typically for a specific
language or set of languages. For example, the most commonly used code page is Windows-1252,
which maps extended ASCII values to characters used in Western European languages. Code pages
are essentially encodings for extended ASCII characters.

code point. A code point is the numerical value or position that represents a single character in
a text system such as ASCII or Unicode. The original ASCII encoding system contains only 128
code points and thus can represent only 128 characters. Historically, the 128 additional bytes of
extended ASCII have been encoded in many different and inconsistent ways to provide additional
sets of 128 code points. The formal Unicode specification has 1,114,112 possible code points, of
which roughly 250,000 have been assigned to actual characters. Stata uses UTF-8 encoding for
Unicode. Note that the UTF-8—encoded version of a code point does not have the same numeric
value as the code point itself.

392

393

disambiguation: characters, and bytes, and display columns. A character is simply the letter or
symbol that you want to represent—the letter “a”, the punctuation mark “.”, or a Chinese logogram.
A byte or sequence of bytes is how that character is stored in the computer. And, a display column
is the space required to display one typical character in the fixed-width display used by Stata’s
Results window and Viewer. Some characters are too wide for one display column. Each character
is displayed in one or two display columns.

For plain ASCII characters, the number of characters always equals the number of bytes and equals
the number of display columns.

For UTF-8 characters that are not plain ASCII, there are usually two bytes per character but there
are sometimes three or even four bytes per character, such as for Chinese, Japanese, and Korean
(CIK) characters. Characters that are too wide to fit in one display column (such as CJK characters)
are displayed in two display columns.

In general, for Unicode characters, the relationship between the number of characters and the
number of bytes and the relationship between the number of characters and the number of display
columns is more ambiguous. All characters can be stored in four or fewer bytes and are displayed
in Stata using two or fewer display columns.

See [U] 12.4.2.1 Unicode string functions and [U] 12.4.2.2 Displaying Unicode characters to
learn how to deal with the distinction between characters, bytes, and display columns in your code.

display column. A display column is the space required to display one typical character in the
fixed-width display used by Stata’s Results window and Viewer. Some characters are too wide for
one display column. Each character is displayed in one or two display columns.

All plain ASCII characters (for example, “M” and “9”) and many UTF-8 characters that are not
plain ASCII (for example, “é”) require the same space when using a fixed-width font. That is to
say, they all require a single display column.

Characters from non-Latin alphabets, such as Chinese, Cyrillic, Japanese, and Korean, may require
two display columns.

See [U] 12.4.2.2 Displaying Unicode characters for more information.

display format. The display format for a variable specifies how the variable will be displayed by Stata.
For numeric variables, the display format would indicate to Stata how many digits to display, how
many decimal places to display, whether to include commas, and whether to display in exponential
format. Numeric variables can also be formatted as dates. For strings, the display format indicates
whether the variable should be left-aligned or right-aligned in displays and how many characters
to display. Display formats may be specified by the format command. Display formats may also
be used with individual numeric or string values to control how they are displayed. Distinguish
display formats from storage types.

encodings. An encoding is a way of representing a character as a byte or series of bytes. Examples
of encoding systems are ASCII and UTF-8. Stata uses UTF-8 encoding.

For more information, see [U] 12.4.2.3 Encodings.

extended ASCII. Extended ASCII, also known as higher ASCII, is the byte values 128 to 255, which
were not defined as part of the original ASCII specification. Various code pages have been defined
over the years to map the extended ASCII byte values to many characters not supported in the
original ASCII specification, such as Latin letters with diacritical marks, such as “4” and “A”;
non-Latin alphabets, such as Chinese, Cyrillic, Japanese, and Korean; punctuation marks used in
non-English languages, such as “<”, complex mathematical symbols such as “+”, and more.

Although extended ASCII characters are stored in a single byte in ASCII encoding, UTF-8 stores the
same characters in two to four bytes. Because each code page maps the extended ASCII values

394

differently, another distinguishing feature of extended ASCII characters is that their meaning can
change across fonts and operating systems.

frames. Frames, also known as data frames, are in-memory areas where datasets are analyzed. Stata
can hold multiple datasets in memory, and each dataset is held in a memory area called a frame.
A variety of commands exist to manage frames and manipulate the data in them. See [D] frames.

higher ASCII. See extended ASCII.

immediate command. An immediate command is a command that obtains data not from the data
stored in memory but from numbers typed as arguments. Immediate commands never disturb the
data in memory. See [U] 19 Immediate commands for an overview.

locale. A locale is a code that identifies a community with a certain set of rules for how their language
should be written. A locale can refer to something as general as an entire language (for example,
“en” for English) or something as specific as a language in a particular country (for example,
“en_HK” for English in Hong Kong).

A locale specifies a set of rules that govern how the language should be written. Stata uses locales
to determine how certain language-specific operations are carried out. For more information, see
[U] 12.4.2.4 Locales in Unicode.

lower ASCII. See plain ASCIL
null-terminator. See binary 0.

numlist. A numlist is a list of numbers. That list can be one or more arbitrary numbers or can use
certain shorthands to indicate ranges, such as 5/9 to indicate integers 5, 6, 7, 8, and 9. Ranges
can be ascending or descending and can include an optional increment or decrement amount, such
as 10.5(-2)4.5 to indicate 10.5, 8.5, 6.5, and 4.5. See [U] 11.1.8 numlist for a list of shorthands
to indicate ranges.

option. A Stata option is a modifier to a Stata command that indicates additional specifications for the
command. For example, the detail option of summarize asks Stata to specify additional statistics.
An option is always specified following a comma after the Stata command. See [U] 11.1.7 options.

plain ASCIIL. We use plain ASCII as a nontechnical term to refer to what computer programmers call
lower ASCII. These are the plain Latin letters “a” to “z” and “A” to “Z”’; numbers “0” through “9”;
many punctuation marks, such as “!”’; simple mathematical symbols, such as “+”; and whitespace
and control characters such as space (“), tab, and carriage return.

Each plain ASCII characters is stored as a single byte with a value between 0 and 127. Another
distinguishing feature is that the byte values used to encode plain ASCII characters are the same
across different operating systems and are common between ASCII and UTF-8.

Also see ASCII and encodings.

prefix command. A prefix command is a command in Stata that prefixes other Stata com-
mands. For example, by varlist:. The command by region: summarize marriage_rate di-
vorce_rate would summarize marriage_rate and divorce_rate for each region separately.
See [U] 11.1.10 Prefix commands.

storage types. A storage type is how Stata stores a variable. The numeric storage types in Stata are
byte, int, long, float, and double. There is also a string storage type. The storage type is
specified before the variable name when a variable is created. See [U] 12.2.2 Numeric storage
types, [U] 12.4 Strings, and [D] Data types. Distinguish storage types from display formats.

strl, str2, ..., str2045. See strl.

strL. strL is a storage type for string variables. The full list of string storage types is stril, str2,
., str2045, and strL.

395

stril, str2, ..., str2045 are fixed-length storage types. If variable mystr is str8, then 8§ bytes
are allocated in each observation to store mystr’s value. If you have 2,000 observations, then
16,000 bytes in total are allocated.

Distinguish between storage length and string length. If myvar is str8, that does not mean the
strings are 8 characters long in every observation. The maximum length of strings is 8 characters.
Individual observations may have strings of length 0, 1, ..., 8. Even so, every string requires
8 bytes of storage.

You need not concern yourself with the storage length because string variables are automatically
promoted. If myvar is str8, and you changed the contents of myvar in the third observation to
“Longer than 87, then myvar would automatically become str13.

If you changed the contents of myvar in the third observation to a string longer than 2,045
characters, myvar would become strL.

strL variables are not necessarily longer than 2,045 characters; they can be longer or shorter than
2,045 characters. The real difference is that strL variables are stored as varying length. Pretend that
myothervar is a strL and its third observation contains “this”. The total memory consumed by
the observation would be 64 -4 41 = 69 bytes. There would be 64 bytes of tracking information,
4 bytes for the contents (there are 4 characters), and 1 more byte to terminate the string. If the fifth
observation contained a 2,000,000-character string, then 64 + 2,000,000 + 1 = 2,000,069 bytes
would be used to store it.

Another difference between stri, str2, ..., str2045, and strLs is that the str# storage types
can store only ASCII strings. strL can store ASCII or binary strings. Thus a strL variable could
contain, for instance, the contents of a Word document or a JPEG image or anything else.

strL is pronounce sturl.

titlecase, title-cased string, and Unicode title-cased string. In grammar, titlecase refers to the
capitalization of the key words in a phrase. In Stata, titlecase refers to (a) the capitalization of
the first letter of each word in a string and (b) the capitalization of each letter after a nonletter
character. There is no judgment of the word’s importance in the string or whether the letter after

LT

a nonletter character is part of the same word. For example, “it’s” in titlecase is “It’S”.

A title-cased string is any string to which the above rules have been applied. For example, if we
used the strproper () function with the book title Zen and the Art of Motorcycle Maintenance,
Stata would return the title-cased string Zen And The Art Of Motorcycle Maintenance.

A Unicode title-cased string is a string that has had Unicode title-casing rules applied to Unicode
words. This is almost, but not exactly, like capitalizing the first letter of each Unicode word. Like
capitalization, title-casing letters is locale-dependent, which means that the same letter might have
different titlecase forms in different locales. For example, in some locales, capital letters at the
beginning of words are not supposed to have accents on them, even if that capital letter by itself
would have an accent.

If you do not have characters beyond plain ASCII and your locale is English, there is no distinction in
results. For example, ustrtitle() with an English locale locale also would return the title-cased
string Zen And The Art Of Motorcycle Maintenance.

Use the ustrtitle() function to apply the appropriate capitalization rules for your language
(locale).

Unicode. Unicode is a standard for encoding and dealing with text written in almost any conceivable
living or dead language. Unicode specifies a set of encoding systems that are designed to hold
(and, unlike extended ASCII, to keep separate) characters used in different languages. The Unicode
standard defines not only the characters and encodings for them, but also rules on how to perform

396

various operations on words in a given language (locale), such as capitalization and ordering. The
most common Unicode encodings are mUTF-8, UTF-16, and UTF-32. Stata uses UTF-8.

Unicode character. Technically, a Unicode character is any character with a Unicode encoding.
Colloquially, we use the term to refer to any character other than the plain ASCII characters.

Unicode normalization. Unicode normalization allows us to use a common representation and therefore
compare Unicode strings that appear the same when displayed but could have more than one way
of being encoded. This rarely arises in practice, but because it is possible in theory, Stata provides
the ustrnormalize() function for converting between different normalized forms of the same
string.

For example, suppose we wish to search for “fi” (the lowercase n with a tilde over it from the Spanish
alphabet). This letter may have been encoded with the single code point U+00F1. However, the
sequence U+006E (the Latin lowercase “n”) followed by U+0303 (the tilde) is defined by Unicode
to be equivalent to U+00F1. This type of visual identicalness is called canonical equivalence. The
one-code-point form is known as the canonical composited form, and the multiple-code-point form
is known as the canonical decomposed form. Normalization modifies one or the other string to the
opposite canonical equivalent form so that the underlying byte sequences match. If we had strings
in a mixture of forms, we would want to use this normalization when sorting or when searching
for strings or substrings.

Another form of Unicode normalization allows characters that appear somewhat different to be
given the same meaning or interpretation. For example, when sorting or indexing, we may want
the code point U+FBOO (the typographic ligature “ff””) to match the sequence of two Latin “f”
letters encoded as U+0066 U+0066. This is called compatible equivalence.

Unicode title-cased string. See titlecase, title-cased string, and Unicode title-cased string.

UTF-8. UTF-8 stands for Universal character set + Transformation Format—S8-bit. It is a type of
Unicode encoding system that was designed for backward compatibility with ASCII and is used by
Stata 14.

value label. A value label defines a mapping between numeric data and the words used to describe
what those numeric values represent. So, the variable disease might have a value label status
associated with it that maps 1 to positive and O to negative. See [U] 12.6.3 Value labels.

varlist. A varlist is a list of variables that observe certain conventions: variable names may be
abbreviated; the asterisk notation can be used as a shortcut to refer to groups of variables, such
as income* or *1995 to refer to all variable names beginning with income or all variable names
ending in 1995, respectively; and a dash may be used to indicate all variables stored between the
two listed variables, for example, mpg-weight. See [U] 11.4 varname and varlists.

Subject and author index

See the combined subject index and the combined author index in the Glossary and Index.

397

	Contents
	[IG] Installation Guide
	Simple installation
	Before you install
	Stata for Windows installation
	Stata for Mac installation
	Stata for Unix installation

	Installing Stata for Windows
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Creating network shortcuts
	Other ways to start Stata
	Exiting Stata
	Verifying installation

	Installing Stata for Mac
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Warning against multiple Stata applications
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Other ways to start Stata
	Exiting Stata

	Installing Stata for Unix
	Installation overview
	Find your installation DVD and paper license
	Obtain superuser access
	Create a directory for Stata
	Upgrading
	Install Stata
	Initialize the license
	Set the message of the day (optional)
	Verify that Stata is working
	Modify shell start-up script
	Update Stata if necessary
	Starting Stata
	Exiting Stata
	Troubleshooting Unix installation
	Troubleshooting Unix start-up
	Stata(console) starts but Stata(GUI) does not

	Platforms and flavors
	Available platforms
	Available flavors

	Documentation

	[GS] Getting Started
	[GSM] Mac
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Sidebar
	The Variables window
	The Properties window
	The History window
	Tabs
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View > Do-file Editor menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Other ways to launch Stata
	B.3 Stata batch mode
	B.4 Changing Stata's locale
	B.5 More
	B.6 Memory size considerations

	C More on Stata for Mac
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Stata and the Notification Manager
	C.4 Stata(console) for Mac

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[GSU] Unix
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Variables window
	The Properties window
	The History window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer in Stata(GUI)
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor in Stata(GUI)
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager in Stata(GUI)
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting in Stata(GUI)
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor in Stata(GUI)
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata(GUI) and Stata(console) do not start
	A.2 If Stata(console) starts but Stata(GUI) does not
	A.3 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Advanced starting of Stata for Unix
	B.3 Stata batch mode
	B.4 Using X Windows remotely
	B.5 Summary of environment variables
	B.6 Changing Stata's locale
	B.7 More
	B.8 Memory size considerations

	C Stata manual pages for Unix
	conren
	Syntax
	Description
	Finding a color scheme
	Can your terminal underline?
	If you had success
	If you did not have success
	Also see

	stata
	Syntax
	Description
	Remarks and examples

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[GSW] Windows
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Variables window
	The Properties window
	The History window
	Menus and dialogs
	The working directory
	Fine control of Stata's windows
	Window types
	Docking windows
	Auto Hide and pinning
	Nondocking windows

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 The Windows Properties Sheet
	B.2 Making shortcuts
	B.3 Executing commands every time Stata is started
	B.4 Other ways to launch Stata
	B.5 Stata batch mode
	B.6 Running simultaneous Stata sessions
	B.7 Changing Stata's locale
	B.8 More
	B.9 Memory size considerations

	C More on Stata for Windows
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Installing Stata for Windows on a network drive
	C.4 Changing a Stata for Windows license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[U] User's Guide
	Contents
	Stata basics
	1 Read this---it will help
	1.1 Getting Started with Stata
	1.2 The User's Guide and the Reference manuals
	1.3 What's new
	1.4 References

	2 A brief description of Stata
	3 Resources for learning and using Stata
	3.1 Overview
	3.2 Stata on the Internet (www.stata.com and other resources)
	3.3 Stata Press
	3.4 The Stata Journal
	3.5 Updating and adding features from the web
	3.6 Conferences and training
	3.7 Books and other support materials
	3.8 Technical support
	3.9 References

	4 Stata's help and search facilities
	4.1 Introduction
	4.2 Getting started
	4.3 help: Stata's help system
	4.4 Accessing PDF manuals from help entries
	4.5 Searching
	4.6 More on search
	4.7 More on help
	4.8 search: All the details
	4.9 net search: Searching net resources

	5 Flavors of Stata
	5.1 Platforms
	5.2 Stata/MP, Stata/SE, or Stata/IC
	5.3 Size limits of Stata/MP, SE, and IC
	5.4 Speed comparison of Stata/MP, SE, and IC
	5.5 Feature comparison of Stata/MP, SE, and IC

	6 Managing memory
	6.1 Memory-size considerations
	6.2 Compressing data
	6.3 Setting maxvar
	6.4 The memory command
	6.5 Setting aside memory for temporary storage of preserved datasets

	7 --more-- conditions
	7.1 Description
	7.2 set more
	7.3 The more programming command

	8 Error messages and return codes
	8.1 Making mistakes
	8.2 The return message for obtaining command timings

	9 The Break key
	9.1 Making Stata stop what it is doing
	9.2 Side effects of clicking on Break
	9.3 Programming considerations

	10 Keyboard use
	10.1 Description
	10.2 F-keys
	10.3 Editing keys in Stata
	10.4 Editing keys in Stata for Unix(console)
	10.5 Editing previous lines in Stata
	10.6 Tab expansion of variable names

	Elements of Stata
	11 Language syntax
	11.1 Overview
	11.2 Abbreviation rules
	11.3 Naming conventions
	11.4 varname and varlists
	11.5 by varlist: construct
	11.6 Filenaming conventions
	11.7 References

	12 Data
	12.1 Data and datasets
	12.2 Numbers
	12.3 Dates and times
	12.4 Strings
	12.5 Formats: Controlling how data are displayed
	12.6 Dataset, variable, and value labels
	12.7 Notes attached to data
	12.8 Characteristics
	12.9 Data Editor and Variables Manager
	12.10 Data frames
	12.11 References

	13 Functions and expressions
	13.1 Overview
	13.2 Operators
	13.3 Functions
	13.4 System variables (_variables)
	13.5 Accessing coefficients and standard errors
	13.6 Accessing results from Stata commands
	13.7 Explicit subscripting
	13.8 Using the Expression Builder
	13.9 Indicator values for levels of factor variables
	13.10 Time-series operators
	13.11 Label values
	13.12 Precision and problems therein
	13.13 References

	14 Matrix expressions
	14.1 Overview
	14.2 Row and column names
	14.3 Vectors and scalars
	14.4 Inputting matrices by hand
	14.5 Accessing matrices created by Stata commands
	14.6 Creating matrices by accumulating data
	14.7 Matrix operators
	14.8 Matrix functions
	14.9 Subscripting
	14.10 Using matrices in scalar expressions
	14.11 Reference

	15 Saving and printing output---log files
	15.1 Overview
	15.2 Placing comments in logs
	15.3 Logging only what you type
	15.4 The log-button alternative
	15.5 Printing logs
	15.6 Creating multiple log files for simultaneous use

	16 Do-files
	16.1 Description
	16.2 Calling other do-files
	16.3 Creating and running do-files
	16.4 Programming with do-files
	16.5 References

	17 Ado-files
	17.1 Description
	17.2 What is an ado-file?
	17.3 How can I tell if a command is built in or an ado-file?
	17.4 How can I look at an ado-file?
	17.5 Where does Stata look for ado-files?
	17.6 How do I install an addition?
	17.7 How do I add my own ado-files?
	17.8 How do I install official updates?
	17.9 How do I install updates to community-contributed additions?
	17.10 References

	18 Programming Stata
	18.1 Description
	18.2 Relationship between a program and a do-file
	18.3 Macros
	18.4 Program arguments
	18.5 Scalars and matrices
	18.6 Temporarily destroying the data in memory
	18.7 Temporary objects
	18.8 Accessing results calculated by other programs
	18.9 Accessing results calculated by estimation commands
	18.10 Storing results
	18.11 Ado-files
	18.12 Tools for interacting with programs outside Stata and with other languages
	18.13 A compendium of useful commands for programmers
	18.14 References

	19 Immediate commands
	19.1 Overview
	19.2 The display command
	19.3 The power command

	20 Estimation and postestimation commands
	20.1 All estimation commands work the same way
	20.2 Standard syntax
	20.3 Replaying prior results
	20.4 Cataloging estimation results
	20.5 Saving estimation results
	20.6 Specification search tools
	20.7 Specifying the estimation subsample
	20.8 Specifying the width of confidence intervals
	20.9 Formatting the coefficient table
	20.10 Obtaining the variance--covariance matrix
	20.11 Obtaining predicted values
	20.12 Accessing estimated coefficients
	20.13 Performing hypothesis tests on the coefficients
	20.14 Obtaining linear combinations of coefficients
	20.15 Obtaining nonlinear combinations of coefficients
	20.16 Obtaining marginal means, adjusted predictions, and predictive margins
	20.17 Obtaining conditional and average marginal effects
	20.18 Obtaining pairwise comparisons
	20.19 Obtaining contrasts, tests of interactions, and main effects
	20.20 Graphing margins, marginal effects, and contrasts
	20.21 Dynamic forecasts and simulations
	20.22 Obtaining robust variance estimates
	20.23 Obtaining scores
	20.24 Weighted estimation
	20.25 A list of postestimation commands
	20.26 References

	21 Creating reports
	21.1 Overview
	21.2 The dynamic document commands
	21.3 The putdocx, putpdf, and putexcel commands

	Advice
	22 Entering and importing data
	22.1 Overview
	22.2 Determining which method to use
	22.3 If you run out of memory
	22.4 ODBC sources

	23 Combining datasets
	23.1 References

	24 Working with strings
	24.1 Description
	24.2 Categorical string variables
	24.3 Mistaken string variables
	24.4 Complex strings
	24.5 References

	25 Working with dates and times
	25.1 Overview
	25.2 Inputting dates and times
	25.3 Displaying dates and times
	25.4 Typing dates and times (datetime literals)
	25.5 Extracting components of dates and times
	25.6 Converting between date and time values
	25.7 Business dates and calendars
	25.8 References

	26 Working with categorical data and factor variables
	26.1 Continuous, categorical, and indicator variables
	26.2 Estimation with factor variables
	26.3 References

	27 Overview of Stata estimation commands
	27.1 Introduction
	27.2 Means, proportions, and related statistics
	27.3 Continuous outcomes
	27.4 Binary outcomes
	27.5 Fractional outcomes
	27.6 Ordinal outcomes
	27.7 Categorical outcomes
	27.8 Count outcomes
	27.9 Generalized linear models
	27.10 Choice models
	27.11 Exact estimators
	27.12 Models with endogenous covariates
	27.13 Models with endogenous sample selection
	27.14 Time-series models
	27.15 Panel-data models
	27.16 Multilevel mixed-effects models
	27.17 Survival analysis models
	27.18 Meta-analysis
	27.19 Spatial autoregressive models
	27.20 Treatment-effects models
	27.21 Pharmacokinetic data
	27.22 Multivariate analysis
	27.23 Generalized method of moments (GMM)
	27.24 Structural equation modeling (SEM)
	27.25 Latent class models
	27.26 Finite mixture models (FMMs)
	27.27 Item response theory (IRT)
	27.28 Dynamic stochastic general equilibrium (DSGE) models
	27.29 Lasso
	27.30 Survey data
	27.31 Multiple imputation
	27.32 Power, precision, and sample-size analysis
	27.33 Bayesian analysis
	27.34 Reference

	28 Commands everyone should know
	29 Using the Internet to keep up to date
	29.1 Overview
	29.2 Sharing datasets (and other files)
	29.3 Official updates
	29.4 Downloading and managing additions by users
	29.5 Making your own download site

	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	L
	N
	O
	P
	S
	T
	U
	V

	[BAYES] Bayesian Analysis
	Contents
	Intro
	Description
	Remarks and examples
	What is Bayesian analysis?
	Bayesian versus frequentist analysis, or why Bayesian analysis?
	How to do Bayesian analysis
	Advantages and disadvantages of Bayesian analysis
	Brief background and literature review
	Bayesian statistics
	Posterior distribution
	Selecting priors
	Point and interval estimation
	Comparing Bayesian models
	Posterior prediction

	Bayesian computation
	Markov chain Monte Carlo methods
	Metropolis--Hastings algorithm
	Adaptive random-walk Metropolis--Hastings
	Blocking of parameters
	Metropolis--Hastings with Gibbs updates
	Convergence diagnostics of MCMC

	Summary
	Video examples

	References
	Also see

	Bayesian commands
	Description
	Remarks and examples
	Overview example

	Acknowledgments
	References
	Also see

	Bayesian estimation
	Description
	Video examples
	Also see

	bayes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using the bayes prefix
	Likelihood model
	Default priors
	Initial values
	Command-specific options

	Introductory example
	Linear regression: A case of informative default priors
	Logistic regression with perfect predictors
	Multinomial logistic regression
	Generalized linear model
	Truncated Poisson regression
	Zero-inflated negative binomial model
	Parametric survival model
	Heckman selection model
	Multilevel models
	Two-level models
	Crossed-effects model

	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	bayesmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesmh
	Setting up a posterior model
	Likelihood model
	Prior distributions
	Declaring model parameters
	Referring to model parameters
	Specifying arguments of likelihood models and prior distributions
	Substitutable expressions
	Checking model specification

	Specifying MCMC sampling procedure
	Reproducing results
	Burn-in period and MCMC sample size
	Improving efficiency of the MH algorithm---blocking of parameters
	Gibbs and hybrid MH sampling
	Adaptation of the MH algorithm
	Specifying initial values

	Summarizing and reporting results
	Posterior summaries and credible intervals
	Saving MCMC results

	Convergence of MCMC
	Video examples
	Getting started examples
	Mean of a normal distribution with a known variance
	Mean of a normal distribution with an unknown variance
	Simple linear regression
	Multiple linear regression
	Improving efficiency of the MH sampling

	Convergence diagnostics using multiple chains
	Multiple chains using default initial values
	Multiple chains using overdispersed initial values

	Bayesian predictions
	Simulating replicated outcomes
	Posterior predictive checks

	Logistic regression model: A case of nonidentifiable parameters
	Ordered probit regression
	Beta-binomial model
	Multivariate regression
	Panel-data and multilevel models
	Two-level random-intercept model or panel-data model
	Linear growth curve model---a random-coefficient model
	Mixed-effects logistic regression

	Bayesian analysis of change-point problem
	Bioequivalence in a crossover trial
	Random-effects meta-analysis of clinical trials
	Item response theory

	Stored results
	Methods and formulas
	Adaptive MH algorithm
	Adaptive MH algorithm for random effects
	Gibbs sampling for some likelihood-prior and prior-hyperprior configurations
	Likelihood-prior configurations
	Prior-hyperprior configurations

	Marginal likelihood

	References
	Also see

	bayesmh evaluators
	Description
	Syntax
	Options
	Remarks and examples
	Program evaluators
	Simple linear regression model
	Logistic regression model
	Multivariate normal regression model
	Cox proportional hazards regression
	Global macros

	Stored results
	Reference
	Also see

	Bayesian postestimation
	Postestimation commands
	Remarks and examples
	Different ways of specifying model parameters
	Specifying functions of model parameters
	Storing estimation results after Bayesian estimation
	Different ways of specifying predictions and their functions

	Also see

	bayesgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesgraph
	Examples
	Trace plots
	Autocorrelation plots
	Histogram plots
	Kernel density plots
	Cumulative sum plots
	Bivariate scatterplots
	Diagnostic plots
	Functions of model parameters

	Methods and formulas
	References
	Also see

	bayesstats
	Description
	Also see

	bayesstats ess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Effective sample size and MCMC sampling efficiency
	Using bayesstats ess

	Stored results
	Methods and formulas
	Also see

	bayesstats grubin
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Gelman--Rubin convergence diagnostic
	Using bayesstats grubin

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats ic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Bayesian information criteria
	Bayes factors
	Using bayesstats ic

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats ppvalues
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Posterior predictive checks
	PPPs
	Nonlinear effect of labor and capital on companies' output

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats summary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Bayesian summaries for an auto data example

	Stored results
	Methods and formulas
	Point estimates
	Credible intervals

	References
	Also see

	bayestest
	Description
	Remarks and examples
	Also see

	bayestest interval
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Interval tests for continuous parameters
	Interval tests for discrete parameters

	Stored results
	Methods and formulas
	Reference
	Also see

	bayestest model
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Testing nested hypotheses
	Comparing models with different priors

	Stored results
	Methods and formulas
	Also see

	bayespredict
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for predictions
	Options for posterior summaries
	Options for bayesreps

	Remarks and examples
	Overview of Bayesian predictions
	Prior and posterior predictive distributions
	Simulated outcomes
	Posterior predictive checking and replicated outcomes

	Using bayespredict and bayesreps
	Generating and saving simulated outcomes
	Defining test statistics using Mata functions
	User-defined Stata programs
	Posterior summaries of simulated outcomes
	Prediction dataset

	Bayesian predictions
	Posterior predictive inference
	Out-of-sample prediction

	Stored results
	Methods and formulas
	Posterior predictive distribution
	MCMC sampling from posterior predictive distribution
	Residuals and expected values

	References
	Also see

	set clevel
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	bayes: betareg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: binreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: biprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: clogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: cloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: fracreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: glm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: gnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckman
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetregress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: intreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: logistic
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: logit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: mecloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meglm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Additional model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: meintreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: melogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: menbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mepoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mestreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Ancillary model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: metobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mixed
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mvreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: nbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: ologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: oprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: poisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: probit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: regress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Video examples

	Stored results
	Methods and formulas
	Also see

	bayes: streg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Ancillary model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: tnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: tobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: tpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: truncreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zinb
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zioprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zip
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	Reference

	[CM] Choice Models
	Contents
	Intro
	Description
	Remarks and examples
	Introductions
	Declaring and summarizing data
	Fitting choice models
	Postestimation
	Glossary

	Intro 1
	Description
	Remarks and examples
	Interpretation of coefficients
	Inferences from margins
	Expected choice probabilities
	Effects of a continuous covariate
	Effects of a categorical covariate
	Effects of an alternative-specific covariate

	More inferences using margins

	Also see

	Intro 2
	Description
	Remarks and examples
	Data layout for choice models
	cmset: Cross-sectional data
	cmset: Panel data

	Also see

	Intro 3
	Description
	Remarks and examples
	cmchoiceset: Tabulating choice sets
	cmsample: Looking at problem observations
	cmtab: Tabulating chosen alternatives versus other variables
	cmsummarize: Descriptive statistics for CM variables

	Also see

	Intro 4
	Description
	Remarks and examples
	Specialized choice model commands
	Other commands for choice models
	Models for cross-sectional data
	Models for panel data
	Multilevel models for clustered data

	Intro 5
	Description
	Remarks and examples
	Overview of CM commands for discrete choices
	cmclogit: McFadden's choice model
	Looking at cases with missing values using cmsample
	margins after CM estimation
	cmmixlogit: Mixed logit choice models
	cmmprobit: Multinomial probit choice models
	nlogit: Nested logit choice models
	Relationships with other estimation commands
	Duplicating cmclogit using clogit
	Multinomial logistic regression and McFadden's choice model

	Estimation considerations
	Setting the number of integration points
	Convergence
	More than one chosen alternative

