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Cross-referencing the documentation
When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[XT] xtabond
[D] reshape

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the xtabond entry in the Longitudinal-Data/Panel-Data Reference
Manual; and the third is a reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
[R] Stata Base Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual
[D] Stata Data Management Reference Manual
[ERM] Stata Extended Regression Models Reference Manual
[FMM] Stata Finite Mixture Models Reference Manual
[FN] Stata Functions Reference Manual
[G] Stata Graphics Reference Manual
[IRT] Stata Item Response Theory Reference Manual
[DSGE] Stata Linearized Dynamic Stochastic General Equilibrium

Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[ME] Stata Multilevel Mixed-Effects Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[P] Stata Programming Reference Manual
[SP] Stata Spatial Autoregressive Models Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual
[ST] Stata Survival Analysis Reference Manual
[TS] Stata Time-Series Reference Manual
[TE] Stata Treatment-Effects Reference Manual:

Potential Outcomes/Counterfactual Outcomes
[ I ] Stata Glossary and Index

[M] Mata Reference Manual
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2 intro — Introduction to spatial data and SAR models

Description
The Sp commands manage data and fit regressions accounting for spatial relationships. Sp fits SAR

models that include spatial lags of dependent and independent variables with spatial autoregressive
errors on lattice and areal data, which includes nongeographic data such as social network nodes.

Different fields use different jargon for spatial concepts. SAR stands for (take your pick) spatial
autoregressive or simultaneous autoregressive.

Eight short introductions will turn you into an expert on the Sp software. Read them first and read
them sequentially.

Remarks and examples
Sp provides three estimation commands: spregress, spivregress, and spxtregress. They

are extensions of Stata’s regress, ivregress, and xtreg commands.

Before you can use the Sp commands, you must construct the spatial weighting matrix. Usually,
you will create the matrix based on shapefiles (maps) that you have obtained from the web or other
sources.

That is the subject of the introduction, starting with [SP] intro 1.

The references below provide more information about SAR models.

References for learning SAR models

Spatial models have been applied in a variety of disciplines, such as criminology, demography,
economics, epidemiology, political science, and public health. Cressie (1993), Darmofal (2015),
LeSage and Pace (2009), and Waller and Gotway (2004) provide textbook introductions.

Darmofal (2015, chap. 2) gives an introduction to spatial weighting matrices.

LeSage and Pace (2009, sec. 2.7) define total, direct, and indirect impacts.

Anselin (1988) gives a classic introduction to the subject.

Technical references on the development and fitting of SAR models

SAR models date back to the work of Whittle (1954) and Cliff and Ord (1973, 1981).

The GS2SLS estimator was derived by Kelejian and Prucha (1998, 1999, 2010) and extended by
Arraiz et al. (2010) and Drukker, Egger, and Prucha (2013a).

The formulas for the GS2SLS without higher-order spatial weighting matrices were published
in Drukker, Prucha, and Raciborski (2013c). For the higher-order models, spregress, gs2sls
implements the estimator derived in Badinger and Egger (2011) and Prucha, Drukker, and Egger (2016).

The properties of the ML estimator were proven by Lee (2004), who also provides the formulas
for the robust estimator of the VCE.

Kelejian and Prucha (2010) give a technical discussion of how normalizing spatial weighting
matrices affects parameter definition.

Lee and Yu (2011) give formulas and theory for SAR panel models.
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to include grmap, a lightly adapted version of his spmap command (Pisati 2007), which was preceded
by his tmap command (Pisati 2004).

We thank Stata users for their contributions on spatial data management and spatial analysis that
were published in the Stata Journal. We thank Belotti, Hughes, and Piano Mortari for “Spatial panel-
data models using Stata”. We thank Brophy, Daniels, and Musundwa for “gpsbound: A command
for importing and verifying geographical information from a user-provided shapefile”. We thank
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Description

Sp can fit models with

1. spatial lags of dependent variables,

2. spatial lags of independent variables, and

3. spatially autoregressive errors.

The spatial features can be used in any combination.

This entry describes the above features and describes SAR models in general.

Remarks and examples
SAR models are fit using datasets that contain observations on spatial units such as countries,

districts, or even nongeographical units such as social network nodes. For simplicity, we refer to
these spatial units as areas. Datasets contain at a minimum a continuous outcome variable, such as
incidence of disease, output of farms, or crime rates, along with the other variables assumed to predict
the chosen outcome. The dataset could be used to fit a linear regression of the form

yi = β0 + xi,1β1 + xi,2β2 + · · ·+ xi,kβk + εi

5



6 intro 1 — A brief introduction to SAR models

This linear regression is provided as a starting point; it is not a SAR model. To give this starting
point a spatial feel, we will call the observations areas. The variables contain characteristics of the
areas. The notation we will use is

i area (observation), numbered 1 to N
yi dependent (outcome) variable in area i
xi,1 1st independent variable in area i

...
xi,j jth independent variable in area i

...
xi,k last independent variable in area i
εi error (residual) in area i

The linear regression model can be written in column-vector notation:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε

The boldfaced variables are each N × 1 vectors.

You could fit the above model in Stata by typing

regress y x1 x2 . . . xk

SAR models extend linear regression by allowing outcomes in one area to be affected by

1. outcomes in nearby areas,

2. covariates from nearby areas, and

3. errors from nearby areas.

Said in the spatial jargon, models can contain

1. spatial lags of the outcome variable,

2. spatial lags of covariates, and

3. spatially autoregressive errors.

These terms are borrowed from the time-series literature. In time series, an autoregressive AR(1)
process is

yt = γ0 + γ1yt−1 + εt

where yt−1 is called the lag of y. In vector notation, L. is the lag operator, and the above equation
could be written as

y = γ0 + γ1L.y + ε

Sometimes, AR(1) models also include autoregressive errors:

y = γ0 + γ1L.y + u

where u = ρL.u + ε. In that case, the equation becomes

y = γ0 + γ1L.y + (I− ρL.)−1ε

The parameter ρ measures the correlation in the errors and is a parameter to be estimated along with
γ0 and γ1.
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The time-series notation and jargon can be translated to the spatial domain. The lag operator
becomes an N × N matrix W. What was L.y becomes Wy, which means matrix W multiplied
by vector y. The SAR model corresponding to the above time-series equation is

y = β0 + β1Wy + ε

The SAR model corresponding to the time-series equation with autoregressive errors is

y = β0 + β1Wy + (I− ρW)−1ε

W is called the spatial weighting matrix. The values in the matrix characterize the spatial
relationships between areas. W is the spatial analog of L.y. Whereas L.y measures the potential
spillover from time t − 1 to t, elements Wi1,i2 specify how much potential spillover there is from
area i2 to i1. Wi1,i2 is zero if area i2 can have no effect on i1. The more potential spillover there
is, the larger Wi1,i2 is. The elements of W are specified before the model is fit.

In the mathematics of SAR models:

• Wy is the spatial equivalent of L.y. Either way, it is the lag of the dependent variable.

• Wxj is the spatial equivalent of L.xj . Either way, it is the lag of the jth independent
variable.

• (I− ρW)−1ε is the spatial equivalent of (1− ρL.)−1ε. Either way, it is an autoregressive
error.

Any of the above could be included in a SAR model.

Recall that the linear regression model we started with was

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε

We will keep the first two explanatory variables and drop the rest. The equation becomes

y = β0 + β1x1 + β2x2 + ε

We could fit the shortened model by typing

regress y x1 x2

We could add Wy to the model:

y = β0 + β1x1 + β2x2 + β3Wy + ε

We could fit this model by typing

spregress y x1 x2, gs2sls dvarlag(W)

The result would be that β3W would measure the amount that outcomes are affected by nearby
outcomes.

We could add Wx1 to the model:

y = β0 + β1x1 + β2x2 + β3Wy + β4Wx1 + ε

To fit this model, we would type

spregress y x1 x2, gs2sls dvarlag(W) ivarlag(W:x1)
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The result would be that we would estimate an extra coefficient β4 and that β4W would measure
the spillover of x1.

Spatial models can have more than one weighting matrix. If we had a second weighting matrix
V in addition to W, we could fit the model

y = β0 + β1x1 + β2x2 + β3Wy + β4Wx1 + β5Vx1 + ε

by typing

spregress y x1 x2, gs2sls dvarlag(W) ivarlag(W:x1) ivarlag(V:x1)

We might do this if we were uncertain how spillover from nearby areas affects outcomes. We
might be reasonably certain that there are spillover effects from adjacent areas and even from areas
adjacent to adjacent areas. Let’s call the adjacent areas “first-order neighbors” and the areas adjacent to
adjacent areas “second-order neighbors”. If we thought half the amount spilled over from second-order
neighbors as from first-order neighbors, we would define W to constrain that by making Wi1,i2 for
second-order neighbors half that of first-order neighbors. If we were uncertain about the one-half
assumption, we could define W to allow spillovers only from first-order neighbors and V to allow
spillovers only from second-order neighbors. The spillover effect from x1 would be β4W + β5V.
The ratio of second- to first-order spillovers would then be β5/β4.

Fitting models that estimate instead of imposing such second-order effects is asking a lot of the
data. But if you have a sufficient amount of data that support this model, the approach works well.

To keep our model simple, we will remove the second-order lag so that the model reverts to

y = β0 + β1x1 + β2x2 + β3Wy + β4Wx1 + ε

If we added the spatial lag of x2 to the model, it would become

y = β0 + β1x1 + β2x2 + β3Wy + β4Wx1 + β5Wx2 + ε

We could fit this model by typing

spregress y x1 x2, gs2sls dvarlag(W) ivarlag(W:x1 x2)

Whatever other lags we include in the model, we could specify autoregressive errors. The model
becomes

y = β0 + β1x1 + β2x2 + β3Wy + β4Wx1 + β5Wx2 + (I− ρW)−1ε

To fit this model, we would type

spregress y x1 x2, gs2sls dvarlag(W) ivarlag(W:x1 x2) errorlag(W)

The parameters to be fit in the model are β0 though β5 and ρ, where ρ is the correlation parameter
of the residuals.

This is another model that is asking a lot of the data. Distinguishing correlated residuals from
lagged dependent variables is especially tricky.

The machinery underlying spregress is complex. The spregress command with the gs2sls
estimator uses a generalized method-of-moments estimator, which allows higher-order dependent
variable lags and higher-order autoregressive error terms to be fit. spregress has an ml option for
fitting a maximum likelihood estimator should you wish to fit a model under the assumption of
normally distributed errors. You can read Methods and formulas in [SP] spregress for more details
if you are curious.



intro 1 — A brief introduction to SAR models 9

You can fit SAR models for panel data with spxtregress, and you can fit SAR models with
endogenous covariates using spivregress. These commands also incorporate spatial features like
the ones described here. For details, see Methods and formulas in [SP] spxtregress and Methods and
formulas in [SP] spivregress

See [SP] intro 8 for a brief tour of the Sp estimation commands.

Also see
[SP] intro — Introduction to spatial data and SAR models

[SP] intro 2 — The W matrix

[SP] intro 7 — Example from start to finish

[SP] intro 8 — The Sp estimation commands

[SP] spivregress — Spatial autoregressive models with endogenous covariates

[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spregress — Spatial autoregressive models

[SP] spxtregress — Spatial autoregressive models for panel data
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Description

Spatial lags and spatially autoregressive errors are defined by the spatial weighting matrix W.
This entry describes the weighting matrix.

Remarks and examples
Remarks are presented under the following headings:

Understanding the W matrix
Missing values, dropped observations, and the W matrix

Understanding the W matrix

You will usually construct W on the basis of shapefiles (maps) that you obtain over the web
or from other sources. It is so easy to do that you might think you can ignore the details of W.
You cannot. You need to understand W to interpret results from the models you fit. Moreover, those
models are conditioned on W, and the matrices you use are as much a part of your model as are the
variables you include or intentionally exclude.

You use W in your models in three ways:

1. You include λWy to allow nearby outcomes to affect outcomes.

2. You include γWx to allow nearby covariates to affect outcomes.

3. You include autoregressive errors (I− ρW)−1ε to allow nearby errors to affect outcomes.

10
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You can think of W as specifying the potential spillover as long as you realize that the actual
spillovers are as follows:

1. The effect that yi of area i has on nearby y’s from the term λWy.

2. The effect that xi has on nearby y’s, both from the term γWx and from the effect that xi
has on yi, which in turn affects nearby y’s.

3. The effect of including an autoregressive error.

The weighting matrix W is effectively a constraint placed on the individual spillovers formulated as
part of the model specification.

For instance, if W1,3 is 0, then there will be no spillover from 3 to 1 contributing to the total. It
is constrained to be 0. If W2,6 and W4,7 are both 1, then individual spillovers from 6 to 2 and from
7 to 4 will be constrained to be equal. If W5,7 is 2, then the spillover from 7 to 5 will be twice that
of 7 to 4.

To see how this works, we will consider the matrix for four fictional places:

• Mordor, a dark land in J. R. R. Tolkien’s The Lord of the Rings.

• Bree, a village from the same story.

• Hogsmead, a village from J. K. Rowling’s Harry Potter novels.

• Hogwarts, a school near Hogsmead in the Harry Potter novels.

Spatial weighting matrices have 0s down the diagonal:

Spatial weighting W

Mordor Bree Hogsmead Hogwarts
Mordor 0
Bree 0
Hogsmead 0
Hogwarts 0

The 0s down the diagonal may surprise you. Perhaps you expected 1s. Wi,j is the spillover from j
to i, so Wi,i is the spillover from i onto itself. Surely, geographic area i affects itself. Your thinking
is correct, but you forgot that the purpose of W is to specify the effect of nearby areas. You will
measure the effects of i on itself by adding other variables, such as x, to your model:

y = β0 + β1x + β2Wx + · · ·

In this model, β1 measures the effect of xi on yi, and β2W measures the effect of xi′ from other
areas i′ 6= i on yi. W has 0s down the diagonal so that W serves its intended purpose.

A W matrix could contain all 0s:

Spatial weighting W

Mordor Bree Hogsmead Hogwarts
Mordor 0 0 0 0
Bree 0 0 0 0
Hogsmead 0 0 0 0
Hogwarts 0 0 0 0
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If the matrix contains all 0s, there are no spatial effects. The observations are independent, and you
may as well use regress to fit the model.