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Overview of CM commands for rank-ordered alternatives
	cmroprobit: Probit regression for rank-ordered alternatives
	Expected choice probabilities (the margins command) after cmroprobit
	cmrologit: Logistic regression for rank-ordered alternatives

	References
	Also see

	Intro 7
	Description
	Remarks and examples
	Data layout for panel choice data
	A cmxtmixlogit model
	Time-series operators
	Using other cm estimation commands with panel data

	Also see

	Intro 8
	Description
	Remarks and examples
	Random utility models
	Alternative-specific variables and case-specific variables
	Independence of irrelevant alternatives
	Estimators that do not assume IIA
	Maximum simulated likelihood

	References
	Also see

	cmchoiceset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmclogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmclogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Testing coefficient estimates
	Predicted probabilities
	Casewise versus alternativewise sample selection

	Obtaining estimation statistics for the alternatives

	Also see

	cmmixlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmmixlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	cmmprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The multinomial probit model
	Covariance structures
	Applying constraints to correlation parameters

	Convergence problems

	Stored results
	Methods and formulas
	Overview
	Simulated likelihood

	References
	Also see

	cmmprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat covariance, estat correlation, and estat facweights

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Also see

	cmrologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Examples
	Comparing respondents
	Incomplete rankings and ties
	Clustered choice data
	Comparison of cmrologit and clogit
	On reversals of rankings

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cmrologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cmroprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	cmroprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat covariance, estat correlation, and estat facweights

	Remarks and examples
	Also see

	cmsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmsummarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cmtab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmxtmixlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmxtmixlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Estimating margins for case-specific variables
	Estimating margins for alternative-specific variables
	The altsubpop suboption for unbalanced choice sets
	More on unbalanced choice sets
	The outcomecontrast() and alternativecontrast() suboptions

	Graphing margins results

	Stored results
	Also see

	nlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Specification and options for lev#_equation
	Options for nlogit
	Specification and options for nlogitgen
	Specification and options for nlogittree

	Remarks and examples
	Introduction
	Data setup and the tree structure
	Estimation
	Testing for the IIA
	Nonnormalized model

	Stored results
	Methods and formulas
	Two-level nested logit model
	Three-level nested logit model

	References
	Also see

	nlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	Glossary

	[D] Data Management
	Contents
	Intro
	Description
	Also see

	Data management
	Description
	References
	Also see

	append
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Reference
	Also see

	assert
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	assertnested
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	bcal
	Description
	Quick start
	Menu
	Syntax
	Option for bcal check
	Options for bcal create
	Remarks and examples
	Stored results
	Reference
	Also see

	by
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	cd
	Description
	Quick start
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix

	Also see

	cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Also see

	changeeol
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	checksum
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	clear
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	clonevar
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Acknowledgments
	Also see

	codebook
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Variablewise or casewise deletion
	Weights
	A final example

	Acknowledgment
	Also see

	compare
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	compress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Also see

	contract
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	copy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	corr2data
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	count
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	cross
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	Data types
	Description
	Remarks and examples
	Precision of numeric storage types

	Also see

	datasignature
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using datasignature interactively
	Using datasignature in do-files
	Interpreting data signatures
	The logic of data signatures

	Stored results
	Methods and formulas
	Reference
	Also see

	Datetime
	Description
	Quick start
	Syntax
	Types of dates and how they are displayed
	How Stata dates are stored
	Converting dates stored as strings to Stata dates
	Formatting Stata dates for display
	Creating dates from components
	Converting among units
	Extracting time-of-day components from datetimes
	Extracting date components from daily dates
	Typing dates into expressions

	Remarks and examples
	Introduction
	Example 1: Converting string datetimes to Stata datetimes
	Example 2: Extracting date components
	Example 3: Building dates from components
	Example 4: Converting among date types
	Example 5: Using dates in expressions

	References
	Also see

	Datetime business calendars
	Description
	Syntax
	Remarks and examples
	Step 1: Read the data, date as string
	Step 2: Convert date variable to %td date
	Step 3: Convert %td date to %tb date
	Key feature: Each business calendar has its own encoding
	Key feature: Omitted dates really are omitted
	Key feature: Extracting components from %tb dates
	Key feature: Merging on dates

	Also see

	Datetime business calendars creation
	Description
	Syntax
	Remarks and examples
	Introduction
	Concepts
	The preliminary commands
	The omit commands: from/to and if
	The omit commands: and
	The omit commands: omit date
	The omit commands: omit dayofweek
	The omit commands: omit dowinmonth
	Creating stbcal-files with bcal create
	Where to place stbcal-files
	How to debug stbcal-files
	Ideas for calendars that may not occur to you

	Also see

	Datetime conversion
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Specifying the mask
	How the conversion functions interpret the mask
	Working with two-digit years
	Working with incomplete dates and times
	Converting run-together dates, such as 20060125
	Valid times
	The clock() and Clock() functions
	Why there are two datetime encodings
	Advice on using datetime/c and datetime/C
	Determining when leap seconds occurred
	The date() function
	The other conversion functions

	Reference
	Also see

	Datetime display formats
	Description
	Quick start
	Syntax
	Remarks and examples
	Specifying display formats
	Times are truncated, not rounded, when displayed

	Also see

	Datetime durations
	Description
	Quick start
	Syntax
	Functions for calculating durations
	Functions for converting units of a duration

	Remarks and examples
	Calculating ages and differences of dates
	Calculating differences of datetimes

	Reference
	Also see

	Datetime relative dates
	Description
	Quick start
	Syntax
	Remarks and examples
	Birthdays and anniversaries
	Determining leap years

	Also see

	Datetime values from other software
	Description
	Remarks and examples
	Introduction
	Converting SAS dates
	Converting SPSS dates
	Converting R dates
	Converting Excel dates
	Example 1: Converting Excel dates to Stata dates

	Converting OpenOffice dates
	Converting Unix time

	Reference
	Also see

	describe
	Description
	Quick start
	Menu
	Syntax
	Options to describe data in memory
	Options to describe data in file
	Remarks and examples
	describe
	describe, replace

	Stored results
	References
	Also see

	destring
	Description
	Quick start
	Menu
	Syntax
	Options for destring
	Options for tostring
	Remarks and examples
	destring
	tostring
	Saved characteristics
	Video example

	Acknowledgment
	References
	Also see

	dir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	drawnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	duplicates
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for duplicates examples and duplicates list
	Option for duplicates tag
	Option for duplicates drop

	Remarks and examples
	Video example

	Stored results
	Acknowledgments
	Reference
	Also see

	dyngen
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	edit
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Modes
	The current observation and current variable
	Assigning value labels to variables
	Changing values of existing cells
	Adding new variables
	Adding new observations
	Copying and pasting
	Logging changes
	Advice

	Also see

	egen
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Summary statistics
	Generating patterns
	Marking differences among variables
	Ranks
	Standardized variables
	Row functions
	Categorical and integer variables
	String variables
	U.S. marginal income tax rate

	Methods and formulas
	Acknowledgments
	References
	Also see

	encode
	Description
	Quick start
	Menu
	Syntax
	Options for encode
	Options for decode
	Remarks and examples
	encode
	decode
	Video example

	References
	Also see

	erase
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	expand
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	expandcl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	export
	Description
	Remarks and examples
	Summary of the different methods
	export excel
	export delimited
	odbc
	outfile
	export sasxport5 and export sasxport8
	export dbase

	Also see

	filefilter
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	fillin
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	format
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Setting formats
	Setting European formats
	Details of formats
	Other effects of formats
	Displaying current formats
	Video example

	References
	Also see

	frames intro
	Description
	Remarks and examples
	What frames can do for you
	Use frames to multitask
	Use frames to perform tasks integral to your work
	Use frames to work with separate datasets simultaneously
	Use frames to record statistics gathered from simulations
	Frames make Stata (preserve/restore) faster
	Other uses will occur to you that we should have listed

	Learning frames
	The current frame
	Creating new frames
	Type frame or frames, it does not matter
	Switching frames
	Copying frames
	Dropping frames
	Resetting frames
	Frame prefix command
	Linking frames
	Ignore the _frval() function
	Posting new observations to frames

	Programming with frames
	Ado-programming with frames
	Mata programming with frames

	Reference
	Also see

	frames
	Description
	Menu
	Syntax
	Also see

	frame change
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	frame create
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame drop
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame prefix
	Description
	Quick start
	Syntax
	Remarks and examples
	Example of interactive use
	Example of use in programs

	Also see

	frame put
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	frame pwf
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	frame rename
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frames dir
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	frames reset
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frget
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Overview
	Everything you need to know about frget

	Stored results
	Also see

	frlink
	Description
	Quick start
	Syntax
	Options
	Options for frlink 1:1 and frlink m:1
	Options for frlink rebuild

	Remarks and examples
	Overview of the frlink command
	Everything you need to know about linkages
	Example 1: A typical m:1 linkage
	How link variables work
	Advanced examples
	Example 2: A complex m:1 linkage
	Example 3: A 1:1 linkage, a simple solution to a hard problem

	Stored results
	Also see

	generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	generate and replace
	set type
	Video examples

	References
	Also see

	gsort
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	hexdump
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	icd
	Description
	Remarks and examples
	Introduction to ICD coding
	Terminology
	Diagnosis codes
	Procedure codes
	Working with multiple codes

	References
	Also see

	icd9
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9 check
	Options for icd9 clean
	Options for icd9 generate
	Option for icd9 search

	Remarks and examples
	Using icd9 and icd9p
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd9p
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9p check
	Options for icd9p clean
	Options for icd9p generate
	Option for icd9p search

	Remarks and examples
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd10
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10 check
	Options for icd10 clean
	Options for icd10 generate
	Option for icd10 lookup
	Options for icd10 search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10 codes
	Creating new variables

	Stored results
	Acknowledgments
	References
	Also see

	icd10cm
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10cm check
	Options for icd10cm clean
	Options for icd10cm generate
	Option for icd10cm lookup
	Options for icd10cm search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10-CM codes
	Interactive utilities

	Stored results
	Acknowledgments
	Reference
	Also see

	icd10pcs
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10pcs check
	Options for icd10pcs clean
	Options for icd10pcs generate
	Option for icd10pcs lookup
	Options for icd10pcs search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10-PCS codes
	Interactive utilities

	Stored results
	Acknowledgments
	Also see

	import
	Description
	Remarks and examples
	Summary of the different methods
	import excel
	import delimited
	odbc
	infile (free format)---infile without a dictionary
	infix (fixed format)
	infile (fixed format)---infile with a dictionary
	import sas
	import sasxport5 and import sasxport8
	import spss
	import fred
	import haver (Windows only)
	import dbase
	spshape2dta

	Examples
	Video example

	References
	Also see

	import dbase
	Description
	Quick start
	Menu
	Syntax
	Options for import dbase
	Options for export dbase
	Remarks
	Stored results
	Also see

	import delimited
	Description
	Quick start
	Menu
	Syntax
	Options for import delimited
	Options for export delimited
	Remarks and examples
	Introduction
	Importing a text file
	Using other delimiters
	Specifying variable types

	Exporting to a text file
	Video example

	Stored results
	Also see

	import excel
	Description
	Quick start
	Menu
	Syntax
	Options for import excel
	Options for export excel
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	import fred
	Description
	Quick start
	Menu
	Syntax
	Options
	Option for set fredkey
	Options for import fred
	Options for freddescribe
	Options for fredsearch

	Remarks and examples
	Introduction and setup
	The FRED interface
	Advanced imports using the import fred command
	Importing historical vintage data
	Searching, saving, and retrieving series information
	Describing series

	Stored results
	References
	Also see

	import haver
	Description
	Quick start
	Menu
	Syntax
	Options for import haver
	Options for import haver, describe
	Option for set haverdir
	Remarks and examples
	Installation
	Setting the path to Haver databases
	Download example Haver databases
	Determining the contents of a Haver database
	Loading a Haver database
	Loading a Haver database from a describe file
	Temporal aggregation
	Daily data
	Weekly data

	Stored results
	Acknowledgment
	Also see

	import sas
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	import sasxport5
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport5
	Options for export sasxport5
	Remarks and examples
	Saving XPORT files for transferring to SAS
	Determining the contents of XPORT files received from SAS
	Using XPORT files received from SAS

	Stored results
	Technical appendix
	A1. Overview of SAS XPORT Transport format
	A2. Implications for writing XPORT datasets from Stata
	A3. Implications for reading XPORT datasets into Stata

	Also see

	import sasxport8
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport8
	Options for export sasxport8
	Remarks and examples
	Stored results
	Also see

	import spss
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	infile (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Dictionary directives

	Remarks and examples
	Introduction
	Reading free-format files
	Reading fixed-format files
	Numeric formats
	String formats
	Specifying column and line numbers
	Examples of reading fixed-format files
	Reading fixed-block files
	Reading EBCDIC files

	Also see

	infile (free format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reading free-format data
	Reading comma-separated data
	Specifying variable types
	Reading string variables
	Skipping variables
	Skipping observations
	Reading time-series data

	Also see

	infix (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Specifications

	Remarks and examples
	Two ways to use infix
	Reading string variables
	Reading data with multiple lines per observation
	Reading subsets of observations

	Also see

	input
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	insobs
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	inspect
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ipolate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	isid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	joinby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Reference
	Also see

	label
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video examples

	Stored results
	References
	Also see

	label language
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Creating labels in the first language
	Creating labels in the second and subsequent languages
	Creating labels from a clean slate
	Creating labels from a previously existing language
	Switching languages
	Changing the name of a language
	Deleting a language
	Appendix: Selected ISO 639-1 two-letter codes

	Stored results
	Methods and formulas
	References
	Also see

	labelbook
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for labelbook
	Options for numlabel
	Options for uselabel

	Remarks and examples
	labelbook
	Diagnosing problems
	numlabel
	uselabel

	Stored results
	Acknowledgments
	References
	Also see

	list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	lookfor
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	memory
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Examples
	Serious bug in Linux OS
	Notes for system administrators

	Stored results
	Also see

	merge
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic description
	1:1 merges
	m:1 merges
	1:m merges
	m:m merges
	Sequential merges
	Treatment of overlapping variables
	Sort order
	Troubleshooting m:m merges
	Examples
	Video example

	References
	Also see

	Missing values
	Description
	Remarks and examples
	References
	Also see

	mkdir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	mvencode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Acknowledgment
	Also see

	notes
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	How notes are numbered
	Attaching and listing notes
	Selectively listing notes
	Searching and replacing notes
	Deleting notes
	Warnings
	Video example

	Reference
	Also see

	obs
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	odbc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Unicode and ODBC
	Setting up the data sources
	Listing ODBC data source names
	Listing available table names from a specified data source's system catalog
	Describing a specified table
	Loading data from ODBC sources

	Reference
	Also see

	order
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	outfile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	pctile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	pctile
	xtile
	_pctile

	Stored results
	Methods and formulas
	Acknowledgment
	Also see

	putmata
	Description
	Quick start
	Syntax
	Options for putmata
	Options for getmata
	Remarks and examples
	Use of putmata
	Use of putmata and getmata
	Using putmata and getmata on subsets of observations
	Using views
	Constructing do-files

	Stored results
	Reference
	Also see

	range
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	recast
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	recode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Simple examples
	Setting up value labels with recode
	Referring to the minimum and maximum in rules
	Recoding missing values
	Recoding subsets of the data
	Otherwise rules
	Test for overlapping rules
	Video example

	Acknowledgment
	Also see

	rename
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	rename group
	Description
	Quick start
	Menu
	Syntax
	Options for renaming variables
	Options for changing the case of groups of variable names
	Remarks and examples
	Advice
	Explanation
	* matches 0 or more characters; use ?* to match 1 or more
	* is greedy
	# is greedier

	Stored results
	Also see

	reshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of basic syntax
	Wide and long data forms
	Avoiding and correcting mistakes
	reshape long and reshape wide without arguments
	Missing variables
	Advanced issues with basic syntax: i()
	Advanced issues with basic syntax: j()
	Advanced issues with basic syntax: xij
	Advanced issues with basic syntax: String identifiers for j()
	Advanced issues with basic syntax: Second-level nesting
	Description of advanced syntax
	Video examples

	Stored results
	Acknowledgment
	References
	Also see

	rmdir
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	sample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	save
	Description
	Quick start
	Menu
	Syntax
	Options for save
	Options for saveold
	Remarks and examples
	Also see

	separate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	shell
	Description
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix(GUI)
	Stata for Unix(console)

	Reference
	Also see

	snapshot
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	sort
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	split
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	splitsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	stack
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	statsby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Collecting coefficients and standard errors
	Collecting stored results
	All subsets

	Acknowledgment
	References
	Also see

	sysuse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	A note concerning shipped datasets
	Using user-installed datasets
	How sysuse works

	Stored results
	Also see

	type
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	unicode
	Description
	Remarks and examples
	Also see

	unicode collator
	Description
	Syntax
	Remarks and examples
	Overview of collation
	The role of locales in collation
	Further controlling collation

	Also see

	unicode convertfile
	Description
	Syntax
	Options
	Remarks and examples
	Conversion between encodings
	Invalid and unsupported characters
	Examples

	Also see

	unicode encoding
	Description
	Syntax
	Remarks and examples
	Also see

	unicode locale
	Description
	Syntax
	Remarks and examples
	Overview
	Default locale and locale fallback

	Also see

	unicode translate
	Description
	Syntax
	Options
	Remarks and examples
	What is this about?
	Do I need to translate my files?
	Overview of the process
	How to determine the extended ASCII encoding
	Use of unicode analyze
	Use of unicode translate: Overview
	Use of unicode translate: A word on backups
	Use of unicode translate: Output
	Translating binary strLs

	Also see

	use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	varmanage
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	vl
	Description
	Remarks and examples
	Introduction
	vl set and system-defined variable lists
	Classification criteria for system-defined variable lists
	Moving variables into another classification
	vl create and user-defined variable lists
	vl list
	vl substitute and factor-variable operators
	Exploring data with vl set
	Changing the cutoffs for classification
	Moving variables from one classification to another
	Dropping variables and rebuilding variable lists
	Changing variables and updating variable lists
	Saving and using datasets with variable lists
	User-defined variable lists and factor-variable operators
	Updating variable lists created by vl substitute

	Also see

	vl create
	Description
	Quick start
	Syntax
	Remarks and examples
	vl create
	vl modify

	Using variable lists with other Stata commands
	vl substitute

	Also see

	vl drop
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	vl list
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	vl rebuild
	Description
	Quick start
	Syntax
	Remarks and examples
	Reloading datasets
	Merging datasets
	Dropping variables
	vl substitute and vl rebuild
	Characteristics

	Stored results
	Also see

	vl set
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	webuse
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Typical use
	A note concerning example datasets
	Redirecting the source

	Also see

	xpose
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	zipfile
	Description
	Quick start
	Syntax
	Option for zipfile
	Option for unzipfile
	Remarks and examples

	Glossary

	[DSGE] DSGE
	Contents
	Intro
	Description
	Remarks and examples
	Also see

	Intro 1
	Description
	Remarks and examples
	Introduction to DSGE models
	An example: A nonlinear DSGE model
	Writing down nonlinear DSGEs
	Data preparation
	Specifying the model to dsgenl
	Parameter estimation and interpretation of nonlinear DSGEs

	An example: A linear DSGE model
	Writing down linearized DSGEs
	Specifying the model to dsge
	Parameter estimation and interpretation of linear DSGEs

	Postestimation
	Policy and transition matrices
	Impulse responses
	Forecasts

	Structural and reduced forms of DSGE models

	References
	Also see

	Intro 2
	Description
	Remarks and examples
	Introduction
	Syntax for linear DSGE models
	Preview of dsge syntax
	Specifying the system of linear equations
	Control variables
	State variables and shocks
	Expectations of future values of control variables
	Specifying parameters using dsge's substitutable expressions

	Syntax for nonlinear DSGE models
	Preview of dsgenl syntax
	Specifying the system of nonlinear equations
	State and control variables
	Expectations in nonlinear models

	Also see

	Intro 3
	Description
	Remarks and examples
	Also see

	Intro 3a
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	One-step-ahead predictions
	Estimating an unobserved state

	Reference
	Also see

	Intro 3b
	Description
	Remarks and examples
	The model
	Solving the model
	Policy and transition matrices
	Impulse responses
	Sensitivity analysis

	Reference
	Also see

	Intro 3c
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	Impulse responses

	Also see

	Intro 3d
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	Impulse responses
	A change in constraints

	Reference
	Also see

	Intro 3e
	Description
	Remarks and examples
	The model
	Parameter estimation
	Steady state
	Model-implied covariances
	Policy and transition matrices
	Impulse responses
	Sensitivity analysis

	Reference
	Also see

	Intro 3f
	Description
	Remarks and examples
	The model
	Approximating the solution to a nonlinear DSGE model
	Specifying the model to Stata
	After solving
	The steady state
	Approximations to the policy and transition matrices
	Linear and log-linear approximations

	References
	Also see

	Intro 4
	Description
	Remarks and examples
	Introduction
	Shocks to a control equation
	Including a lag of a control variable
	Including a lag of a state variable
	Including an expectation of a control dated by more than one period ahead
	Including a second-order lag of a control variable
	Including an observed exogenous variable

	Also see

	Intro 4a
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4b
	Description
	Remarks and examples
	A model with a lagged endogenous variable
	Parameter estimation

	Also see

	Intro 4c
	Description
	Remarks and examples
	A model with a lagged state variable
	Parameter estimation

	Also see

	Intro 4d
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4e
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4f
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4g
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 5
	Description
	Remarks and examples
	Why we care about stability
	What if the initial values are not saddle-path stable?

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Reference
	Also see

	Intro 7
	Description
	Remarks and examples
	Also see

	Intro 8
	Description
	Remarks and examples
	Wald tests vary with nonlinear transforms
	LR tests do not vary with nonlinear transforms

	References
	Also see

	dsge
	Description
	Menu
	Syntax
	Options
	Remarks
	Stored results
	Methods and formulas
	References
	Also see

	dsge postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dsgenl
	Description
	Menu
	Syntax
	Options
	Remarks
	Stored results
	Methods and formulas
	Reference
	Also see

	dsgenl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	estat covariance
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat policy
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat stable
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat steady
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat transition
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	Reference

	[ERM] Extended Regression
	Contents
	Intro
	Description
	Remarks and examples
	Introductions
	Examples
	ERM commands
	Postestimation
	Technical details
	Glossary

	Intro 1
	Description
	Remarks and examples
	The problems ERMs solve
	The simple syntax of ERMs
	Normality assumption underlying ERMs
	Learning more about ERMs

	Reference
	Also see

	Intro 2
	Description
	Remarks and examples
	Linear regression models
	Interval regression models
	Probit regression models
	Ordered probit regression models

	Also see

	Intro 3
	Description
	Remarks and examples
	What are endogenous and exogenous covariates?
	Solving the problem of endogenous covariates
	Solving the problem of reverse causation
	You can interact endogenous covariates
	You can have continuous, binary, and ordered endogenous covariates
	You can have instruments that are themselves endogenous
	Video example

	Also see

	Intro 4
	Description
	Remarks and examples
	Is sample selection a concern in your research problem?
	The problem and solution of endogenous sample selection
	Endogenous sample selection handles missing not at random
	Endogenous sample selection can be used with other features of ERMs
	Mechanical notes
	Video example

	Also see

	Intro 5
	Description
	Remarks and examples
	What are treatment-effect models?
	Treatment-effect models and potential outcomes
	Endogenous and exogenous treatment effects
	Binary and ordinal treatment effects
	Sample versus population standard errors
	Using treatment effects with other ERMs
	Using treatment effects with other features of ERMs
	Using treat() and select() to handle lost to follow-up
	Treatment statistics reported by estat teffects
	Video example

	Also see

	Intro 6
	Description
	Remarks and examples
	Random-effects models that ERMs handle
	Random effects can be used with other features of ERMs

	Also see

	Intro 7
	Description
	Remarks and examples
	Use margins
	Endogenous covariates
	How to interpret coefficients
	How to use and interpret margins
	How to use margins in models without endogenous covariates
	How to use margins with endogenous covariates
	margins with predict(asf)
	margins with predict(fixedasf)
	When to use which
	Using margins with nonlinear and random-effects models
	Advanced options: Using margins predict(base()) and predict(fix())

	References
	Also see

	Intro 8
	Description
	Remarks and examples
	Also see

	Intro 9
	Description
	Remarks and examples
	Introduction
	Complications
	Endogenous covariates
	Nonrandom treatment assignment
	Endogenous sample selection

	Interpreting effects
	Video examples

	References
	Also see

	eintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Endogenous covariates
	Continuous endogenous covariates
	Binary and ordinal endogenous covariates

	Treatment
	Endogenous sample selection
	Probit endogenous sample selection
	Tobit endogenous sample selection

	Random effects
	Combinations of features
	Confidence intervals

	References
	Also see

	eintreg postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	eintreg predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Methods and formulas
	Also see

	eoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combinations of features
	ci

	References
	Also see

	eoprobit postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	eoprobit predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Using predict after eoprobit and xteoprobit
	How to think about nonlinear models

	Methods and formulas
	Also see

	eprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combined model
	ci
	likelihood

	References
	Also see

	eprobit postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	asf
	predtotal

	References
	Also see

	eprobit predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Using predict after eprobit
	How to think about nonlinear models

	Methods and formulas
	Also see

	eregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combinations of features
	ci

	References
	Also see

	eregress postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	eregress predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	How to think about the model you fit
	The default asf mean calculation for predictions
	The fixedasf calculation for predictions

	Methods and formulas
	References
	Also see

	ERM options
	Description
	Syntax
	Options
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Example 1a
	Description
	Remarks and examples
	Video example

	Also see

	Example 1b
	Description
	Remarks and examples
	Also see

	Example 1c
	Description
	Remarks and examples
	Also see

	Example 2a
	Description
	Remarks and examples
	Also see

	Example 2b
	Description
	Remarks and examples
	Also see

	Example 2c
	Description
	Remarks and examples
	Video example

	Also see

	Example 3a
	Description
	Remarks and examples
	Also see

	Example 3b
	Description
	Remarks and examples
	Also see

	Example 4a
	Description
	Remarks and examples
	Also see

	Example 4b
	Description
	Remarks and examples
	Also see

	Example 5
	Description
	Remarks and examples
	Also see

	Example 6a
	Description
	Remarks and examples
	Also see

	Example 6b
	Description
	Remarks and examples
	Also see

	Example 7
	Description
	Remarks and examples
	Reference
	Also see

	Example 8a
	Description
	Remarks and examples
	Also see

	Example 8b
	Description
	Remarks and examples
	Also see

	Example 9
	Description
	Remarks and examples
	Also see

	predict advanced
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	predict treatment
	Description
	Syntax
	Options
	Remarks and examples
	Predicting treatment effects after eregress, eintreg, xteregress, and xteintreg
	Predicting treatment effects after eprobit and xteprobit
	Predicting treatment effects after eoprobit and xteoprobit

	Methods and formulas
	Also see

	Triangularize
	Description
	Remarks and examples
	What is a triangular system?
	Triangularizing nontriangular systems
	You can only triangularize linear equations
	Options entreat(), select(), and tobitselect() also add endogenous variables
	Workarounds involving the main equation
	Why the above is a workaround and not a fix

	Also see

	Glossary
	References

	[FMM] Finite Mixture Models
	Contents
	fmm intro
	Description
	Remarks and examples
	Introduction
	Finite mixture models
	ex1
	Beyond mixtures of distributions

	Acknowledgment
	References
	Also see

	fmm estimation
	Description
	Also see

	fmm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The likelihood
	The EM algorithm
	Survey data
	Predictions

	Also see

	fmm: betareg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	fmm: cloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: glm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: intreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: ivregress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: logit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: mlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: nbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: ologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: oprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: pointmass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: poisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: probit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: regress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: streg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: tobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: tpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: truncreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	estat eform
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Also see

	estat lcmean
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat lcprob
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Example 1a
	Description
	Remarks and examples
	References
	Also see

	Example 1b
	Description
	Remarks and examples
	Also see

	Example 1c
	Description
	Remarks and examples
	Also see

	Example 1d
	Description
	Remarks and examples
	Also see

	Example 2
	Description
	Remarks and examples
	References
	Also see

	Example 3
	Description
	Remarks and examples
	References
	Also see

	Example 4
	Description
	Remarks and examples
	References
	Also see

	Glossary

	[FN] Functions
	Contents
	Intro
	Description
	Reference
	Also see

	Functions by category
	Contents
	Date and time functions
	Mathematical functions
	Matrix functions
	Programming functions
	Random-number functions
	Selecting time-span functions
	Statistical functions
	String functions
	Trigonometric functions
	Also see

	Functions by name
	
	Also see

	Date and time functions
	Contents
	Functions
	age()
	age_frac()
	birthday()
	bofd()
	Cdhms()
	Chms()
	Clock()
	clock()
	clockdiff()
	Cmdyhms()
	Cofc()
	cofC()
	Cofd()
	cofd()
	daily()
	date()
	datediff()
	datediff_frac()
	day()
	dhms()
	dofb()
	dofC()
	dofc()
	dofh()
	dofm()
	dofq()
	dofw()
	dofy()
	dow()
	doy()
	halfyear()
	halfyearly()
	hh()
	hhC()
	hms()
	hofd()
	hours()
	isleapyear()
	mdy()
	mdyhms()
	minutes()
	mm()
	mmC()
	mofd()
	month()
	monthly()
	msofhours()
	msofminutes()
	msofseconds()
	nextbirthday()
	nextleapyear()
	previousbirthday()
	previousleapyear()
	qofd()
	quarter()
	quarterly()
	seconds()
	ss()
	ssC()
	tC()
	tc()
	td()
	th()
	tm()
	tq()
	tw()
	week()
	weekly()
	wofd()
	year()
	yearly()
	yh()
	ym()
	yofd()
	yq()
	yw()

	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	Mathematical functions
	Contents
	Functions
	abs()
	ceil()
	cloglog()
	comb()
	digamma()
	exp()
	expm1()
	floor()
	int()
	invcloglog()
	invlogit()
	ln()
	ln1m()
	ln1p()
	lnfactorial()
	lngamma()
	log()
	log10()
	log1m()
	log1p()
	logit()
	max()
	min()
	mod()
	reldif()
	round()
	sign()
	sqrt()
	sum()
	trigamma()
	trunc()

	Video example
	References
	Also see

	Matrix functions
	Contents
	Functions
	Matrix functions returning a matrix
	cholesky()
	corr()
	diag()
	get()
	hadamard()
	I()
	inv()
	invsym()
	J()
	matuniform()
	nullmat()
	sweep()
	vec()
	vecdiag()
	Matrix functions returning a scalar
	coleqnumb()
	colnfreeparms()
	colnumb()
	colsof()
	det()
	diag0cnt()
	el()
	issymmetric()
	matmissing()
	mreldif()
	roweqnumb()
	rownfreeparms()
	rownumb()
	rowsof()
	trace()

	Reference
	Also see

	Programming functions
	Contents
	Functions
	autocode()
	byteorder()
	c()
	_caller()
	chop()
	clip()
	cond()
	e()
	e(sample)
	epsdouble()
	epsfloat()
	fileexists()
	fileread()
	filereaderror()
	filewrite()
	float()
	fmtwidth()
	frval()
	frvalu()
	_frval()
	_frvaliv()
	has_eprop()
	inlist()
	inrange()
	irecode()
	matrix()
	maxbyte()
	maxdouble()
	maxfloat()
	maxint()
	maxlong()
	mi()
	minbyte()
	mindouble()
	minfloat()
	minint()
	minlong()
	missing()
	r()
	recode()
	replay()
	return()
	s()
	scalar()
	smallestdouble()

	References
	Also see

	Random-number functions
	Contents
	Functions
	runiform()
	runiform(ab)
	runiformint()
	rbeta()
	rbinomial()
	rcauchy()
	rchi2()
	rexponential()
	rgamma()
	rhypergeometric()
	rigaussian()
	rlaplace()
	rlogistic()
	rlogistic(s)
	rlogistic(ms)
	rnbinomial()
	rnormal()
	rnormal(m)
	rnormal(ms)
	rpoisson()
	rt()
	rweibull()
	rweibull(ab)
	rweibull(abg)
	rweibullph()
	rweibullph(ab)
	rweibullph(abg)

	Remarks and examples
	Methods and formulas
	kiss32 generator

	Acknowledgments
	References
	Also see

	Selecting time-span functions
	Contents
	Functions
	tin()
	twithin()

	Also see

	Statistical functions
	Contents
	Functions
	Beta and noncentral beta distributions
	betaden()
	ibeta()
	ibetatail()
	invibeta()
	invibetatail()
	nbetaden()
	nibeta()
	invnibeta()
	Binomial distribution
	binomialp()
	binomial()
	binomialtail()
	invbinomial()
	invbinomialtail()
	Cauchy distribution
	cauchyden()
	cauchy()
	cauchytail()
	invcauchy()
	invcauchytail()
	lncauchyden()
	Chi-squared and noncentral chi-squared distributions
	chi2den()
	chi2()
	chi2tail()
	invchi2()
	invchi2tail()
	nchi2den()
	nchi2()
	nchi2tail()
	invnchi2()
	invnchi2tail()
	npnchi2()
	Dunnett's multiple range distribution
	dunnettprob()
	invdunnettprob()
	Exponential distribution
	exponentialden()
	exponential()
	exponentialtail()
	invexponential()
	invexponentialtail()
	F and noncentral F distributions
	Fden()
	F()
	Ftail()
	invF()
	invFtail()
	nFden()
	nF()
	nFtail()
	invnF()
	invnFtail()
	npnF()
	Gamma distribution
	gammaden()
	gammap()
	gammaptail()
	invgammap()
	invgammaptail()
	dgammapda()
	dgammapdada()
	dgammapdadx()
	dgammapdx()
	dgammapdxdx()
	lnigammaden()
	Hypergeometric distribution
	hypergeometricp()
	hypergeometric()
	Inverse Gaussian distribution
	igaussianden()
	igaussian()
	igaussiantail()
	invigaussian()
	invigaussiantail()
	lnigaussianden()
	Laplace distribution
	laplaceden()
	laplace()
	laplacetail()
	invlaplace()
	invlaplacetail()
	lnlaplaceden()
	Logistic distribution
	logisticden(x)
	logisticden(sx)
	logisticden()
	logisticden(msx)
	logistic()
	logistic(x)
	logistic(sx)
	logistic(msx)
	logistictail()
	logistictail(x)
	logistictail(sx)
	logistictail(msx)
	invlogistic()
	invlogistic(p)
	invlogistic(sp)
	invlogistic(msp)
	invlogistictail()
	invlogistictail(p)
	invlogistictail(sp)
	invlogistictail(msp)
	Negative binomial distribution
	nbinomialp()
	nbinomial()
	nbinomialtail()
	invnbinomial()
	invnbinomialtail()
	Normal (Gaussian), binormal, and multivariate normal distributions
	normalden()
	normalden(xs)
	normalden(xms)
	normal()
	invnormal()
	lnnormalden()
	lnnormalden(xs)
	lnnormalden(xms)
	lnnormal()
	binormal()
	lnmvnormalden()
	Poisson distribution
	poissonp()
	poisson()
	poissontail()
	invpoisson()
	invpoissontail()
	Student's t and noncentral Student's t distributions
	tden()
	t()
	ttail()
	invt()
	invttail()
	invnt()
	invnttail()
	ntden()
	nt()
	nttail()
	npnt()
	Tukey's Studentized range distribution
	tukeyprob()
	invtukeyprob()
	Weibull distribution
	weibullden()
	weibullden(abx)
	weibullden(abgx)
	weibull()
	weibull(abx)
	weibull(abgx)
	weibulltail()
	weibulltail(abx)
	weibulltail(abgx)
	invweibull()
	invweibull(abp)
	invweibull(abgp)
	invweibulltail()
	invweibulltail(abp)
	invweibulltail(abgp)
	Weibull (proportional hazards) distribution
	weibullphden()
	weibullphden(abx)
	weibullphden(abgx)
	weibullph()
	weibullph(abx)
	weibullph(abgx)
	weibullphtail()
	weibullphtail(abx)
	weibullphtail(abgx)
	invweibullph()
	invweibullph(abp)
	invweibullph(abgp)
	invweibullphtail()
	invweibullphtail(abp)
	invweibullphtail(abgp)
	Wishart distribution
	lnwishartden()
	lniwishartden()

	References
	Also see

	String functions
	Contents
	Functions
	abbrev()
	char()
	uchar()
	collatorlocale()
	collatorversion()
	indexnot()
	plural()
	real()
	regexm()
	regexr()
	regexs()
	ustrregexm()
	ustrregexrf()
	ustrregexra()
	ustrregexs()
	soundex()
	soundex_nara()
	strcat()
	strdup()
	string()
	string(ns)
	stritrim()
	strlen()
	ustrlen()
	udstrlen()
	strlower()
	ustrlower()
	strltrim()
	ustrltrim()
	strmatch()
	strofreal()
	strofreal(ns)
	strpos()
	ustrpos()
	strproper()
	ustrtitle()
	strreverse()
	ustrreverse()
	strrpos()
	ustrrpos()
	strrtrim()
	ustrrtrim()
	strtoname()
	ustrtoname()
	strtrim()
	ustrtrim()
	strupper()
	ustrupper()
	subinstr()
	usubinstr()
	subinword()
	substr()
	usubstr()
	udsubstr()
	tobytes()
	uisdigit()
	uisletter()
	ustrcompare()
	ustrcompareex()
	ustrfix()
	ustrfrom()
	ustrinvalidcnt()
	ustrleft()
	ustrnormalize()
	ustrright()
	ustrsortkey()
	ustrsortkeyex()
	ustrto()
	ustrtohex()
	ustrunescape()
	word()
	ustrword()
	wordbreaklocale()
	wordcount()
	ustrwordcount()

	References
	Also see

	Trigonometric functions
	Contents
	Functions
	acos()
	acosh()
	asin()
	asinh()
	atan()
	atan2()
	atanh()
	cos()
	cosh()
	sin()
	sinh()
	tan()
	tanh()

	Reference
	Also see

	[G] Graphics
	Contents
	Introduction
	Intro
	Description
	Also see

	Graph intro
	Remarks and examples
	Suggested reading order
	A quick tour
	Using the menus

	References
	Also see

	Graph Editor
	Remarks and examples
	Quick start
	Introduction
	Starting and stopping the Graph Editor
	The tools
	The Object Browser
	Right-click menus, or Contextual menus
	The Standard Toolbar
	The main Graph Editor menu
	Grid editing
	Graph Recorder
	Tips, tricks, and quick edits
	Video example

	Reference
	Also see

	Commands
	graph
	Description
	Syntax
	Remarks and examples
	Also see

	graph bar
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	lookofbar_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of bars
	Treatment of data
	Obtaining frequencies
	Multiple bars (overlapping the bars)
	Controlling the text of the legend
	Multiple over()s (repeating the bars)
	Nested over()s
	Charts with many categories
	How bars are ordered
	Reordering the bars
	Putting the bars in a prespecified order
	Putting the bars in height order
	Putting the bars in a derived order
	Reordering the bars, example
	Use with by()
	Video example
	History

	References
	Also see

	graph box
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	boxlook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of multiple yvars versus treatment of over() groups
	How boxes are ordered
	Reordering the boxes
	Putting the boxes in a prespecified order
	Putting the boxes in median order
	Use with by()
	Video example
	History

	Methods and formulas
	References
	Also see

	graph close
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph combine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Typical use with memory graphs
	Combining twoway graphs
	Advanced use
	Controlling the aspect ratio of subgraphs

	Reference
	Also see

	graph copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph describe
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	graph dir
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph display
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Changing the size and aspect ratio
	Changing the margins and aspect ratio
	Changing the scheme

	Also see

	graph dot
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	linelook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Relationship between dot plots and horizontal bar charts
	Examples
	Appendix: Examples of syntax

	References
	Also see

	graph drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Typical use
	Relationship between graph drop _all and discard
	Erasing graphs on disk

	Also see

	graph export
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Exporting the graph displayed in a Graph window
	Exporting a graph stored on disk
	Exporting a graph stored in memory

	Reference
	Also see

	graph manipulation
	Description
	Syntax
	Remarks and examples
	Overview of graphs in memory and graphs on disk
	Summary of graph manipulation commands

	Also see

	graph matrix
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Marker symbols and the number of observations
	Controlling the axes labeling
	Adding grid lines
	Adding titles
	Use with by()
	History

	References
	Also see

	graph other
	Description
	Syntax
	Remarks and examples
	Also see

	graph pie
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Data are summed
	Data may be long rather than wide
	How slices are ordered
	Ordering slices by size
	Reordering the slices
	Use with by()
	Video example
	History

	References
	Also see

	graph play
	Description
	Syntax
	Remarks and examples
	Also see

	graph print
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Printing the graph displayed in a Graph window
	Printing a graph stored on disk
	Printing a graph stored in memory
	Appendix: Setting up Stata for Unix to print graphs

	Also see

	graph query
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph replay
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph save
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	graph set
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Setting defaults

	Also see

	graph twoway
	Description
	Menu
	Syntax
	Remarks and examples
	Definition
	Syntax
	Multiple if and in restrictions
	twoway and plot options

	References

	graph twoway area
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway bar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use: Overlaying
	Advanced use: Population pyramid
	Cautions

	Reference
	Also see

	graph twoway connected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway contour
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contours and their values
	Controlling the colors of the contour areas
	Choose the interpolation method
	Video example

	Reference
	Also see

	graph twoway contourline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contour lines and their values
	Controlling the colors of the contour lines
	Choose the interpolation method

	Also see

	graph twoway dot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	graph twoway dropline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway fpfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway fpfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway function
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use 1
	Advanced use 2

	Reference
	Also see

	graph twoway histogram
	Description
	Quick start
	Menu
	Syntax
	Options for use in the discrete case
	Options for use in the continuous case
	Options for use in both cases
	Remarks and examples
	Relationship between graph twoway histogram and histogram
	Typical use
	Use with by()
	History

	References
	Also see

	graph twoway kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway lfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway line
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Oneway equivalency of line and scatter
	Typical use
	Advanced use
	Cautions

	Reference
	Also see

	graph twoway lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpolyci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mband
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway pcarrow
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use

	References
	Also see

	graph twoway pcarrowi
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pccapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use 1
	Basic use 2

	Also see

	graph twoway pci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use
	Advanced use 2

	Reference
	Also see

	graph twoway qfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway qfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway rarea
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway rbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use

	References
	Also see

	graph twoway rcap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway rcapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rconnected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway scatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Scatter syntax
	The overall look for the graph
	The size and aspect ratio of the graph
	Titles
	Axis titles
	Axis labels and ticking
	Grid lines
	Added lines
	Axis range
	Log scales
	Multiple axes
	Markers
	Weighted markers
	Jittered markers
	Connected lines
	Graphs by groups
	Saving graphs
	Video example
	Appendix: Styles and composite styles

	References
	Also see

	graph twoway scatteri
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway spike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway tsline
	Description
	Quick start
	Menu
	Syntax
	Also see

	graph use
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	palette
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	set graphics
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	set printcolor
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	What set printcolor affects
	The problem set printcolor solves
	set printcolor automatic
	set printcolor asis
	set printcolor gs1, gs2, and gs3
	The scheme matters, not the background color you set

	Also see

	set scheme
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	References
	Also see

	Options
	added_line_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Interpretation of repeated options

	Reference
	Also see

	added_text_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Advanced use
	Use of the textbox option width()

	Reference
	Also see

	addplot_option
	Description
	Syntax
	Option
	Remarks and examples
	Commands that allow the addplot() option
	Advantage of graph twoway commands
	Advantages of graphic commands implemented outside graph twoway
	Use of the addplot() option

	Reference
	Also see

	advanced_options
	Description
	Syntax
	Options
	Remarks and examples
	Use of yvarlabel() and xvarlabel()
	Use of yvarformat() and xvarformat()
	Use of recast()

	Also see

	area_options
	Description
	Syntax
	Options
	Remarks and examples
	Use with twoway
	Use with graph dot

	Also see

	aspect_option
	Description
	Quick start
	Syntax
	Option
	Suboption
	Remarks and examples
	Reference
	Also see

	axis_choice_options
	Description
	Syntax
	Options
	Remarks and examples
	Usual case: one set of axes
	Special case: multiple axes due to multiple scales
	yaxis(1) and xaxis(1) are the defaults
	Notation style is irrelevant
	yaxis() and xaxis() are plot options
	Specifying the other axes options with multiple axes
	Each plot may have at most one x scale and one y scale
	Special case: Multiple axes with a shared scale

	Reference
	Also see

	axis_label_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default labeling and ticking
	Controlling the labeling and ticking
	Adding extra ticks
	Adding minor labels and ticks
	Adding grid lines
	Suppressing grid lines
	Substituting text for labels
	Contour axes---zlabel(), etc.
	Appendix: Details of syntax

	References
	Also see

	axis_options
	Description
	Options
	Remarks and examples
	Also see

	axis_scale_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Use of the yscale() and xscale()
	Specifying the range of a scale
	Obtaining log scales
	Obtaining reversed scales
	Suppressing the axes
	Contour axes---zscale()

	References
	Also see

	axis_title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default axis titles
	Overriding default titles
	Specifying multiline titles
	Suppressing axis titles
	Interpretation of repeated options
	Titles with multiple y axes or multiple x axes
	Contour axes---ztitle()

	Also see

	barlook_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	blabel_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Increasing the information content
	Changing how bars are labeled

	Also see

	by_option
	Description
	Quick start
	Syntax
	Option
	byopts
	Remarks and examples
	Typical use
	Placement of graphs
	Treatment of titles
	by() uses subtitle() with graph
	Placement of the subtitle()
	by() uses the overall note()
	Use of legends with by()
	By-styles
	Labeling the edges
	Specifying separate scales for the separate plots
	History

	References
	Also see

	cat_axis_label_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	cat_axis_line_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	clegend_option
	Description
	Quick start
	Syntax
	Option
	Content and appearance suboptions for use with clegend()
	Suboptions for use with clegend(region())
	Location suboptions for use with clegend()

	Remarks and examples
	When contour legends appear
	Where contour legends appear
	Putting titles on contour legends
	Controlling the axis in contour legends
	Use of legends with by()

	Also see

	cline_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	connect_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	eps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the eps_options
	Setting defaults
	Note about PostScript fonts

	Also see

	fcline_options
	Description
	Syntax
	Options
	Remarks and examples

	fitarea_options
	Description
	Syntax
	Options
	Remarks and examples

	gif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using gif_options
	Specifying the width or height

	Also see

	jpg_options
	Description
	Syntax
	Options
	Remarks and examples
	Using jpg_options
	Specifying the width or height
	Image quality

	Also see

	legend_options
	Description
	Quick start
	Syntax
	Options
	Content suboptions for use with legend() and plegend()
	Suboptions for use with legend(region())
	Location suboptions for use with legend()

	Remarks and examples
	When legends appear
	The contents of legends
	Where legends appear
	Putting titles on legends
	Use of legends with by()
	Problems arising with or because of legends

	Also see

	line_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	marker_label_options
	Description
	Syntax
	Options
	Remarks and examples
	Typical use
	Eliminating overprinting and overruns
	Advanced use
	Using marker labels in place of markers

	Also see

	marker_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	name_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	nodraw_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	play_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	png_options
	Description
	Syntax
	Options
	Remarks and examples
	Using png_options
	Specifying the width or height

	Also see

	pr_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the pr_options
	Setting defaults
	Note for Unix users

	Also see

	ps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the ps_options
	Setting defaults
	Note about PostScript fonts
	Note for Unix users

	Also see

	rcap_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	region_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Setting the offset between the axes and the plot region
	Controlling the aspect ratio
	Suppressing the border around the plot region
	Setting background and fill colors
	How graphs are constructed

	Also see

	rspike_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	saving_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Also see

	scale_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	scheme_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	std_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	svg_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the svg_options
	Setting defaults

	Also see

	textbox_options
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a textbox
	Position
	Justification
	Position and justification combined
	Margins
	Width and height
	Appendix: Overriding default or context-specified positioning

	Also see

	tif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using tif_options
	Specifying the width or height

	Also see

	title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Multiple-line titles
	Interpretation of repeated options
	Positioning of titles
	Alignment of titles
	Spanning
	Using the textbox options box and bexpand

	Reference
	Also see

	twoway_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	Styles/concepts/schemes
	addedlinestyle
	Description
	Syntax
	Remarks and examples
	What is an added line?
	What is an addedlinestyle?
	You do not need to specify an addedlinestyle

	Also see

	alignmentstyle
	Description
	Syntax
	Remarks and examples
	Also see

	anglestyle
	Description
	Syntax
	Remarks and examples
	Also see

	areastyle
	Description
	Syntax
	Remarks and examples
	Overview of areastyles
	Numbered styles
	Using numbered styles
	When to use areastyles

	Also see

	axisstyle
	Description
	Syntax
	Remarks and examples
	Also see

	bystyle
	Description
	Syntax
	Remarks and examples
	What is a by-graph?
	What is a bystyle?

	Also see

	clockposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	colorstyle
	Description
	Syntax
	Remarks and examples
	Adjust opacity
	Adjust intensity
	Specify RGB values
	Specify CMYK values
	Specify HSV values
	Export custom colors
	Video example

	References
	Also see

	compassdirstyle
	Description
	Syntax
	Remarks and examples
	Also see

	Concept: gph files
	Description
	Remarks and examples
	Background
	Gph files are machine/operating system independent
	Gph files come in three forms
	Advantages of live-format files
	Advantages of as-is format files
	Retrieving data from live-format files

	Also see

	Concept: lines
	Description
	Syntax
	Remarks and examples
	linestyle
	linealignmentstyle
	linepatternstyle
	linewidthstyle
	colorstyle

	Also see

	Concept: repeated options
	Description
	Remarks and examples
	Also see

	connectstyle
	Description
	Remarks and examples
	Syntax
	Also see

	gridstyle
	Description
	Syntax
	Remarks and examples
	What is a grid?
	What is a gridstyle?
	You do not need to specify a gridstyle
	Turning off and on the grid

	Also see

	intensitystyle
	Description
	Syntax
	Remarks and examples
	Also see

	justificationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	legendstyle
	Description
	Syntax
	Remarks and examples
	What is a legend?
	What is a legendstyle?
	You do not need to specify a legendstyle

	Also see

	linealignmentstyle
	Description
	Syntax
	Also see

	linepatternstyle
	Description
	Syntax
	Remarks and examples
	Also see

	linestyle
	Description
	Syntax
	Remarks and examples
	What is a line?
	What is a linestyle?
	You do not need to specify a linestyle
	Specifying a linestyle can be convenient
	What are numbered styles?
	Suppressing lines

	Reference
	Also see

	linewidthstyle
	Description
	Syntax
	Remarks and examples
	Also see

	marginstyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerlabelstyle
	Description
	Syntax
	Remarks and examples
	What is a markerlabel?
	What is a markerlabelstyle?
	You do not need to specify a markerlabelstyle
	Specifying a markerlabelstyle can be convenient
	What are numbered styles?

	Also see

	markersizestyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerstyle
	Description
	Syntax
	Remarks and examples
	What is a marker?
	What is a markerstyle?
	You do not have to specify a markerstyle
	Specifying a markerstyle can be convenient
	What are numbered styles?

	Also see

	orientationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	plotregionstyle
	Description
	Syntax
	Remarks and examples
	Also see

	pstyle
	Description
	Syntax
	Remarks and examples
	What is a plot?
	What is a pstyle?
	The pstyle() option
	Specifying a pstyle
	What are numbered styles?

	Also see

	ringposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	Schemes intro
	Description
	Syntax
	Remarks and examples
	The role of schemes
	Finding out about other schemes
	Setting your default scheme
	The scheme is applied at display time
	Background color
	Foreground color
	Obtaining new schemes
	Examples of schemes

	References
	Also see

	Scheme economist
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme s1
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme s2
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme sj
	Description
	Syntax
	Remarks and examples
	Also see

	shadestyle
	Description
	Syntax
	Remarks and examples
	What is a shadestyle?
	What are numbered styles?

	Also see

	size
	Description
	Syntax
	Remarks and examples
	Also see

	stylelists
	Description
	Syntax
	Also see

	symbolstyle
	Description
	Syntax
	Remarks and examples
	Typical use
	Filled and hollow symbols
	Size of symbols

	Also see

	text
	Description
	Remarks and examples
	Overview
	Bold and italics
	Superscripts and subscripts
	Fonts, standard
	Fonts, advanced
	Greek letters and other symbols
	Full list of SMCL tags useful in graph text

	Also see

	textboxstyle
	Description
	Syntax
	Remarks and examples
	What is a textbox?
	What is a textboxstyle?
	You do not need to specify a textboxstyle

	Also see

	textsizestyle
	Description
	Syntax
	Also see

	textstyle
	Description
	Syntax
	Remarks and examples
	What is text?
	What is a textstyle?
	You do not need to specify a textstyle
	Relationship between textstyles and textboxstyles

	Also see

	ticksetstyle
	Description
	Syntax
	Also see

	tickstyle
	Description
	Syntax
	Remarks and examples
	What is a tick? What is a tick label?
	What is a tickstyle?
	You do not need to specify a tickstyle
	Suppressing ticks and/or tick labels

	Also see

	Glossary

	[IRT] Item Response Theory
	Contents
	irt
	Description
	Remarks and examples
	References
	Also see

	Control Panel
	Description
	Remarks and examples
	Reference
	Also see

	irt 1pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 1pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 2pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 2pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 3pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 3pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt grm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt grm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt nrm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt nrm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt pcm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt pcm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt rsm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt rsm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt hybrid
	Description
	Quick start
	Menu
	Syntax
	mopts
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The likelihood
	Groups
	Gauss--Hermite quadrature
	Adaptive quadrature

	References
	Also see

	irt hybrid postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Empirical Bayes
	Other predictions

	References
	Also see

	irt, group()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Baseline group model
	Differential item functioning

	Reference
	Also see

	irt, group() postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt constraints
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Constraints in 1PL, 2PL, and 3PL models
	Constraints in graded response models
	Constraints in nominal response models
	Constraints in partial credit models
	Constraints in rating scale models

	Also see

	estat report
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat greport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irtgraph icc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	irtgraph tcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	irtgraph iif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	irtgraph tif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	DIF
	Description
	Remarks and examples
	References
	Also see

	diflogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	difmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	Glossary

	[LASSO] Lasso
	Contents
	Lasso intro
	Description
	Remarks and examples
	Summary of Stata's lasso and elastic-net features
	What is lasso?
	Lasso for prediction
	How lasso for prediction works
	Stata commands for prediction

	Lasso for model selection
	Lasso for inference
	Why do we need special lasso methods for inference?
	Methods of lasso for inference
	Stata commands for inference

	Where to learn more

	Acknowledgments
	References
	Also see

	Lasso inference intro
	Description
	Remarks and examples
	The problem
	Possible solutions
	Solutions that focus on the true model
	The double-selection solution
	The partialing-out solution
	The cross-fit partialing-out (double machine-learning) solution

	Where to learn more

	References
	Also see

	coefpath
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Coefficient path plots
	An example
	Adding a legend
	lambda scale and reference line
	After fitting with sqrtlasso
	After fitting with elasticnet
	After fitting with inference commands

	Also see

	Collinear covariates
	Description
	Remarks and examples
	Summary
	Explanation
	Applies to inferential commands
	Does not apply to alwaysvars

	Also see

	cvplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	dslogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	dspoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	dsregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	elasticnet
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estimates store
	Description
	Remarks and examples
	Overview
	Postestimation commands that work only with current results
	Postestimation commands that work with current results
	lassoselect creates new estimation results

	Also see

	Inference examples
	Description
	Remarks and examples
	1 Overview
	1.1 How to read the example entries
	1.2 Detailed outline of the topics
	1.3 Review of concepts
	1.4 The primary dataset

	2 Fitting and interpreting inferential models
	2.1 Overview of inferential estimation methods
	2.2 Fitting via cross-fit partialing out (xpo) using plugin
	2.3 Fitting via cross-fit partialing out (xpo) using cross-validation
	2.4 Fitting via double selection (ds) using cross-validation
	2.5 Fitting via the other 22 methods
	2.6 Fitting models with several variables of interest
	2.7 Fitting models with factor variables of interest
	2.8 Fitting models with interactions of interest
	2.9 Fitting models with a nonlinear relationship of interest
	2.10 Controls are controls

	3 Fitting logit inferential models to binary outcomes. What is different?
	3.1 Interpreting standard odds ratios
	3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

	4 Fitting inferential models to count outcomes. What is different?
	4.1 Interpreting standard incidence-rate ratios
	4.2 Interpreting models with factor variables

	5 Exploring inferential model lassos
	6 Fitting an inferential model with endogenous covariates

	References
	Also see

	Inference requirements
	Description
	Remarks and examples
	Also see

	lasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Lasso fitting and selection methods
	selection(cv): Cross-validation
	The CV function
	Penalized and postselection coefficients
	predict
	Selecting lambda by hand using lassoselect
	More lasso examples

	Stored results
	Methods and formulas
	Lasso and elastic-net objective functions
	Coordinate descent
	Grid of values for lambda
	How to choose the penalty parameters
	How CV is performed
	Adaptive lasso
	Plugin estimators

	References
	Also see

	lasso postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	References
	Also see

	lassocoef
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lasso examples
	Description
	Remarks and examples
	Overview
	Using vl to manage variables
	Using splitsample
	Lasso linear models
	Adaptive lasso
	Cross-validation folds
	More potential variables than observations
	Factor variables in lasso
	Lasso logit and probit models
	Lasso Poisson models

	Also see

	lasso fitting
	Description
	Remarks and examples
	Introduction
	Model selection
	The process
	Step 1. Set the grid range
	Step 2. Fit the model for next lambda in grid
	Selection method none
	Step 3. Identifying a minimum of the CV function
	Plotting the CV function
	Selecting another model

	What exactly is CV?
	Adaptive lasso
	Plugin selection

	Also see

	lassogof
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lasso inference postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict

	Remarks and examples
	Also see

	lassoinfo
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	lassoknots
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Measures of fit
	In-sample measures versus estimates of out-of-sample measures
	BIC
	Examples

	Stored results
	Methods and formulas
	Overview
	Statistics that measure the size of the coefficient vector
	Statistics that measure fit
	CV measures of fit
	Single-sample measures of fit
	Deviance formulas
	Saturated log likelihood

	Prediction error formulas
	BIC formula

	References
	Also see

	lasso options
	Description
	Syntax
	Options
	Suboptions for lasso() and sqrtlasso()

	Remarks and examples
	Reference
	Also see

	lassoselect
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	poivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	popoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	poregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sqrtlasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Plugin estimators

	References
	Also see

	xpoivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	xpologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	xpopoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	xporegress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	Glossary

	[M] Mata
	Contents
	Introduction to the Mata manual
	Intro
	Contents
	Description
	Remarks and examples
	References
	Also see

	Introduction and advice
	Intro
	Contents
	Description
	Remarks and examples
	References
	Also see

	Ado
	Description
	Remarks and examples
	A first example
	Where to store the Mata functions
	Passing arguments to Mata functions
	Returning results to ado-code
	Advice: Use of matastrict
	Advice: Some useful Mata functions

	Also see

	First
	Description
	Remarks and examples
	Invoking Mata
	Using Mata
	Making mistakes: Interpreting error messages
	Working with real numbers, complex numbers, and strings
	Working with scalars, vectors, and matrices
	Working with functions
	Distinguishing real and complex values
	Working with matrix and scalar functions
	Performing element-by-element calculations: Colon operators
	Writing programs
	More functions
	Mata environment commands
	Exiting Mata

	Also see

	help
	Description
	Syntax
	Remarks and examples
	Also see

	How
	Description
	Remarks and examples
	What happens when you define a program
	What happens when you work interactively
	What happens when you type a mata environment command
	Working with object code I: .mo files
	Working with object code II: .mlib libraries
	The Mata environment

	Reference
	Also see

	Interactive
	Description
	Remarks and examples
	1. Start in Stata; load the data
	2. Create any time-series variables
	3. Create a constant variable
	4. Drop unnecessary variables
	5. Drop observations with missing values
	6. Put variables on roughly the same numeric scale
	7. Enter Mata
	8. Use Mata's st_view() function to access your data
	9. Perform your matrix calculations

	Review
	Reference
	Also see

	LAPACK
	Description
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	Limits
	Description
	Summary
	Remarks and examples
	Also see

	Naming
	Description
	Syntax
	Remarks and examples
	Interactive use
	Naming variables
	Naming functions
	What happens when functions have the same names
	How to determine if a function name has been taken

	Also see

	Permutation
	Description
	Syntax
	Remarks and examples
	Permutation matrices
	How permutation matrices arise
	Permutation vectors

	Also see

	Returned args
	Description
	Syntax
	Remarks and examples
	Also see

	Source
	Description
	Syntax
	Remarks and examples
	Also see

	Tolerance
	Description
	Syntax
	Remarks and examples
	The problem
	Absolute versus relative tolerances
	Specifying tolerances

	Also see

	Language definition
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	class
	Description
	Syntax
	Introduction
	Example
	Declaration of member variables
	Declaration and definition of methods (member functions)
	Default exposure in declarations

	Remarks and examples
	Notation and jargon
	Declaring and defining a class
	Saving classes in files
	Workflow recommendation
	When you need to recompile
	Obtaining instances of a class
	Constructors and destructors
	Setting member variable and member function exposure
	Making a member final
	Making a member static
	Virtual functions
	Referring to the current class using this
	Using super to access the parent's concept
	Casting back to a parent
	Accessing external functions from member functions
	Pointers to classes