You use Sp estimation commands when some elements of W are nonzero. Zeros are nonetheless a
reasonable value for many of the elements. For instance, Mordor and Bree are from one set of novels,
while Hogsmead and Hogwarts are from another. It would be reasonable to assume (to constrain)
that there are no spillover effects between them. We would have the following matrix:

Spatial weighting W

Mordor Bree Hogsmead Hogwarts
Mordor 0 ? 0 0
Bree ? 0 0 0
Hogsmead 0 0 0 ?
Hogwarts 0 0 ? 0

In the above matrix, we are specifying that Mordor and Bree are independent of Hogsmead and
Hogwarts, and vice versa. The question marks stand in for the values left to be filled in, which are

• W1,2, the potential spillover of Bree on Mordor.

• W2,1, the potential spillover of Mordor on Bree.

• W3,4, the potential spillover of Hogwarts on Hogsmead.

• W4,3, the potential spillover of Hogsmead on Hogwarts.

Nonzero values in W must be positive. The larger the value in Wi1,i2 , the more the potential
spillover.

How shall we measure spillover? It turns out not to matter so long as we are consistent. Said
differently, only ratios of elements in the matrix matter. Remember how spatial lags are used:

y = β0 + β1x + β2Wx + · · ·
Fitted coefficient β2 measures the effect of the spatial lag. If we replaced W with 2W, the result
would be to halve β2, just as β1 would halve if we doubled x.

We will set W3,4, the potential spillover of Hogwarts on Hogsmead, to 1, and in setting this first
nonzero value, we have decided on the units. The units are Hogwarts on Hogsmead. If we set an
element to 2, then we are setting the potential spillover to be twice that of Hogwarts on Hogsmead.
If we set an element to 1/2, then we are setting the potential spillover to be half that of Hogwarts
on Hogsmead.

If we also set W4,3 = 1, we will be constraining the potential spillover of Hogsmead on Hogwarts
to be the same as Hogwarts on Hogsmead. Our matrix would be

Spatial weighting W

Mordor Bree Hogsmead Hogwarts
Mordor 0 ? 0 0
Bree ? 0 0 0
Hogsmead 0 0 0 1
Hogwarts 0 0 1 0

What should we make the spillovers of Bree on Mordor and of Mordor on Bree? In the Lord of
the Rings story, Mordor is far from Bree, larger than Bree, and actively exporting evil at the speed
of magic. Bree, meanwhile, is a speck that Mordor could brush away with little effort.
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We will set W2,1, the spillover of Mordor on Bree, to 4 and W1,2, the spillover of Bree on
Mordor, to 0.1. The spillover of Mordor on Bree will be four times that of Hogwarts on Hogsmead.
Meanwhile, the spillover of Bree on Mordor will be one-tenth that of Hogwarts on Hogsmead.

You might well question the numbers we have chosen. Why is the spillover of Mordor on Bree 4
and not 5? Or 10? We have no satisfactory answer, and that is why in real problems researchers
often set potential spillovers to 1 for adjacent areas and to 0 elsewhere, or set potential spillovers
to the inverse of the distance between the locations. Both seem more defensible, although defending
them can be problematic. Do second-order neighbors really have no effect? Or in the case of inverse
distance, why not inverse distance squared? Sometimes theory can provide an answer. The spillover
of a light bulb is inverse distance squared. In other cases, there are no satisfactory answers except that
making partially justified assumptions and accounting for spillover effects is preferable to assuming
that spillover effects are all 0.

So we have

Spatial weighting W

Mordor Bree Hogsmead Hogwarts
Mordor 0 0.1 0 0
Bree 4 0 0 0
Hogsmead 0 0 0 1
Hogwarts 0 0 1 0

And the final W matrix is

W =


0 0.1 0 0
4 0 0 0
0 0 0 1
0 0 1 0


We could enter this matrix into Sp and proceed to estimation. It would be easy enough to do; see
[SP] spmatrix userdefined, [SP] spmatrix fromdata, and [SP] spmatrix spfrommata.

Although we could do this, in reality you will not. You will have more than four geographical
units—you might have 3,000 counties. To say nothing of the misery of entering a 3000×3000 matrix,
you are not going to carefully consider and research all 8,997,000 pairs of counties. You are going
to assume that only adjacent counties affect each other—called “contiguity” in the literature—or that
spillover effects are proportional to the inverse of distance between counties. You are going to do
that because you can create such W matrices by typing a single command such as

. spmatrix create contiguity Wc // contiguity

. spmatrix create idistance Widist // inverse distance

We told you that the units in which the weights are measured do not matter, but that is not
exactly true. They do not matter if you only include spatially lagged covariates. If, however, you
use the spatial weighting matrix to lag the dependent variable (λWy) or for autoregressive errors
[(I− ρW)−1ε], then λ̂ and ρ̂ will be easier to interpret if the matrix is scaled appropriately. In that
case, λ̂ and ρ̂ should be between −1 and 1 unless the solution is explosive.

Explosive solutions can arise in spatial analysis for the same reasons they arise in time-series
analysis. If A affects B and B affects A, and if the coefficients are large enough, then feedback
becomes amplified. A sends a large value to B, which B receives, amplifies, and sends back to A,
whereupon the procedure repeats, and eventually, the process explodes in a mess of infinities.
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To fit models, the Sp software virtually requires that you scale the matrices used to produce lags
of the dependent variable or autoregressive errors, and you ought to scale the other matrices too. The
software produces more accurate results when inputs are scaled.

Scaling is so important that when you type the commands

. spmatrix create contiguity Wc

. spmatrix create idistance Widist

scaling is performed automatically, and you have to go out of your way to prevent it, which you can
do by typing

. spmatrix create contiguity Wc, normalize(none)

. spmatrix create idistance Widist, normalize(none)

By default, weighting matrices are scaled so that their largest eigenvalue is 1. See [SP] spmatrix
create and Choosing weighting matrices and their normalization in [SP] spregress for details about
normalization.

Missing values, dropped observations, and the W matrix

Missing values sometimes appear in data. When fitting models with such data, the usual solution
is to omit the observations from the estimation sample. That can be justified when observations are
independent, but observations are not independent in SAR models.

Spatial models allow for spillover effects from nearby areas. In spatial data, observations are areas.
Omitting some areas means that the spillovers from them are no longer being included in the fitted
model. Consider two adjacent counties and assume that one of them is dropped from the estimation.
Then, the spillover from the dropped county to its neighbor—a neighbor still in the data—becomes 0
even though there really is spillover. It is just unobserved spillover.

Thus, Sp estimation commands handle missing observations differently from Stata’s other estimation
commands. If an area is defined in a spatial weighting matrix and that area is not observed in the
data, Sp refuses to fit the model unless you specify option force.

Imagine that you type

. spregress y x, gs2sls ivarlag(W: x)

and that observation 4 contains a missing value for x. Most Stata estimation commands would omit
the observation from the estimation sample and proceed with estimation. spregress will issue an
error and mention the force option.

. spregress y x, gs2sls ivarlag(W: x)
(1412 observations)
(1 observation excluded due to missing values)
(1411 observations (places) used)
(weighting matrix defines 1412 places)

weighting matrix defines places not in estimation sample
Excluding observations excludes the spillovers from those observations to
other observations which are not excluded. You must determine whether this
is appropriate in this case and, if it is, specify option force.

r(459);

You would be on firm theoretical ground to specify the force option if the fourth column of
W contained only 0 values, because in that case there are no spillovers from observation 4 to the
other areas. Meanwhile, the fourth row does not have to be all 0s. The other areas might spillover to
observation 4, but that will not bias results if observation 4 is omitted. It is the unobserved spillovers
from observation 4 that cause bias.
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You would be on muddy theoretical ground—which most applied researchers consider to be firm
enough—if the fourth column of W contained only small values.

You would be sinking in a swamp if the fourth column of W contained any large values. We
at StataCorp might go there, but if we did, we would afterward try replacing x[4] with various
reasonable values to determine how sensitive our forced results would be to the missing observation.

Reference
Liu, D. 2017. How to create animated graphics to illustrate spatial spillover effects. The Stata Blog: Not Elsewhere

Classified. https://blog.stata.com/2018/03/06/how-to-create-animated-graphics-to-illustrate-spatial-spillover-effects/.

Also see
[SP] intro 3 — Preparing data for analysis

[SP] intro 7 — Example from start to finish

[SP] spmatrix — Categorical guide to the spmatrix command

https://blog.stata.com/2018/03/06/how-to-create-animated-graphics-to-illustrate-spatial-spillover-effects/
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Description

Before you can use the Sp estimation commands—spregress, spivregress, and spxtregress—
to fit SAR models, you need to prepare your data.

Remarks and examples
Remarks are presented under the following headings:

Three types of Sp data
Type 1: Data with shapefiles
Type 2: Data without shapefiles but including location information
Type 3: Data without shapefiles or location information
Sp can be used with cross-sectional data or panel data
ID variables for cross-sectional data
ID variables for panel data

Three types of Sp data

The Sp commands categorize the data that you use as being

• data with shapefiles,

• data without shapefiles but including location information, or

• data without shapefiles or location information.

Shapefiles are maps and are easily found on the web. One way that the Sp commands use shapefiles
is to obtain (x, y) coordinates of places, which makes creating W matrices easy.

Alternatively, your data could contain the (x, y) coordinates, and then you do not need shapefiles.
However, you still might want them because then you can draw choropleth maps.

Finally, your data might not contain (x, y) coordinates at all. Your data might not be geographic.
Whether your data are geographic or a social network, it is the W matrix that defines the “spatial”
relationships.

16
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Type 1: Data with shapefiles

The first and best approach with geographic data is to use shapefiles. Shapefiles are easily found and
downloaded from the web. Shapefiles make setting the W matrix easy, and you can draw choropleth
maps such as

. grmap unemployment

Type 2: Data without shapefiles but including location information

If your data already contain the locations of the observations, you do not need shapefiles. You can
proceed almost directly to analysis.

Setting the spatial weighting matrix is almost as easy as it is when you have a shapefile. You lose
the easy construction of contiguity matrices—matrices in which only adjacent areas spill over to one
another—but you can still set W on the basis of distance.

Without shapefiles, you lose the ability to draw choropleth maps.

Type 3: Data without shapefiles or location information

When you do not have location information, you must construct and enter the spatial weighting
matrix W manually, just as we did in [SP] intro 2 with Mordor, Bree, Hogsmead, and Hogwarts.
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SAR models can be fit to data that are not spatial, such as social networks. The elements of W
record spillover from j to i, whether that is place j to i, imaginary universe j to i, or network node
j to i. In the case of networks, you may already have a W from an official source. You can use
spmatrix import to import it; see [SP] spmatrix import.

If your data are spatial, on the other hand, we strongly suggest finding a shapefile on the web or
finding and entering each observation’s location.

Sp can be used with cross-sectional data or panel data

Whether the data contain shapefiles, locations, or neither is one aspect of Sp data. The other is
whether the data are cross-sectional or panel.

Cross-sectional data contain one observation per geographical unit, such as country, state, county,
or zip code. A cross-sectional dataset might look like this:

area id area name v1 v2 . . .

1 Brazos . . .
2 Travis . . .
3 Grimes . . .
v1, v2, . . . contain values for each area.

Panel data contain multiple observations per geographical unit. Panel data look like this:

area id area name year v1 v2 . . .

1 Brazos 1990 . . .
1 Brazos 2000 . . .
1 Brazos 2014 . . .

2 Travis 1990 . . .
2 Travis 2000 . . .
2 Travis 2014 . . .

3 Grimes 1990 . . .
3 Grimes 2000 . . .
3 Grimes 2014 . . .
v1, v2, . . . contain values by year for each area.

Detailed instructions for preparing cross-sectional and panel data will be provided in [SP] intro 4,
[SP] intro 5, and [SP] intro 6. First, we need to tell you about the numeric ID variables that Sp will
need.

ID variables for cross-sectional data

Sp requires that cross-sectional data contain an ID variable that uniquely identifies the observations.
Both area id and area name do that in the following data:

area id area name v1 v2 . . .

1 Brazos . . .
2 Travis . . .
3 Grimes . . .
v1, v2, . . . contain average values within area.



intro 3 — Preparing data for analysis 19

Because Sp requires that the ID variable be numeric, area id would be our ID variable. area id
contains 1, 2, . . . , but that is not required. Another dataset might contain U.S. Census FIPS county
codes:

fips area name v1 v2 . . .

48041 Brazos . . .
48453 Travis . . .
48185 Grimes . . .

The ID variable then would be fips.

If the data do not contain a numeric ID but do contain a string ID variable, such as area name,
you can create a numeric ID from it by typing

. sort area_name

. generate id = _n

We sorted by area name to align the names and code, but that is not necessary. If you had no
identification variable whatsoever, you could type

. generate id = _n

ID variables for panel data

We have a lot more to say about ID variables in panel data, and there are substantive issues as
well. To remind you, panel data look like this:

area id area name year v1 v2 . . .

1 Brazos 1990 . . .
1 Brazos 2000 . . .
1 Brazos 2014 . . .

2 Travis 1990 . . .
2 Travis 2000 . . .
2 Travis 2014 . . .

3 Grimes 1990 . . .
3 Grimes 2000 . . .
3 Grimes 2014 . . .
v1, v2, . . . contain average values within year for each area.

Panel data have two identifiers. Generically, they are called the first- and second-level IDs. In these
data, those IDs are

First-level ID Second-level ID

area id year

area name could be the first-level ID, but because Sp requires that ID variables be numeric, we put
area id in the table. If the data contained area name but not area id, we would create area id
by typing

. egen area_id = group(area_name)
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The first-level ID corresponds to the ID in cross-sectional data. As with cross-sectional data, that
first-level ID is not required to contain 1, 2, . . . . It could contain FIPS codes or whatever else.

Sp assumes that the first-level ID corresponds to area.

Sp assumes that the second-level ID corresponds to time.

Concerning the second-level variable, we call it time because it usually is time. The spatial fixed-
and random-effects estimators that Sp provides are appropriate for use with panels over time. The
estimators are appropriate in other cases, too, but not all other cases. Whether they are appropriate
hinges on whether spatial lags have a meaningful interpretation.

Sp defines panel-data spatial lags as being across area at the same time or, equivalently, across
first-level ID for the same values of the second-level ID:

Meaning of spatial lag,
observation by observation

1st-level ID 2nd-level ID Spatial lag means
area id year area id for year

1 1990 * 1990
1 2000 * 2000
1 2014 * 2014

2 1990 * 1990
2 2000 * 2000
2 2014 * 2014

3 1990 * 1990
3 2000 * 2000
3 2014 * 2014

When the second-level identifier is time, defining spillovers as coming from nearby areas at the
same time is just what you want. It is sometimes what you want when the second-level identifier is
not time, too.

On the other hand, here is an example in which the second-level identifier is not time and the data
are not appropriate for use with Sp. We have data on school districts in counties:

area id area name district district name v1 v2 . . .