	Reference
	Also see

	Comments
	Description
	Syntax
	Remarks and examples
	The /* */ enclosed comment
	The // rest-of-line comment

	Also see

	continue
	Description
	Syntax
	Remarks and examples
	Also see

	Declarations
	Description
	Syntax
	Remarks and examples
	The purpose of declarations
	Types, element types, and organizational types
	Implicit declarations
	Element types
	Organizational types
	Function declarations
	Argument declarations
	The by-address calling convention
	Variable declarations
	Linking to external globals

	Also see

	do
	Description
	Syntax
	Remarks and examples
	Also see

	Errors
	Description
	Remarks and examples
	The error codes

	Also see

	exp
	Description
	Syntax
	Remarks and examples
	What's an expression
	Assignment suppresses display, as does (void)
	The pieces of an expression
	Numeric literals
	String literals
	Variable names
	Operators
	Functions

	Reference
	Also see

	for
	Description
	Syntax
	Remarks and examples
	Also see

	ftof
	Description
	Syntax
	Remarks and examples
	Passing functions to functions
	Writing functions that receive functions, the simplified convention
	Passing built-in functions

	Also see

	goto
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Also see

	op_arith
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_assignment
	Description
	Syntax
	Remarks and examples
	Assignment suppresses display
	The equal-assignment operator
	lvals, what appears on the left-hand side
	Row, column, and element lvals
	Pointer lvals

	Conformability
	Diagnostics
	Also see

	op_colon
	Description
	Syntax
	Remarks and examples
	C-conformability: element by element
	Usefulness of colon logical operators
	Use parentheses

	Conformability
	Diagnostics
	Also see

	op_conditional
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_increment
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_join
	Description
	Syntax
	Remarks and examples
	Comma and backslash are operators
	Comma as a separator
	Warning about the misuse of comma and backslash operators

	Conformability
	Diagnostics
	Also see

	op_kronecker
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	op_logical
	Description
	Syntax
	Remarks and examples
	Introduction
	Use of logical operators with pointers

	Conformability
	Diagnostics
	Also see

	op_range
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_transpose
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	optargs
	Description
	Syntax
	Remarks and examples
	What are optional arguments?
	How to code optional arguments
	Examples revisited

	Also see

	pointers
	Description
	Syntax
	Remarks and examples
	What is a pointer?
	Pointers to variables
	Pointers to expressions
	Pointers to functions
	Pointers to pointers
	Pointer arrays
	Mixed pointer arrays
	Definition of NULL
	Use of parentheses
	Pointer arithmetic
	Listing pointers
	Declaration of pointers
	Use of pointers to collect objects
	Efficiency

	Diagnostics
	References
	Also see

	pragma
	Description
	Syntax
	Remarks and examples
	pragma unset
	pragma unused

	Also see

	reswords
	Description
	Syntax
	Remarks and examples
	Future developments
	Version control

	Also see

	return
	Description
	Syntax
	Remarks and examples
	Functions that return results
	Functions that return nothing (void functions)

	Also see

	Semicolons
	Description
	Syntax
	Remarks and examples
	Optional use of semicolons
	You cannot break a statement anywhere even if you use semicolons
	Use of semicolons to create multistatement lines
	Significant semicolons
	Do not use #delimit ;

	Also see

	struct
	Description
	Syntax
	Remarks and examples
	Introduction
	Structures and functions must have different names
	Structure variables must be explicitly declared
	Declare structure variables to be scalars whenever possible
	Vectors and matrices of structures
	Structures of structures
	Pointers to structures
	Operators and functions for use with structure members
	Operators and functions for use with entire structures
	Listing structures
	Use of transmorphics as passthrus
	Saving compiled structure definitions
	Saving structure variables

	References
	Also see

	Subscripts
	Description
	Syntax
	Remarks and examples
	List subscripts
	Range subscripts
	When to use list subscripts and when to use range subscripts
	A fine distinction

	Conformability
	Diagnostics
	Reference
	Also see

	Syntax
	Description
	Syntax
	Remarks and examples
	Treatment of semicolons
	Types and declarations
	Void matrices
	Void functions
	Operators
	Subscripts
	Implied input tokens
	Function argument-passing convention
	Passing functions to functions
	Optional arguments

	Reference
	Also see

	version
	Description
	Syntax
	Remarks and examples
	Purpose of version control
	Recommendations for do-files
	Recommendations for ado-files
	Compile-time and run-time versioning

	Also see

	void
	Description
	Syntax
	Remarks and examples
	Void matrices, vectors, row vectors, and column vectors
	How to read conformability charts

	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	Commands for controlling Mata
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	end
	Description
	Syntax
	Remarks and examples
	Also see

	lmbuild
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Version control

	Also see

	mata
	Description
	Syntax
	Remarks and examples
	Introduction
	The fine distinction between syntaxes 3 and 4
	The fine distinction between syntaxes 1 and 2

	Also see

	mata clear
	Description
	Syntax
	Remarks and examples
	Also see

	mata describe
	Description
	Syntax
	Option
	Remarks and examples
	Diagnostics
	Also see

	mata drop
	Description
	Syntax
	Remarks and examples
	Also see

	mata help
	Description
	Syntax
	Remarks and examples
	Also see

	mata matsave
	Description
	Syntax
	Option for mata matsave
	Option for mata matuse
	Remarks and examples
	Diagnostics
	Also see

	mata memory
	Description
	Syntax
	Remarks and examples
	Also see

	mata mlib
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Outline of the procedure for dealing with libraries
	Creating a .mlib library
	Adding members to a .mlib library
	Listing the contents of a library
	Making it so Mata knows to search your libraries
	Advice on organizing your source code

	Also see

	mata mosave
	Description
	Syntax
	Options
	Remarks and examples
	Example of use
	Where to store .mo files
	Use of .mo files versus .mlib files

	Also see

	mata rename
	Description
	Syntax
	Also see

	mata set
	Description
	Option
	Syntax
	Remarks and examples
	Relationship between Mata's mata set and Stata's set commands
	c() values

	Also see

	mata stata
	Description
	Syntax
	Remarks and examples
	Also see

	mata which
	Description
	Syntax
	Remarks and examples
	Also see

	namelists
	Description
	Syntax
	Remarks and examples
	Also see

	Categorical guide to Mata functions
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	IO
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	Manipulation
	Contents
	Description
	Remarks and examples
	Also see

	Mathematical
	Contents
	Description
	Remarks and examples
	Also see

	Matrix
	Contents
	Description
	Remarks and examples
	Also see

	Programming
	Contents
	Also see

	Scalar
	Contents
	Description
	Remarks and examples
	Also see

	Solvers
	Contents
	Description
	Remarks and examples
	Also see

	Standard
	Contents
	Description
	Remarks and examples
	Also see

	Stata
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	Statistical
	Contents
	Description
	Remarks and examples
	Also see

	String
	Contents
	Description
	Remarks and examples
	Also see

	Utility
	Contents
	Description
	Remarks and examples
	Also see

	Alphabetical index to Mata functions
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	abbrev()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	abs()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	adosubdir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	all()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	args()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	asarray()
	Description
	Syntax
	Remarks and examples
	Detailed description
	Example 1: Scalar keys and scalar contents
	Example 2: Scalar keys and matrix contents
	Example 3: Vector keys and scalar contents; sparse matrix
	Setting the efficiency parameters

	Conformability
	Diagnostics
	Also see

	AssociativeArray()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ascii()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	uchar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	assert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	blockdiag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	bufio()
	Description
	Syntax
	Remarks and examples
	Basics
	Argument C
	Arguments B and offset
	Argument fh
	Argument bfmt
	bfmts for numeric data
	bfmts for string data
	Argument X
	Arguments r and c
	Advanced issues

	Conformability
	Diagnostics
	Also see

	byteorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	C()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	c()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	callersversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cat()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	chdir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cholesky()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	cholinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cholsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	comb()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cond()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	conj()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	corr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cross()
	Description
	Syntax
	Remarks and examples
	Comment concerning cross() and missing values

	Conformability
	Diagnostics
	Also see

	crossdev()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cvpermute()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	date()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	deriv()
	Description
	Syntax
	Remarks and examples
	First example
	Notation and formulas
	Type d evaluators
	Example of a type d evaluator
	Type v evaluators
	User-defined arguments
	Example of a type v evaluator
	Type t evaluators
	Example of a type t evaluator
	Functions

	Conformability
	Diagnostics
	Methods and formulas
	References
	Also see

	designmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	det()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_diag()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	diag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diag0cnt()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	dir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	direxists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	direxternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	display()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayas()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayflush()
	Description
	Syntax
	Remarks and examples
	Diagnostics
	Also see

	Dmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	_docx*()
	Description
	Syntax
	Create and save .docx file
	Add paragraph and text
	Add image file
	Add table
	Edit table
	Query routines

	Remarks and examples
	Detailed description
	Error codes
	Functions
	Create and save .docx file
	Add paragraph and text
	Add image
	Add table
	Edit table
	Query routines

	Save document to disk file
	Current paragraph and text
	Supported image types
	Linked and embedded images
	Styles
	Performance
	Examples
	Create a .docx document in memory
	Add paragraphs and text
	Display data
	Display regression results
	Add an image
	Display nested table
	Add images to table cells
	Save the .docx document in memory to a disk file

	Diagnostics
	References
	Also see

	dsign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	e()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	editmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittoint()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittozero()
	Description
	Syntax
	Remarks and examples
	Background
	Treatment of complex values
	Recommendations

	Conformability
	Diagnostics
	Also see

	editvalue()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	eigensystem()
	Description
	Syntax
	Remarks and examples
	Eigenvalues and eigenvectors
	Left eigenvectors
	Symmetric eigensystems
	Normalization and order
	Eigenvalue condition
	Balancing
	eigensystem() and eigenvalues()
	lefteigensystem()
	symeigensystem() and symeigenvalues()

	Conformability
	Diagnostics
	References
	Also see

	eigensystemselect()
	Description
	Syntax
	Remarks and examples
	Introduction
	Range selection
	Index selection
	Criterion selection
	Other functions

	Conformability
	Diagnostics
	Also see

	eltype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	epsilon()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_equilrc()
	Description
	Syntax
	Remarks and examples
	Introduction
	Is equilibration necessary?
	The _equil*() family of functions
	The _perhapsequil*() family of functions
	rowscalefactors() and colscalefactors()

	Conformability
	Diagnostics
	Also see

	error()
	Description
	Syntax
	Remarks and examples
	Use of _error()
	Use of error()

	Conformability
	Diagnostics
	Also see

	errprintf()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exp()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	factorial()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	favorspeed()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ferrortext()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fft()
	Description
	Syntax
	Remarks and examples
	Definitions, notation, and conventions
	Fourier transform
	Convolution and deconvolution
	Correlation
	Utility routines
	Warnings

	Conformability
	Diagnostics
	Also see

	fileexists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	_fillmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	findexternal()
	Description
	Syntax
	Remarks and examples
	Definition of a global
	Use of globals

	Conformability
	Diagnostics
	Also see

	findfile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	floatround()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fmtwidth()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fopen()
	Description
	Syntax
	Remarks and examples
	Opening and closing files
	Reading from a file
	Writing to a file
	Reading and writing in the same file
	Reading and writing matrices
	Repositioning in a file
	Truncating a file
	Error codes

	Conformability
	Diagnostics
	Also see

	fullsvd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Relationship between the full and thin SVDs
	The contents of s
	Possibility of convergence problems

	Conformability
	Diagnostics
	Also see

	geigensystem()
	Description
	Syntax
	Remarks and examples
	Generalized eigenvalues
	Generalized eigenvectors
	Criterion selection
	Range selection
	Index selection

	Conformability
	Diagnostics
	References
	Also see

	ghessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghk()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghkfast()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	gschurd()
	Description
	Syntax
	Remarks and examples
	Generalized Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Also see

	halton()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hash1()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Hilbert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	I()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	inbase()
	Description
	Syntax
	Remarks and examples
	Positive integers
	Negative integers
	Numbers with nonzero fractional parts
	Use of the functions

	Conformability
	Diagnostics
	Reference
	Also see

	indexnot()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	invorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	invsym()
	Description
	Syntax
	Remarks and examples
	Definition of generalized inverse
	Specifying the order in which columns are dropped
	Determining the rank, or counting the number of dropped columns
	Extracting linear dependencies

	Conformability
	Diagnostics
	Also see

	invtokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isascii()
	Description
	Syntax
	Conformability
	Also see

	isdiagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isfleeting()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isrealvalues()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	issamefile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Also see

	issymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	isview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	J()
	Description
	Syntax
	Remarks and examples
	First syntax: J(r, c, val), val a scalar
	Second syntax: J(r, c, mat), mat a matrix

	Conformability
	Diagnostics
	Also see

	Kmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	lapack()
	Description
	Syntax
	Remarks and examples
	Mapping calling sequence from Fortran to Mata
	Flopping: Preparing matrices for LAPACK
	Warning on the use of rows() and cols() after _flopin()
	Warning: It is your responsibility to check info
	Example

	Reference
	Also see

	LinearProgram()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of linear programming problem
	Step 3: Perform optimization
	Step 4: Display or obtain results
	Utility function for use in all steps
	Definition of q
	Functions defining the linear programming problem
	Performing optimization
	Functions for obtaining results
	Utility function

	Remarks and examples
	Introduction
	Details about the interior-point method
	Examples

	Conformability
	Diagnostics
	References
	Also see

	liststruct()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Lmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	logit()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	lowertriangle()
	Description
	Syntax
	Remarks and examples
	Optional argument d
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	lud()
	Description
	Syntax
	Remarks and examples
	LU decomposition
	LAPACK routine

	Conformability
	Diagnostics
	Also see

	luinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	lusolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	makesymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matexpsym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matpowersym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mean()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mindouble()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	minindex()
	Description
	Syntax
	Remarks and examples
	Use of functions when v has all unique values
	Use of functions when v has repeated (tied) values
	Summary

	Conformability
	Diagnostics
	Also see

	minmax()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	missing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	missingof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mod()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	moptimize()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of maximization or minimization problem
	Step 3: Perform optimization or perform a single function evaluation
	Step 4: Post, display, or obtain results
	Utility functions for use in all steps
	Definition of M
	Setting the sample
	Specifying dependent variables
	Specifying independent variables
	Specifying constraints
	Specifying weights or survey data
	Specifying clusters and panels
	Specifying optimization technique
	Specifying initial values
	Performing one evaluation of the objective function
	Performing optimization of the objective function
	Tracing optimization
	Specifying convergence criteria
	Accessing results
	Stata evaluators
	Advanced functions
	Syntax of evaluators
	Syntax of type lf evaluators
	Syntax of type d evaluators
	Syntax of type lf* evaluators
	Syntax of type gf evaluators
	Syntax of type q evaluators
	Passing extra information to evaluators
	Utility functions

	Remarks and examples
	Relationship of moptimize() to Stata's ml and to Mata's optimize()
	Mathematical statement of the moptimize() problem
	Filling in moptimize() from the mathematical statement
	The type lf evaluator
	The type d, lf*, gf, and q evaluators
	Example using type d
	Example using type lf*

	Conformability
	Diagnostics
	References
	Also see

	more()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mvnormal()
	Description
	Syntax
	Remarks and examples
	Distribution functions
	mvnormal(U,R)
	mvnormal(L,U,R)
	mvnormalcv(L,U,M,V)

	Derivatives of multivariate normal distribution functions
	mvnormalderiv(U,R,dU,dR)
	mvnormalderiv(L,U,R,dL,dU,dR)
	mvnormalcvderiv(L,U,M,V,dL,dU,dM,dV)

	Conformability
	References
	Also see

	_negate()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	norm()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	normal()
	Description
	Syntax
	Remarks and examples
	R-conformability
	A note concerning invbinomial() and invbinomialtail()
	A note concerning ibeta()
	A note concerning gammap()

	Conformability
	Diagnostics
	Also see

	optimize()
	Description
	Syntax
	Remarks and examples
	First example
	Notation
	Type d evaluators
	Example of d0, d1, and d2
	d1debug and d2debug
	Type gf evaluators
	Example of gf0, gf1, and gf2
	Functions

	Conformability
	Diagnostics
	References
	Also see

	panelsetup()
	Description
	Syntax
	Remarks and examples
	Definition of panel data
	Definition of problem
	Preparation
	Use of panelsetup()
	Using panelstats()
	Using panelsubmatrix()
	Using panelsubview()

	Conformability
	Diagnostics
	Also see

	pathjoin()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Pdf*()
	Description
	Syntax
	PdfDocument
	PdfParagraph
	PdfText
	PdfTable

	Remarks and examples
	PdfDocument class details
	PdfParagraph class details
	PdfText class details
	PdfTable class details
	Error codes
	Examples
	Add paragraph
	Add paragraph with customized text
	Add table (simple example)
	Add table (table with header and footer)
	Add table (table with graph)

	Also see

	pinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	polyeval()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	printf()
	Description
	Syntax
	Remarks and examples
	printf()
	sprintf()
	The %us and %uds formats

	Conformability
	Diagnostics
	Also see

	qrd()
	Description
	Syntax
	Remarks and examples
	QR decomposition
	Avoiding calculation of Q
	Pivoting
	Least-squares solutions with dropped columns

	Conformability
	Diagnostics
	Also see

	qrinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	qrsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	quadcross()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Quadrature()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of integration problem
	Step 3: Perform integration
	Step 4: Display or obtain results
	Utility function for use in all steps
	Definition of q
	Functions defining the integration problem
	Performing integration
	Functions for obtaining results
	Utility function

	Remarks and examples
	Introduction
	Examples
	A basic example
	Integrals with infinite limits
	Passing arguments to the evaluator function
	Singular points and setting tolerances
	Displaying settings and results at each stage
	Vectors and matrices of integrals

	Conformability
	Diagnostics
	References
	Also see

	range()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rank()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Re()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	reldif()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	rows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rowshape()
	Description
	Syntax
	Remarks and examples
	Example of rowshape()
	Example of colshape()

	Conformability
	Diagnostics
	Also see

	runiform()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	runningsum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	schurd()
	Description
	Syntax
	Remarks and examples
	Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Reference
	Also see

	select()
	Description
	Syntax
	Remarks and examples
	Examples
	Using st_select()

	Conformability
	Diagnostics
	Also see

	setbreakintr()
	Description
	Syntax
	Remarks and examples
	Default break-key processing
	Suspending the break-key interrupt
	Break-key polling

	Conformability
	Diagnostics
	Also see

	sign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sin()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sizeof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solve_tol()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solvelower()
	Description
	Syntax
	Remarks and examples
	Derivation
	Tolerance

	Conformability
	Diagnostics
	Also see

	solvenl()
	Description
	Syntax
	Remarks and examples
	Introduction
	A fixed-point example
	A zero-finding example
	Writing a fixed-point problem as a zero-finding problem and vice versa
	Gauss{--}Seidel methods
	Newton-type methods
	Convergence criteria
	Exiting early
	Functions

	Conformability
	Diagnostics
	References
	Also see

	sort()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	soundex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	spline3()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	sqrt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_addobs()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_addvar()
	Description
	Syntax
	Remarks and examples
	Creating a new variable
	Creating new variables
	Creating new string variables
	Creating a new temporary variable
	Creating temporary variables
	Handling errors
	Using nofill

	Conformability
	Diagnostics
	Reference
	Also see

	st_data()
	Description
	Syntax
	Remarks and examples
	Description of _st_data() and _st_sdata()
	Description of st_data() and st_sdata()
	Details of observation subscripting using st_data() and st_sdata()

	Conformability
	Diagnostics
	Also see

	st_dir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_dropvar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_frame*()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_global()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_isfmt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_isname()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_local()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_macroexpand()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_matrix()
	Description
	Syntax
	Remarks and examples
	Processing Stata's row and column stripes

	Conformability
	Diagnostics
	Also see

	st_numscalar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_nvar()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_rclear()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_store()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_subview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_tempname()
	Description
	Syntax
	Remarks and examples
	Creating temporary objects
	When temporary objects will be eliminated

	Conformability
	Diagnostics
	Also see

	st_tsrevar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_updata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varformat()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_varindex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varrename()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_vartype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_view()
	Description
	Syntax
	Remarks and examples
	Overview
	Advantages and disadvantages of views
	When not to use views
	Cautions when using views 1: Conserving memory
	Cautions when using views 2: Assignment
	Efficiency

	Conformability
	Diagnostics
	Reference
	Also see

	st_viewvars()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_vlexists()
	Description
	Syntax
	Remarks and examples
	Value-label mapping
	Value-label creation and editing
	Loading value labels

	Conformability
	Diagnostics
	Also see

	stata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	stataversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strdup()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udstrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strmatch()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strofreal()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	subinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sublowertriangle()
	Description
	Syntax
	Remarks and examples
	Get lower triangle of a matrix
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	_substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udsubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	svd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Possibility of convergence problems

	Conformability
	Diagnostics
	References
	Also see

	svsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	swap()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Toeplitz()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	tokenget()
	Description
	Syntax
	Remarks and examples
	Concepts
	Function overview

	Conformability
	Diagnostics
	Also see

	tokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trace()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_transpose()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	transposeonly()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trunc()
	Description
	Syntax
	Remarks and examples
	Relationship to Stata's functions
	Examples of rounding

	Conformability
	Diagnostics
	Also see

	uniqrows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	unitcircle()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	unlink()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	urlencode()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	ustrcompare()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrfix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrnormalize()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrsplit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Also see

	ustrto()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrunescape()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrword()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	valofexternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Vandermonde()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	vec()
	Description
	Syntax
	Remarks and examples
	Example of vec()
	Example of vech() and invvech()

	Conformability
	Diagnostics
	Also see

	xl()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Creating and opening an Excel workbook
	Step 3: Setting the Excel worksheet
	Step 4: Reading and writing data from and to an Excel worksheet
	Step 5: Formatting cells in an Excel worksheet
	Step 6: Formatting text in an Excel worksheet
	Step 7: Formatting cell ranges in an Excel worksheet
	Utility functions for use in all steps

	Remarks and examples
	Definition of B
	Specifying the Excel workbook
	Specifying the Excel worksheet
	Reading data from Excel
	Writing data to Excel
	Dealing with missing values
	Dealing with dates
	Formatting functions
	Numeric formatting
	Text alignment
	Cell borders
	Fonts
	Other
	Formatting examples

	Range formatting functions
	Adding format IDs
	Setting formats by ID
	Cell formatting functions
	Adding font IDs
	Setting font IDs for format IDs
	Font formatting functions
	Range formatting examples

	Utility functions
	Handling errors
	Error codes

	Appendix
	Codes for numeric formats
	Codes for border styles
	Codes for fill pattern styles
	Codes for text rotation
	Format colors

	Also see

	Mata glossary of common terms
	Glossary
	Description
	Mata glossary
	Also see

	[ME] Multilevel Mixed Effects
	Contents
	me
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Using mixed-effects commands
	Mixed-effects models
	Linear mixed-effects models
	Generalized linear mixed-effects models
	Survival mixed-effects models
	Nonlinear mixed-effects models
	Alternative mixed-effects model specification
	Likelihood calculation
	Computation time and the Laplacian approximation
	Diagnosing convergence problems
	Distribution theory for likelihood-ratio test

	Examples
	Two-level models
	Covariance structures
	Three-level models
	Crossed-effects models
	Nonlinear models

	Acknowledgments
	References
	Also see

	estat df
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat group
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Also see

	estat icc
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Intraclass correlations

	Also see

	estat recovariance
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat sd
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat wcorrelation
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Linear mixed-effects model
	Nonlinear mixed-effects model

	Reference
	Also see

	mecloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	mecloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meglm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models for continuous responses
	Two-level models for nonlinear responses
	Three-level models for nonlinear responses
	Crossed-effects models
	Obtaining better starting values
	Survey data
	Video example

	Stored results
	Methods and formulas
	Introduction
	Gauss--Hermite quadrature
	Adaptive Gauss--Hermite quadrature
	Laplacian approximation
	Survey data

	References
	Also see

	meglm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	meintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	melogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Other covariance structures
	Three-level models
	Crossed-effects models

	Stored results
	Methods and formulas
	References
	Also see

	melogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	menbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	menbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	menl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Random-effects substitutable expressions
	Substitutable expressions
	Linear combinations
	Linear forms versus linear combinations
	Random effects
	Multilevel specifications
	Time-series operators
	Summary

	Specifying initial values
	Two-level models
	Testing variance components
	Random-effects covariance structures
	Heteroskedastic within-group errors
	Restricted maximum likelihood
	Pharmacokinetic modeling
	Single-dose pharmacokinetic modeling
	Multiple-dose pharmacokinetic modeling

	Nonlinear marginal models
	Three-level models
	Obtaining initial values
	Linearization approach to finding initial values
	Graphical approach to finding initial values
	Smart regressions approach to finding initial values
	Examples of specifying initial values

	Stored results
	Methods and formulas
	Introduction
	Variance-components parameters
	Inference based on linearization
	Initial values

	References
	Also see

	menl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	meologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mepoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Higher-level models

	Stored results
	Methods and formulas
	References
	Also see

	mepoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	Survival models
	Survey data

	References
	Also see

	mestreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	metobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	metobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Introduction
	Conditional predictions
	Marginal predictions
	Marginal variance of the linear predictor

	Also see

	mixed
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Covariance structures
	Likelihood versus restricted likelihood
	Three-level models
	Blocked-diagonal covariance structures
	Heteroskedastic random effects
	Heteroskedastic residual errors
	Other residual-error structures
	Crossed-effects models
	Diagnosing convergence problems
	Survey data
	Small-sample inference for fixed effects

	Stored results
	Methods and formulas
	Estimation using ML and REML
	Denominator degrees of freedom
	Residual DDF
	Repeated DDF
	ANOVA DDF
	Satterthwaite DDF
	Kenward{--}Roger DDF

	Acknowledgments
	References
	Also see

	mixed postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	test and testparm
	Description for test and testparm
	Menu for test and testparm
	Syntax for test and testparm
	Options for test and testparm

	lincom
	Description for lincom
	Menu for lincom
	Syntax for lincom
	Options for lincom

	contrast
	Description for contrast
	Menu for contrast
	Syntax for contrast
	Options for contrast

	pwcompare
	Description for pwcompare
	Menu for pwcompare
	Syntax for pwcompare
	Options for pwcompare

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Small-sample inference

	References
	Also see

	Glossary
	References

	[META] Meta-Analysis
	Contents
	Intro
	Description
	Remarks and examples
	Brief overview of meta-analysis
	Meta-analysis models
	Common-effect (``fixed-effect'') model
	Fixed-effects model
	Random-effects model
	Comparison between the models and interpretation of their results
	Meta-analysis estimation methods

	Forest plots
	Heterogeneity
	Assessing heterogeneity
	Addressing heterogeneity
	Subgroup meta-analysis
	Meta-regression

	Publication bias
	Funnel plots
	Tests for funnel-plot asymmetry
	The trim-and-fill method

	Cumulative meta-analysis

	References
	Also see

	meta
	Description
	Remarks and examples
	Introduction to meta-analysis using Stata
	Example datasets
	Effects of teacher expectancy on pupil IQ ({pupiliq.dta})
	Effect of streptokinase after a myocardial infarction (strepto.dta)
	Efficacy of BCG vaccine against tuberculosis (bcg.dta)
	Effectiveness of nonsteroidal anti-inflammatory drugs (nsaids.dta)

	Tour of meta-analysis commands
	Prepare your data for meta-analysis in Stata
	Basic meta-analysis summary
	Subgroup meta-analysis
	Cumulative meta-analysis
	Heterogeneity: Meta-regression and bubble plot
	Funnel plots for exploring small-study effects
	Testing for small-study effects
	Trim-and-fill analysis for addressing publication bias

	Acknowledgments
	References
	Also see

	meta data
	Description
	Remarks and examples
	Overview
	Declaring meta-analysis information
	Declaring effect sizes and their precision
	Declaring a meta-analysis model
	Declaring a meta-analysis estimation method
	Default meta-analysis model and method
	Declaring a confidence level for meta-analysis
	Declaring display settings for meta-analysis
	Modifying default meta settings

	Meta-analysis information
	Meta settings with meta set
	Meta settings with meta esize

	System variables
	Examples of data declaration for meta-analysis
	Declaring precomputed effect sizes using meta set
	Computing and declaring effect sizes using meta esize
	Displaying and updating meta settings

	References
	Also see

	meta esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Meta-analysis of binary data
	Meta-analysis of continuous data

	Stored results
	Methods and formulas
	Effect sizes for continuous outcomes
	Unstandardized mean difference
	Standardized mean difference

	Effect sizes for binary outcomes
	Odds ratio
	Risk ratio (rate ratio)
	Risk difference
	Zero-cells adjustments

	Confidence intervals for effect sizes

	References
	Also see

	meta set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Using meta set

	Stored results
	References
	Also see

	meta update
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	meta forestplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Using meta forestplot
	Plot columns

	Examples of using meta forestplot

	Methods and formulas
	References
	Also see

	meta summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta summarize

	Stored results
	Methods and formulas
	Fixed-effects and common-effect methods for combining study estimates
	Inverse-variance method
	Mantel--Haenszel method for binary outcomes
	Peto's method for odds ratios

	Random-effects methods for combining study estimates
	Iterative methods
	Noniterative methods
	Knapp--Hartung standard-error adjustment
	Prediction intervals

	Confidence intervals and significance test
	Heterogeneity measures
	Homogeneity test
	Subgroup meta-analysis
	Fixed-effects model
	Random-effects model

	Cumulative meta-analysis

	References
	Also see

	meta labbeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meta regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta regress

	Stored results
	Methods and formulas
	Fixed-effects meta-regression
	Random-effects meta-regression
	Iterative methods for computing tau-hat-squared
	Noniterative methods for computing tau-hat-squared
	Knapp--Hartung standard-error adjustment

	Residual homogeneity test
	Residual heterogeneity measures

	References
	Also see

	meta regress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Random-effects meta-regression
	Fixed-effects meta-regression

	Reference
	Also see

	estat bubbleplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using estat bubbleplot

	Methods and formulas
	References
	Also see

	meta funnelplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Funnel plots
	Contour-enhanced funnel plots

	Using meta funnelplot
	Examples of using meta funnelplot

	Stored results
	Methods and formulas
	References
	Also see

	meta bias
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using meta bias
	Examples of using meta bias

	Stored results
	Methods and formulas
	Regression-based tests
	Egger's linear regression test
	Harbord's test for log odds-ratios or log risk-ratios
	Peters's test for log odds-ratios

	Begg's rank correlation test

	References
	Also see

	meta trimfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using meta trimfill
	Examples of using meta trimfill

	Stored results
	Methods and formulas
	Estimating the number of missing studies
	Trim-and-fill algorithm