1 Brazos 1 BISD . . .
1 Brazos 2 CSISD . . .
1 Brazos 3 NISD . . .

2 Travis 1 AISD . . .
2 Travis 2 HISD . . .
2 Travis 3 RRISD . . .

3 Grimes 1 ASISD . . .
3 Grimes 2 MISD . . .
3 Grimes 3 RISD . . .
v1, v2, . . . contain average values within district for each area.

Spatial lags would be meaningless with these data because they would be calculated across area for
equal values of district. Independent school districts run schools in subareas of counties. Those
independent school districts have names like BISD and CSISD. ISD stands for Independent School
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District. BISD stands for Bryan ISD, and CSISD stands for College Station ISD. Bryan and College
Station are two different areas of Brazos County.

Let’s consider the meaning of a spatial lag for the first observation in the data. It would be
calculated across area for district = 1. Across area is just what we want, but matching BISD with
AISD with ASISD is senseless.

Data on county–school type, however, could be meaningfully matched:

area id area name type meaning v1 v2 . . .

1 Brazos 1 elementary . . .
1 Brazos 2 middle . . .
1 Brazos 3 high school . . .

2 Travis 1 elementary . . .
2 Travis 2 middle . . .
2 Travis 3 high school . . .

3 Grimes 1 elementary . . .
3 Grimes 2 middle . . .
3 Grimes 3 high school . . .

v1, v2, . . . contain average values within type of school for each area.

In these data, a spatial lag would be nearby counties for schools of the same type.

In the rest of this manual, we will write as if all panel datasets are location–time datasets, but
remember that time is not required to be time. If it is not time, however, you must ensure that the
spatial comparisons are reasonable.

Because of the matching required in calculating spatial lags, Sp’s fixed- and random-effects
estimators require that the data be strongly balanced. Strongly balanced means that each panel has the
same number of observations and that the panels record data for the same set of times. Later, we will
tell you about the spbalance command. It will balance the data for you by dropping observations
for times not defined in all panels. See [SP] spbalance.

Also see
[SP] intro 7 — Example from start to finish

[SP] spbalance — Make panel data strongly balanced

[SP] spset — Declare data to be Sp spatial data
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Description

To perform a spatial analysis, you do the following steps:

1. Prepare data for use by Sp.

2. Define weighting matrices.

3. Fit models using spregress, spivregress, or spxtregress.

Step-by-step instructions for step 1 are provided below. These instructions are for preparing data
with shapefiles.

Shapefiles define maps. You obtain them over the web. After translation into Sp format, you merge
the translated result with a .dta file or files you already have.

Remarks and examples
Remarks are presented under the following headings:

Overview
How to find and download shapefiles on the web
Standard-format shapefiles
Stata-format shapefiles
Creating Stata-format shapefiles

Step 1: Find and download a shapefile
Step 2: Translate the shapefile to Stata format
Step 3: Look at the translated data
Step 4: Create a common ID variable for use with other data
Step 5: Optionally, tell Sp to use the common ID variable
Step 6: Set the units of the coordinates, if necessary

Preparing your data
Step 7a: Merge your cross-sectional data with the Stata-format shapefiles
Step 7b: Merge your panel data with the Stata-format shapefiles

Rules for working with Sp data, whether cross-sectional or panel

22



intro 4 — Preparing data: Data with shapefiles 23

Overview

Shapefile is jargon for computer files that store a map. A shapefile might store the map for the
3,000-plus counties in the United States.

Shapefiles are optional. If you have one, Sp can determine which places (counties) are neighbors
(share a border), and Sp will know the distances between the centroids of the places. You will be
able to create spatial weighting matrices of first-order neighbors by typing

. spmatrix create contiguity Wc

and to create inverse-distance weighting matrices by typing

. spmatrix create idistance Wd

and to graph choropleth maps by typing

. grmap ue_rate

You find and download shapefiles on the web, and translate them to Stata format. For example,

1. You find and download tl 2016 us county.zip for U.S. counties.

2. You convert tl 2016 us county.zip to Stata format, creating two new datasets:
tl 2016 us county.dta and tl 2016 us county shp.dta.

For information on how to find tl 2016 us county.zip on the web, see Finding a shapefile
for Texas counties in [SP] intro 7. You can download this file if you want to follow along with the
commands in this introduction.

Let’s suppose you have downloaded the U.S. counties file and unzipped it. You also have two
county-data datasets, project cs.dta and project panel.dta, containing observations on the
3,000-plus counties. These datasets are available by typing

. copy http://www.stata-press.com/data/r15/project_cs.dta .

. copy http://www.stata-press.com/data/r15/project_panel.dta .

They are standard Stata datasets. You could use them with regress or, in the case of
project panel.dta, which contains panel data, xtreg, but the datasets are not yet suitable
for use with spregress or spxtregress.

To make the project datasets work with Sp, you merge each one with the Stata-format shapefiles.
We will show you how to create these shape files in Creating Stata-format shapefiles. Merging your
data with a shapefile will add three variables to your data: ID, CX, and CY.

project cs.dta is a cross-sectional dataset, so when the shapefile is prepared, you could type

. use project_cs, clear

. merge 1:1 fips using tl_2016_us_county

. keep if merge==3

. drop _merge

If all goes well, no observations from project cs.dta will be dropped. You keep the matches
because there are sometimes observations in the shapefile that are not in project cs.dta.

project panel.dta is a panel dataset, so you could type

. use project_panel, clear

. xtset fips time

. spbalance

. merge m:1 fips using tl_2016_us_county

. keep if _merge==3

. drop _merge



24 intro 4 — Preparing data: Data with shapefiles

Merging panel data requires extra steps because 1) the data must be xtset and 2) Sp requires that
the panels be strongly balanced. This was discussed in [SP] intro 3.

How to find and download shapefiles on the web

Shapefiles contain more than a map. They sometimes contain data relevant to specific research
problems. You can find shapefiles that contain climate or economic or epidemiological data. You
might think that you need to find the shapefile relevant to your research problem, but you do not. You
need to find shapefiles defining the geographic units that you will be analyzing, such as U.S. counties.
In addition to the map, shapefiles include the names and standard codes for the geographic units. You
will later use those variables to merge the shapefile with data you already have or that you obtain
from other sources.

To find appropriate shapefiles, use your browser and search for them. You could search for

shapefiles

shapefiles europe
shapefiles deutschland
shapefiles deutschland bundesländer
shapefiles schweiz kantone
shapefiles uk
shapefiles uk county

shapefiles us
shapefiles us census
shapefiles us census county
shapefiles us census blocks

shapefiles us census tiger // TIGER/Line is especially popular

It is best to choose a shapefile from official sources. If such a shapefile is not available, choose
one that is from a reputable source.

Find the appropriate shapefile and download it.

Standard-format shapefiles

The shapefile you just loaded is known as a standard-format shapefile. The word shapefile itself is
confusing because a shapefile is actually a collection of related files. For example, a shapefile could
be any of the following:

File Contents
name.shp shapes and locations of geographic units
name.dbf other attributes of the geographic units
name.* other information, not needed by Sp
name.zip compressed file containing all the files above

name.zip is often called a shapefile even though it is a zip file containing the shapefiles.

name.shp really is a shapefile—it contains the map of the geographic units, which could be
countries of the world, counties of the United States, etc.
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name.dbf contains data (called attributes) about the geographic units. The .dbf stands for database
file. It is a dataset containing variables and observations. Among the variables are usually variables
for the names and numeric identification codes of the geographic units. The file sometimes contains
other variables, such as temperature, rainfall, or unemployment. After translation to Sp format, you
can use the variables, ignore them, or drop them.

In addition to name.shp and name.dbf, there are other files. Stata ignores them, and you can
erase them if you wish. After translation, you can erase all the files that were in the original .zip
file.

Stata-format shapefiles

You will translate the standard-format shapefiles to Stata format. It is easy to do:

. unzipfile name.zip

. spshape2dta name

This will create two Stata-format datasets, name.dta and name shp.dta.

Corresponding
Stata-format file standard-format file
name.dta name.dbf
name shp.dta name.shp

name.dta contains

Variable name Contents

ID ID variable with values 1, 2, . . . , N
CX x coordinate of centroid of geographic unit
CY y coordinate of centroid of geographic unit

other variables attributes of the geographic units from name.dbf

Notes: 1. The dataset will have N observations, one for each geographic unit.
2. You will learn later that Sp data must be spset. spshape2dta handles that for you.

name.dta is spset.
3. Variable ID links observations in name.dta with the map stored in name shp.dta.
4. You may rename, modify, or drop any of the variables except ID, CX, and CY.
5. You merge your .dta files with name.dta to use them in Sp.

name shp.dta contains

Variable name Contents

ID ID variable with values 1, 2, . . . , N
other variables descriptions of the map

Notes: 1. This file has many more than N observations. Each observation describes a line segment that when
combined draws the map.

2. You do not use or modify this dataset. Sp uses the dataset behind the scenes.
3. name.dta and name shp.dta must be in the same directory.
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Creating Stata-format shapefiles

There are six steps to preparing shapefiles for use:

1. Find and download a standard-format shapefile.

2. Translate the shapefile to Stata format.

3. Look at the translated data.

4. Create a common ID variable for use with other data.

5. Optionally, tell Sp to use the common ID variable.

6. Set the units of the coordinates, if necessary.

These steps are not independent; that is, you cannot jump ahead to, say, step 4.

Below, we start at step 1, finding and downloading

tl_2016_us_county.zip

and finish with step 6, having created

tl_2016_us_county.dta
tl_2016_us_county_shp.dta

These are the same files we used in Overview.

We discuss each step below. Here is a preview of the code for the steps:

Step 1: Find and download a standard-format shapefile

. * do this on the web

Step 2: Translate the shapefile to Stata format

. copy ~/Downloads/tl_2016_us_county.zip .

. unzipfile tl_2016_us_county.zip

. spshape2dta tl_2016_us_county

Step 3: Look at the translated data

. use tl_2016_us_county, clear

. describe

. list in 1/5

Step 4: Create a common ID variable for use with other data

. generate long fips = real(STATEFP + COUNTYFP)

. bysort fips: assert _N==1

. assert fips != .

Step 5: Optionally, tell Sp to use the common ID variable

. spset fips, modify replace

Step 6: Set the units of the coordinates, if necessary

. spset, modify coordsys(latlong, miles)

. save, replace
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Step 1: Find and download a shapefile

Use your browser. We did, and we found and downloaded tl 2016 us county.zip as described
in Finding a shapefile for Texas counties in [SP] intro 7. Our browser stored the file in our Downloads
directory, which is ~/Downloads/ on our computer. ~ is Stata syntax for home directory.

Step 2: Translate the shapefile to Stata format

We entered Stata and changed to the directory containing the project datasets. We typed

. copy ~/Downloads/tl_2016_us_county.zip .

. unzipfile tl_2016_us_county.zip
inflating: tl_2016_us_county.cpg
inflating: tl_2016_us_county.dbf
inflating: tl_2016_us_county.prj
inflating: tl_2016_us_county.shp
inflating: tl_2016_us_county.shp.ea.iso.xml
inflating: tl_2016_us_county.shp.iso.xml
inflating: tl_2016_us_county.shp.xml
inflating: tl_2016_us_county.shx

successfully unzipped tl_2016_us_county.zip to current directory

. spshape2dta tl_2016_us_county
(importing .shp file)
(importing .dbf file)
(creating _ID spatial-unit id)
(creating _CX coordinate)
(creating _CY coordinate)

file tl_2016_us_county_shp.dta created
file tl_2016_us_county.dta created

spshape2dta translated the files to Stata format. It did not load them into memory. You will
never load the * shp.dta file, but Sp will use it behind the scenes. The file is linked to
tl 2016 us county.dta, which you will directly use. Keep them both in the same directory.

Step 3: Look at the translated data

Look at the data you have just created. The data are already spset, but we can type spset to
find out how:

. use tl_2016_us_county, clear

. spset
Sp dataset tl_2016_us_county.dta

data: cross sectional
spatial-unit id: _ID

coordinates: _CX, _CY (planar)
linked shapefile: tl_2016_us_county_shp.dta

Look at the variables, too:

. describe
(output omitted )

. list in 1/5
(output omitted )

You need to understand the data and its variables. Some of them you will not need. You may drop
them, but do not drop ID, CX, and CY. They were created by spshape2dta, and you will need
them later.
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In the unlikely event that you find all the variables you need for your intended analysis, you can
use tl 2016 us county.dta as your analysis dataset. You are ready to go, except you might need
to set the coordinate system. Skip to step 6, and stop after that.

Step 4: Create a common ID variable for use with other data

We continue with step 4 because we did not find the analysis variables we needed, nor did we
expect to find them. We have project cs.dta containing our analysis variables. The problem is
that we will need to merge project cs.dta with the Stata-format shapefiles, and to do that, they
will need to have an ID variable in common. project cs.dta has a variable named fips containing
standard county codes. We hope to find the same variable in tl 2016 us county.dta.

We looked but did not find the FIPS-code variable. We did discover the variable NAME contain-
ing county names. That variable could work for us. project cs.dta also has a variable named
countyname. If we rename NAME to countyname in tl 2016 us county.dta, we could merge
datasets.

However, we have had bad experiences merging on string variables. Names in the two datasets can
differ for trivial reasons, such as capitalization. Before we resigned ourselves to the string-variable
solution, we looked again. Numeric ID variables are better.

We discovered variables STATEFP and COUNTYFP. They were recorded as string variables, but
appeared to contain two- and three-digit numeric codes. We read about FIPS codes on the web and
learned there are two-digit state codes, three-digit county-within-state codes, and five-digit county
codes, which are nothing more than the two- and three-digit codes run together. If STATEFP is 01
and COUNTYFP is 001, then the five-digit code is 01001.

We create the new numeric variable fips containing the run-together code by typing

. generate long fips = real(STATEFP + COUNTYFP)

The variable we created did not have to be numeric, but fips is numeric in project cs.dta,
and numeric is better for reasons to be explained in step 5.

In any case, we were pleased when we listed the value of variable NAME for fips = 1001 and it
was Autauga.

We also verify that new variable fips really does uniquely identify the observations in
tl 2016 us county.dta by typing

. bysort fips: assert _N==1

. assert fips != .

Step 5: Optionally, tell Sp to use the common ID variable

This step is optional but worth doing if you found or created a numeric ID variable in the previous
step. Because we created fips in step 4, we will type
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. spset fips, modify replace
(_shp.dta file saved)
(data in memory saved)
Sp dataset tl_2016_us_county.dta

data: cross sectional
spatial-unit id: _ID (equal to fips)

coordinates: _CX, _CY (planar)
linked shapefile: tl_2016_us_county_shp.dta

The above resets ID. spset verifies that fips is numeric and would make an appropriate ID code.
If it does, spset copies fips to Sp’s ID variable, the variable that officially identifies the observations.
Sp then reindexes both tl 2016 us county.dta and tl 2016 us county shp.dta on the new
ID values.