	References
	Also see

	Glossary
	References

	[MI] Multiple Imputation
	Contents
	Intro substantive
	Description
	Remarks and examples
	Motivating example
	What is multiple imputation?
	Theory underlying multiple imputation
	How large should M be?
	Assumptions about missing data
	Patterns of missing data
	Proper imputation methods
	Analysis of multiply imputed data
	A brief introduction to MI using Stata
	Summary

	References
	Also see

	Intro
	Description
	Remarks and examples
	A simple example
	Suggested reading order

	Acknowledgments
	Also see

	Estimation
	Description
	Also see

	mi add
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi append
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Adding new observations
	Adding new observations and imputations
	Adding new observations and imputations, M unequal
	Treatment of registered variables

	Stored results
	Also see

	mi convert
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi convert as a convenience tool
	Converting from flongsep
	Converting to flongsep

	Also see

	mi copy
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi describe
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi query
	mi describe

	Stored results
	Also see

	mi erase
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi estimate
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi estimate
	Example 1: Completed-data logistic analysis
	Example 2: Completed-data linear regression analysis
	Example 3: Completed-data survival analysis
	Example 4: Panel data and multilevel models
	Example 5: Estimating transformations
	Example 6: Monte Carlo error estimates
	Potential problems that can arise when using mi estimate

	Stored results
	Methods and formulas
	Univariate case
	Multivariate case

	Acknowledgments
	References
	Also see

	mi estimate using
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mi estimate postestimation
	Postestimation commands
	Remarks and examples
	Using the command-specific postestimation tools

	Also see

	mi expand
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi export
	Description
	Syntax
	Remarks and examples
	References
	Also see

	mi export ice
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	mi export nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi extract
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import
	Description
	Syntax
	Remarks and examples
	When to use which mi import command
	Import data into Stata before importing into mi
	Using mi import nhanes1, ice, flong, and flongsep

	References
	Also see

	mi import flong
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import flongsep
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import ice
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mi import nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the nhanes1 format
	Importing nhanes1 data

	Also see

	mi import wide
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi impute
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Imputation methods
	Imputation modeling
	Model building
	Outcome variables
	Transformations
	Categorical variables
	The issue of perfect prediction during imputation of categorical data
	Convergence of iterative methods
	Imputation diagnostics

	Using mi impute
	Univariate imputation
	Multivariate imputation
	Imputing on subsamples
	Conditional imputation
	Imputation and estimation samples
	Imputing transformations of incomplete variables

	Stored results
	Methods and formulas
	References
	Also see

	mi impute chained
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation using chained equations
	Compatibility of conditionals
	Convergence of MICE
	First use
	Using mi impute chained
	Default prediction equations
	Custom prediction equations
	Link between mi impute chained and mi impute monotone
	Examples

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mi impute intreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using interval regression
	Using mi impute intreg
	Example

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute logit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using logistic regression
	Using mi impute logit
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mlogit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using multinomial logistic regression
	Using mi impute mlogit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute monotone
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation when a missing-data pattern is monotone
	First use
	Using mi impute monotone
	Default syntax of mi impute monotone
	The alternative syntax of mi impute monotone---custom prediction equations
	Examples of using default prediction equations
	Examples of using custom prediction equations

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mvn
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Incomplete continuous data with arbitrary pattern of missing values
	Multivariate imputation using data augmentation
	Convergence of the MCMC method
	Using mi impute mvn
	Examples

	Stored results
	Methods and formulas
	Data augmentation
	Prior distribution
	Initial values: EM algorithm
	 Worst linear function

	References
	Also see

	mi impute nbreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using negative binomial regression
	Using mi impute nbreg

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute ologit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using ordered logistic regression
	Using mi impute ologit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute pmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using predictive mean matching
	Using mi impute pmm
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute poisson
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using Poisson regression
	Using mi impute poisson

	Stored results
	Methods and formulas
	References
	Also see

	mi impute regress
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using linear regression
	Using mi impute regress
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute truncreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using truncated regression
	Using mi impute truncreg

	Stored results
	Methods and formulas
	References
	Also see

	mi impute usermethod
	Description
	Syntax
	Options
	Remarks and examples
	Toy example: Naive regression imputation
	Steps for adding a new method to mi impute
	Writing an imputation parser
	Writing an initializer
	Writing an imputer
	Storing additional results
	Writing a cleanup program

	Examples
	Naive regression imputation
	Univariate regression imputation
	Multivariate monotone imputation

	Global macros

	Stored results
	Acknowledgment
	Also see

	mi merge
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Merging with non-mi data
	Merging with mi data
	Merging with mi data containing overlapping variables

	Stored results
	Also see

	mi misstable
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi passive
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi passive basics
	mi passive works with the by prefix
	mi passive works fastest with the wide style
	mi passive and super-varying variables
	Renaming passive variables
	Dropping passive variables
	Update passive variables when imputed values change
	Alternatives to mi passive

	Also see

	mi predict
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using mi predict and mi predictnl
	Example 1: Obtain MI linear predictions and other statistics
	Example 2: Obtain MI linear predictions for the estimation sample
	Example 3: Obtain MI estimates of probabilities
	Example 4: Obtain other MI predictions
	Example 5: Obtain MI predictions after multiple-equation commands

	Methods and formulas
	References
	Also see

	mi ptrace
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi rename
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Specifying the noupdate option
	What to do if you accidentally use rename
	What to do if you accidentally use rename on wide data
	What to do if you accidentally use rename on mlong data
	What to do if you accidentally use rename on flong data
	What to do if you accidentally use rename on flongsep data

	Also see

	mi replace0
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi reset
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi reset
	Technical notes and relation to mi update

	Also see

	mi reshape
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi select
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	mi set
	Description
	Menu
	Syntax
	Option for mi unset
	Remarks and examples
	mi set style
	mi register and mi unregister
	mi set M and mi set m
	mi unset

	Also see

	mi stsplit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Example 1: Testing subsets of coefficients equal to zero
	Example 2: Testing linear hypotheses
	Example 3: Testing nonlinear hypotheses

	Stored results
	Methods and formulas
	References
	Also see

	mi update
	Description
	Menu
	Syntax
	Remarks and examples
	Purpose of mi update
	What mi update does
	mi update is run automatically

	Also see

	mi varying
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Detecting problems
	Fixing problems

	Stored results
	Also see

	mi xeq
	Description
	Syntax
	Remarks and examples
	Using mi xeq with reporting commands
	Using mi xeq with data-modification commands
	Using mi xeq with data-modification commands on flongsep data

	Stored results
	Also see

	mi XXXset
	Description
	Syntax
	Remarks and examples
	Also see

	noupdate option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Styles
	Description
	Syntax
	Remarks and examples
	The four styles
	Style wide
	Style flong
	Style mlong
	Style flongsep
	How we constructed this example

	Using mi system variables
	Advice for using flongsep

	Also see

	Technical
	Description
	Remarks and examples
	Notation
	Definition of styles
	Style all
	Style wide
	Style mlong
	Style flong
	Style flongsep
	Style flongsep_sub

	Adding new commands to mi
	Outline for new commands
	Utility routines
	u_mi_assert_set
	u_mi_certify_data
	u_mi_no_sys_vars and u_mi_no_wide_vars
	u_mi_zap_chars
	u_mi_xeq_on_tmp_flongsep
	u_mi_get_flongsep_tmpname
	mata: u_mi_flongsep_erase()
	u_mi_sortback
	u_mi_save and u_mi_use
	mata: u_mi_wide_swapvars()
	u_mi_fixchars
	mata: u_mi_cpchars_get() and mata: u_mi_cpchars_put()
	mata: u_mi_get_mata_instanced_var()
	mata: u_mi_ptrace_*()

	How to write other set commands to work with mi

	Also see

	Workflow
	Description
	Remarks and examples
	Suggested workflow for original data
	Suggested workflow for data that already have imputations
	Example

	Also see

	Glossary
	Also see

	[MV] Multivariate Statistics
	Contents
	Intro
	Description
	Also see

	Multivariate
	Description
	Remarks and examples
	Cluster analysis
	Discriminant analysis
	Factor analysis and principal component analysis
	Rotation
	Multivariate analysis of variance, multivariate regression, and related techniques
	Structural equation modeling
	Multidimensional scaling and biplots
	Correspondence analysis
	Bayesian analysis
	Item response theory
	Multivariate time-series models

	Also see

	alpha
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	biplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	How many dimensions?
	Statistics on the points
	Normalization and interpretation of correspondence analysis
	Plotting the points
	Supplementary points
	Matrix input
	Crossed variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation plots
	Postestimation commands
	cabiplot
	Description for cabiplot
	Menu for cabiplot
	Syntax for cabiplot
	Options for cabiplot

	caprojection
	Description for caprojection
	Menu for caprojection
	Syntax for caprojection
	Options for caprojection

	Remarks and examples
	References
	Also see

	candisc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	canon
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	canon postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster
	Description
	Syntax
	Remarks and examples
	Introduction to cluster analysis
	Stata's cluster-analysis system
	Data transformations and variable selection
	Similarity and dissimilarity measures
	Partition cluster-analysis methods
	Hierarchical cluster-analysis methods
	Hierarchical cluster analysis applied to a dissimilarity matrix
	Postclustering commands
	Cluster-management tools

	References
	Also see

	clustermat
	Description
	Syntax
	Remarks and examples
	References
	Also see

	cluster dendrogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	cluster generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cluster kmeans and kmedians
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cluster linkage
	Description
	Quick start
	Menu
	Syntax
	Options for cluster linkage commands
	Options for clustermat linkage commands
	Remarks and examples
	Methods and formulas
	Also see

	cluster notes
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	cluster programming subroutines
	Description
	Remarks and examples
	Adding a cluster subroutine
	Adding a cluster generate function
	Adding a cluster stopping rule
	Applying an alternate cluster dendrogram routine

	Reference
	Also see

	cluster programming utilities
	Description
	Syntax
	Options for cluster set
	Options for cluster delete
	Options for cluster measures
	Remarks and examples
	Stored results
	Also see

	cluster stop
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster utility
	Description
	Menu
	Syntax
	Options for cluster list
	Options for cluster renamevar
	Remarks and examples
	Also see

	discrim
	Description
	Syntax
	Remarks and examples
	Introduction
	A simple example
	Prior probabilities, costs, and ties

	Methods and formulas
	References
	Also see

	discrim estat
	Postestimation commands
	Description for estat
	Quick start for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classtable
	Options for estat errorrate
	Options for estat grsummarize
	Options for estat list
	Options for estat summarize

	Remarks and examples
	Discriminating-variable summaries
	Discrimination listings
	Classification tables and error rates

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Mahalanobis transformation
	Binary data

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	discrim lda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Descriptive LDA
	Predictive LDA
	A classic example

	Stored results
	Methods and formulas
	Predictive LDA
	Descriptive LDA

	References
	Also see

	discrim lda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classfunctions
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances
	Options for estat grmeans
	Options for estat loadings
	Option for estat structure

	Remarks and examples
	Classification tables, error rates, and listings
	ANOVA, MANOVA, and canonical correlations
	Discriminant and classification functions
	Scree, loading, and score plots
	Means and distances
	Covariance and correlation matrices
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Reference
	Also see

	discrim qda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim qda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	factor
	Description
	Quick start
	Menu
	Syntax
	Options for factor and factormat
	Options unique to factormat
	Remarks and examples
	Introduction
	Factor analysis
	Factor analysis from a correlation matrix

	Stored results
	Methods and formulas
	References
	Also see

	factor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, factor loadings, and scores
	Rotating the factor loadings
	Factor scores

	Stored results
	Methods and formulas
	estat
	rotate
	predict

	References
	Also see

	hotelling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	manova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way MANOVA
	Reporting coefficients
	Two-way MANOVA
	N-way MANOVA
	MANCOVA
	MANOVA for Latin-square designs
	MANOVA for nested designs
	MANOVA for mixed designs
	MANOVA with repeated measures

	Stored results
	Methods and formulas
	References
	Also see

	manova postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	manovatest
	Description of manovatest
	Menu for manovatest
	Syntax for manovatest
	Options for manovatest

	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Compare MCA on two variables and CA
	MCA on four variables
	CA of the indicator matrix
	CA of the Burt matrix
	Joint correspondence analysis

	Stored results
	Methods and formulas
	Notation
	Using ca to compute MCA
	CA of an indicator or Burt matrix
	JCA
	Supplementary variables
	predict

	References
	Also see

	mca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat coordinates
	Options for estat summarize

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	mca postestimation plots
	Postestimation commands
	mcaplot
	Description for mcaplot
	Menu for mcaplot
	Syntax for mcaplot
	Options for mcaplot

	mcaprojection
	Description for mcaprojection
	Menu for mcaprojection
	Syntax for mcaprojection
	Options for mcaprojection

	Remarks and examples
	Methods and formulas
	References
	Also see

	mds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Euclidean distances
	Non-Euclidean dissimilarity measures
	Introduction to modern MDS
	Protecting from local minimums

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation plots
	Postestimation commands
	mdsconfig
	Description for mdsconfig
	Menu for mdsconfig
	Syntax for mdsconfig
	Options for mdsconfig

	mdsshepard
	Description for mdsshepard
	Menu for mdsshepard
	Syntax for mdsshepard
	Options for mdsshepard

	Remarks and examples
	References
	Also see

	mdslong
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in long format
	Modern nonmetric MDS

	Stored results
	Methods and formulas
	References
	Also see

	mdsmat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in a Stata matrix
	Modern MDS and local minimums

	Stored results
	Methods and formulas
	Classical multidimensional scaling
	Modern multidimensional scaling
	Conversion of similarities to dissimilarities

	References
	Also see

	measure_option
	Description
	Syntax
	Options
	References
	Also see

	mvreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	mvreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mvtest
	Description
	Syntax
	References
	Also see

	mvtest correlations
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	Stored results
	Methods and formulas
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	References
	Also see

	mvtest covariances
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	Stored results
	Methods and formulas
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	References
	Also see

	mvtest means
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options with one-sample tests
	Remarks and examples
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	Stored results
	Methods and formulas
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	References
	Also see

	mvtest normality
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mardia mSkewness and mKurtosis
	Henze--Zirkler
	Doornik--Hansen

	Acknowledgment
	References
	Also see

	pca
	Description
	Quick start
	Menu
	Syntax
	Options
	Options unique to pcamat
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Inference on eigenvalues and eigenvectors
	More general tests for multivariate normal distributions

	References
	Also see

	pca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, component loadings, and scores
	Rotating the components
	How rotate interacts with pca
	Predicting the component scores

	Stored results
	Methods and formulas
	References
	Also see

	procrustes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to Procrustes methods
	Orthogonal Procrustes analysis
	Is an orthogonal Procrustes analysis symmetric?
	Other transformations

	Stored results
	Methods and formulas
	Introduction
	Orthogonal transformations
	Oblique transformations
	Unrestricted transformations
	Reported statistics

	References
	Also see

	procrustes postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	procoverlay
	Description for procoverlay
	Menu for procoverlay
	Syntax for procoverlay
	Options for procoverlay

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rotate
	Description
	Quick start
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Orthogonal rotations
	Oblique rotations
	Other types of rotation

	Stored results
	Methods and formulas
	References
	Also see

	rotatemat
	Description
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Introduction
	Orthogonal rotations
	Oblique rotations
	Promax rotation

	Stored results
	Methods and formulas
	References
	Also see

	scoreplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	screeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Glossary
	References

	[P] Programming
	Contents
	Combined subject table of contents
	Intro
	Description
	References
	Also see

	Automation
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	byable
	Description
	Syntax
	Option
	Remarks and examples
	byable(recall) programs
	Using sort in byable(recall) programs
	Byable estimation commands
	byable(onecall) programs
	Using sort in byable(onecall) programs
	Combining byable(onecall) with byable(recall)
	The by-group header

	Also see

	capture
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	char
	Description
	Syntax
	Option
	Remarks and examples
	How to program with characteristics

	Also see

	class
	Description
	Remarks and examples
	1. Introduction
	2. Definitions
	3. Version control
	4. Member variables
	5. Inheritance
	6. Member programs' return values
	7. Assignment
	8. Built-ins
	9. Prefix operators
	10. Using object values
	11. Object destruction
	12. Advanced topics
	Appendix A. Finding, loading, and clearing class definitions
	Appendix B. Jargon
	Appendix C. Syntax diagrams

	Also see

	class exit
	Description
	Syntax
	Remarks and examples
	Examples

	Also see

	classutil
	Description
	Syntax
	Options for classutil describe
	Options for classutil dir
	Option for classutil which
	Remarks and examples
	classutil drop
	classutil describe
	classutil dir
	classutil cdir
	classutil which

	Stored results
	Also see

	comments
	Description
	Remarks and examples
	Also see

	confirm
	Description
	Syntax
	Option
	Remarks and examples
	confirm existence
	confirm file
	confirm format
	confirm frame
	confirm names
	confirm number
	confirm matrix
	confirm scalar
	confirm variable

	Also see

	continue
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	creturn
	Description
	Menu
	Syntax
	Remarks and examples
	System values
	Directories and paths
	System limits
	Numerical and string limits
	Current dataset
	Memory settings
	Output settings
	Interface settings
	Graphics settings
	Network settings
	Update settings
	Trace (program debugging) settings
	Mata settings
	Java settings
	putdocx settings
	Python settings
	RNG settings
	Unicode settings
	Other settings
	Other

	Also see

	_datasignature
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	#delimit
	Description
	Syntax
	Remarks and examples
	Also see

	Dialog programming
	Description
	Remarks and examples
	1. Introduction
	2. Concepts
	2.1 Organization of the .dlg file
	2.2 Positions, sizes, and the DEFINE command
	2.3 Default values
	2.4 Memory (recollection)
	2.5 I-actions and member functions
	2.6 U-actions and communication options
	2.7 The distinction between i-actions and u-actions
	2.8 Error and consistency checking

	3. Commands
	3.1 VERSION
	3.2 INCLUDE
	3.3 DEFINE
	3.4 POSITION
	3.5 LIST
	3.6 DIALOG
	3.6.1 CHECKBOX on/off input control
	3.6.2 RADIO on/off input control
	3.6.3 SPINNER numeric input control
	3.6.4 EDIT string input control
	3.6.5 VARLIST and VARNAME string input controls
	3.6.6 FILE string input control
	3.6.7 LISTBOX list input control
	3.6.8 COMBOBOX list input control
	3.6.9 BUTTON special input control
	3.6.10 TEXT static control
	3.6.11 TEXTBOX static control
	3.6.12 GROUPBOX static control
	3.6.13 FRAME static control
	3.6.14 COLOR input control
	3.6.15 EXP expression input control
	3.6.16 HLINK hyperlink input control
	3.6.17 TREEVIEW tree input control
	3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
	3.8 HELP and RESET helper buttons
	3.9 Special dialog directives

	4. SCRIPT
	5. PROGRAM
	5.1 Concepts
	5.1.1 Vnames
	5.1.2 Enames
	5.1.3 rstrings: cmdstring and optstring
	5.1.4 Adding to an rstring
	5.2 Flow-control commands
	5.2.1 if
	5.2.2 while
	5.2.3 call
	5.2.4 exit
	5.2.5 close
	5.3 Error-checking and presentation commands
	5.3.1 require
	5.3.2 stopbox
	5.4 Command-construction commands
	5.4.1 by
	5.4.2 bysort
	5.4.3 put
	5.4.4 varlist
	5.4.5 ifexp
	5.4.6 inrange
	5.4.7 weight
	5.4.8 beginoptions and endoptions
	5.4.8.1 option
	5.4.8.2 optionarg
	5.5 Command-execution commands
	5.5.1 stata
	5.5.2 clear
	5.6 Special scripts and programs

	6. Properties
	7. Child dialogs
	7.1 Referencing the parent
	8. Example
	Appendix A: Jargon
	Appendix B: Class definition of dialog boxes
	Appendix C: Interface guidelines for dialog boxes
	Frequently asked questions

	Also see

	discard
	Description
	Syntax
	Remarks and examples
	Also see

	display
	Description
	Syntax
	Remarks and examples
	Introduction
	Styles
	display used with quietly and noisily
	Columns
	display and SMCL
	Displaying variable names
	Obtaining input from the terminal

	Also see

	ereturn
	Description
	Syntax
	Options
	Remarks and examples
	Estimation-class programs
	Setting individual estimation results
	Posting estimation coefficient and variance--covariance matrices

	Stored results
	Also see

	error
	Description
	Syntax
	Remarks and examples
	Introduction
	Summary
	Other messages

	Also see

	estat programming
	Description
	Remarks and examples
	Standard subcommands
	Adding subcommands to estat
	Overriding standard behavior of a subcommand

	Also see

	_estimates
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Estimation command
	Description
	Remarks and examples
	References
	Also see

	exit
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	file
	Description
	Syntax
	Options
	Text output specifications

	Remarks and examples
	Use of file
	Use of file with tempfiles
	Writing text files
	Reading text files
	Use of seek when writing or reading text files
	Writing and reading binary files
	Writing binary files
	Reading binary files
	Use of seek when writing or reading binary files
	Appendix A.1 $mskip 	hinmuskip $ Useful commands and functions for use with file
	Appendix A.2 $mskip 	hinmuskip $ Actions of binary output formats with out-of-range values

	Stored results
	Reference
	Also see

	File formats .dta
	Description
	Also see

	findfile
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	foreach
	Description
	Syntax
	Remarks and examples
	Introduction
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of local and foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of global
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of varlist
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of newlist
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of numlist
	Use of foreach with continue
	The unprocessed list elements

	Reference
	Also see

	forvalues
	Description
	Syntax
	Remarks and examples
	References
	Also see

	frame post
	Description
	Syntax
	Remarks and examples
	Also see

	fvexpand
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	gettoken
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Introduction
	Avoid single-line if and else with ++ and -/- macro expansion

	Reference
	Also see

	include
	Description
	Syntax
	Option
	Remarks and examples
	Use with do-files
	Use with Mata
	Warning

	Also see

	Java intro
	Description
	Remarks and examples
	References
	Also see

	Java utilities
	Description
	Syntax
	Remarks and examples
	Also see

	javacall
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	levelsof
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	macro
	Description
	Syntax
	Remarks and examples
	Formal definition of a macro
	Global and local macro names
	Macro assignment
	Macro functions
	Macro function for extracting program properties
	Macro function for extracting program results class
	Macro functions for extracting data attributes
	Macro function for naming variables
	Macro functions for filenames and file paths
	Macro function for accessing operating-system parameters
	Macro functions for names of stored results
	Macro function for formatting results
	Macro function for manipulating lists
	Macro functions related to matrices
	Macro function related to time-series operators
	Macro function for copying a macro
	Macro functions for parsing
	Macro expansion operators and function
	The tempvar, tempname, and tempfile commands
	Manipulation of macros
	Macros as arguments

	References
	Also see

	macro lists
	Description
	Syntax
	Remarks and examples
	Treatment of adornment
	Treatment of duplicate elements in lists

	Also see

	makecns
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Mathematics
	Linkage of the mathematics to Stata

	Stored results
	Also see

	mark
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	matlist
	Description
	Syntax
	Style options
	General options
	Required options for the second syntax
	Remarks and examples
	All columns with the same format
	Different formats for each column
	Other output options

	Also see

	matrix
	Description
	Remarks and examples
	Overview of matrix commands
	Creating and replacing matrices
	Namespace
	Naming conventions in programs

	Reference
	Also see

	matrix accum
	Description
	Syntax
	Options
	Remarks and examples
	matrix accum
	matrix glsaccum
	matrix opaccum
	matrix vecaccum
	Treatment of user-specified weights

	Stored results
	Reference
	Also see

	matrix define
	Description
	Menu
	Syntax
	Remarks and examples
	Introduction
	Inputting matrices by hand
	Matrix operators
	Matrix functions returning matrices
	Matrix functions returning scalars
	Subscripting and element-by-element definition
	Name conflicts in expressions (namespaces)
	Macro functions

	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	matrix eigenvalues
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix get
	Description
	Syntax
	Remarks and examples
	Also see

	matrix mkmat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mkmat
	svmat

	Acknowledgment
	References
	Also see

	matrix rowjoinbyname
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix rownames
	Description
	Syntax
	Remarks and examples
	Also see

	matrix score
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix svd
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	matrix symeigen
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix utility
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	more
	Description
	Syntax
	Remarks and examples
	Also see

	nopreserve option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	numlist
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	pause
	Description
	Syntax
	Remarks and examples
	Also see

	plugin
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	postfile
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	_predict
	Description
	Syntax
	Options
	Methods and formulas
	Reference
	Also see

	preserve
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program properties
	Description
	Option
	Remarks and examples
	Introduction
	Writing programs for use with nestreg and stepwise
	Writing programs for use with svy
	Writing programs for use with mi
	Properties for survival-analysis commands
	Properties for exponentiating coefficients
	Putting it all together
	Checking for program properties

	Also see

	Project Manager
	Description
	Remarks and examples
	Getting started with the Project Manager
	Editing projects
	Properties
	Relative versus absolute paths
	Filtering and searching

	Also see

	python
	Description
	Syntax
	Options
	Remarks and examples
	Invoking Python interactively
	The distinction between python and python:
	Embedding Python code in a do-file
	Running a Python script file
	Embedding Python code in an ado-file
	Stata Function Interface (sfi) module
	Configuring Python
	Locating modules
	Error codes

	Stored results
	Acknowledgment
	References
	Also see

	quietly
	Description
	Syntax
	Remarks and examples
	quietly used interactively
	quietly used in programs
	Note for programmers

	Also see

	_return
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	return
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Storing results in r()
	Storing results in e()
	Storing results in s()
	Recommended names for stored results
	Using hidden and historical stored results
	Programming hidden and historical stored results

	Reference
	Also see

	_rmcoll
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	rmsg
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	_robust
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Formulas and simple examples
	Clustered data
	Survey data
	Controlling the header display
	Maximum likelihood estimators
	Multiple-equation estimators

	Stored results
	Methods and formulas
	References
	Also see

	scalar
	Description
	Syntax
	Remarks and examples
	Naming scalars

	Reference
	Also see

	serset
	Description
	Syntax
	Options
	Options for serset create
	Options for serset create_xmedians
	Option for serset create_cspline
	Option for serset summarize
	Option for serset use

	Remarks and examples
	Introduction
	serset create
	serset create_xmedians
	serset create_cspline
	serset set
	serset sort
	serset summarize
	serset
	serset use
	serset reset_id
	serset drop
	serset clear
	serset dir
	file sersetwrite and file sersetread

	Stored results
	Also see

	set locale_functions
	Description
	Syntax
	Option
	Also see

	set locale_ui
	Description
	Syntax
	Also see

	signestimationsample
	Description
	Syntax
	Remarks and examples
	Using signestimationsample and checkestimationsample
	Signing
	Checking
	Handling of weights
	Do not sign unnecessarily

	Stored results
	Also see

	sleep
	Description
	Syntax
	Remarks and examples

	smcl
	Description
	Remarks and examples
	Introduction
	SMCL modes
	Command summary---general syntax
	Help file preprocessor directive for substituting repeated material
	Formatting directives for use in line and paragraph modes
	Link directives for use in line and paragraph modes
	Formatting directives for use in line mode
	Formatting directives for use in paragraph mode
	Directive for entering the as-is mode
	Inserting values from constant and current-value class
	Displaying characters using ASCII and extended ASCII codes
	Advice on using display
	Advice on formatting help files

	Also see

	sortpreserve
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sortpreserve
	The cost of sortpreserve
	How sortpreserve works
	Use of sortpreserve with preserve
	Use of sortpreserve with subroutines that use sortpreserve

	Also see

	syntax
	Description
	Syntax
	Syntax, continued
	Remarks and examples
	Introduction
	The args command
	The syntax command

	Also see

	sysdir
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sysdir
	adopath
	set adosize

	Also see

	tabdisp
	Description
	Syntax
	Options
	Remarks and examples
	Limits
	Introduction
	Treatment of string variables
	Treatment of missing values

	Also see

	timer
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	tokenize
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	trace
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	unab
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	unabcmd
	Description
	Syntax
	Remarks and examples
	Also see

	varabbrev
	Description
	Syntax
	Remarks and examples
	Also see

	version
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	viewsource
	Description
	Syntax
	Remarks and examples
	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	window programming
	Description
	Syntax
	Also see

	window fopen
	Description
	Syntax
	Remarks and examples
	Also see

	window manage
	Description
	Syntax
	Remarks and examples
	Minimizing or restoring the main window
	Windowing preferences
	Restoring file associations (Windows only)
	Resetting the main window title
	Setting Dock icon's label (Mac only)
	Bringing windows forward
	Commands to manage Graph windows
	Commands to manage Viewer windows

	Also see

	window menu
	Description
	Syntax
	Remarks and examples
	Overview
	Clear previously defined menu additions
	Define submenus
	Define menu items
	Define separator bars
	Activate menu changes
	Add files to the Open recent menu
	Keyboard shortcuts (Windows only)
	Examples
	Advanced features: Dialogs and built-in actions
	Advanced features: Creating checked menu items
	Putting it all together

	Also see

	window push
	Description
	Syntax
	Remarks and examples
	Also see

	window stopbox
	Description
	Syntax
	Remarks and examples
	Also see

	Glossary

	[PSS] Power, Precision, and Sample Size
	Contents
	Introduction to power, precision, and sample-size analysis
	Intro
	Description
	Also see

	Power and sample-size analysis
	Intro (power)
	Description
	Remarks and examples
	Power and sample-size analysis
	Hypothesis testing
	Components of PSS analysis
	Study design
	Statistical method
	Significance level
	Power
	Clinically meaningful difference and effect size
	Sample size
	One-sided test versus two-sided test
	Another consideration: Dropout

	Survival data
	Sensitivity analysis
	An example of PSS analysis in Stata
	Video example

	References
	Also see

	GUI (power)
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example using PSS Control Panel

	Also see

	power
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the power command
	Specifying multiple values of study parameters

	One-sample tests
	Two-sample tests
	Paired-sample tests
	Analysis of variance models
	Linear regression
	Contingency tables
	Survival analysis
	Cluster randomized designs
	Tables of results
	Power curves
	Add your own methods to power

	Stored results
	Methods and formulas
	References
	Also see

	power usermethod
	Description
	Syntax
	Remarks and examples
	A quick example
	Steps for adding a new method to the power command
	Convention for naming options and storing results
	Allowing multiple values in method-specific options
	Customizing default tables
	Setting supported columns
	Modifying the default table columns
	Modifying the look of the default table
	Example continued

	Customizing default graphs
	Other settings
	Handling parsing more efficiently
	More examples: Adding two-sample methods
	Initializer's s() return settings

	Reference
	Also see

	power, graph
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	power, table
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	power onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onemean
	Computing sample size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean
	Video examples

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	power onemean, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing number of clusters
	Computing cluster size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean in a CRD