You should do this step because, if ID is a common code, the spatial weighting matrices you
create will be sharable with other projects and researchers. The rows and columns of the matrices
will be identified by the common code rather than the arbitrary code ID previously contained.

Step 6: Set the units of the coordinates, if necessary

The coordinates recorded in shapefiles historically were required to be in planar units. These days,
shapefiles are just as likely to contain latitude and longitude. Usage is running ahead of file-format
standards, and so you must determine which coordinate system is being used.

When Sp converts a shapefile as we did in step 2, it assumes coordinates are in planar units. If
they are actually recorded in degrees latitude and longitude, you need to type

. spset, modify coordsys(latlong, miles)

or

. spset, modify coordsys(latlong, kilometers)

Whether you specify miles or kilometers is of little importance—that setting merely determines
the units in which Sp will report distances. It is important, however, that you specify the coordinate
system is latlong when it is latitude and longitude if distances are to be measured accurately.

The distributor of the shapefile may provide documentation that tells you whether the file uses
planar units or latitude and longitude. If you are unable to find this information, you can do some
detective work to figure it out.

Here is how to determine the units. Coordinates (centroids) are stored in variables CX and CY.
We listed some of them and discovered that Brazos County, Texas, is recorded as being at

CX = −96.302386 and CY = 30.6608

We looked on the web and found that College Station, a city in Brazos County, is located at latitude
30.601389 and longitude −96.314444. We checked two other cities and counties and found similar
agreement. (Note that latitude is stored in CY and longitude in CX. It will always be that way.)
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Thus, we type

. spset, modify coordsys(latlong, miles)
Sp dataset tl_2016_us_county.dta

data: cross sectional
spatial-unit id: _ID (equal to fips)

coordinates: _CY, _CX (latitude-and-longitude, miles)
linked shapefile: tl_2016_us_county_shp.dta

We are finished preparing our shapefile, so we save tl 2016 us county.dta.

. save, replace
file tl_2016_us_county.dta saved

Preparing your data

We now have

tl_2016_us_county.dta
tl_2016_us_county_shp.dta

These are the same datasets we used in Overview.

You should keep these two files around, just as they are. You can use them in the future whenever
you have a county dataset that you want to use with Sp.

Step 7a: Merge your cross-sectional data with the Stata-format shapefiles

We showed you how to do this in the Overview, but we will do it again now that we have
our Stata-format shapefiles so that you can see the output. To make the cross-sectional data in
project cs.dta work with Sp, type

. use project_cs, clear

. merge 1:1 fips using tl_2016_us_county

. keep if _merge==3

. drop _merge

. save, replace

The result is

. use project_cs, clear
(My cross-sectional data)

. merge 1:1 fips using tl_2016_us_county

Result # of obs.

not matched 91
from master 0 (_merge==1)
from using 91 (_merge==2)

matched 3,142 (_merge==3)

. keep if _merge==3
(91 observations deleted)

. drop _merge

. save, replace
file project_cs.dta saved
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Note that all observations from the master were matched. Had observations been dropped
from the master, we would have found out why project cs.dta contained counties not in
tl 2016 us county.dta.

We have not discussed the spset command, the other way to turn regular Stata datasets
into Sp datasets. We will discuss spset in [SP] intro 5 and [SP] intro 6. Merging regular data
(project cs.dta) with spset data (tl 2016 us county.dta, because it was created by sp-
shape2dta) produces an spset result. project cs.dta was not spset before the merge, but it is
now:

. spset
Sp dataset project_cs.dta

data: cross sectional
spatial-unit id: _ID (equal to fips)

coordinates: _CY, _CX (latitude-and-longitude, miles)
linked shapefile: tl_2016_us_county_shp.dta

Step 7b: Merge your panel data with the Stata-format shapefiles

Because project panel.dta is panel data, you still merge with tl 2016 us county.dta,
but you go about it a little differently. You type

. use project_panel, clear

. xtset fips time

. spbalance

. merge m:1 fips using tl_2016_us_county

. keep if _merge==3

. drop _merge

. save, replace

The result is

. use project_panel, clear
(My panel data)

. xtset fips time
panel variable: fips (strongly balanced)
time variable: time, 1 to 3

delta: 1 unit

. spbalance
(data strongly balanced)

. merge m:1 fips using tl_2016_us_county

Result # of obs.

not matched 91
from master 0 (_merge==1)
from using 91 (_merge==2)

matched 9,426 (_merge==3)

. keep if _merge==3
(91 observations deleted)

. drop _merge

. save, replace
file project_panel.dta saved
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project panel.dta is now spset:

. spset
Sp dataset project_panel.dta

data: panel
spatial-unit id: _ID (equal to fips)

time id: time (see xtset)
coordinates: _CY, _CX (latitude-and-longitude, miles)

linked shapefile: tl_2016_us_county_shp.dta

The data are still xtset, but Sp modified the setting. The data were set on fips and time. They
are now set on ID and time:

. xtset
panel variable: _ID (strongly balanced)
time variable: time, 1 to 3

delta: 1 unit

Sp changed the setting because spset and xtset must agree on the panel identifier.

Rules for working with Sp data, whether cross-sectional or panel

The data whether cross-sectional, as in project cs.dta, or panel, as in project panel.dta,
is now Sp. It is a Stata dataset with one special feature: its observations are linked to the Stata-
format shapefile tl 2016 us shp.dta. Because of the linkage, there are rules for using either
project cs.dta or project panel.dta.

Rule 1: Do not drop or modify variables ID, CX, or CY.
You may drop other variables in the file.

Rule 2:
Cross-sectional data:

Do not add new observations.
Panel data:

Do not add new observations with new values of ID.

The rule that handles both cross-sectional and panel data is that you may not add observations
that have no corresponding definition in tl 2016 us shp.dta.

For cross-sectional data, the rule reduces to “do not add new observations”.

For panel data, the rule said positively is that you can add new observations, but only for new
time periods within panels.

You may drop observations from cross-sectional data, and observations for entire panels from panel
data. Dropping is allowed because unnecessary definitions in tl 2016 us shp.dta are ignored.

Be careful when performing merges with other datasets. If you type

Cross-sectional data:
. merge 1:1 fips using anotherdataset
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Panel data:
. merge 1:1 fips time using anotherdataset

or

. merge m:1 fips using anotherdataset

you must then either

. keep if _merge==3

or

. keep if _merge==1

Rule 3: Do not erase, modify, or rename file tl 2016 us shp.dta.
Even if you rename project cs.dta or project panel.dta, do not rename
tl 2016 us shp.dta.

Rule 4: project cs.dta or project panel.dta and tl 2016 us shp.dta must be stored in the same
directory.

If you copy project cs.dta or project panel.dta to a different directory, copy
tl 2016 us shp.dta to the same directory.

That is the end of the prohibitions. The following rule need not be stated, because that which is
not prohibited is allowed, but it is reassuring:

Rule 5: You may save copies of project cs.dta or project panel.dta under new names.
New files will inherit the linkage to tl 2016 us shp.dta. For example, you could type

. copy project_cs.dta newname.dta

Afterward, if you wished, you could type

. erase project_cs.dta

Here is one way making copies can be useful:

. use project_cs

. keep if state=="Texas"

. save texas

Also see
[SP] intro 7 — Example from start to finish

[SP] spset — Declare data to be Sp spatial data

[SP] spshape2dta — Translate shapefile to Stata format
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Contents

intro 1 A brief introduction to SAR models
intro 2 The W matrix

intro 3 Preparing data for analysis
intro 4 Preparing data: Data with shapefiles
intro 5 Preparing data: Data containing locations (no shapefiles)
intro 6 Preparing data: Data without shapefiles or locations

intro 7 Example from start to finish
intro 8 The Sp estimation commands

Description

If you have data that already contain the coordinates of the geographical units, you can skip the
shapefiles discussed in [SP] intro 4. You are not required to skip them, however. Without shapefiles,
you cannot create contiguity weighting matrices (matrices in which spillovers occur only among
adjacent places), nor can you draw choropleth maps.

Remarks and examples
Remarks are presented under the following headings:

Preparation of cross-sectional data
Preparation of panel data
There are no rules as there are with shapefiles

Preparation of cross-sectional data

We will assume that you have file project cs2.dta, which is a cross-sectional dataset on U.S.
counties over time, variable fips containing the standard county codes, and variables locx and locy
identifying the location of each county.

To turn project cs2.dta into Sp data, do the following:

Step 0: Load the dataset

. use project_cs2, clear

Step 1: Verify that fips is an ID variable

. assert fips!=.

. bysort fips: assert _N==1

34
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Step 2: spset the data

. spset fips, coord(locx locy)

Step 3: Set the coordinate units, if necessary

. spset, coordsys(latlong, miles)

Step 4: Save the data

. save, replace

That is all there is to it.

In step 2, we specified option coord(locx locy). spset will create new variables ID, CX,
and CY. It will copy fips into ID, and locx and locy into CX and CY.

In step 3, we set the coordinate system to degrees latitude and longitude because that was necessary
in this case. We discussed in [SP] intro 4 how to determine the coordinate system.

In step 4, we saved project cs2.dta over itself. The new dataset differs from the old in that
it has three new variables and is spset. No changes or deletions were made to the data.

Preparation of panel data

This time, suppose project panel2.dta is a panel dataset on U.S. counties over time. Perhaps
it is already xtset on fips and time. The dataset also includes variables locx and locy identifying
the location of each county.

To turn project panel2.dta into Sp data, do the following:

Step 0: Load the dataset

. use project_panel2, clear

Step 1: Verify that fips and time jointly identify the observations

. assert fips!=.

. assert time!=.

. bysort fips time: assert _N==1

Step 1a: xtset the data and verify that locx and locy are constant within panel

. xtset, clear

. xtset fips time

. bysort fips (time): assert locx == locx[1]

. bysort fips (time): assert locy == locy[1]

Step 2: Balance and spset the data

. spbalance

. spset fips, coord(locx locy)

Step 3: Set the coordinate units, if necessary

. spset, coordsys(latlong) // optional

Step 4: Save the data

. save, replace or save newfilename, replace
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Concerning step 4, type save, replace only if step 2 did not involve dropping data.

In step 2, we spset the data, but not before verifying that they are strongly balanced. If the data
are not strongly balanced, spbalance will issue an error and suggest that you type

. spbalance, balance

If you type that, spbalance will balance the data.

Then we spset the data. This creates the new variables ID, CX, and CY. spset copies fips
into ID and copies locx and locy into CX and CY.

In step 3, we set coordinate units to degrees latitude and longitude. We discussed how to determine
coordinate units in [SP] intro 4.

There are no rules as there are with shapefiles

There are no special rules for working with the data created here as there were when working
with data and shapefiles. The rules in [SP] intro 4 arose because of the linkage between the data file
and its linked * shp.dta file.

Also see
[SP] spbalance — Make panel data strongly balanced

[SP] spset — Declare data to be Sp spatial data
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Contents

intro 1 A brief introduction to SAR models
intro 2 The W matrix

intro 3 Preparing data for analysis
intro 4 Preparing data: Data with shapefiles
intro 5 Preparing data: Data containing locations (no shapefiles)
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intro 7 Example from start to finish
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Description

This entry outlines the preparation of data without shapefiles or locations. Such data arise when
spillover effects are based not on physical proximity but on proximity in other metrics.

Remarks and examples
Remarks are presented under the following headings:

Nongeographic spatial data
Preparation of cross-sectional data
Preparation of panel data
There are no rules as there are with shapefiles

Nongeographic spatial data

Spatial analysis is about accounting for spillover effects. Consider an analysis of test scores of
students. There may be spillover effects among friends for no other reason than friends share similar
but relevant unmeasured characteristics. Or you might hypothesize more direct effects. Such data are
known as social network data.

Consider the dollar value of trade between countries. Effects may spillover from one country to
the next based on closeness measured by industry and the development level. Closeness might be
based on the dissimilarity of industry (providing a reason to trade) and similarity of development
level.

In these cases, the construction of the W spatial weighting matrices is often a substantive research
problem in and of itself. As a result, researchers share weighting matrices. If you are analyzing
such data, see [SP] spmatrix import. If you create such matrices, see [SP] spmatrix userdefined,
[SP] spmatrix fromdata, [SP] spmatrix spfrommata, and [SP] spmatrix export.

First, however, you must prepare the data for use by Sp.

37
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Preparation of cross-sectional data

We will assume that you have a dataset named project cs3.dta that contains observations on
nodes with variable node id containing the standard codes for them.

To turn project cs3.dta into Sp data, do the following:

Step 0: Load the data

. use project_cs3, clear

Step 1: Verify that node id is an ID variable

. assert node_id!=.

. bysort node_id: assert _N==1

Step 2: spset the data

. spset node_id

Step 3: Save the data

. save, replace

In step 2, when we spset the data, spset created the new variable ID containing a copy of
the values in node id. Variables CX and CY will not be created as they were in [SP] intro 4 and
[SP] intro 5, because these data do not contain location information.

In step 3, we save project cs3.dta over itself. The new dataset differs from the old in that it
has a new variable and it is spset. No changes or deletions were made to the data.

Preparation of panel data

We will now assume that you have project panel3.dta, which is a panel dataset based on
node id and time.

To turn project panel3.dta into Sp data, do the following:

Step 0: Load the dataset

. use project_panel3, clear

Step 1: Verify that node id and time are jointly an ID variable

. assert node_id!=.

. assert time!=.

. bysort node_id time: assert _N==1

Step 1a: xtset the data

. xtset, clear

. xtset node_id time

Step 2: Balance and spset the data

. spbalance

. spset node_id

Step 3: Save the data

. save, replace or save newfilename

Concerning step 3, type save, replace only if step 2 did not involve dropping data.
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There are no rules as there are with shapefiles

There are no special rules for working with the data created here as there were when working
with data and shapefiles. The rules in [SP] intro 4 arose because of the linkage between the data file
and its * shp.dta file.

Also see
[SP] spbalance — Make panel data strongly balanced

[SP] spset — Declare data to be Sp spatial data
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Contents

intro 1 A brief introduction to SAR models
intro 2 The W matrix

intro 3 Preparing data for analysis
intro 4 Preparing data: Data with shapefiles
intro 5 Preparing data: Data containing locations (no shapefiles)
intro 6 Preparing data: Data without shapefiles or locations

intro 7 Example from start to finish
intro 8 The Sp estimation commands

Description

This entry comprises an example from start to finish.

Remarks and examples
Remarks are presented under the following headings:

Research plan
Finding and preparing data

Finding a shapefile for Texas counties
Creating the Stata-format shapefile
Merging our data with the Stata-format shapefile

Analyzing texas ue.dta
Testing whether ordinary regression is adequate
spregress can reproduce regress results
Fitting models with a spatial lag of the dependent variable
Interpreting models with a spatial lag of the dependent variable
Fitting models with a spatial lag of independent variables
Interpreting models with a spatial lag of the independent variables
Fitting models with spatially autoregressive errors
Models can have all three kinds of spatial lag terms

Research plan

We are going to analyze unemployment in counties of Texas. We are going to use texas ue.dta.
The data contain unemployment rates and college graduation rates for Texas counties, but they do
not include the locations of the counties or a map. The data can be used to fit models with regress,
but they do not contain the information necessary to fit models with spregress that could account
for spillover effects.

40
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We will

1. Find and download a U.S. counties shapefile.

2. Translate the downloaded file to Stata format.

3. Merge the translated file with our existing data.

4. Analyze the merged data.

Please keep in mind that this is just an example in a computer software manual. We will model
the unemployment rate as a function of college graduation rate only, though we ought to include
other explanatory variables. We analyze data for Texas only, though we should use the entire United
States. We will draw conclusions that are unjustified, and we will not qualify them appropriately. We
will, however, show you how to use spregress and interpret its output.

Finding and preparing data

We first find and download an appropriate shapefile from the web. Then, we will prepare it as
described in [SP] intro 4.

Finding a shapefile for Texas counties

We looked for a county shapefile for Texas but could not find one. We did find shapefiles for the
entire United States, however. We used our browser to search for “shapefile U.S. counties census”
and found https://www.census.gov/geo/maps-data/data/tiger.html.

We clicked on TIGER/Line Shapefiles - New 2016 Shapefiles. That took us to a page with a list
of years. We selected “2016” and clicked on Download. We were given a choice between a web
interface and an FTP site, and we clicked on Web interface. We then had to select the year again.
We selected 2016 and Counties (and equivalent) and clicked on Submit. We were taken to a new
screen where we could finally click Download: All states in one national file.

File tl 2016 us county.zip was downloaded to the Downloads directory on our computer.

Creating the Stata-format shapefile

We found a standard-format shapefile, tl 2016 us county.zip. We now follow the instructions
in [SP] intro 4 to create a Stata-format shapefile. Here is the result:

. // ----------------------------------------------------------

. // [SP] intro 4, step 2: Translate the shapefile

.

. copy ~/Downloads/tl_2016_us_county.zip .

. unzipfile tl_2016_us_county.zip
inflating: tl_2016_us_county.cpg
inflating: tl_2016_us_county.dbf
inflating: tl_2016_us_county.prj
inflating: tl_2016_us_county.shp
inflating: tl_2016_us_county.shp.ea.iso.xml
inflating: tl_2016_us_county.shp.iso.xml
inflating: tl_2016_us_county.shp.xml
inflating: tl_2016_us_county.shx

successfully unzipped tl_2016_us_county.zip to current directory

https://www.census.gov/geo/maps-data/data/tiger.html
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. spshape2dta tl_2016_us_county
(importing .shp file)
(importing .dbf file)
(creating _ID spatial-unit id)
(creating _CX coordinate)
(creating _CY coordinate)

file tl_2016_us_county_shp.dta created
file tl_2016_us_county.dta created

.

. // ----------------------------------------------------------

. // [SP] intro 4, step 3: Look at the data

.

. use tl_2016_us_county, clear

. describe

Contains data from tl_2016_us_county.dta
obs: 3,233

vars: 20 14 Apr 2017 09:51
size: 491,416

storage display value
variable name type format label variable label

_ID int %12.0g
_CX double %10.0g x-coordinate of area centroid
_CY double %10.0g y-coordinate of area centroid
STATEFP str2 %9s STATEFP
COUNTYFP str3 %9s COUNTYFP
COUNTYNS str8 %9s COUNTYNS
GEOID str5 %9s GEOID
NAME str21 %21s NAME
NAMELSAD str33 %33s NAMELSAD
LSAD str2 %9s LSAD
CLASSFP str2 %9s CLASSFP
MTFCC str5 %9s MTFCC
CSAFP str3 %9s CSAFP
CBSAFP str5 %9s CBSAFP
METDIVFP str5 %9s METDIVFP
FUNCSTAT str1 %9s FUNCSTAT
ALAND double %14.0f ALAND
AWATER double %14.0f AWATER
INTPTLAT str11 %11s INTPTLAT
INTPTLON str12 %12s INTPTLON

Sorted by: _ID

. list in 1/2

1. _ID _CX _CY STATEFP COUNTYFP COUNTYNS GEOID
1 -96.7874 41.916403 31 039 00835841 31039

NAME NAMELSAD LSAD CLASSFP MTFCC CSAFP CBSAFP
Cuming Cuming County 06 H1 G4020

METDIVFP FUNCSTAT ALAND AWATER INTPTLAT
A 1477895811 10447360 +41.9158651

INTPTLON
-096.7885168
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2. _ID _CX _CY STATEFP COUNTYFP COUNTYNS GEOID
2 -123.43347 46.291134 53 069 01513275 53069

NAME NAMELSAD LSAD CLASSFP MTFCC CSAFP CBSAFP
Wahkiakum Wahkiakum County 06 H1 G4020

METDIVFP FUNCSTAT ALAND AWATER INTPTLAT
A 680956787 61588406 +46.2946377

INTPTLON
-123.4244583

.

. // ----------------------------------------------------------

. // [SP] intro 4, step 4: Create standard ID variable

.

. generate long fips = real(STATEFP + COUNTYFP)

. bysort fips: assert _N==1

. assert fips != .

.

. // ----------------------------------------------------------

. // [SP] intro 4, step 5: Tell Sp to use standard ID variable

.

. spset fips, modify replace
(_shp.dta file saved)
(data in memory saved)
Sp dataset tl_2016_us_county.dta

data: cross sectional
spatial-unit id: _ID (equal to fips)

coordinates: _CX, _CY (planar)
linked shapefile: tl_2016_us_county_shp.dta

.

. // ----------------------------------------------------------

. // [SP] intro 4, step 6: Set coordinate units

.

. spset, modify coordsys(latlong, miles)
Sp dataset tl_2016_us_county.dta

data: cross sectional
spatial-unit id: _ID (equal to fips)

coordinates: _CY, _CX (latitude-and-longitude, miles)
linked shapefile: tl_2016_us_county_shp.dta

. save, replace
file tl_2016_us_county.dta saved

. // ----------------------------------------------------------

Merging our data with the Stata-format shapefile

Recall that we are going to use texas ue.dta containing unemployment rates and college
graduation rates for Texas counties. We follow the instructions in [SP] intro 4, Step 7a to merge our
existing data with the Stata-format shapefile.
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. copy http://www.stata-press.com/data/r15/texas_ue.dta .

. use texas_ue, clear

. describe

Contains data from texas_ue.dta
obs: 254

vars: 4 10 Feb 2017 12:36
size: 4,064 (_dta has notes)

storage display value
variable name type format label variable label

fips float %9.0g FIPS
college float %9.0g * Percent college degree
income long %12.0g Median household income
unemployment float %9.0g Unemployment rate

* indicated variables have notes

Sorted by: fips

. merge 1:1 fips using tl_2016_us_county
(note: variable fips was float, now double to accommodate using data’s

values)

Result # of obs.

not matched 2,979
from master 0 (_merge==1)
from using 2,979 (_merge==2)

matched 254 (_merge==3)

. keep if _merge==3
(2,979 observations deleted)

. drop _merge

At this point, we type describe again and discover that texas ue.dta has lots of unnecessary,
leftover variables from tl 2016 us county.dta, so we drop them. There is another variable that
we rather like—the names of the counties—and we rename it.

. rename NAME countyname

. drop STATEFP COUNTYFP COUNTYNS GEOID

. drop NAMELSAD LSAD CLASSFP MTFCC CSAFP

. drop CBSAFP METDIVFP FUNCSTAT

. drop ALAND AWATER INTPTLAT INTPTLON

. save, replace
file texas_ue.dta saved
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Analyzing texas ue.dta

File texas ue.dta is our updated analysis dataset that can be used with Sp commands.

. describe

Contains data from texas_ue.dta
obs: 254

vars: 8 19 May 2017 12:12
size: 15,494 (_dta has notes)

storage display value
variable name type format label variable label

fips double %9.0g FIPS
college float %9.0g * Percent college degree
income long %12.0g Median household income
unemployment float %9.0g Unemployment rate
_ID long %12.0g Spatial-unit ID
_CX double %10.0g x-coordinate of area centroid
_CY double %10.0g y-coordinate of area centroid
countyname str21 %21s NAME

* indicated variables have notes

Sorted by:

Our example uses the unemployment rate. It varies between 1.5% and 12.4% across the counties
of Texas:

. summarize unemployment

Variable Obs Mean Std. Dev. Min Max

unemployment 254 4.731102 1.716514 1.5 12.4
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Because texas ue.dta has been spset and has a shapefile, we can draw choropleth maps, such
as this one of the unemployment rate:

. grmap unemployment

Unemployment appears to be clustered, which suggests that there are spillover effects between
counties.

Testing whether ordinary regression is adequate

These data are suitable for both spatial and nonspatial analysis. (Spatial data always are.) We will
fit a linear regression of the unemployment rate on the college graduation rate, mostly for illustrative
purposes. After fitting the linear regression, we will use an Sp command to determine whether the
residuals of the model are spatially correlated, and we find that they are.
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Here is the regression:

. regress unemployment college

Source SS df MS Number of obs = 254
F(1, 252) = 57.92

Model 139.314746 1 139.314746 Prob > F = 0.0000
Residual 606.129539 252 2.40527595 R-squared = 0.1869

Adj R-squared = 0.1837
Total 745.444285 253 2.9464201 Root MSE = 1.5509

unemployment Coef. Std. Err. t P>|t| [95% Conf. Interval]

college -.1008791 .0132552 -7.61 0.000 -.1269842 -.0747741
_cons 6.542796 .2571722 25.44 0.000 6.036316 7.049277

The results of this oversimplified model indicate that the college graduation rate reduces unem-
ployment markedly.

Are we done? If the residuals show no signs of being spatially clustered, then we are. We can
perform a statistical test.

Sp provides the Moran test for determining whether the residuals of a model fit by regress are
correlated with nearby residuals. To use it, we must define “nearby”. We do that by defining a spatial
weighting matrix, which is created by the spmatrix command. We will define a contiguity matrix.

. spmatrix create contiguity W

This contiguity matrix sets “nearby” to mean “shares a border”.

spmatrix can create other types of weighting matrices. It even allows you to create custom
matrices or to import matrices. See [SP] spmatrix.

We can now run the Moran test.

. estat moran, errorlag(W)

Moran test for spatial dependence
Ho: error is i.i.d.
Errorlags: W

chi2(1) = 94.06
Prob > chi2 = 0.0000

The test reports that we can reject that the residuals from the model above are independent and
identically distributed (i.i.d.). In particular, the test considered the alternative hypothesis that residuals
are correlated with nearby residuals as defined by W.

spregress can reproduce regress results

spregress is the spatial autoregression command. spregress fits models in which the observations
are not independent, as defined by the W weighting matrix.

Above, we fit a model under the assumption that the counties are independent. We used regress,
Stata’s ordinary linear regression command. We typed

. regress unemployment college
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We could have fit the same model and obtained the same results by using spregress. We would
have typed

. spregress unemployment college, gs2sls

or

. spregress unemployment college, ml

spregress is seldom used for fitting models without spatial lags or autocorrelated errors, but
when it is, it reports the same linear regression results that regress reports, although there are some
differences. Standard errors are slightly different, and spregress reports Z and χ2 statistics instead
of t and F statistics. spregress does not include the finite-sample adjustments that regress does
because it does not expect to be used in situations where those adjustments would be appropriate.

Fitting models with a spatial lag of the dependent variable

We will use spregress to fit the same model we fit using regress but with the addition of a
spatial lag of unemployment. The model we fit will be

yue = β0 + β1xcr + β2Wyue + ε

yue is the unemployment rate corresponding to variable unemployment in our data. xcr is the college
graduation rate corresponding to variable college.

The model we fit will include the term β2Wyue, meaning that we will assume the unemployment
rate spills over from nearby counties. There is a real logic to such a model. One would expect workers
in high unemployment counties to seek employment nearby.

spregress provides two ways of fitting models: generalized spatial two-stage least squares
(gs2sls) and maximum likelihood (ml). To fit the above model, we could type

. spregress unemployment college, gs2sls dvarlag(W)

or

. spregress unemployment college, ml dvarlag(W)

spregress, ml is statistically more efficient than gs2sls when the errors are normally distributed.
Efficiency is desirable, so we should use ml, right? That same property said differently is that gs2sls
is robust to violations of normality. Robustness is desirable, too. So now the choice between them
hinges on whether we believe the normality assumption. That said, ml will provide standard errors
that are also robust to violations of normality if we specify its vce(robust) option. Finally, ml takes
longer to run, and that computation time increases as the number of observations increases. We will
use gs2sls.
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. spregress unemployment college, gs2sls dvarlag(W)
(254 observations)
(254 observations (places) used)
(weighting matrix defines 254 places)

Spatial autoregressive model Number of obs = 254
GS2SLS estimates Wald chi2(2) = 67.66

Prob > chi2 = 0.0000
Pseudo R2 = 0.1453

unemployment Coef. Std. Err. z P>|z| [95% Conf. Interval]

unemployment
college -.0939834 .0131033 -7.17 0.000 -.1196653 -.0683015

_cons 5.607379 .5033813 11.14 0.000 4.620769 6.593988

W
unemployment .2007728 .0942205 2.13 0.033 .016104 .3854415

Wald test of spatial terms: chi2(1) = 4.54 Prob > chi2 = 0.0331

Results for β0 and β1 are similar to those reported by regress, but that is a fluke of this example.
Usually, when spillover effects are significant, other parameters change. Meanwhile, we find that β2
(which multiplies Wyue) is significant, but it is not sharply estimated. The 95% confidence interval
places β2 in the range [0.02, 0.39].