	Stored results
	Methods and formulas
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twomeans
	Computing sample size
	Computing power
	Computing effect size and experimental-group mean
	Testing a hypothesis about two independent means

	Stored results
	Methods and formulas
	Known standard deviations
	Unknown standard deviations
	Unequal standard deviations
	Equal standard deviations

	References
	Also see

	power twomeans, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing number of clusters in one group
	Computing cluster sizes
	Computing power
	Computing effect size and experimental-group mean
	Testing hypotheses about two means in a CRD

	Stored results
	Methods and formulas
	Introduction
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedmeans
	Computing sample size
	Computing power
	Computing effect size and target mean difference
	Testing a hypothesis about two correlated means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power oneproportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneproportion
	Computing sample size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion
	Video examples

	Stored results
	Methods and formulas
	Large-sample normal approximation
	Binomial test

	References
	Also see

	power oneproportion, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing number of clusters
	Computing cluster size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion in a CRD

	Stored results
	Methods and formulas
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power twoproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and experimental-group proportion
	Testing a hypothesis about two independent proportions
	Video examples

	Stored results
	Methods and formulas
	Effect size
	Pearsons chi2 test
	Likelihood-ratio test
	Fisher's exact conditional test

	References
	Also see

	power twoproportions, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing number of clusters in one group
	Computing cluster sizes
	Computing power
	Computing effect size and experimental-group proportion
	Testing hypotheses about two proportions in a CRD

	Stored results
	Methods and formulas
	References
	Also see

	power pairedproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target discordant proportions
	Testing a hypothesis about two correlated proportions

	Stored results
	Methods and formulas
	References
	Also see

	power onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onevariance
	Computing sample size
	Computing power
	Computing effect size and target variance
	Performing a hypothesis test on variance

	Stored results
	Methods and formulas
	Reference
	Also see

	power twovariances
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twovariances
	Computing sample size
	Computing power
	Computing effect size and experimental-group variance
	Testing a hypothesis about two independent variances

	Stored results
	Methods and formulas
	References
	Also see

	power onecorrelation
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onecorrelation
	Computing sample size
	Computing power
	Computing effect size and target correlation
	Performing hypothesis tests on correlation

	Stored results
	Methods and formulas
	References
	Also see

	power twocorrelations
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twocorrelations
	Computing sample size
	Computing power
	Computing effect size and experimental-group correlation
	Testing a hypothesis about two independent correlations

	Stored results
	Methods and formulas
	References
	Also see

	power oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and between-group variance
	Testing hypotheses about multiple group means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple populations

	Stored results
	Methods and formulas
	Main effects
	Interaction effects
	Hypothesis testing

	References
	Also see

	power repeated
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power repeated
	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple dependent populations

	Stored results
	Methods and formulas
	Hypothesis testing
	Computing power

	References
	Also see

	power oneslope
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneslope
	Computing sample size
	Computing power
	Computing effect size and target slope
	Performing hypothesis tests on the slope coefficient

	Stored results
	Methods and formulas
	References
	Also see

	power rsquared
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power rsquared
	Computing sample size
	Computing power
	Computing effect size and target R2
	Performing hypothesis tests on the coefficients

	Stored results
	Methods and formulas
	Introduction
	Testing all coefficients
	Testing a subset of coefficients: R2 of full versus reduced models
	Testing a subset of coefficients: Partial multiple correlation

	Reference
	Also see

	power pcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pcorr
	Computing sample size
	Computing power
	Computing effect size and target squared partial correlation
	Performing hypothesis tests on the partial correlation

	Stored results
	Methods and formulas
	Reference
	Also see

	power cmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cmh
	Alternative ways of specifying probabilities

	Motivating example
	Computing sample size
	Computing power
	Computing effect size
	Testing hypotheses about association in 2 x 2 x K tables

	Stored results
	Methods and formulas
	References
	Also see

	power mcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power mcc
	Computing sample size
	Computing power
	Computing target odds ratio
	Testing hypotheses in matched case{--}control studies

	Stored results
	Methods and formulas
	References
	Also see

	power trend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power trend
	Alternative ways of specifying probabilities

	Computing sample size
	Computing power
	Testing hypotheses about a trend in J x 2 tables

	Stored results
	Methods and formulas
	Computing power
	Computing sample size

	References
	Also see

	power cox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cox
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Link to the sample-size and power computation for the log-rank test

	Computing power
	Computing effect size
	Performing analyses using a Cox PH model

	Stored results
	Methods and formulas
	References
	Also see

	power exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power exponential
	Alternative ways of specifying effect

	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Nonuniform accrual
	Exponential losses to follow-up

	The conditional versus unconditional approaches
	Link to the sample-size and power computation for the log-rank test
	Computing power
	Testing hypotheses about two exponential survivor functions

	Stored results
	Methods and formulas
	References
	Also see

	power logrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power logrank
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring

	Withdrawal of subjects from the study
	Including information about subject accrual
	Computing power
	Computing effect size
	Testing a hypothesis about two survivor functions using the log-rank test

	Stored results
	Methods and formulas
	References
	Also see

	power logrank, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing cluster sizes
	Computing power
	Computing effect size
	Compare two survivor functions with clustered data

	Stored results
	Methods and formulas
	References
	Also see

	Precision and sample-size analysis
	Intro (ciwidth)
	Description
	Remarks and examples
	Precision and sample-size analysis
	Confidence intervals
	Components of PrSS analysis
	Confidence level
	CI width
	Probability of CI width
	Sample size
	One-sided versus two-sided CIs

	Sensitivity analysis
	An example of PrSS analysis in Stata

	References
	Also see

	GUI (ciwidth)
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example using PSS Control Panel

	Also see

	ciwidth
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the ciwidth command
	Specifying multiple values of study parameters

	PrSS analysis for CIs for one population parameter
	PrSS analysis for CIs comparing two independent samples
	PrSS analysis for CIs comparing paired samples
	Tables of results
	Sample-size and other curves
	Add your own methods to ciwidth

	Stored results
	Methods and formulas
	Also see

	ciwidth usermethod
	Description
	Syntax
	Remarks and examples
	A quick example
	Steps for adding a new method to the ciwidth command
	Convention for naming options and storing results
	Allowing multiple values in method-specific options
	Customizing default tables
	Setting supported columns
	Modifying the default table columns
	Modifying the look of the default table
	Example continued

	Customizing default graphs
	Other settings
	Handling parsing more efficiently
	More examples: Compute probability of CI width for a one-proportion CI
	Step 1: Program to simulate the data and compute the CI width
	Step 2: Estimating probability of CI width using simulation
	Step 3: Adding probability of CI width computation to ciwidth
	Step 4: Computing exact probability of CI width

	Initializer's s() return settings

	References
	Also see

	ciwidth, graph
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using ciwidth, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	ciwidth, table
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using ciwidth, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	ciwidth onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth onemean
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	ciwidth twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth twomeans
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	Known equal and unequal standard deviations
	Unknown and equal standard deviations

	References
	Also see

	ciwidth pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth pairedmeans
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	References
	Also see

	ciwidth onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth onevariance
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	References
	Also see

	Design specification
	Unbalanced designs
	Description
	Syntax
	Options
	Remarks and examples
	Two samples
	Specifying total sample size and allocation ratio
	Specifying group sample sizes
	Specifying one of the group sample sizes and allocation ratio
	Specifying total sample size and one of the group sample sizes

	Fractional sample sizes

	Also see

	Glossary of common terms
	Glossary

	[R] Base Reference
	Contents
	Introduction
	Intro
	Description
	Remarks and examples
	Arrangement of the reference manuals
	Arrangement of each entry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	Also see

	A
	about
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	ado update
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using ado update
	Notes for developers

	Stored results
	Also see

	ameans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	anova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way ANOVA
	Two-way ANOVA
	N-way ANOVA
	Weighted data
	ANCOVA
	Nested designs
	Mixed designs
	Latin-square designs
	Repeated-measures ANOVA
	Video examples

	Stored results
	References
	Also see

	anova postestimation
	Postestimation commands
	predict
	margins
	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Testing effects
	Obtaining symbolic forms
	Testing coefficients and contrasts of margins
	Video example

	References
	Also see

	areg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	areg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	B
	betareg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	betareg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	BIC note
	Description
	Remarks and examples
	Background
	The problem of determining N
	The problem of conformable likelihoods
	The first problem does not arise with AIC; the second problem does
	Calculating BIC correctly

	Methods and formulas
	References
	Also see

	binreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	binreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	References
	Also see

	biprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	biprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	bitest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	bitest
	bitesti

	Stored results
	Methods and formulas
	Reference
	Also see

	bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using bootstrap
	Regression coefficients
	Expressions
	Combining bootstrap datasets
	A note about macros
	Achieved significance level
	Bootstrapping a ratio
	Warning messages and e(sample)
	Bootstrapping statistics from data with a complex structure

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap postestimation
	Postestimation commands
	predict
	margins
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	boxcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Theta model
	Lambda model
	Left-hand-side-only model
	Right-hand-side-only model

	Stored results
	Methods and formulas
	References
	Also see

	boxcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	brier
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	bsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	bstat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Bootstrap datasets
	Creating a bootstrap dataset

	Stored results
	References
	Also see

	C
	centile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Default case
	Normal case
	meansd case

	Acknowledgment
	References
	Also see

	churdle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	churdle postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	ci
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for ci and cii means
	Options for ci and cii proportions
	Options for ci and cii variances

	Remarks and examples
	Confidence intervals for means
	Normal-based confidence intervals
	Poisson confidence intervals

	Confidence intervals for proportions
	Confidence intervals for variances
	Immediate form

	Stored results
	Methods and formulas
	Normal mean
	Poisson mean
	Binomial proportion
	Variance and standard deviation

	Acknowledgment
	References
	Also see

	clogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Matched case--control data
	Use of weights
	Fixed-effects logit

	Stored results
	Methods and formulas
	References
	Also see

	clogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to complementary log-log regression
	Robust standard errors

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cls
	Description
	Syntax

	cnsreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cnsreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	constraint
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Reference
	Also see

	contrast
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way models
	Estimated cell means
	Testing equality of cell means
	Reference category contrasts
	Reverse adjacent contrasts
	Orthogonal polynomial contrasts

	Two-way models
	Estimated interaction cell means
	Simple effects
	Interaction effects
	Main effects
	Partial interaction effects

	Three-way and higher-order models
	Contrast operators
	Differences from a reference level (r.)
	Differences from the next level (a.)
	Differences from the previous level (ar.)
	Differences from the grand mean (g.)
	Differences from the mean of subsequent levels (h.)
	Differences from the mean of previous levels (j.)
	Orthogonal polynomials (p. and q.)

	User-defined contrasts
	Empty cells
	Empty cells, ANOVA style
	Nested effects
	Multiple comparisons
	Unbalanced data
	Using observed cell frequencies
	Weighted contrast operators

	Testing factor effects on slopes
	Chow tests
	Beyond linear models
	Multiple equations
	Video example

	Stored results
	Methods and formulas
	Marginal linear predictions
	Contrast operators
	Reference level contrasts
	Adjacent contrasts
	Grand mean contrasts
	Helmert contrasts
	Reverse Helmert contrasts
	Orthogonal polynomial contrasts

	Contrasts within interactions
	Multiple comparisons

	References
	Also see

	contrast postestimation
	Postestimation commands
	Remarks and examples
	Also see

	copyright
	Description
	Syntax
	Remarks and examples
	Also see

	Copyright Apache
	Description
	Also see

	Copyright autolink
	Description
	Also see

	Copyright Boost
	Description
	Also see

	Copyright flexmark
	Description
	Also see

	Copyright Hamcrest
	Description
	Also see

	Copyright ICD-10
	Description
	Also see

	Copyright ICU
	Description
	Also see

	Copyright JAXB
	Description
	Source code
	Also see

	Copyright JGoodies Common
	Description
	Also see

	Copyright JGoodies Forms
	Description
	Also see

	Copyright jsoup
	Description
	Also see

	Copyright LAPACK
	Description
	Also see

	Copyright libHaru
	Description
	Also see

	Copyright libpng
	Description
	Also see

	Copyright Mersenne Twister
	Description
	Also see

	Copyright MiG Layout
	Description
	Also see

	Copyright ReadStat
	Description
	Also see

	Copyright Scintilla
	Description
	Also see

	Copyright slf4j
	Description
	Also see

	Copyright ttf2pt1
	Description
	Also see

	Copyright zlib
	Description
	Also see

	correlate
	Description
	Quick start
	Menu
	Syntax
	Options for correlate
	Options for pwcorr
	Remarks and examples
	correlate
	pwcorr
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	cpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	cumul
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	cusum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	D
	db
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	Diagnostic plots
	Description
	Quick start
	Menu
	Syntax
	Options for symplot, quantile, and qqplot
	Options for qnorm and pnorm
	Options for qchi and pchi
	Remarks and examples
	symplot
	quantile
	qqplot
	qnorm
	pnorm
	qchi
	pchi

	Methods and formulas
	Acknowledgments
	References
	Also see

	display
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	do
	Description
	Quick start
	Menu
	Syntax
	Option
	Reference
	Also see

	doedit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	dotplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Reference

	dstdize
	Description
	Quick start
	Menu
	Syntax
	Options for dstdize
	Options for istdize
	Remarks and examples
	Direct standardization
	Indirect standardization

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dydx
	Description
	Quick start
	Menu
	Syntax
	Options for dydx
	Options for integ
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	E
	eform_option
	Description
	Remarks and examples
	Reference
	Also see

	eivreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	Epitab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Incidence-rate data
	Stratified incidence-rate data
	Standardized estimates with stratified incidence-rate data
	Cumulative incidence data
	Stratified cumulative incidence data
	Standardized estimates with stratified cumulative incidence data
	Case--control data
	Stratified case--control data
	Case--control data with multiple levels of exposure
	Case--control data with confounders and possibly multiple levels of exposure
	Standardized estimates with stratified case--control data
	Matched case--control data
	Video examples
	Glossary

	Stored results
	Methods and formulas
	Unstratified incidence-rate data (ir and iri)
	Unstratified cumulative incidence data (cs and csi)
	Unstratified case--control data (cc and cci)
	Unstratified matched case--control data (mcc and mcci)
	Stratified incidence-rate data (ir with the by() option)
	Stratified cumulative incidence data (cs with the by() option)
	Stratified case--control data (cc with by() option, mhodds, tabodds)

	Acknowledgments
	References
	Also see

	Error messages
	Description
	Also see

	esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Estimating effect sizes
	Immediate form
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	estat
	Description
	Syntax

	estat classification
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat gof
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample

	Stored results
	Methods and formulas
	References
	Also see

	estat ic
	Description
	Quick start
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat summarize
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat vce
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estimates
	Description
	Syntax
	Remarks and examples
	Saving and using estimation results
	Storing and restoring estimation results
	Comparing estimation results
	Jargon

	Also see

	estimates describe
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estimates for
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	estimates notes
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	estimates replay
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	estimates save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Setting e(sample)
	Resetting e(sample)
	Determining who set e(sample)

	Stored results
	Also see

	estimates selected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estimates stats
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estimates store
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estimates table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estimates title
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	Estimation options
	Description
	Syntax
	Options
	Also see

	exit
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	exlogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Sufficient statistics
	Conditional distribution and CMLE
	Median unbiased estimates and exact CI
	Conditional hypothesis tests
	Sufficient-statistic p-value

	References
	Also see

	exlogistic postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat predict
	Option for estat se

	Remarks and examples
	Stored results
	Reference
	Also see

	expoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Conditional distribution

	References
	Also see

	expoisson postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Also see

	F
	fp
	Description
	Quick start
	Menu
	Syntax
	Options for fp
	Options for fp generate
	Remarks and examples
	Fractional polynomial regression
	Scaling
	Centering
	Examples

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	fp postestimation
	Postestimation commands
	predict
	margins
	fp plot and fp predict
	Description for fp plot and fp predict
	Menu for fp plot and fp predict
	Syntax for fp plot and fp predict
	Options for fp plot
	Options for fp predict

	Remarks and examples
	Examples

	Methods and formulas
	Acknowledgment
	Reference
	Also see

	fracreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fracreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Also see

	frontier
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	frontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	fvrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	fvset
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results

	G
	gllamm
	Description
	Remarks and examples
	References
	Also see

	glm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	General use
	Variance estimators
	User-defined functions

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	glm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Predictions
	Other postestimation commands

	Methods and formulas
	References
	Also see

	gmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	The weight matrix and two-step estimation
	Obtaining standard errors
	Factor-variable coefficients in multiple residual functions
	Parameter interpretation using margins
	Exponential (Poisson) regression models
	Specifying derivatives
	Exponential regression models with panel data
	Rational-expectations models
	System estimators
	Dynamic panel-data models
	Details of moment-evaluator programs

	Stored results
	Methods and formulas
	Initial weight matrix
	Weight matrix
	Variance--covariance matrix
	Hansen's J statistic
	Panel-style instruments
	Marginal predictions with unconditional standard errors

	References
	Also see

	gmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Option for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	References
	Also see

	grmeanby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References

	H
	hausman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	heckman
	Description
	Quick start
	Menu
	Syntax
	Options for Heckman selection model (ML)
	Options for Heckman selection model (two-step)
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	help
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Video examples

	Also see

	hetoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	hetoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	hetprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	hetprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	hetregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimation
	Options for two-step GLS estimation
	Remarks and examples
	Introduction
	Maximum likelihood estimation
	Two-step GLS estimation

	Stored results
	Methods and formulas
	Maximum likelihood estimation
	Two-step GLS estimation

	References
	Also see

	hetregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	histogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use in the continuous case
	Options for use in the discrete case
	Options for use in the continuous and discrete cases

	Remarks and examples
	Histograms of continuous variables
	Overlaying normal and kernel density estimates
	Histograms of discrete variables
	Use with by()
	Video example

	References
	Also see

	I
	icc
	Description
	Quick start
	Menu
	Syntax
	Options for one-way RE model
	Options for two-way RE and ME models
	Remarks and examples
	Introduction
	One-way random effects
	Two-way random effects
	Two-way mixed effects
	Adoption study
	Relationship between ICCs
	Tests against nonzero values

	Stored results
	Methods and formulas
	Mean squares
	One-way random effects
	Two-way random effects
	Two-way mixed effects

	References
	Also see

	Inequality
	Remarks and examples
	References

	intreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	intreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	ivpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	GMM estimator for additive model
	GMM estimator for multiplicative model
	CF estimator for multiplicative model

	Stored results
	Methods and formulas
	References
	Also see

	ivpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	ivprobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	ivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	2SLS and LIML estimators
	GMM estimator
	Video example

	Stored results
	Methods and formulas
	Notation
	2SLS and LIML estimators
	GMM estimator

	References
	Also see

	ivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat endogenous
	Options for estat firststage
	Options for estat overid

	Remarks and examples
	estat endogenous
	estat firststage
	estat overid

	Stored results
	Methods and formulas
	Notation
	estat endogenous
	estat firststage
	estat overid

	References
	Also see

	ivtobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivtobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	J
	jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using jackknife
	Jackknifed standard deviation
	Collecting multiple statistics
	Collecting coefficients

	Stored results
	Methods and formulas
	References
	Also see

	jackknife postestimation
	Postestimation commands
	predict
	margins
	Also see

	K
	kappa
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Two raters
	More than two raters

	Stored results
	Methods and formulas
	kap: m=2
	kappa: m>2, k=2
	kappa: m>2, k>2

	References

	kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ksmirnov
	Description
	Quick start
	Menu
	Syntax
	Options for two-sample test
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	kwallis
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	L
	ladder
	Description
	Quick start
	Menu
	Syntax
	Options for ladder
	Options for gladder
	Options for qladder
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	level
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Limits
	Description
	Remarks and examples
	Maximum size limits
	Determining which flavor of Stata you are running

	Also see

	lincom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using lincom
	Odds ratios and incidence-rate ratios
	Multiple-equation models

	Stored results
	References
	Also see

	linktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lnskew0
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	log
	Description
	Quick start
	Menu
	Syntax
	Options for use with both log and cmdlog
	Options for use with log
	Option for use with set logtype
	Remarks and examples
	Stored results
	Reference
	Also see

	logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	logistic and logit
	Robust estimate of variance
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	predict without options
	predict with the xb and stdp options
	predict with the residuals option
	predict with the number option
	predict with the deviance option
	predict with the rstandard option
	predict with the hat option
	predict with the dx2 option
	predict with the ddeviance option
	predict with the dbeta option

	Methods and formulas
	References
	Also see

	logit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic usage
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	logit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	loneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The one-way ANOVA model
	R-squared
	The random-effects ANOVA model
	Intraclass correlation
	Estimated reliability of the group-averaged score

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Acknowledgment
	References
	Also see

	lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Local polynomial smoothing
	Choice of a bandwidth
	Confidence bands

	Stored results
	Methods and formulas
	References
	Also see

	lroc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample
	Models other than the last fitted model

	Stored results
	Methods and formulas
	References
	Also see

	lrtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Nested models
	Composite models

	Stored results
	Methods and formulas
	References
	Also see

	lsens
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Models other than the last fitted model

	Stored results
	Methods and formulas
	Reference
	Also see

	lv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	M
	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining margins of responses
	Example 1: A simple case after regress
	Example 2: A simple case after logistic
	Example 3: Average response versus response at average
	Example 4: Multiple margins from one command
	Example 5: Margins with interaction terms
	Example 6: Margins with continuous variables
	Example 7: Margins of continuous variables
	Example 8: Margins of interactions
	Example 9: Decomposing margins
	Example 10: Testing margins---contrasts of margins
	Example 11: Margins of a specified prediction
	Example 12: Margins of a specified expression
	Example 13: Margins with multiple outcomes (responses)
	Example 14: Margins with multiple equations
	Example 15: Margins evaluated out of sample

	Obtaining margins of derivatives of responses (a.k.a. marginal effects)
	Use at() freely, especially with continuous variables
	Expressing derivatives as elasticities
	Derivatives versus discrete differences
	Example 16: Average marginal effect (partial effects)
	Example 17: Average marginal effect of all covariates
	Example 18: Evaluating marginal effects over the response surface

	Obtaining margins with survey data and representative samples
	Example 19: Inferences for populations, margins of response
	Example 20: Inferences for populations, marginal effects
	Example 21: Inferences for populations with svyset data

	Standardizing margins
	Obtaining margins as though the data were balanced
	Balancing using asbalanced
	Balancing by standardization
	Balancing nonlinear responses
	Treating a subset of covariates as balanced
	Using fvset design
	Balancing in the presence of empty cells

	Obtaining margins with nested designs
	Introduction to nested designs
	Margins with nested designs as though the data were balanced
	Coding of nested designs

	Special topics
	Requirements for model specification
	Estimability of margins
	Manipulability of tests
	Using margins after the estimates use command
	Syntax of at()
	Estimation commands that may be used with margins

	Video examples
	Glossary

	Stored results
	Methods and formulas
	Notation
	Marginal effects
	Fixing covariates and balancing factors
	Estimable functions
	Standard errors conditional on the covariates
	Unconditional standard errors

	References
	Also see

	margins postestimation
	Postestimation commands
	Remarks and examples
	Also see

	margins, contrast
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Contrasts of margins
	Contrasts and the over() option
	The overjoint suboption
	The marginswithin suboption

	Contrasts and the at() option
	Estimating treatment effects with margins
	Conclusion

	Stored results
	Methods and formulas
	Reference
	Also see

	margins, pwcompare
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	marginsplot
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Dataset
	Profile plots
	Interaction plots
	Contrasts of margins---effects (discrete marginal effects)
	Three-way interactions
	Continuous covariates
	Plots at every value of a continuous covariate
	Contrasts of at() groups---discrete effects
	Controlling the graph's dimensions
	Pairwise comparisons
	Horizontal is sometimes better
	Marginal effects
	Plotting a subset of the results from margins
	Advanced usage
	Plots with multiple terms
	Plots with multiple at() options
	Adding scatterplots of the data

	Video examples

	Addendum: Advanced uses of dimlist
	Acknowledgments
	References
	Also see

	Maximize
	Description
	Syntax
	Maximization options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	The mean estimator
	Survey data
	The survey mean estimator
	The standardized mean estimator
	The poststratified mean estimator
	The standardized poststratified mean estimator
	Subpopulation estimation

	References
	Also see

	mean postestimation
	Postestimation commands
	estat sd
	Description for estat sd
	Menu for estat sd
	Syntax for estat sd
	Option for estat sd
	Stored results for estat sd

	Also see

	mfp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Iteration report
	Estimation algorithm
	Methods of FP model selection
	Zeros and zero categories

	Stored results
	Acknowledgments
	References
	Also see

	mfp postestimation
	Postestimation commands
	fracplot and fracpred
	Description for fracplot and fracpred
	Menu for fracplot and fracpred
	Syntax for fracplot and fracpred
	Options for fracplot
	Options for fracpred

	Remarks and examples
	Methods and formulas
	Also see

	misstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for misstable summarize
	Options for misstable patterns
	Options for misstable tree
	Option for misstable nested
	Common options

	Remarks and examples
	misstable summarize
	misstable patterns
	misstable tree
	misstable nested
	Execution time of misstable nested

	Stored results
	Also see

	mkspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Linear splines
	Restricted cubic splines

	Stored results
	Methods and formulas
	Linear splines
	Restricted cubic splines

	Acknowledgment
	References
	Also see

	ml
	Description
	Syntax
	Syntax of subroutines for use by evaluator programs
	Syntax of user-written evaluator

	Options
	Options for use with ml model in interactive or noninteractive mode
	Options for use with ml model in noninteractive mode
	Options for use when specifying equations
	Options for use with ml search
	Option for use with ml plot
	Options for use with ml init
	Options for use with ml maximize
	Option for use with ml graph
	Options for use with ml display
	Options for use with mleval
	Option for use with mlsum
	Option for use with mlvecsum
	Option for use with mlmatsum
	Options for use with mlmatbysum
	Options for use with ml score

	Remarks and examples
	Survey options and ml

	Stored results
	Methods and formulas
	References
	Also see

	mlexp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	Parameter interpretation using margins
	Parameter constraints
	Specifying derivatives

	Stored results
	Methods and formulas
	References
	Also see

	mlexp postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the model
	Fitting unconstrained models
	Fitting constrained models

	Stored results
	Methods and formulas
	References
	Also see

	mlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Calculating marginal effects
	Testing hypotheses about coefficients

	Reference
	Also see

	more
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	mprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	N
	nbreg
	Description
	Quick start
	Menu
	Syntax
	Options for nbreg
	Options for gnbreg
	Remarks and examples
	Introduction to negative binomial regression
	nbreg
	gnbreg

	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	References
	Also see

	nbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Reference
	Also see

	nestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Estimation commands
	Wald tests
	Likelihood-ratio tests
	Programming for nestreg

	Stored results
	Acknowledgment
	References
	Also see

	net
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a package
	The purpose of the net and ado commands
	Content pages
	Package-description pages
	Where packages are installed
	A summary of the net command
	A summary of the ado command
	Relationship of net and ado to the point-and-click interface
	Creating your own site
	Format of content and package-description files
	Example 1
	Example 2
	Additional package directives
	SMCL in content and package-description files
	Error-free file delivery

	Also see

	net search
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Topic searches
	Author searches
	Command searches
	Where does net search look?
	How does net search work?

	Also see

	netio
	Description
	Syntax
	Options
	Remarks and examples
	1. remote connection failed r(677);
	2. connection timed out r(2);

	Also see

	nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Substitutable expressions
	Substitutable expression programs
	Built-in functions
	Lognormal errors
	Other uses
	Weights
	Potential errors
	General comments on fitting nonlinear models
	Function evaluator programs

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	nl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	nlcom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Basics
	Using the post option
	Reparameterizing ML estimators for univariate data
	nlcom versus eform

	Stored results
	Methods and formulas
	References
	Also see

	nlsur
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expression programs
	Function evaluator programs

	Stored results
	Methods and formulas
	References
	Also see

	nlsur postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	npregress intro
	Description
	Remarks and examples
	Overview
	Nonparametric series regression
	Runge's phenomenon
	Splines and B-splines

	Nonparametric kernel regression
	Limitations of nonparametric methods

	References
	Also see

	npregress kernel
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimation and effects
	Visualizing covariate effects

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	npregress kernel postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Options for margins

	npgraph
	Description for npgraph
	Syntax for npgraph
	Options for npgraph

	Remarks and examples
	Methods and formulas
	References
	Also see

	npregress series
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimation and effects

	Stored results
	Methods and formulas
	Overview
	Polynomials
	Natural splines
	B-splines
	Model selection
	Cross-validation
	Generalized cross-validation
	Mallows's C$_p$
	AIC and BIC

	References
	Also see

	npregress series postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Options for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	nptrend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	O
	ologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining observed means
	Multiple-comparison tests
	Weighted data
	Video example

	Stored results
	Methods and formulas
	One-way analysis of variance
	Bartlett's test
	Multiple-comparison tests

	References
	Also see

	oprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	oprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	orthog
	Description
	Quick start
	Menu
	Syntax
	Options for orthog
	Options for orthpoly
	Remarks and examples
	Methods and formulas
	References
	Also see

	P
	pcorr
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	permute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Two-sided p-values from permutation tests
	One-sided permutation test

	Stored results
	Methods and formulas
	References
	Also see

	pk
	Description
	Remarks and examples
	References
	Also see

	pkcollapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	pkcross
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pkequiv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pkexamine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pkshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	pksumm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	poisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	poisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	postest
	Description
	Menu
	Syntax
	Remarks and examples
	Overview
	Video example

	Also see

	predict
	Description
	Quick start
	Menu for predict
	Syntax
	Options
	Remarks and examples
	Estimation-sample predictions
	Out-of-sample predictions
	Residuals
	Single-equation (SE) models
	SE model scores
	Multiple-equation (ME) models
	ME model scores

	Methods and formulas
	References
	Also see

	predictnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonlinear transformations and standard errors
	Using xb() and predict()
	Multiple-equation (ME) estimators
	Test statistics and p-values
	Manipulability
	Confidence intervals

	Methods and formulas
	References
	Also see

	probit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Robust standard errors
	Model identification
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	probit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Methods and formulas
	Also see

	proportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Confidence intervals

	References
	Also see

	proportion postestimation
	Postestimation commands
	Remarks and examples
	Also see

	prtest
	Description
	Quick start
	Menu
	Syntax
	Options for prtest
	Options for prtesti
	Remarks and examples
	Tests of proportions
	Adjust for clustering
	Immediate form

	Stored results
	Methods and formulas
	One-sample test
	Two-sample test

	References
	Also see

	pwcompare
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Pairwise comparisons of means
	Marginal means
	All pairwise comparisons

	Overview of multiple-comparison methods
	Fisher's protected least-significant difference (LSD)
	Bonferroni's adjustment
	{accent 20 S}id{accent 19 a}k's adjustment
	Scheff{accent 19 e}'s adjustment
	Tukey's HSD adjustment
	Student--Newman--Keuls's adjustment
	Duncan's adjustment
	Dunnett's adjustment

	Example adjustments using one-way models
	Fisher's protected LSD
	Tukey's HSD
	Dunnett's method for comparisons to a control

	Two-way models
	Pairwise comparisons of slopes
	Nonlinear models
	Multiple-equation models
	Unbalanced data
	Empty cells

	Stored results
	Methods and formulas
	Notation
	Unadjusted comparisons
	Bonferroni's method
	{accent 20 S}id{accent 19 a}k's method
	Scheff{accent 19 e}'s method
	Tukey's method
	Student--Newman--Keuls's method
	Duncan's method
	Dunnett's method

	References
	Also see

	pwcompare postestimation
	Postestimation commands
	Remarks and examples
	Also see

	pwmean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Group means
	Pairwise differences of means
	Group output
	Adjusting for multiple comparisons
	Tukey's method
	Dunnett's method

	Multiple over() variables
	Equal variance assumption

	Stored results
	Methods and formulas
	Reference
	Also see

	pwmean postestimation
	Postestimation commands
	Remarks and examples
	Also see

	Q
	QC
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	qreg
	Description
	Quick start
	Menu
	Syntax
	Options for qreg
	Options for iqreg
	Options for sqreg
	Options for bsqreg
	Remarks and examples
	Median regression
	Quantile regression
	Estimated standard errors
	Interquantile and simultaneous-quantile regression
	What are the parameters?