Interpreting models with a spatial lag of the dependent variable

You might be tempted to think of β1 as the direct effect of education and β2 as the spillover
effect, but they are not. They are ingredients into a recursive calculation of those effects. The model
we fit is

yue = β0 + β1xcr + β2Wyue + ε

If xcr increases, that reduces yue by β1, and that reduction in yue spills over to produce a further
reduction in yue of β2W, and that reduction spills over to produce yet another reduction in yue, and
so on.

estat impact reports the average effects from the recursive process.

. estat impact

progress :100%

Average impacts Number of obs = 254

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
college -.0945245 .0130576 -7.24 0.000 -.120117 -.0689321

indirect
college -.0195459 .010691 -1.83 0.068 -.0405 .0014081

total
college -.1140705 .0171995 -6.63 0.000 -.1477808 -.0803602

In these data, both the unemployment and the graduation rates are measured in percentage points.
A change of 1 is a change of 1 percentage point. The table above reports derivatives, but we can be
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forgiven for interpreting the results as if they were for a one-unit change. Everybody does it, and
sometimes it is even justifiable, for example, if the model is linear in the variables as this one is.
Even if the model were nonlinear, it would be a tolerable approximation to the truth as long as a
one-unit change were small.

The table reports average changes for a 1-percentage-point increase in the college graduation
rate. The direct effect is the effect of the change within the county, ignoring spillover effects. The
own-county direct effect is to reduce the unemployment rate by 0.09 percentage points.

The indirect effect is the spillover effect. A 1-percentage-point increase in the college graduation
rate reduces unemployment, and that reduction spills over to further reduce unemployment. The result
is a 0.02 reduction in unemployment.

The total effect is the sum of the direct and indirect effects, which is −0.09 +−0.02 = −0.11.

You must use estat impact to interpret effects. Do not try to judge them from the coefficients
that spregress reports because they can mislead you. For instance, if we multiplied variable
unemployment by 100, that would not substantively change anything about the model, yet the effect
on the coefficients that spregress estimates is surprising.

Summary of spregress results

Regression of unemployment and 100*unemployment
on college and W*unemployment

unemployment 100*unemployment

college −0.094 −9.4
W*unemployment 0.201 0.201
Notes: Column 1 from spregress output above.

Column 2 from:
generate ue100 = 100*unemployment
spregress unemployment college, gs2sls dvarlag(W)

The effect of the change in units is to multiply the coefficient on college (β1) by 100 just as you
would expect. Yet β2, the coefficient on Wyue, is unchanged! Comparing these two models, you
might mislead yourself into thinking that the ratio of the indirect-to-direct effects is smaller in the
second model, but it is not. estat impact continues to report the same results as it did previously,
multiplied by 100:

. estat impact

progress :100%

Average impacts Number of obs = 254

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
college -9.452455 1.30576 -7.24 0.000 -12.0117 -6.893213

indirect
college -1.954593 1.069105 -1.83 0.068 -4.05 .1408134

total
college -11.40705 1.719946 -6.63 0.000 -14.77808 -8.036016
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Fitting models with a spatial lag of independent variables

We fit a model above with a spatial lag of the dependent variable:

yue = β0 + β1xcr + β2Wyue + ε

We could instead fit a model with a spatial lag of the independent variable:

yue = β0 + β1xcr + β2Wxcr + ε

We do that by typing

. spregress unemployment college, gs2sls ivarlag(W:college)
(254 observations)
(254 observations (places) used)
(weighting matrix defines 254 places)

Spatial autoregressive model Number of obs = 254
GS2SLS estimates Wald chi2(2) = 81.13

Prob > chi2 = 0.0000
Pseudo R2 = 0.2421

unemployment Coef. Std. Err. z P>|z| [95% Conf. Interval]

unemployment
college -.077997 .0138127 -5.65 0.000 -.1050695 -.0509245

_cons 7.424453 .3212299 23.11 0.000 6.794854 8.054053

W
college -.0823959 .0191586 -4.30 0.000 -.1199461 -.0448458

Wald test of spatial terms: chi2(1) = 18.50 Prob > chi2 = 0.0000

Interpreting models with a spatial lag of the independent variables

Just as with lags of the dependent variable, the easy way to obtain the direct and indirect effects
of independent variables is to use estat impact.

. estat impact

progress :100%

Average impacts Number of obs = 254

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
college -.077997 .0138127 -5.65 0.000 -.1050695 -.0509245

indirect
college -.0715273 .0166314 -4.30 0.000 -.1041243 -.0389303

total
college -.1495243 .0170417 -8.77 0.000 -.1829255 -.1161231
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The table reports that the own-county direct effect of a 1-percentage-point increase in the college
graduation rate is to reduce unemployment by 0.078 percentage points.

The across-county spillover effect of a 1-percentage-point increase in the college graduation rate
is to reduce unemployment by 0.072 percentage points on average.

For those curious how the results were calculated, here are the details.

• The direct effect of college graduation rate is β1xcr.

• The indirect effect of college graduation rate is β2Wxcr.

• The direct effect of increasing xcr by 1 in all counties is

∆yue = β1(xcr + 1)− β1xcr = β11

where 1 is an N × 1 vector of 1s.

• The direct effect is that yue increases by β1 in each county.

• The indirect effect follows the same logic:

∆yue = β2W(xcr + 1)− β2Wxcr = β2W1

This result states that yue increases by (β2W1)i in county i. For different counties, there are
different effects because each county is affected by its own neighbors. The average effect across
counties is the average of β2W1.

Fitting models with spatially autoregressive errors

We have fit models with a spatial lag of the dependent variable and with a spatial lag of the
independent variable.

yue = β0 + β1xcr + β2Wyue + ε

yue = β0 + β1xcr + β2Wxcr + ε

We could instead fit a model with a spatial lag of the error:

yue = β0 + β1xcr + (I− ρW)−1ε
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We do that by typing

. spregress unemployment college, gs2sls errorlag(W)
(254 observations)
(254 observations (places) used)
(weighting matrix defines 254 places)

Estimating rho using 2SLS residuals:

initial: GMM criterion = .71251706
alternative: GMM criterion = .04381608
rescale: GMM criterion = .02453154
Iteration 0: GMM criterion = .02453154
Iteration 1: GMM criterion = .00420723
Iteration 2: GMM criterion = .0002217
Iteration 3: GMM criterion = .00021298
Iteration 4: GMM criterion = .00021298

Estimating rho using GS2SLS residuals:

Iteration 0: GMM criterion = .00566696
Iteration 1: GMM criterion = .00486118
Iteration 2: GMM criterion = .00486066
Iteration 3: GMM criterion = .00486066

Spatial autoregressive model Number of obs = 254
GS2SLS estimates Wald chi2(1) = 37.76

Prob > chi2 = 0.0000
Pseudo R2 = 0.1869

unemployment Coef. Std. Err. z P>|z| [95% Conf. Interval]

unemployment
college -.0759125 .0123532 -6.15 0.000 -.1001243 -.0517008

_cons 6.292997 .2968272 21.20 0.000 5.711227 6.874768

W
e.unemploy~t .7697395 .0690499 11.15 0.000 .6344043 .9050748

Wald test of spatial terms: chi2(1) = 124.27 Prob > chi2 = 0.0000

The estimated value of the spatial autocorrelation parameter ρ is presented on the line above the Wald
test: ρ̂ = 0.77. It is estimated to be large and significant.

ρ is called the autocorrelation parameter because it is not a correlation coefficient, although it does
share some characteristics with correlation coefficients. It is theoretically bounded by −1 and 1, and
ρ = 0 means that the autocorrelation is 0.
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estat impact does not report ρ:

. estat impact

progress :100%

Average impacts Number of obs = 254

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
college -.0759125 .0123532 -6.15 0.000 -.1001243 -.0517008

indirect
college 0 (omitted)

total
college -.0759125 .0123532 -6.15 0.000 -.1001243 -.0517008

The above output is an example of what estat impact produces when there are no lagged
dependent or independent variables. There are no spillover effects. Spatially correlated errors do not
induce spillover effects in the covariates.

Models can have all three kinds of spatial lag terms

We have shown models with each type of spatial lag term, but models can have more than one. Use
estat impact to estimate the effects of covariates when you have lagged variables, whether dependent,
independent, or both. If you include spatially correlated errors, check the size and significance of the
estimated ρ.

Also see
[SP] intro — Introduction to spatial data and SAR models

[SP] spset — Declare data to be Sp spatial data

[SP] spregress — Spatial autoregressive models

[SP] spregress postestimation — Postestimation tools for spregress
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Description

There are three Sp estimation commands for spatial data:

• spregress—linear regression for cross-sectional data

• spivregress—instrumental-variables linear regression for cross-sectional data

• spxtregress—fixed- and random-effects linear regression models for panel data

Remarks and examples
Remarks are presented under the following headings:

spregress, gs2sls
spregress, ml
spivregress
spxtregress
spxtregress, re
spxtregress, fe

spregress, gs2sls

spregress is the equivalent of regress for spatial data. You have two choices of estimator:
gs2sls or ml.

The gs2sls estimator is a generalized method-of-moments estimator. With gs2sls, you can fit
multiple spatial lags of the dependent variable (that is, multiple spatial weighting matrices), multiple
spatial autoregressive error terms, and multiple spatial lags of covariates. To fit a model, you issue a
command like

spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(M: x1 x2)

where W and M are weighting matrices. See [SP] spregress.

55
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To interpret your results after fitting the model, it is essential that you run estat impact.
estat impact works after all the Sp estimation commands. Explanations and examples are given
in [SP] intro 7, example 1 of [SP] spregress, [SP] spivregress postestimation, [SP] spregress
postestimation, and [SP] spxtregress postestimation.

The gs2sls estimator assumes that the errors are independent and identically distributed (i.i.d.)
but does not require normality. The i.i.d. requirement is relaxed when you use the heteroskedastic
option; only independence is required.

spregress y x1 x2, gs2sls heteroskedastic dvarlag(W) errorlag(W) ///
ivarlag(M: x1 x2)

The heteroskedastic option uses different formulas for the spatial autoregressive error corre-
lations and the standard errors. See Methods and formulas in [SP] spregress.

spregress, ml

The spregress, ml estimator is a maximum likelihood (ML) estimator. With ml, you can fit only
one spatial lag of the dependent variable and only one spatial autoregressive error term, but you can
fit multiple spatial lags of covariates. To fit a model, type

spregress y x1 x2, ml dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///
ivarlag(M: x1 x2)

The ml estimator assumes that the errors are normal and i.i.d. The command spregress, ml
is typically slower than spregress, gs2sls, but spregress, ml may be more efficient (smaller
standard errors) when errors are normal.

The requirement of normality is removed if you use the vce(robust) option, just as it is for
Stata’s other ML estimators that allow this option:

spregress y x1 x2, ml vce(robust) dvarlag(W) errorlag(W) ///
ivarlag(M: x1 x2)

See Methods and formulas in [SP] spregress.

spivregress

spivregress is the equivalent of ivregress for spatial data. spivregress uses the same
estimator as spregress, gs2sls, but it allows endogenous regressors. You can fit multiple spatial
lags of the dependent variable, multiple spatial autoregressive error terms, and multiple spatial lags
of included exogenous regressors. You cannot specify a spatial lag for the endogenous regressors or
for the excluded exogenous regressors. See Remarks and examples in [SP] spivregress.

To fit a model using spivregress, you would issue a command like

spivregress y x1 x2 (z = x3), dvarlag(W) errorlag(W) ivarlag(M: x1 x2)

spivregress also has a heteroskedastic option that provides the same properties it does when
used with spregress, gs2sls.
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spxtregress

spxtregress is the Sp estimation command for panel data. It fits fixed-effects (fe) and random-
effects (re) models. spxtregress, fe and re are the spatial data equivalent of xtreg, fe and
re. To use spxtregress, you must have strongly balanced data, and your data must be xtset. See
[SP] intro 3, [SP] intro 7, and [SP] spbalance.

With spxtregress, fe and re, you can fit only one spatial lag of the dependent variable and
only one spatial autoregressive error term. You can fit multiple spatial lags of covariates.

spxtregress, re

The random-effects model is fit using a maximum likelihood estimator. It assumes that the panel-
level effects are normal i.i.d. across the panels and that the errors are normal i.i.d. across panels and
time.

To fit this model, you issue a command like

spxtregress y x1 x2, re dvarlag(W) errorlag(W) ivarlag(M: x1 x2)

spxtregress, re has a sarpanel option that uses a different formulation of the random-effects
estimator due to Kapoor, Kelejian, and Prucha (2007). The panel-level effects are considered a
disturbance in the error equation, and the panel-level effects have the same autoregressive form as
the time-level errors. To fit such models, you issue a command like

spxtregress y x1 x2, re sarpanel dvarlag(W) errorlag(W) ///
ivarlag(M: x1 x2)

spxtregress, fe

The fixed-effects model also uses a maximum likelihood estimator. In this estimator, panel effects
and effects that are constant within time are conditioned out of the likelihood. No distributional
assumptions are made about the panel effects. Only covariates that vary across both panels and time
can be fit with this estimator.

To fit this model, you issue a command like

spxtregress y x1 x2, fe dvarlag(W) errorlag(W) ivarlag(M: x1 x2)

See Methods and formulas in [SP] spxtregress.

Reference
Kapoor, M., H. H. Kelejian, and I. R. Prucha. 2007. Panel data models with spatially correlated error components.

Journal of Econometrics 140: 97–130.

Also see
[SP] intro — Introduction to spatial data and SAR models

[SP] spivregress — Spatial autoregressive models with endogenous covariates

[SP] spregress — Spatial autoregressive models

[SP] spxtregress — Spatial autoregressive models for panel data



Title

estat moran — Moran test of residual correlation with nearby residuals

Description Quick start Menu for estat Syntax
Option Remarks and examples Stored results Methods and formulas
References Also see

Description

estat moran is a postestimation test that can be run after fitting a model using regress with
spatial data. It performs the Moran test for spatial correlation among the residuals.

Quick start
Linear regression of y on x1 and x2, then testing for spatial correlation among the residuals using

the spatial weighting matrix W

regress y x1 x2
estat moran, errorlag(W)

After the same regress command, add another spatial weighting matrix
estat moran, errorlag(W) errorlag(M)

After regress with no independent variables
regress y
estat moran, errorlag(W)

Menu for estat
Statistics > Postestimation

Syntax

estat moran, errorlag(spmatname)
[
errorlag(spmatname) . . .

]
Option

errorlag(spmatname) specifies a spatial weighting matrix that defines the error spatial lag that will
be tested. errorlag() is required. This option is repeatable to allow testing of higher-order error
lags.

Remarks and examples
If you have not read [SP] intro 1–[SP] intro 8, you should do so before using estat moran.

To use estat moran, your data must be cross-sectional Sp data. See [SP] intro 3 for instructions
on how to prepare your data.
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To specify the form of the spatial correlation to be tested, you will need to have one or more
spatial weighting matrices. See [SP] intro 2 and [SP] spmatrix for an explanation of the types of
weighting matrices and how to create them.

Before fitting a spatial autoregressive (SAR) model with spregress, you may want to fit the model
with regress and then run estat moran. If the Moran test is significant, you will likely want to
fit the model with spregress. If the test is not significant, you may question the need to fit a SAR
model.

regress can be used with a single variable before running estat moran. This is a test of the
spatial correlation of the variable.

Example 1: A test for spatial correlation

We have data on the homicide rate in counties in southern states of the U.S. homicide1990.dta
contains hrate, the county-level homicide rate per year per 100,000 persons; ln population, the
logarithm of the county population; ln pdensity, the logarithm of the population density; and gini,
the Gini coefficient for the county, a measure of income inequality where larger values represent
more inequality (Gini 1909). The data are an extract of the data originally used by Messner et al.
(2000); see Britt (1994) for a literature review of the topic. This dataset is also used for the examples
in [SP] spregress.

We used spshape2dta in the usual way to create the datasets homicide1990.dta and
homicide1990 shp.dta. The latter file contains the boundary coordinates for U.S. southern counties.
See [SP] intro 4, [SP] intro 7, [SP] spshape2dta, and [SP] spset.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory to
spset the data, we first save both homicide1990.dta and homicide1990 shp.dta to our working
directory by using the copy command. We then load the data and type spset to display the Sp
attributes of the data.

. copy http://www.stata-press.com/data/r15/homicide1990.dta .

. copy http://www.stata-press.com/data/r15/homicide1990_shp.dta .

. use homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)

. spset
Sp dataset homicide1990.dta

data: cross sectional
spatial-unit id: _ID

coordinates: _CX, _CY (planar)
linked shapefile: homicide1990_shp.dta
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We plot the homicide rate on a map of the counties by using the grmap command; see [SP] grmap.
Figure 1 is the result.

. grmap hrate

(1.30399e+01,6.42610e+01]
(8.2212200165,1.30399e+01]
(4.8036060333,8.2212200165]
[0.0000000000,4.8036060333]

Figure 1: Homicide rate in 1990 for southern U.S. counties

The homicide rate appears to be spatially dependent because the high homicide-rate counties appear
to be clustered together.

To conduct the Moran test, we need a spatial weighting matrix. We will create a contiguity matrix
and use the default spectral normalization for this matrix. See [SP] intro 2 and [SP] spmatrix create
for details. We type

. spmatrix create contiguity W

Now, we run regress and then estat moran:

. regress hrate

Source SS df MS Number of obs = 1,412
F(0, 1411) = 0.00

Model 0 0 . Prob > F = .
Residual 69908.59 1,411 49.5454217 R-squared = 0.0000

Adj R-squared = 0.0000
Total 69908.59 1,411 49.5454217 Root MSE = 7.0389

hrate Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 9.549293 .1873201 50.98 0.000 9.181837 9.916749

. estat moran, errorlag(W)

Moran test for spatial dependence
Ho: error is i.i.d.
Errorlags: W

chi2(1) = 265.84
Prob > chi2 = 0.0000

The test reports that we can reject that the errors are i.i.d. This is not surprising based on our visual
appraisal of the data.

estat moran can be used with more than one weighting matrix. In this case, it produces a joint
test of whether any of the weighting matrices specify a spatial dependence.
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. spmatrix create idistance M

. estat moran, errorlag(W) errorlag(M)

Moran test for spatial dependence
Ho: error is i.i.d.
Errorlags: W M

chi2(2) = 898.62
Prob > chi2 = 0.0000

We can also use estat moran after a linear regression with independent variables:

. regress hrate ln_population ln_pdensity gini

Source SS df MS Number of obs = 1,412
F(3, 1408) = 96.78

Model 11950.8309 3 3983.61032 Prob > F = 0.0000
Residual 57957.7591 1,408 41.1631812 R-squared = 0.1709

Adj R-squared = 0.1692
Total 69908.59 1,411 49.5454217 Root MSE = 6.4159

hrate Coef. Std. Err. t P>|t| [95% Conf. Interval]

ln_populat~n .5559273 .2574637 2.16 0.031 .0508736 1.060981
ln_pdensity .8231517 .2304413 3.57 0.000 .3711065 1.275197

gini 84.33136 5.169489 16.31 0.000 74.19063 94.47209
_cons -32.46353 2.891056 -11.23 0.000 -38.13477 -26.79229

. estat moran, errorlag(W)

Moran test for spatial dependence
Ho: error is i.i.d.
Errorlags: W

chi2(1) = 186.72
Prob > chi2 = 0.0000
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The Moran test is significant. We fit a SAR model using spregress, gs2sls:
. spregress hrate ln_population ln_pdensity gini, gs2sls errorlag(W)

(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

(output omitted )
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(3) = 243.84

Prob > chi2 = 0.0000
Pseudo R2 = 0.1686

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n .3184462 .2664379 1.20 0.232 -.2037625 .8406549
ln_pdensity .8156068 .2469074 3.30 0.001 .3316771 1.299537

gini 88.44808 5.925536 14.93 0.000 76.83425 100.0619
_cons -31.81189 3.115188 -10.21 0.000 -37.91755 -25.70624

W
e.hrate .5250879 .0326974 16.06 0.000 .4610021 .5891736

Wald test of spatial terms: chi2(1) = 257.89 Prob > chi2 = 0.0000

See [SP] spregress.

Stored results
estat moran stores the following in r():
Scalars

r(chi2) χ2

r(df) degrees of freedom of χ2

r(p) p-value for model test
Macros

r(elmat) weighting matrices used to specify error lag

Methods and formulas
Consider the model

y = Xβ + u

where y is the n× 1 dependent-variable vector, X is the n×K matrix of covariates, β is the K × 1
vector of regression parameters, and u is the n × 1 vector of disturbances. We assume that ui are
identically distributed with E(ui) = 0 and E(u2i ) = σ2. We want to test the hypothesis that ui are
uncorrelated; that is, we want to test

H0 : E(uu′) = σ2I

Consider the case where the researcher believes that the spatial weighting matrix W1 gives a
proper representation of spatial links for the disturbances u. In this case, the researcher could test
H0 using the standard Moran I test statistic (Moran 1950),

I =
û′W1û

σ̂2 [tr {(W′
1 + W1)W1}]1/2
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where û = y −Xβ̂ are the estimated residuals and σ̂2 = û′û/n is the corresponding estimator for
σ2. Under appropriate assumptions, it follows from Kelejian and Prucha (2001) that I ∼ N(0, 1)
and I2 ∼ χ2(1).

Next, consider the case where the researcher is not sure whether any of the weighting matrices
W1,W2, . . . ,Wq properly model the spatial interdependence between ui. In this case, the researcher
can test H0 using the I(q)2 test statistic:

I(q)2 =

 û′W1û/σ̂
2

...
û′Wqû/σ̂

2


′

Φ−1

 û′W1û/σ̂
2

...
û′Wqû/σ̂

2


where Φ = (φrs) and r, s = 1, . . . , q :

φrs =
1

2
tr {(Wr + W′

r)(Ws + W′
s)}

It follows from Kelejian and Prucha (2001) and Drukker and Prucha (2013) that I(q)2 ∼ χ2(q) under
H0.

References
Britt, C. L. 1994. Crime and unemployment among youths in the United States, 1958–1990: A time series analysis.

American Journal of Economics and Sociology 53: 99–109.

Drukker, D. M., and I. R. Prucha. 2013. On the I2(q) test statistic for spatial dependence: Finite sample standardization
and properties. Spatial Economic Analysis 8: 271–292.

Gini, C. 1909. Concentration and dependency ratios (in Italian). English translation in Rivista di Politica Economica
1997 87: 769–789.

Kelejian, H. H., and I. R. Prucha. 2001. On the asymptotic distribution of the Moran I test statistic with applications.
Journal of Econometrics 104: 219–257.

Messner, S. F., L. Anselin, D. F. Hawkins, G. Deane, S. E. Tolnay, and R. D. Baller. 2000. An Atlas of the Spatial
Patterning of County-Level Homicide, 1960–1990. Pittsburgh: National Consortium on Violence Research.

Moran, P. A. P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17–23.

Also see
[SP] intro — Introduction to spatial data and SAR models

[SP] spmatrix create — Create standard weighting matrices

[SP] spregress — Spatial autoregressive models

[R] regress — Linear regression



Title

grmap — Graph choropleth maps

Description Quick start Menu
Remarks and examples References Also see

Description
grmap draws choropleth maps. Choropleth maps are maps in which shading or coloring is used

to indicate values of variables within areas.

Type help grmap for syntax.

Quick start
A choropleth map of x using spset data

grmap x

Menu
Statistics > Spatial autoregressive models

Remarks and examples
grmap is lightly adapted from spmap, which was written by Maurizio Pisati (2007) of the Università

degli Studi di Milano-Bicocca and which was preceded by his tmap command (2004). grmap differs
from spmap in that it works with spset data. StataCorp expresses its gratitude to Maurizio for
allowing us to use it.

References
Pisati, M. 2004. Simple thematic mapping. Stata Journal 4: 361–378.

. 2007. spmap: Stata module to visualize spatial data. Statistical Software Components S456812, Department of
Economics, Boston College. https://ideas.repec.org/c/boc/bocode/s456812.html.

Also see
[SP] spcompress — Compress Stata-format shapefile
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Title

spbalance — Make panel data strongly balanced

Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description
spbalance reports whether panel data are strongly balanced and, optionally, makes them balanced

if they are not.

The data are required to be xtset.

Quick start
Determine whether data are strongly balanced

spbalance

Make data strongly balanced
spbalance, balance

Menu
Statistics > Spatial autoregressive models

Syntax
Query whether data are strongly balanced

spbalance

Make data strongly balanced if they are not

spbalance, balance

Remarks and examples
Sp works with panel data but requires that they be strongly balanced. Panels are strongly balanced

when each has the same number of observations and defines the same set of times. You can use
spbalance before data are spset or after. Setting the data after is important because Sp data that
were balanced can become unbalanced after merging additional data.
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The data must be xtset before you can use spbalance:

. use http://www.stata-press.com/data/r15/counties

. spbalance
data not xtset

r(459);

. xtset fips time
panel variable: fips (unbalanced)
time variable: time, 1 to 5, but with a gap

delta: 1 unit

. spbalance
(data not strongly balanced)

Type spbalance, balance to make the data strongly balanced by dropping
observations.

Type spbalance, balance to make the data strongly balanced by dropping observations.

. spbalance, balance
balancing data ...

2,999 observations dropped. Dropped was time == 3. Data are now
strongly balanced.

The dataset we started with contained data on five time periods for more than 3,000 U.S. counties.
Evidently, some of the panels did not have an observation for time 3. Now, none of the panels have
data on time 3. If some panels had no observations on time 4, then all observations for time 4 would
have been dropped too.

Balancing by dropping spatial units

spbalance balances data by dropping observations for time periods that do not appear in all
panels. spbalance does not consider the alternative of balancing by dropping spatial units, but you
may want to. Here’s an example.

We downloaded shapefiles for all U.S. counties in 2010. We use spshape2dta to create Stata Sp
datasets:

. spshape2dta County_2010Census_DP1
(importing .shp file)
(importing .dbf file)
(creating _ID spatial-unit id)
(creating _CX coordinate)
(creating _CY coordinate)

file County_2010Census_DP1_shp.dta created
file County_2010Census_DP1.dta created

Our analysis dataset is cbp05 14co.dta consisting of U.S. Census County Business Pat-
terns data for the years 2005–2014. We load this dataset and merge into it the Sp dataset
County 2010Census DP1.dta created by spshape2dta.

. copy http://www.stata-press.com/data/r15/cbp05_14co.dta .

. use cbp05_14co, clear
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. merge m:1 GEOID10 using County_2010Census_DP1

Result # of obs.

not matched 444
from master 327 (_merge==1)
from using 117 (_merge==2)

matched 31,035 (_merge==3)

. keep if _merge == 3
(444 observations deleted)

. drop _merge

. save cbp05_14co_census
file cbp05_14co_census.dta saved

We xtset the data and check to see if it is balanced.
. xtset _ID year

panel variable: _ID (unbalanced)
time variable: year, 2005 to 2014

delta: 1 unit

. spbalance
(data not strongly balanced)

Type spbalance, balance to make the data strongly balanced by dropping
observations.

Both xtset and spbalance tell us the same thing: the data are unbalanced. We use spbalance,
balance to balance it.

. spbalance, balance
balancing data ...

15,515 observations dropped. Dropped were year == 2005, 2006, 2007,
2008, 2009. Data are now strongly balanced.

What? It dropped all the years 2005–2009.

Let’s go back and see what was causing the data to be unbalanced.
. use cbp05_14co_census, clear

. bysort _ID: gen npanel = _N

. tabulate npanel

npanel Freq. Percent Cum.

5 5 0.02 0.02
10 31,030 99.98 100.00

Total 31,035 100.00

Every value of ID has data for 10 years except one. The one exception has data for only 5 years.
We list it.

. list _ID state countyname year npanel if npanel != 10, noobs

_ID state countyname year npanel

400 ND Slope County 2010 5
400 ND Slope County 2011 5
400 ND Slope County 2012 5
400 ND Slope County 2013 5
400 ND Slope County 2014 5

Evidently, in the 2010 Census, North Dakota got a new county named Slope County. If we drop it,
our data will be balanced.
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. drop if _ID == 400
(5 observations deleted)

. xtset _ID year
panel variable: _ID (strongly balanced)
time variable: year, 2005 to 2014

delta: 1 unit

. spbalance
(data strongly balanced)

There are consequences to this. We dropped a county in the years 2010–2014, and now there is a
“hole” in the spatial map for 2010–2014. The county we dropped was part of a larger county before
2010. The spatial maps for this part of North Dakota do not match pre- and post-2010. We might
not care about it and just go ahead with our analysis. Or, we might do more work to match up the
spatial maps.

This is why spbalance always drops times. When it does that, the spatial maps are always the
same for the remaining times.