	Stored results
	Methods and formulas
	Introduction
	Linear programming formulation of quantile regression
	Standard errors when residuals are i.i.d.
	Pseudo-R2

	References
	Also see

	qreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	query
	Description
	Syntax
	Remarks and examples
	Also see

	R
	ranksum
	Description
	Quick start
	Menu
	Syntax
	Options for ranksum
	Options for median
	Remarks and examples
	Stored results
	Methods and formulas
	ranksum
	median

	References
	Also see

	ratio
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The ratio estimator
	Survey data
	The survey ratio estimator
	The standardized ratio estimator
	The poststratified ratio estimator
	The standardized poststratified ratio estimator
	Subpopulation estimation

	References
	Also see

	ratio postestimation
	Postestimation commands
	Remarks and examples
	Also see

	reg3
	Description
	Nomenclature

	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	reg3 postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Ordinary least squares
	Treatment of the constant
	Robust standard errors
	Weighted regression
	Video example

	Stored results
	Methods and formulas
	Coefficient estimation and ANOVA table
	Weighted regression
	A general notation for the robust variance calculation
	Robust calculation for regress

	Acknowledgments
	References
	Also see

	regress postestimation
	Postestimation commands
	Predictions
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict
	Remarks and examples for predict
	Terminology
	Fitted values and residuals
	Prediction standard errors
	Prediction with weighted data
	Leverage statistics
	Standardized and Studentized residuals
	DFITS, Cook's Distance, and Welsch Distance
	COVRATIO

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	DFBETA influence statistics
	Description for dfbeta
	Menu for dfbeta
	Syntax for dfbeta
	Option for dfbeta
	Remarks and examples for dfbeta

	Tests for violation of assumptions
	Description for estat hettest
	Menu for estat
	Syntax for estat hettest
	Options for estat hettest
	Description for estat imtest
	Menu for estat
	Syntax for estat imtest
	Options for estat imtest
	Description for estat ovtest
	Menu for estat
	Syntax for estat ovtest
	Option for estat ovtest
	Description for estat szroeter
	Menu for estat
	Syntax for estat szroeter
	Options for estat szroeter
	Remarks and examples for estat hettest, estat imtest, estat ovtest, and estat szroeter
	Stored results for estat hettest, estat imtest, and estat ovtest

	Variance inflation factors
	Description for estat vif
	Menu for estat
	Syntax for estat vif
	Option for estat vif
	Remarks and examples for estat vif

	Measures of effect size
	Description for estat esize
	Menu for estat
	Syntax for estat esize
	Options for estat esize
	Remarks and examples for estat esize
	Stored results for estat esize

	Methods and formulas
	predict
	Special-interest postestimation commands

	Acknowledgments
	References
	Also see

	regress postestimation diagnostic plots
	Description
	rvfplot
	Description for rvfplot
	Menu for rvfplot
	Syntax for rvfplot
	Options for rvfplot
	Remarks and examples for rvfplot

	avplot
	Description for avplot
	Menu for avplot
	Syntax for avplot
	Options for avplot
	Remarks and examples for avplot

	avplots
	Description for avplots
	Menu for avplots
	Syntax for avplots
	Options for avplots
	Remarks and examples for avplots

	cprplot
	Description for cprplot
	Menu for cprplot
	Syntax for cprplot
	Options for cprplot
	Remarks and examples for cprplot

	acprplot
	Description for acprplot
	Menu for acprplot
	Syntax for acprplot
	Options for acprplot
	Remarks and examples for acprplot

	rvpplot
	Description for rvpplot
	Menu for rvpplot
	Syntax for rvpplot
	Options for rvpplot
	Remarks and examples for rvpplot

	lvr2plot
	Description for lvr2plot
	Menu for lvr2plot
	Syntax for lvr2plot
	Options for lvr2plot
	Remarks and examples for lvr2plot

	Methods and formulas
	References
	Also see

	regress postestimation time series
	Postestimation commands
	estat archlm
	Description for estat archlm
	Menu for estat
	Syntax for estat archlm
	Options for estat archlm

	estat bgodfrey
	Description for estat bgodfrey
	Menu for estat
	Syntax for estat bgodfrey
	Options for estat bgodfrey

	estat durbinalt
	Description for estat durbinalt
	Menu for estat
	Syntax for estat durbinalt
	Options for estat durbinalt

	estat dwatson
	Description for estat dwatson
	Menu for estat
	Syntax for estat dwatson

	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	#review
	Description
	Syntax
	Remarks and examples

	roc
	Description
	References

	roccomp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Comparing areas under the ROC curve
	Correlated data
	Independent data
	Comparing areas with a gold standard

	Stored results
	Methods and formulas
	References
	Also see

	rocfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rocfit postestimation
	Postestimation commands
	rocplot
	Description for rocplot
	Menu for rocplot
	Syntax for rocplot
	Options for rocplot

	Remarks and examples
	Using lincom and test
	Using rocplot

	Also see

	rocreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for nonparametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using maximum likelihood

	Remarks and examples
	Introduction
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Stored results
	Methods and formulas
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Acknowledgments
	References
	Also see

	rocreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat nproc
	Options for estat nproc

	Remarks and examples
	Using predict after rocreg
	Using estat nproc

	Stored results
	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	rocregplot
	Description
	Quick start
	Menu
	Syntax
	probit_options
	common_options
	boot_options
	Remarks and examples
	Plotting covariate-specific ROC curves
	Plotting marginal ROC curves

	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	roctab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonparametric ROC curves
	Lorenz-like curves

	Stored results
	Methods and formulas
	References
	Also see

	rreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	runtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References

	S
	scobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Skewed logistic model
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	scobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	sdtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic form
	Immediate form
	Robust test

	Stored results
	Methods and formulas
	References
	Also see

	search
	Description
	Quick start
	Menu
	Syntax
	Options for search
	Option for set searchdefault
	Remarks and examples
	Introduction
	Internet searches
	Author searches
	Entry ID searches
	Return codes

	Acknowledgment
	Also see

	serrbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	set
	Description
	Syntax
	Remarks and examples
	Also see

	set cformat
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set_defaults
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set emptycells
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set iter
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set rng
	Description
	Syntax
	Remarks and examples
	Introduction
	Random-number generators in Stata

	Reference
	Also see

	set rngstream
	Description
	Syntax
	Remarks and examples
	References
	Also see

	set seed
	Description
	Syntax
	Remarks and examples
	Examples
	Setting the seed
	How to choose a seed
	Do not set the seed too often
	Preserving and restoring the random-number generator state

	Reference
	Also see

	set showbaselevels
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	signrank
	Description
	Quick start
	Menu
	Syntax
	Option for signrank
	Remarks and examples
	Stored results
	Methods and formulas
	signrank
	signtest

	References
	Also see

	simulate
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	sj
	Description
	Remarks and examples
	Installing the Stata Journal software
	Installing the STB software

	Also see

	sktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	slogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-dimensional model
	Higher-dimension models

	Stored results
	Methods and formulas
	References
	Also see

	slogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	smooth
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Methods and formulas
	Running median smoothers of odd span
	Running median smoothers of even span
	Repeat operator
	Endpoint rule
	Splitting operator
	Hanning smoother
	Twicing

	Acknowledgments
	References
	Also see

	spearman
	Description
	Quick start
	Menu
	Syntax
	Options for spearman
	Options for ktau
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	spikeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	ssc
	Description
	Command overview

	Quick start
	Syntax
	Options
	Options for use with ssc new
	Options for use with ssc hot
	Option for use with ssc describe
	Options for use with ssc install
	Option for use with ssc type
	Options for use with ssc copy

	Remarks and examples
	Acknowledgments
	References
	Also see

	stem
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	stepwise
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Search logic for a step
	Full search logic
	Examples
	Estimation sample considerations
	Messages
	Programming for stepwise

	Stored results
	Methods and formulas
	References
	Also see

	Stored results
	Description
	Syntax
	Option
	Remarks and examples
	References
	Also see

	suest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using suest
	Remarks on regress
	Testing the assumption of the independence of irrelevant alternatives
	Testing proportionality
	Testing cross-model hypotheses

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	sunflower
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References

	sureg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sureg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	swilk
	Description
	Quick start
	Menu
	Syntax
	Options for swilk
	Options for sfrancia
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	symmetry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Asymptotic tests
	Exact symmetry test

	References
	Also see

	T
	table
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	One-way tables
	Two-way tables
	Three-way tables
	Four-way and higher-dimensional tables
	Video example

	Methods and formulas
	References
	Also see

	tabstat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Acknowledgments
	Reference
	Also see

	tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	tab1
	Video example

	Stored results
	References
	Also see

	tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	Measures of association
	N-way tables
	Weighted data
	Tables with immediate data
	tab2
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	tabulate, summarize()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-way tables
	Two-way tables

	Also see

	test
	Description
	Quick start
	Menu
	Syntax
	Options for testparm
	Options for test
	Remarks and examples
	Introductory examples
	Special syntaxes after multiple-equation estimation
	Constrained coefficients
	Multiple testing

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	testnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using testnl to perform linear tests
	Specifying constraints
	Dropped constraints
	Multiple constraints
	Manipulability

	Stored results
	Methods and formulas
	References
	Also see

	tetrachoric
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Association in 2-by-2 tables
	Factor analysis of dichotomous variables
	Tetrachoric correlations with simulated data

	Stored results
	Methods and formulas
	References
	Also see

	tnbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Acknowledgment
	References
	Also see

	tnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	tobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	total
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The total estimator
	Survey data
	The survey total estimator
	The poststratified total estimator
	Subpopulation estimation

	References
	Also see

	total postestimation
	Postestimation commands
	Remarks and examples
	Also see

	tpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	translate
	Description
	Quick start
	Syntax
	Options for print
	Options for translate
	Remarks and examples
	Overview
	Printing files
	Printing files, Mac and Windows
	Printing files, Unix
	Translating files from one format to another

	Stored results
	Also see

	truncreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	truncreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	ttest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample t test
	Two-sample t test
	Paired t test
	Two-sample t test compared with one-way ANOVA
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	U
	update
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	V
	vce_option
	Description
	Syntax
	Options
	Remarks and examples
	Prefix commands
	Passing options in vce()

	Methods and formulas
	Also see

	view
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	vwls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vwls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	W
	which
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	X
	xi
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Background
	Indicator variables for simple effects
	Controlling the omitted dummy
	Categorical variable interactions
	Interactions with continuous variables
	Using xi: Interpreting output
	How xi names variables
	xi as a command rather than a command prefix
	Warnings

	Stored results
	Also see

	Z
	zinb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zinb postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	References
	Also see

	zioprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zioprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	zip
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zip postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	ztest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample z test
	Two-sample z test
	Paired z test
	Adjust for clustering
	Immediate form

	Stored results
	Methods and formulas
	One-sample z test
	Two-sample unpaired z test
	Paired z test

	References
	Also see

	[RPT] Reporting
	Contents
	Intro
	Description
	Remarks and examples
	Introduction
	Exporting to a Word (.docx) file
	Exporting to a PDF file
	Exporting to an Excel file
	Creating dynamic documents
	Converting file types

	docx2pdf
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	Dynamic documents intro
	Description
	Remarks and examples
	Also see

	Dynamic tags
	Description
	Remarks
	Descriptions of dynamic tags
	Version control
	Execute and include output from a block of Stata code
	Include strings and values of scalar expressions in text
	Include values of scalar expressions and formatted text in a .docx file
	Export and include a Stata graph
	Include a text file
	Disable dynamic text processing
	Process contents based on condition
	Skip contents based on condition
	Remove contents

	Also see

	dyndoc
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	dyntext
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	html2docx
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	markdown
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	putdocx intro
	Description
	Remarks and examples
	Introduction
	A first example
	Create a document
	Add a paragraph with text
	Add an image to a paragraph
	Add a table of estimation results

	Automating a report
	Workflow options for report building
	Create a complete document in Stata
	Create a document from Stata and Word
	Append files in Stata
	Append files in Word

	References
	Also see

	putdocx begin
	Description
	Quick start
	Syntax
	Options
	Options for putdocx begin
	Options for putdocx save
	Options for putdocx append

	Remarks and examples
	Creating and formatting a .docx file
	Including headers and footers
	Describing the document
	Saving or clearing the .docx file
	Appending .docx files

	Also see

	putdocx pagebreak
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	putdocx paragraph
	Description
	Quick start
	Syntax
	Options
	Options for putdocx paragraph
	Options for putdocx text
	Options for putdocx textblock begin
	Options for putdocx textblock append
	Options for putdocx pagenumber
	Options for putdocx textfile
	Options for putdocx image

	Remarks and examples
	Adding a paragraph
	Formatting text
	Working with blocks of text
	Adding an image to the document
	Inserting text files in the document

	Also see

	putdocx table
	Description
	Quick start
	Syntax
	Output types for tables

	Options
	table_options
	cell_options
	row_col_options
	cell_fmt_options
	exp_options
	image_options

	Remarks and examples
	Introduction
	Creating basic tables
	Exporting summary statistics
	Exporting estimation results

	Creating advanced tables
	Customizing headers and footers with tables

	Stored results
	Reference
	Also see

	Appendix for putdocx
	Description
	Border patterns
	Chapter styles
	Colors
	Page number formats
	Paragraph styles
	Shading patterns
	Underline patterns
	Unsupported estimation commands

	Also see

	putexcel
	Description
	Quick start
	Menu
	Syntax
	Output types

	Options
	Remarks and examples
	Introduction
	Writing expressions and formatting cells
	Exporting summary statistics to Excel
	Export estimation results
	Export graphs and other images

	Appendix
	Codes for numeric formats
	Colors
	Border styles
	Background patterns

	References
	Also see

	putexcel advanced
	Description
	Quick start
	Menu
	Syntax
	Output types

	Options
	Remarks and examples
	Writing expressions and formatting cells
	Using formulas
	Exporting estimation results

	References
	Also see

	putpdf intro
	Description
	Remarks and examples
	Introduction
	Create a PDF file
	Add a paragraph with text
	Add an image to a paragraph
	Add table of estimation results

	Also see

	putpdf begin
	Description
	Quick start
	Syntax
	Options
	Options for putpdf begin
	Options for putpdf save

	Remarks and examples
	Creating and formatting a PDF file
	Describing the document
	Saving or clearing the PDF file

	References
	Also see

	putpdf pagebreak
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	putpdf paragraph
	Description
	Quick start
	Syntax
	Options
	Options for putpdf paragraph
	Options for putpdf text
	Options for putpdf image

	Remarks and examples
	Adding a paragraph
	Adding an image to the document

	Also see

	putpdf table
	Description
	Quick start
	Syntax
	Output types for tables

	Options
	table_options
	cell_options
	row_col_options
	cell_fmt_options

	Remarks and examples
	Creating basic tables
	Exporting summary statistics
	Exporting estimation results
	Creating advanced tables

	Stored results
	Reference
	Also see

	Appendix for putpdf
	Description
	Colors
	Unsupported estimation commands

	Also see

	set docx
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	Glossary

	[SEM] Structural Equation Modeling
	Contents
	Acknowledgments
	Reference
	Also see

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Using path diagrams to specify standard linear SEMs
	Specifying correlation
	Using the command language to specify standard linear SEMs
	Specifying generalized SEMs: Family and link
	Specifying generalized SEMs: Family and link, multinomial logistic regression
	Specifying generalized SEMs: Family and link, paths from response variables
	Specifying generalized SEMs: Multilevel mixed effects (2 levels)
	Specifying generalized SEMs: Multilevel mixed effects (3 levels)
	Specifying generalized SEMs: Multilevel mixed effects (4+ levels)
	Specifying generalized SEMs: Multilevel mixed effects with random intercepts
	Specifying generalized SEMs: Multilevel mixed effects with random slopes
	Specifying generalized SEMs: Latent class analysis (LCA)
	Specifying generalized SEMs: Latent class analysis, class predictors
	Specifying generalized SEMs: Latent class analysis, two latent variables

	Reference
	Also see

	Intro 3
	Description
	Remarks and examples
	Specifying indicator variables
	Specifying interactions with indicator variables
	Specifying categorical variables
	Specifying interactions with categorical variables
	Specifying endogenous variables

	Also see

	Intro 4
	Description
	Remarks and examples
	Differences in assumptions between sem and gsem
	sem: Choice of estimation method
	gsem: Choice of estimation method

	Treatment of missing values
	Variable types: Observed, latent, endogenous, exogenous, and error
	Constraining parameters
	Constraining path coefficients to specific values
	Constraining intercepts to specific values (suppressing the intercept)
	Constraining path coefficients or intercepts to be equal
	Constraining covariances to be equal (or to specific values)
	Constraining variances to specific values (or to be equal)

	Identification 1: Substantive issues
	Not all models are identified
	How to count parameters
	What happens when models are unidentified
	How to diagnose and fix the problem

	Identification 2: Normalization constraints (anchoring)
	Why the problem arises
	How the problem would manifest itself
	How sem (gsem) solves the problem for you
	Overriding sem's (gsem's) solution

	References
	Also see

	Intro 5
	Description
	Remarks and examples
	Single-factor measurement models
	Item response theory (IRT) models
	Multiple-factor measurement models
	Confirmatory factor analysis (CFA) models
	Structural models 1: Linear regression
	Structural models 2: Gamma regression
	Structural models 3: Binary-outcome models
	Structural models 4: Count models
	Structural models 5: Ordinal models
	Structural models 6: Multinomial logistic regression
	Structural models 7: Survival models
	Structural models 8: Dependencies between response variables
	Structural models 9: Unobserved inputs, outputs, or both
	Structural models 10: MIMIC models
	Structural models 11: Seemingly unrelated regression (SUR)
	Structural models 12: Multivariate regression
	Structural models 13: Mediation models
	Correlations
	Higher-order CFA models
	Correlated uniqueness model
	Latent growth models
	Models with reliability
	Multilevel mixed-effects models
	Latent class models
	Finite mixture models

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Comparing groups with sem
	The generic SEM model
	sem: Fitting the model for different groups of the data
	sem: Which parameters vary by default, and which do not
	sem: Specifying which parameters are allowed to vary in broad, sweeping terms
	sem: Adding constraints for path coefficients across groups
	sem: Adding constraints for means, variances, or covariances across groups
	sem: Adding constraints for some groups but not others
	sem: Adding paths for some groups but not others
	sem: Relaxing constraints

	Comparing groups with gsem
	gsem: Fitting the model for different groups of the data
	gsem: Which parameters vary by default, and which do not
	gsem: Specifying which parameters are allowed to vary in broad, sweeping terms
	gsem: Adding constraints for path coefficients across groups
	gsem: Adding constraints for means, variances, or covariances across groups
	gsem: Adding constraints for some groups but not others
	gsem: Adding paths for some groups but not others
	gsem: Relaxing constraints

	Reference
	Also see

	Intro 7
	Description
	Remarks and examples
	Replaying the model (sem and gsem)
	Displaying odds ratios, incidence-rate ratios, etc. (gsem only)
	Obtaining goodness-of-fit statistics (sem and gsem)
	Performing tests for including omitted paths and relaxing constraints (sem only)
	Performing tests of model simplification (sem and gsem)
	Displaying other results, statistics, and tests (sem and gsem)
	Obtaining predicted values (sem)
	Obtaining predicted values (gsem)
	Using contrast, pwcompare, and margins (sem and gsem)
	Accessing stored results

	Reference
	Also see

	Intro 8
	Description
	Options
	Remarks and examples
	Also see

	Intro 9
	Description
	Options
	Remarks and examples
	Reference
	Also see

	Intro 10
	Description
	Remarks and examples
	Also see

	Intro 11
	Description
	Remarks and examples
	Background
	How to use sem with SSD
	What you cannot do with SSD
	Entering SSD
	Entering SSD for multiple groups
	What happens when you do not set all the summary statistics
	Labeling SSD
	Making summary statistics from data for use by others

	Reference
	Also see

	Intro 12
	Description
	Remarks and examples
	Is your model identified?
	Convergence solutions generically described
	Temporarily eliminate option reliability()
	Use default normalization constraints
	Temporarily eliminate feedback loops
	Temporarily simplify the model
	Try other numerical integration methods (gsem only)
	Get better starting values (sem and gsem)
	Get better starting values (gsem)

	Also see

	Builder
	Description
	Remarks and examples
	Video example

	Reference

	Builder, generalized
	Description
	Remarks and examples
	Video example

	Reference

	estat eform
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	estat eqgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat eqtest
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat framework
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estat ggof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estat ginvariant
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat gof
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat lcgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat lcmean
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat lcprob
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat mindices
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat residuals
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat scoretests
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat sd
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat stable
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat stdize
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	estat summarize
	Description
	Menu
	Syntax
	Options
	Stored results
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Example 1
	Description
	Remarks and examples
	Single-factor measurement model
	Satorra--Bentler scaled chi-squared test
	Fitting the same model with gsem
	Fitting the same model with the Builder
	The measurement-error model interpretation

	References
	Also see

	Example 2
	Description
	Remarks and examples
	Background
	Creating the SSD
	At this point, we could save the dataset and stop
	Labeling the SSD
	Listing the SSD

	Reference
	Also see

	Example 3
	Description
	Remarks and examples
	Fitting multiple-factor measurement models
	Displaying standardized results
	Fitting the model with the Builder
	Obtaining equation-level goodness of fit by using estat eqgof

	References
	Also see

	Example 4
	Description
	Remarks and examples
	Reference
	Also see

	Example 5
	Description
	Remarks and examples
	Reference
	Also see

	Example 6
	Description
	Remarks and examples
	Fitting linear regression models
	Displaying standardized results
	Fitting the model with the Builder

	Also see

	Example 7
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Checking stability with estat stable
	Reporting total, direct, and indirect effects with estat teffects

	References
	Also see

	Example 8
	Description
	Remarks and examples
	Using test to evaluate adding constraints
	Refitting the model with added constraints
	Using estat scoretests to test whether constraints can be relaxed

	Also see

	Example 9
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Evaluating omitted paths with estat mindices
	Refitting the model

	References
	Also see

	Example 10
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the MIMIC model with the Builder
	Evaluating the residuals with estat residuals
	Performing likelihood-ratio tests with lrtest

	Reference
	Also see

	Example 11
	Description
	Remarks and examples
	Also see

	Example 12
	Description
	Remarks and examples
	Fitting the seemingly unrelated regression model
	Fitting the model with the Builder

	Also see

	Example 13
	Description
	Remarks and examples
	Also see

	Example 14
	Description
	Remarks and examples
	Also see

	Example 15
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 16
	Description
	Remarks and examples
	Using sem to obtain correlation matrices
	Fitting the model with the Builder
	Testing correlations with estat stdize and test

	Also see

	Example 17
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 18
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 19
	Description
	Remarks and examples
	Reference
	Also see

	Example 20
	Description
	Remarks and examples
	Background
	Fitting the model with all the data
	Fitting the model with the group() option
	Fitting the model with the Builder

	Reference
	Also see

	Example 21
	Description
	Remarks and examples
	Also see

	Example 22
	Description
	Remarks and examples
	Also see

	Example 23
	Description
	Remarks and examples
	Background
	Fitting the constrained model

	Also see

	Example 24
	Description
	Remarks and examples
	Baseline model (reliability ignored)
	Model with reliability
	Model with two measurement variables and reliability

	Also see

	Example 25
	Description
	Remarks and examples
	Preparing data for conversion
	Converting to summary statistics form
	Publishing SSD
	Creating SSD with multiple groups

	Also see

	Example 26
	Description
	Remarks and examples
	Fitting the model with method(ml)
	Fitting the model with method(mlmv)
	Fitting the model with the Builder

	Also see

	Example 27g
	Description
	Remarks and examples
	Single-factor pass/fail measurement model
	Single-factor pass/fail + continuous measurement model
	Fitting the model with the Builder

	Also see

	Example 28g
	Description
	Remarks and examples
	1-PL IRT model with unconstrained variance
	1-PL IRT model with variance constrained to 1
	Obtaining item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	Example 29g
	Description
	Remarks and examples
	Fitting the 2-PL IRT model
	Obtaining predicted difficulty and discrimination
	Using coeflegend to obtain the symbolic names of the parameters
	Graphing item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	Example 30g
	Description
	Remarks and examples
	Fitting the two-level model
	Fitting the variance-components model
	Fitting the model with the Builder

	References
	Also see

	Example 31g
	Description
	Remarks and examples
	Fitting the two-factor model
	Fitting the model with the Builder

	Also see

	Example 32g
	Description
	Remarks and examples
	Structural model with measurement component
	Fitting the model with the Builder

	Also see

	Example 33g
	Description
	Remarks and examples
	Fitting the logit model
	Obtaining odds ratios
	Fitting the model with the Builder

	Reference
	Also see

	Example 34g
	Description
	Remarks and examples
	Fitting the combined model
	Obtaining odds ratios and incidence-rate ratios
	Fitting the model with the Builder

	Reference
	Also see

	Example 35g
	Description
	Remarks and examples
	Ordered probit
	Ordered logit
	Fitting the model with the Builder

	Reference
	Also see

	Example 36g
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the model with the Builder

	Reference
	Also see

	Example 37g
	Description
	Remarks and examples
	Simple multinomial logistic regression model
	Multinomial logistic regression model with constraints
	Fitting the simple multinomial logistic model with the Builder
	Fitting the multinomial logistic model with constraints with the Builder

	Reference
	Also see

	Example 38g
	Description
	Remarks and examples
	Random-intercept model, single-equation formulation
	Random-intercept model, within-and-between formulation
	Random-slope model, single-equation formulation
	Random-slope model, within-and-between formulation
	Fitting the random-intercept model with the Builder
	Fitting the random-slope model with the Builder

	Reference
	Also see

	Example 39g
	Description
	Remarks and examples
	Three-level negative binomial model
	Three-level Poisson model
	Testing for overdispersion
	Fitting the models with the Builder

	References
	Also see

	Example 40g
	Description
	Remarks and examples
	The crossed model
	Fitting the model with the Builder

	Reference
	Also see

	Example 41g
	Description
	Remarks and examples
	Two-level multinomial logistic model with shared random effects
	Two-level multinomial logistic model with separate but correlated random effects
	Fitting the model with the Builder

	References
	Also see

	Example 42g
	Description
	Remarks and examples
	One-level model with sem
	One-level model with gsem
	Two-level model with gsem
	Fitting the models with the Builder

	References
	Also see

	Example 43g
	Description
	Remarks and examples
	Fitting tobit regression models
	Fitting the model with the Builder

	Also see

	Example 44g
	Description
	Remarks and examples
	Fitting interval regression models
	Fitting the model with the Builder

	Also see

	Example 45g
	Description
	Remarks and examples
	The Heckman selection model as an SEM
	Fitting the Heckman selection model as an SEM
	Transforming results and obtaining rho
	Fitting the model with the Builder

	References
	Also see

	Example 46g
	Description
	Remarks and examples
	Fitting the treatment-effects model
	Fitting the model with the Builder

	References
	Also see

	Example 47g
	Description
	Remarks and examples
	Fitting the exponential model
	Obtaining hazard ratios
	Fitting the model with the Builder

	Also see

	Example 48g
	Description
	Remarks and examples
	Censoring and truncation
	Using stset to declare survival characteristics
	Fitting the loglogistic model
	Fitting the model with the Builder

	Reference
	Also see

	Example 49g
	Description
	Remarks and examples
	Fitting the multiple-group model
	Fitting the model with the Builder

	Also see

	Example 50g
	Description
	Remarks and examples
	References
	Also see

	Example 51g
	Description
	Remarks and examples
	Likelihood-ratio test
	Comparing models

	Reference
	Also see

	Example 52g
	Description
	Remarks and examples
	Fitting the two-class model
	Comparing models
	Fitting the three-class model with covariances

	References
	Also see

	Example 53g
	Description
	Remarks and examples
	References
	Also see

	Example 54g
	Description
	Remarks and examples
	References
	Also see

	gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	References
	Also see

	gsem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem family-and-link options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem lclass options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Specifying family and link
	Specifying multilevel nested latent variables
	Specifying multilevel crossed latent variables
	Specifying paths for a specific group
	Specifying paths for a specific latent class
	Specifying paths for a specific group and latent class

	Also see

	gsem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	gsem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	lincom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lrtest
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	Methods and formulas for gsem
	Description
	Remarks and examples
	Introduction
	Families of distributions
	The Bernoulli family
	The beta family
	The binomial family
	The ordinal family
	The multinomial family
	The Poisson family
	The negative binomial family
	The Gaussian family
	Reliability
	Point mass

	Link functions
	The logit link
	The probit link
	The complementary log-log link
	The log link
	The identity link

	Survival distributions
	The exponential distribution
	The Weibull distribution
	The gamma distribution
	The loglogistic distribution
	The lognormal distribution

	Models with continuous latent variables
	Continuous latent variables likelihood
	Gauss--Hermite quadrature
	Adaptive quadrature
	Laplacian approximation
	Continuous latent variables survey data
	Continuous latent variables predictions

	Models with categorical latent variables
	Categorical latent variables likelihood
	The EM algorithm
	Categorical latent variables survey data
	Categorical latent variables predictions

	References
	Also see

	Methods and formulas for sem
	Description
	Remarks and examples
	Variable notation
	Model and parameterization
	Summary data
	Maximum likelihood
	Weighted least squares
	Groups
	Fitted parameters
	Satorra{--}Bentler variance estimation
	Standardized parameters
	Reliability
	Postestimation

	References
	Also see

	nlcom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	predict after gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	predict after sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	References
	Also see

	sem and gsem option constraints()
	Description
	Syntax
	Remarks and examples
	Use with sem
	Use with gsem

	Also see

	sem and gsem option covstructure()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem and gsem option from()
	Description
	Syntax
	Option
	Remarks and examples
	Syntax 1, especially useful when dealing with convergence problems
	Syntax 2, seldom used

	Also see

	sem and gsem option reliability()
	Description
	Syntax
	Option
	Remarks and examples
	Background
	Dealing with measurement error of exogenous variables
	Dealing with measurement error of endogenous variables
	What can go wrong

	Also see

	sem and gsem path notation
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem and gsem syntax options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option method()
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option noxconditional
	Description
	Syntax
	Option
	Remarks and examples
	What is x conditional?
	When to specify noxconditional
	Option forcexconditional (a technical note)

	Also see

	sem option select()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	sem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem ssd options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	ssd
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	testnl
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary
	Reference

	[SP] Spatial Autoregressive Models
	Contents
	Intro
	Description
	Remarks and examples
	References for learning SAR models
	Technical references on the development and fitting of SAR models

	Acknowledgments
	References

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Understanding the W matrix
	Missing values, dropped observations, and the W matrix

	Reference
	Also see

	Intro 3
	Description
	Remarks and examples
	Three types of Sp data
	Type 1: Data with shapefiles
	Type 2: Data without shapefiles but including location information
	Type 3: Data without shapefiles or location information

	Sp can be used with cross-sectional data or panel data
	ID variables for cross-sectional data
	ID variables for panel data

	Also see

	Intro 4
	Description
	Remarks and examples
	Overview
	How to find and download shapefiles on the web
	Standard-format shapefiles
	Stata-format shapefiles
	Creating Stata-format shapefiles
	Step 1: Find and download a shapefile
	Step 2: Translate the shapefile to Stata format
	Step 3: Look at the translated data
	Step 4: Create a common ID variable for use with other data
	Step 5: Optionally, tell Sp to use the common ID variable
	Step 6: Set the units of the coordinates, if necessary

	Preparing your data
	Step 7a: Merge your cross-sectional data with the Stata-format shapefiles
	Step 7b: Merge your panel data with the Stata-format shapefiles

	Rules for working with Sp data, whether cross-sectional or panel

	Also see

	Intro 5
	Description
	Remarks and examples
	Preparation of cross-sectional data
	Preparation of panel data
	There are no rules as there are with shapefiles

	Also see

	Intro 6
	Description
	Remarks and examples
	Nongeographic spatial data
	Preparation of cross-sectional data
	Preparation of panel data
	There are no rules as there are with shapefiles

	Also see

	Intro 7
	Description
	Remarks and examples
	Research plan
	Finding and preparing data
	Finding a shapefile for Texas counties
	Creating the Stata-format shapefile
	Merging our data with the Stata-format shapefile

	Analyzing texas_ue.dta
	Testing whether ordinary regression is adequate
	spregress can reproduce regress results
	Fitting models with a spatial lag of the dependent variable
	Interpreting models with a spatial lag of the dependent variable
	Fitting models with a spatial lag of independent variables
	Interpreting models with a spatial lag of the independent variables
	Fitting models with spatially autoregressive errors
	Models can have all three kinds of spatial lag terms

	Also see

	Intro 8
	Description
	Remarks and examples
	spregress, gs2sls
	spregress, ml
	spivregress
	spxtregress
	spxtregress, re
	spxtregress, fe

	Reference
	Also see

	estat moran
	Description
	Quick start
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	grmap
	Description
	Quick start
	Menu
	Remarks and examples
	References
	Also see

	spbalance
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Balancing by dropping spatial units

	Stored results
	Also see

	spcompress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using the force option

	Stored results
	Also see

	spdistance
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Are coordinates really planar and not latitude and longitude?
	Reverse engineering planar distances
	More than you want to know about coordinates
	Planar coordinates
	Latitude and longitude coordinates

	Stored results
	Methods and formulas
	Reference
	Also see

	spgenerate
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Use with Sp data
	Use with other datasets

	Also see

	spivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	spivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Options for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Limited-information mean
	Full-information mean
	Naive-form predictor
	Linear predictor
	Residuals
	Uncorrelated residuals

	Impacts

	References
	Also see

	spmatrix
	Description
	Also see

	spmatrix copy
	Description
	Quick start
	Menu
	Syntax
	Also see

	spmatrix create
	Description
	Quick start
	Menu
	Syntax
	Options for spmatrix create contiguity
	Option for spmatrix create idistance
	Options for both contiguity and idistance
	Remarks and examples
	Creating contiguity matrices
	Creating inverse-distance matrices
	Creating inverse-distance contiguity matrices
	The normalize() option
	Panel data

	Also see

	spmatrix drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	spmatrix dir
	Save and drop matrices you are not using

	Stored results
	Also see

	spmatrix export
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Using spmatrix export
	The spmatrix export text-file format

	Also see

	spmatrix fromdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	spmatrix import
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix matafromsp
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Getting W and id
	Using W without involving the data in memory
	Using W involving the data in memory

	Also see

	spmatrix normalize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Using spmatrix normalize after spmatrix import
	Using spmatrix normalize after other commands
	Using spmatrix normalize to change normalization

	Also see

	spmatrix note
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	spmatrix save
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix spfrommata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	W and v
	Simple use
	Advanced use

	References
	Also see

	spmatrix summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	spmatrix use
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix userdefined
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Sfcnname() versus Afcnname()
	Programming style
	Advanced programs
	Mixed approaches

	Also see

	spregress
	Description
	Quick start
	Menu
	Syntax
	Options for spregress, gs2sls
	Options for spregress, ml
	Remarks and examples
	Introduction
	Choosing weighting matrices and their normalization
	Weighting matrices
	Normalization of weighting matrices
	Direct and indirect effects and normalization

	Examples

	Stored results
	Methods and formulas
	Model
	GS2SLS estimator
	2SLS estimator of delta
	GMM estimator of rho based on 2SLS residuals
	GS2SLS estimator of delta
	Efficient GMM estimator of rhon based on GS2SLS residuals

	ML estimator
	Log-likelihood function

	Pseudo-R2

	References
	Also see

	spregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Options for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Limited-information mean
	Full-information mean
	Naive-form predictor
	Linear predictor
	Residuals
	Uncorrelated residuals

	Impacts

	References
	Also see

	spset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Determining whether and how data are spset
	Setting data for the first time
	Setting data with a standard-format shapefile
	Setting data with a Stata-format shapefile
	Setting data without a shapefile but with coordinates
	Setting data without a shapefile

	Modifying settings
	Modifying coordinates
	Modifying how coordinates are interpreted
	Modifying the ID variable
	Modifying whether the data are linked to a shapefile

	Converting cross-sectional data to panel data and vice versa

	Stored results
	Also see

	spshape2dta
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	spxtregress
	Description
	Quick start
	Menu
	Syntax
	Options for spxtregress, fe
	Options for spxtregress, re
	Remarks and examples
	Sp panel models
	The fixed-effects model
	The random-effects model
	The random-effects model with autoregressive panel effects
	Differences among models
	Examples

	Stored results
	Methods and formulas
	Fixed-effects estimators
	Random-effects estimators

	References
	Also see

	spxtregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Options for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Linear predictor

	Impacts in random-effects models
	Impacts in fixed-effects models

	Reference
	Also see

	Glossary

	[ST] Survival Analysis
	Contents
	Intro
	Description
	Also see

	Survival analysis
	Description
	Remarks and examples
	Introduction
	Declaring and converting count data
	Converting snapshot data
	Declaring and summarizing survival-time data
	Manipulating survival-time data
	Obtaining summary statistics, confidence intervals, tables, etc.
	Fitting regression models
	Sample size and power determination for survival analysis
	Converting survival-time data
	Programmer's utilities

	Reference
	Also see

	ct
	Description
	Also see

	ctset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Examples
	Data errors flagged by ctset

	Also see

	cttost
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	Discrete
	Description
	Acknowledgment
	References
	Also see

	ltable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	Acknowledgments
	References
	Also see

	snapspan
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Snapshot and time-span datasets
	Specifying varlist

	Also see

	st
	Description
	Also see

	st_is
	Description
	Syntax
	Remarks and examples
	Definitions of characteristics and st variables
	Outline of an st command
	Using the st_ct utility
	Comparison of st_ct with sttoct
	Verifying data
	Converting data

	Also see

	stbase
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stbase without the at() option
	stbase with the at() option
	Single-failure st data where all subjects enter at time 0
	Single-failure st data where some subjects enter after time 0
	Single-failure st data with gaps and perhaps delayed entry
	Multiple-failure st data

	Also see

	stci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data

	Stored results
	Methods and formulas
	References
	Also see

	stcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Cox regression with uncensored data
	Cox regression with censored data
	Treatment of tied failure times
	Cox regression with discrete time-varying covariates
	Cox regression with continuous time-varying covariates
	Robust estimate of variance
	Cox regression with multiple-failure data
	Stratified estimation
	Cox regression as Poisson regression
	Cox regression with shared frailty

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox PH-assumption tests
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for stphplot
	Options for stcoxkm
	Options for estat phtest

	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Baseline functions
	Making baseline reasonable
	Residuals and diagnostic measures
	Multiple records per subject
	Predictions after stcox with the tvc() option
	Predictions after stcox with the shared() option
	estat concordance

	Stored results
	Methods and formulas
	estat concordance

	References
	Also see

	stcrreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The case for competing-risks regression
	Using stcrreg
	Multiple competing-event types
	stcrreg as an alternative to stcox
	Multiple records per subject
	Option tvc() and testing the proportional-subhazards assumption

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcrreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Baseline functions
	Null models
	Measures of influence

	Methods and formulas
	References
	Also see

	stcurve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stcurve after stcox
	stcurve after streg
	stcurve after stcrreg
	stcurve after stintreg
	Using at() with stcurve

	References
	Also see

	stdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	stfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	stgen
	Description
	Quick start
	Menu
	Syntax
	Functions
	Remarks and examples
	Also see

	stintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Types of interval censoring
	Case II interval-censored data
	Case I interval-censored data

	Parameterization of ancillary parameters
	Stratified estimation

	Stored results
	Methods and formulas
	Introduction
	Distributions and parameterizations
	Parameter estimation using interval-censored data

	References
	Also see

	stintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat gofplot
	Description for estat gofplot
	Menu for estat
	Syntax for estat gofplot
	Options for estat gofplot

	Remarks and examples
	Predicted values
	Residuals and diagnostic measures

	Methods and formulas
	References
	Also see

	stir
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	stptime
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	strate
	Description
	Quick start
	Menu
	Syntax
	Options for strate
	Options for stmh and stmc
	Remarks and examples
	Tabulation of rates by using strate
	Stratified rate ratios using stmh
	Log-linear trend test for metric explanatory variables using stmh
	Controlling for age with fine strata by using stmc

	Stored results
	Acknowledgments
	References
	Also see

	streg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Distributions
	Examples
	Parameterization of ancillary parameters
	Stratified estimation
	(Unshared-) frailty models
	Shared-frailty models

	Stored results
	Methods and formulas
	Parameter estimation

	References
	Also see

	streg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	sts
	Description
	Syntax
	Remarks and examples
	Listing, graphing, and generating variables
	Comparing survivor or cumulative hazard functions
	Testing equality of survivor functions
	Covariate-adjusted estimates
	Counting the number lost to censoring
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	sts generate
	Description
	Quick start
	Menu
	Syntax
	Functions
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	sts graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Including the number lost on the graph
	Graphing the Nelson{--}Aalen cumulative hazard function
	Graphing the hazard function
	Adding an at-risk table
	On boundary bias for smoothed hazards
	Video example

	Methods and formulas
	Smoothed hazard estimate

	References
	Also see

	sts list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	sts test
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The log-rank test
	The Wilcoxon (Breslow--Gehan) test
	The Tarone--Ware test
	The Peto--Peto--Prentice test
	The generalized Fleming--Harrington tests
	The ``Cox'' test
	The trend test
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	stset
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use with stset and streset
	Options unique to streset
	Options for st

	Remarks and examples
	What are survival-time data?
	Key concepts
	Survival-time datasets
	Using stset
	Two concepts of time
	The substantive meaning of analysis time
	Setting the failure event
	Setting multiple failures
	First entry times
	Final exit times
	Intermediate exit and reentry times (gaps)
	if() versus if exp
	Past and future records
	Using streset
	Performance and multiple-record-per-subject datasets
	Sequencing of events within t
	Weights
	Data warnings and errors flagged by stset
	Using survival-time data in Stata
	Video example

	References
	Also see

	stsplit
	Description
	Quick start
	Menu
	Syntax
	Options for stsplit
	Option for stjoin
	Remarks and examples
	What stsplit does and why
	Using stsplit to split at designated times
	Time versus analysis time
	Splitting data on recorded ages
	Using stsplit to split at failure times

	Acknowledgments
	References
	Also see

	stsum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data
	Video example

	Stored results
	Methods and formulas
	Also see

	sttocc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	sttoct
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Case 1: entvar not specified
	Case 2: entvar specified

	Also see

	stvary
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	adjustfor_option
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using adjustfor() with sts and stphplot
	Syntax of at()

	Also see

	Glossary

	[SVY] Survey Data
	Contents
	Intro
	Description
	Also see

	Survey
	Description
	Remarks and examples
	Introduction
	Survey design tools
	Survey data analysis tools
	Survey data concepts
	Tools for programmers of new survey commands
	Video examples

	Acknowledgments
	References
	Also see

	bootstrap_options
	Description
	Syntax
	Options
	Also see

	brr_options
	Description
	Syntax
	Options
	Also see

	Calibration
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	Direct standardization
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for estat effects
	Options for estat lceffects
	Options for estat size
	Options for estat sd
	Options for estat cv
	Options for estat gof
	Options for estat vce

	Remarks and examples
	Stored results
	Methods and formulas
	Design effects
	Linear combinations
	Misspecification effects
	Population and subpopulation standard deviations
	Coefficient of variation
	Goodness of fit for binary response models

	References
	Also see

	jackknife_options
	Description
	Syntax
	Options
	Also see

	ml for svy
	Remarks and examples
	Reference
	Also see

	Poststratification
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	sdr_options
	Description
	Syntax
	Options
	Also see

	Subpopulation estimation
	Description
	Remarks and examples
	Methods and formulas
	Subpopulation totals
	Subpopulation estimates other than the total
	Subpopulation with replication methods

	References
	Also see

	svy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy brr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy estimation
	Description
	Menu
	Remarks and examples
	Overview of survey analysis in Stata
	Descriptive statistics
	Regression models
	Health surveys

	References
	Also see

	svy jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy postestimation
	Postestimation commands
	predict
	margins
	Remarks and examples
	References
	Also see

	svy sdr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The Rao and Scott correction
	Wald statistics
	Properties of the statistics

	Stored results
	Methods and formulas
	The table items
	Confidence intervals
	The test statistics

	References
	Also see

	svydescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	svymarkout
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	svyset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to survey design characteristics
	Finite population correction (FPC)
	Multiple-stage designs and with-replacement sampling
	Replication-weight variables
	Combining datasets from multiple surveys
	Video example

	Stored results
	References
	Also see

	Variance estimation
	Description
	Remarks and examples
	Variance of the total
	Variance for census data
	Certainty sampling units
	Strata with one sampling unit
	Ratios and other functions of survey data
	Linearized/robust variance estimation
	The bootstrap
	BRR
	The jackknife
	Successive difference replication
	Confidence intervals

	References
	Also see

	Glossary

	[TE] Treatment Effects
	Contents
	Intro
	Description
	Reference
	Also see

	Treatment effects
	Description
	Also see

	eteffects
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	eteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	etpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic example
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	References
	Also see

	etpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	etregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimates
	Options for two-step consistent estimates
	Options for control-function estimates
	Remarks and examples
	Overview
	Basic examples
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	Constrained model
	General potential-outcome model
	Average treatment effect
	Average treatment effect on the treated

	References
	Also see

	etregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	stteffects
	Description
	Syntax
	Also see

	stteffects intro
	Description
	Remarks and examples
	Introduction
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Combinations of RA and IPW
	Weighted regression adjustment

	Average treatment effect on the treated
	Comparison of treatment-effects estimators
	Assumptions and trade-offs
	The conditional independence assumption
	The sufficient overlap assumption
	The correct adjustment for censoring assumption
	Assumptions for the ATET

	Specification diagnostics and tests
	Multivalued treatments

	Acknowledgments
	References
	Also see

	stteffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Regression-adjusted estimators
	Weighted-adjusted-censoring assumptions
	Weighted regression-adjusted estimators
	Inverse-probability-weighted estimators
	Uncensored data

	Inverse-probability-weighted regression-adjustment estimators
	Weighted-adjusted-censoring IPWRA
	Likelihood-adjusted-censoring IPWRA

	Functional-form details

	References
	Also see

	stteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after stteffects ipw
	Syntax for predict after stteffects ipwra
	Syntax for predict after stteffects ra
	Syntax for predict after stteffects wra

	Options for predict
	Options for predict after stteffects ipw
	Options for predict after stteffects ipwra
	Options for predict after stteffects ra
	Options for predict after stteffects wra

	Remarks and examples
	References
	Also see

	stteffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects wra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tebalance
	Description
	Syntax
	Remarks and examples
	Methods and formulas
	Introduction
	Matched samples
	IPW samples
	Testing the propensity-score model specification

	References
	Also see

	tebalance box
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	tebalance density
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	tebalance overid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	tebalance summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	teffects
	Description
	Syntax
	Also see

	teffects intro
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	Estimating treatment effects
	Regression adjustment
	Inverse-probability weighting
	Doubly robust combinations of RA and IPW
	Matching

	Caveats and assumptions
	A quick tour of the estimators
	RA
	IPW
	IPWRA
	AIPW
	Nearest-neighbor matching
	Propensity-score matching

	Video examples

	References
	Also see

	teffects intro advanced
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	The potential-outcome model
	Assumptions needed for estimation
	The CI assumption
	The overlap assumption
	The i.i.d. assumption

	Comparing the ATE and ATET
	Overview of treatment-effect estimators
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators
	Nearest-neighbor matching estimators
	Propensity-score matching estimators
	Choosing among estimators
	Model choice

	Acknowledgments
	References
	Also see

	teffects aipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Parameters and notation
	Overview of EE estimators
	VCE for EE estimators
	TM and OM estimating functions
	TM estimating functions
	OM estimating functions

	Effect estimating functions
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators

	References
	Also see

	teffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects multivalued
	Description
	Remarks and examples
	Introduction
	Parameters and notation
	Illustrating multivalued treatments
	Examples

	References
	Also see

	teffects nnmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Nearest-neighbor matching estimator
	Bias-corrected matching estimator

	Propensity-score matching estimator
	PSM, ATE, and ATET variance adjustment

	References
	Also see

	teffects overlap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	teffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after aipw and ipwra
	Syntax for predict after ipw
	Syntax for predict after nnmatch and psmatch
	Syntax for predict after ra

	Options for predict
	Options for predict after aipw and ipwra
	Options for predict after ipw
	Options for predict after nnmatch and psmatch
	Options for predict after ra

	Remarks and examples
	Also see

	teffects psmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	Glossary

	[TS] Time Series
	Contents
	Intro
	Description
	Also see

	Time series
	Description
	Remarks and examples
	Data management tools and time-series operators
	Univariate time series: Estimators
	Univariate time series: Time-series smoothers and filters
	Univariate time series: Diagnostic tools
	Multivariate time series: Estimators
	Multivariate time series: Diagnostic tools
	Forecasting models
	Additional resources

	References
	Also see

	arch
	Description
	Quick start
	Menu
	Syntax
	Details of syntax
	Common models
	Reading arch output

	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Priming values
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	arfima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The likelihood function
	The autocovariance function
	The profile likelihood
	The MPL

	References
	Also see

	arfima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARFIMA
	IRF results for ARFIMA

	Methods and formulas
	References
	Also see

	arima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	ARIMA models
	Multiplicative seasonal ARIMA models
	ARMAX models
	Dynamic forecasting
	Video example

	Stored results
	Methods and formulas
	ARIMA model
	Kalman filter equations
	Kalman filter or state-space representation of the ARIMA model
	Kalman filter recursions
	Kalman filter initial conditions
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARIMA
	IRF results for ARIMA

	Reference
	Also see

	corrgram
	Description
	Quick start
	Menu
	Syntax
	Options for corrgram
	Options for ac and pac
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cumsp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	dfactor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to dynamic-factor models
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	dfactor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dfgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dfuller
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat acplot
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat aroots
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat sbcusum
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Cusum of recursive residuals
	Cusum of OLS residuals

	Stored results
	Methods and formulas
	References
	Also see

	estat sbknown
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat sbsingle
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fcast compute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Predictions after var and svar
	Dynamic forecasts after vec

	References
	Also see

	fcast graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	forecast
	Description
	Quick start
	Syntax
	Remarks and examples
	Video example

	References
	Also see

	forecast adjust
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast clear
	Description
	Syntax
	Remarks and examples
	Also see

	forecast coefvector
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Simulations with coefficient vectors

	Methods and formulas
	Also see

	forecast create
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	forecast describe
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast drop
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast estimates
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	The advise option
	Using saved estimation results
	The predict option
	Forecasting with ARIMA models

	References
	Also see

	forecast exogenous
	Description
	Syntax
	Remarks and examples
	Also see

	forecast identity
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast list
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	forecast query
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	forecast solve
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Performing conditional forecasts
	Using simulations to measure forecast accuracy

	Stored results
	Methods and formulas
	References
	Also see

	irf
	Description
	Quick start
	Syntax
	Remarks and examples
	References
	Also see

	irf add
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf cgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf create
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Technical aspects of IRF files
	IRFs and FEVDs
	IRF results for VARs
	IRF results for VECMs
	IRF results for ARIMA and ARFIMA

	Methods and formulas
	Impulse--response function formulas for VARs
	Dynamic-multiplier function formulas for VARs
	Forecast-error variance decomposition formulas for VARs
	Impulse{--}response function formulas for VECMs
	Algorithms for bootstrapping the VAR IRF and FEVD standard errors
	Impulse--response function formulas for ARIMA and ARFIMA

	References
	Also see

	irf ctable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf drop
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf ograph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	irf set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mgarch
	Description
	Syntax
	Remarks and examples
	An introduction to MGARCH models
	Diagonal vech MGARCH models
	Conditional correlation MGARCH models
	Constant conditional correlation MGARCH model
	Dynamic conditional correlation MGARCH model
	Varying conditional correlation MGARCH model

	Error distributions and quasimaximum likelihood
	Treatment of missing data

	References
	Also see

	mgarch ccc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch ccc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dvech
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dvech postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch vcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch vcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mswitch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Markov-switching dynamic regression
	Markov-switching AR
	Video example

	Stored results
	Methods and formulas
	Markov-switching regression models
	Markov chains
	Specification of Markov-switching models
	Markov-switching dynamic regression
	Markov-switching AR

	Likelihood function with latent states
	Smoothed probabilities
	Unconditional probabilities

	References
	Also see

	mswitch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	One-step predictions
	Dynamic predictions
	Model fit and state predictions

	Stored results
	Methods and formulas
	References
	Also see

	newey
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	newey postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	pergram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pperron
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	prais
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	prais postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	psdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The frequency-domain approach to time series
	Some ARMA examples

	Methods and formulas
	Introduction
	Spectral density after arima or arfima
	Spectral density after ucm

	References
	Also see

	rolling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	sspace
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to state-space models
	Some stationary state-space models
	Some nonstationary state-space models

	Stored results
	Methods and formulas
	References
	Also see

	sspace postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	threshold
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Model with more than two regions

	References
	Also see

	threshold postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Also see

	tsappend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using tsappend with time-series data
	Using tsappend with panel data

	Stored results
	Also see

	tsfill
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using tsfill with time-series data
	Using tsfill with panel data
	Video example

	Also see

	tsfilter
	Description
	Syntax
	Remarks and examples
	An example dataset
	A baseline method: Symmetric moving-average (SMA) filters
	An overview of filtering in the frequency domain
	SMA revisited: The Baxter--King filter
	Filtering a random walk: The Christiano--Fitzgerald filter
	A one-parameter high-pass filter: The Hodrick--Prescott filter
	A two-parameter high-pass filter: The Butterworth filter

	Methods and formulas
	Acknowledgments
	References
	Also see

	tsfilter bk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter bw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter hp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Advanced example
	Video example

	References
	Also see

	tsreport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Also see

	tsrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	tsset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Panel data
	Video example

	Stored results
	References
	Also see

	tssmooth
	Description
	Syntax
	Remarks and examples
	References
	Also see

	tssmooth dexponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tssmooth exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Treatment of missing values

	Stored results
	Methods and formulas
	References
	Also see

	tssmooth hwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tssmooth ma
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	tssmooth nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	tssmooth shwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Holt{--}Winters seasonal multiplicative method
	Holt{--}Winters seasonal additive method

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ucm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to UCMs
	A random-walk model example
	Frequency-domain concepts used in the stochastic-cycle model
	Another random-walk model example
	Comparing UCM and ARIMA
	A local-level model example
	Comparing UCM and ARIMA, revisited
	Models for the trend and idiosyncratic components
	Seasonal component

	Stored results
	Methods and formulas
	Introduction
	State-space formulation
	Cyclical component extensions

	References
	Also see

	ucm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat period

	Remarks and examples
	Methods and formulas
	Also see

	var intro
	Description
	Remarks and examples
	Introduction to VARs
	Introduction to SVARs
	Short-run SVAR models
	Long-run restrictions
	IRFs and FEVDs

	References
	Also see

	var
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Fitting models with some lags excluded
	Fitting models with exogenous variables
	Fitting models with constraints on the coefficients

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	var svar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Short-run SVAR models
	Long-run SVAR models

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var svar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	varbasic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varbasic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	vargranger
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varlmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varsoc
	Description
	Quick start
	Menu
	Syntax
	Preestimation options
	Postestimation option
	Remarks and examples
	Stored results
	Methods and formulas
	Likelihood-ratio statistic
	Model-order statistics
	Lutstats

	References
	Also see

	varstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varwle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vec intro
	Description
	Remarks and examples
	Introduction to cointegrating VECMs
	VECM estimation in Stata

	References
	Also see

	vec
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Specification of constants and trends
	Collinearity

	Stored results
	Methods and formulas
	General specification of the VECM
	The log-likelihood function
	Estimation with Johansen identification
	Estimation with constraints: beta identified
	Estimation with constraints: beta not identified
	Formulas for the information criteria
	Formulas for predict

	References
	Also see

	vec postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	veclmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	vecnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vecrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The trace statistic
	The maximum-eigenvalue statistic
	Minimizing an information criterion

	Stored results
	Methods and formulas
	References
	Also see

	vecstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	wntestb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	wntestq
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	Glossary
	References

	[XT] Longitudinal Data/Panel Data
	Contents
	Intro
	Description
	Also see

	xt
	Description
	Remarks and examples
	References
	Also see

	quadchk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	What makes a good random-effects model fit?
	How do I know whether I have a good quadrature approximation?
	What can I do to improve my results?

	vce_options
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	xtabond
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtabond postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtcloglog
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtcloglog, re and the robust VCE estimator

	References
	Also see

	xtcloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtcointtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for xtcointtest kao
	Options for xtcointtest pedroni
	Options for xtcointtest westerlund

	Remarks and examples
	Overview
	Test details
	Kao tests
	Pedroni tests
	Westerlund tests

	Stored results
	Methods and formulas
	Overview
	Kao tests
	Pedroni tests
	Westerlund tests
	Long-run variance

	References
	Also see

	xtdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	xtdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	xtdpd
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpd postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtdpdsys
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpdsys postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xteintreg
	Description
	Quick start
	Menu
	Syntax

	xteoprobit
	Description
	Quick start
	Menu
	Syntax

	xteprobit
	Description
	Quick start
	Menu
	Syntax

	xteregress
	Description
	Quick start
	Menu
	Syntax

	xtfrontier
	Description
	Quick start
	Menu
	Syntax
	Options for time-invariant model
	Options for time-varying decay model
	Remarks and examples
	Introduction
	Time-invariant model
	Time-varying decay model

	Stored results
	Methods and formulas
	References
	Also see

	xtfrontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtgee
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Calculating GEE for GLM
	Correlation structures
	Nonstationary and unstructured

	References
	Also see

	xtgee postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	xtgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Heteroskedasticity across panels
	Correlation across panels (cross-sectional correlation)
	Autocorrelation within panels

	Stored results
	Methods and formulas
	References
	Also see

	xtgls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtheckman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtheckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xthtaylor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xthtaylor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	xtintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtivreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for FD model
	Remarks and examples
	Stored results
	Methods and formulas
	xtivreg, fd
	xtivreg, fe
	xtivreg, be
	xtivreg, re

	Acknowledgment
	References
	Also see

	xtivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtline
	Description
	Quick start
	Menu
	Syntax
	Options for graph by panel
	Options for overlaid panels
	Remarks and examples
	References
	Also see

	xtlogit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtlogit, re and the robust VCE estimator

	References
	Also see

	xtlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtnbreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE/FE models
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	xtologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	xtologit and the robust VCE estimator

	References
	Also see

	xtologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	xtoprobit and the robust VCE estimator

	References
	Also see

	xtoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtpcse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtpcse postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtpoisson
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtpoisson, re and the robust VCE estimator

	References
	Also see

	xtpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtprobit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtprobit, re and the robust VCE estimator

	References
	Also see

	xtprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtrc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtrc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for MLE model
	Options for PA model
	Remarks and examples
	Assessing goodness of fit
	xtreg and associated commands

	Stored results
	Methods and formulas
	xtreg, fe
	xtreg, be
	xtreg, re
	xtreg, mle
	xtreg, pa

	Acknowledgments
	References
	Also see

	xtreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	xttest0
	Description for xttest0
	Menu for xttest0
	Syntax for xttest0

	Remarks and examples
	Methods and formulas
	References
	Also see

	xtregar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The fixed-effects model
	The random-effects model

	Stored results
	Methods and formulas
	Estimating rho
	Transforming the data to remove the AR(1) component
	The within estimator of the fixed-effects model
	The Baltagi--Wu GLS estimator
	The test statistics

	Acknowledgment
	References
	Also see

	xtregar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	xtstreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Survival models
	xtstreg and the robust VCE estimator

	References
	Also see

	xtstreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtsum
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	xttab
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	xttobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xttobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtunitroot
	Description
	Quick start
	Menu
	Syntax
	Options
	LLC_options
	HT_options
	Breitung_options
	IPS_options
	Fisher_options
	Hadri_options

	Remarks and examples
	Overview
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Stored results
	Methods and formulas
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Acknowledgments
	References
	Also see

	Glossary

	[I] Index
	Contents
	Combined subject table of contents
	Acronym glossary
	Vignette index
	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