Stored results
spbalance without the balance option stores the following in r():

Scalars
r(balanced) 1 if strongly balanced, 0 otherwise

spbalance, balance stores the following in r():

Scalars
r(balanced) 1
r(Ndropped) number of observations dropped

Matrices
r(T) 1× r(Ndropped) vector of the times dropped if r(Ndropped)> 0

Also see
[SP] intro — Introduction to spatial data and SAR models

[SP] spset — Declare data to be Sp spatial data

[SP] spregress — Spatial autoregressive models

[SP] spxtregress — Spatial autoregressive models for panel data

[XT] xtset — Declare data to be panel data



Title

spcompress — Compress Stata-format shapefile

Description Quick start Menu Syntax
Option Remarks and examples Stored results Also see

Description
spcompress creates a new Stata-format shapefile omitting places (geographical units) that do not

appear in the Sp data in memory. The new shapefile will be named after the data in memory.

Quick start
Create new file new shp.dta containing only cases identified by mysample from old shp.dta

use old
keep if mysample
save new
spcompress

Menu
Statistics > Spatial autoregressive models

Syntax
spcompress

[
, force

]
Option

force allows replacing an existing shapefile. force is the option name StataCorp uses when you
should think twice before specifying it. In most cases, you want to create a new shapefile.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using the force option
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Introduction

In [SP] intro 4 and [SP] intro 7, we discussed how to find and prepare the analysis dataset,
tl 2016 us county.dta, and the shapefile dataset, tl 2016 us county shp.dta. We again
use those datasets here.

You sometimes want to analyze a subset of the data. In those cases, you might type

. use tl_2016_us_county // use all the data

. keep if STATEFP == "48" // keep the subset of interest

. save texas // save under a different name

All will work fine. File texas.dta is linked to tl 2016 us county shp.dta, which contains
a lot of unnecessary information, but that will cause Sp no difficulty.

Next, you can type

. spcompress

Now, files tl 2016 us county.dta and tl 2016 us county shp.dta remain unchanged,
and file texas shp.dta was created. texas.dta was resaved so that the copy on disk would reflect
that it is now linked to texas shp.dta instead of tl 2016 us county shp.dta.

Sp will run a little faster if we compress the shapefile. We say a little because only grmap will
run faster.

Using the force option

Above, we showed an example. Here is what would have happened had we omitted the line save
texas:

. use tl_2016_us_county

. keep if STATEFP == "48"
(2,979 observations deleted)

. * save texas // save texas intentionally commented out

. spcompress
file tl_2016_us_county_shp.dta already exists
r(602);

Whether you type save texas makes all the difference. Do you really want to replace
tl 2016 us county shp.dta? If so, specify force.

The option is called force because Stata wonders whether you really meant to type

. use tl_2016_us_county, clear

. keep if STATEFP == "48"
(2,979 observations deleted)

. save texas
file texas.dta saved

. spcompress
(texas_shp.dta created with 254 spatial units, 2,979 fewer than previously)
(texas_shp.dta saved)
(texas.dta saved)
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Even if you intended to discard all but Texas from tl 2016 us county.dta and
tl 2016 us county shp.dta, we would recommend that you type

. use tl_2016_us_county

. keep if STATEFP == "48"

. save texas

. spcompress

. erase tl_2016_us_county.dta

. erase tl_2016_us_county_shp.dta

Stored results
spcompress stores the following in r():

Scalars
r(num drop ids) # of spatial units dropped
r(num ids) # of spatial units remaining

Also see
[SP] intro — Introduction to spatial data and SAR models

[D] compress — Compress data in memory



Title

spdistance — Calculator for distance between places

Description Quick start Menu
Syntax Remarks and examples Stored results
Methods and formulas Reference Also see

Description

spdistance #1 #2 reports the distance between the areas ID = #1 and ID = #2.

Quick start
Obtain distance between ID = 48201 and ID = 48041

spdistance 48201 48041

Menu
Statistics > Spatial autoregressive models

Syntax

spdistance #1 #2

#1 and #2 are two ID values.

Remarks and examples

Remarks are presented under the following headings:

Are coordinates really planar and not latitude and longitude?
Reverse engineering planar distances
More than you want to know about coordinates

Planar coordinates
Latitude and longitude coordinates

Are coordinates really planar and not latitude and longitude?

The purpose of spdistance is to help in understanding the units in which distances are measured
when coordinates are recorded in planar units. Before turning to that issue, however, let us ask another
question: Are the coordinates recorded in your data really planar? Sp assumes that they are. It is
your responsibility to change a setting if they are in fact degrees latitude and longitude. You change
the setting by typing

. spset, modify coordsys(latlong, kilometers)
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or

. spset, modify coordsys(latlong, miles)

If coordinates are latitude and longitude, type one of those commands and then distances will be
reported in kilometers or miles and you can dispense with spdistance for determining units.

Why does Sp assume that coordinates are planar when they might be latitude and longitude? How
can you tell whether your data contain latitudes and longitudes?

Sp assumes that coordinates are planar because coordinates obtained from shapefiles are supposed
to be planar. Usage is running ahead of standards, however, and these days many shapefile providers
are providing latitude and longitude.

Before answering the second question, let us answer a third question you may be asking yourself:
“Do I care? How bad would it be to treat degrees as if they were planar?” If all the locations in your
data are near the equator, there is no reason you should care. But this is not likely to be the case,
and because degrees longitude are not a fixed distance, your calculations will be incorrect if you treat
degrees as if they were planar. See Latitude and longitude coordinates below for more details.

So how do you tell the units of measure? The documentation for your shapefile may tell you.
If not, you can inspect the data. Sp datasets record the coordinates in variables CX and CY. You
look at those variables and compare them with latitudes and longitudes for the same places or nearby
places, which you can easily find on the web. If coordinates are latitude and longitude, then

• CX will be the longitude value

• CY will be the latitude value

Reverse engineering planar distances

Planar coordinates have no predetermined scale. Two places might be 5 apart. How far is that?
One way to find out is to reverse engineer the scale. Take two places that you know the distance
between, use spdistance to obtain the planar distance, and divide.

For instance, we have a city dataset in which Los Angeles and New York have ID values 1 and
79. Using spdistance, we obtain the distance between them.

. spdistance 1 79
(data currently use planar coordinates)

_ID (x, y) (planar)

1 (0, 0)
79 (4.97, 1)

distance 5.0696053 planar units

The distance between the cities is roughly 2,400 miles, so we know that one planar unit equals
2400/5.07 ≈ 473 miles.
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More than you want to know about coordinates

Planar coordinates

Planar coordinates, also known as rectangular coordinates, are coordinates on a plane. The formula
for the distance between two places (x1, y1) and (x2, y2) is given by the Euclidean distance formula:

distance =
√

(x2 − x1)2 + (y2 − y1)2

Distance will be measured in miles if x and y are measured in miles.

Latitude and longitude coordinates

Latitude and longitude are measured in degrees on a globe. The common illustration looks like
this:

The vertical lines passing through the poles are lines of equal longitude. Longitude indicates which
vertical line you are on. the vertical lines. It measures which vertical line you are on. Longitude is
an east–west measure. Examples of longitude include 150◦ east and 96◦ west, with east and west
referring to east and west of Greenwich, UK.

The horizontal rings are lines of equal latitude. Different horizontal lines are different latitudes.
Latitude is a north–south measure. Examples of latitude include 30◦ north and 33◦ south, with north
and south referring to north and south of the equator.

College Station, USA, and Sydney, Australia, are located at

City Latitude Longitude

College Station 30◦36′05′′ N 96◦18′52′′ W
Sydney, Australia 33◦51′54′′ S 151◦12′34′′ E
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Computers use signed values to indicate direction and fractions of degrees instead of minutes and
seconds. The above table can equivalently be written as

City Latitude Longitude

College Station 30.601 −96.314
Sydney, Australia −33.865 151.209

If 1◦ equaled a fixed distance, we could use the Euclidean formula for calculating the distance
between College Station and Sydney.

One degree of latitude does equal a fixed distance, namely, 69 miles, if the Earth were a sphere.

One degree of longitude, however, measures a distance that varies from 69 miles at the equator
to 0 miles at the North and South Poles:

At latitude 1◦ longitude equals

±0 69 miles (equator)
±10 68
±20 65
±30 60
±40 53
±50 44
±60 35
±70 24
±80 12
±89 1
±90 0 (N or S pole)

There are formulas for calculating distances from latitude and longitude, and Sp will use them if
you tell it that the coordinates are degrees latitude and longitude. If you do not, Sp makes calculations
using the Euclidean formula, and that will result in incorrect distances except at the equator. At the
equator, 1◦ longitude equals 1◦ latitude equals 69 miles. The farther north or south you make the
calculation, the more will be the error. East–west distances will be exaggerated relative to north–south
distances, resulting in places being calculated as being farther apart than they really are.

The 48 contiguous states of the United States lies between 25◦ and 50◦ latitude, a region in which
1◦ longitude varies between 66 and 44 miles.

Europe lies between 35◦ and 70◦ latitude, a region in which 1◦ longitude varies between 56 and
24 miles.

Stored results
spdistance stores the following in r():

Scalars
r(dist) distance between

Macros
r(coordsys) planar or latlong
r(dunits) miles or kilometers if r(coordsys)= latlong
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Methods and formulas
If coordinates are planar, the distance between (x1, y1) and (x2, y2) is

d =
√

(x2 − x1)2 + (y1 − y1)2

If coordinates are latitude and longitude, let (t1, n1) and (t2, n2) be the two coordinate pairs,
where t represents latitude and n represents longitude converted from degrees to radians.

Let ∆t = (t2 − t1) and ∆n = (n2 − n1). Then the distance between the two points is

d = r invhav{r hav(∆t) + cos t1 cos t2 hav(∆n)}

where r is the radius of the Earth measured in the desired units (miles or kilometers) and

hav(θ) =
1− cos θ

2

invhav(h) = 2 asin(
√
h)

Reference
Weber, S., and M. Péclat. 2017. A simple command to calculate travel distance and travel time. Stata Journal 17:

962–971.

Also see
[SP] intro — Introduction to spatial data and SAR models

[SP] spset — Declare data to be Sp spatial data

http://www.stata-journal.com/article.html?article=dm0092
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spgenerate — Generate new variables containing spatial lags

Description Quick start Menu Syntax
Remarks and examples Also see

Description

spgenerate creates new variables containing Wx. These are the same spatial lag variables that
you include in models that you fit with the Sp estimation commands.

Quick start
Create variable x nearby equal to Wc*x, the spatial lag of x using spatial weighting matrix Wc

spgenerate x_nearby = Wc*x

Menu
Statistics > Spatial autoregressive models

Syntax

spgenerate
[

type
]

newvar = spmatname*varname
[

if
] [

in
]

Remarks and examples
Remarks are presented under the following headings:

Use with Sp data
Use with other datasets

Use with Sp data

The Wx variables that spgenerate creates are literally the variables that the Sp estimation
commands include in the models when x is not the dependent variable. Nonetheless, do not type

. spmatrix create contiguity W

. spgenerate Wcollege = W*college

. spregress unemployment college Wcollege, gs2sls

Instead, type

. spmatrix create contiguity W

. spregress unemployment college, gs2sls ivarlag(W:college)

77
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spregress will report the same result either way because college is an exogenous variable.
But some postestimation commands will produce incorrect results because they will not know that
Wcollege is W*college.

You can use Wcollege after fitting models, however, to better understand results.

In an example in Fitting models with a spatial lag of independent variables of [SP] intro 7, we fit
the model

. use texas_ue

. spmatrix create contiguity W

. spregress unemployment college, gs2sls ivarlag(W:college)
(254 observations)
(254 observations (places) used)
(weighting matrix defines 254 places)

Spatial autoregressive model Number of obs = 254
GS2SLS estimates Wald chi2(2) = 81.13

Prob > chi2 = 0.0000
Pseudo R2 = 0.2421

unemployment Coef. Std. Err. z P>|z| [95% Conf. Interval]

unemployment
college -.077997 .0138127 -5.65 0.000 -.1050695 -.0509245

_cons 7.424453 .3212299 23.11 0.000 6.794854 8.054053

W
college -.0823959 .0191586 -4.30 0.000 -.1199461 -.0448458

Wald test of spatial terms: chi2(1) = 18.50 Prob > chi2 = 0.0000

Matrix W is the contiguity matrix for first-order neighbors.

If W*college is something of a mystery to you, you can use spgenerate to create the variable
and explore it. Type

. spgenerate Wcollege = W*college

In this example, variables college and Wcollege have similar summary statistics. They usually
do.

. summarize unemployment college Wcollege

Variable Obs Mean Std. Dev. Min Max

unemployment 254 4.731102 1.716514 1.5 12.4
college 254 17.95906 7.355919 2.6 49.4

Wcollege 254 15.68765 5.303385 1.279117 36.43961

It turns out that variables college and Wcollege have a surprisingly low correlation, which is
not typical:

. correlate unemployment college Wcollege
(obs=254)

unempl~t college Wcollege

unemployment 1.0000
college -0.4323 1.0000

Wcollege -0.3833 0.3852 1.0000
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You can use Wcollege to assess practical significance. We know from the regression output that the
coefficient on W*college is −0.0824 and statistically significant. Is −0.0824 practically significant?
From the summarize output, we know that the mean of Wcollege is 15.69. Thus at its average,
W*college is contributing −0.0824× 15.69 = −1.29 to unemployment, which itself has mean 4.73.

Use with other datasets
Consider another analysis that has nothing to do with the spatial analyses discussed in this manual.

You are fitting a logistic regression model using outcome.dta. The dataset contains observations on
thousands of people whom you call subjects. It has lots of variables, too, among which is fips, the
county code in which each subject resides. You want to include the county unemployment rate as an
exogenous variable in your model, but outcome.dta does not have that variable.

Obtaining unemployment would be easy enough if you had another dataset containing it, and you
do. You have ue texas.dta, the Sp dataset you used to fit the spatial model above. It is irrelevant
that the dataset is spatial; you just want to borrow its county unemployment variable. You could type

. use texas_ue, clear

. keep fips unemployment

. save unemploymentvar

. use outcome, clear

. sort fips

. merge m:1 fips using unemploymentvar, keep(master)

. erase unemploymentvar.dta

. logistic outcome ... unemployment ...

You had to perform an m:1 merge because outcome.dta might contain multiple subjects living
in the same county. You had to keep(master) because there might be some counties in which no
one in the data lived. None of that bothers you—you just want the unemployment for the county in
which each subject resides, and now you have it, and you fit your model.

What you may not know is that you can include spatial lags of unemployment as an exogenous
variable in your logistic model and be on firm statistical ground. A spatial lag is W*unemployment,
and W is fixed and unemployment is exogenous in your logistic model. To do that, you would type

. use texas_ue, clear

. spmatrix create contiguity W

. spgenerate Wunemployment = W*unemployment

. keep fips unemployment Wunemployment

. save unemploymentvar

. use outcome, clear

. sort fips

. merge m:1 fips using unemploymentvar, keep(master)

. erase unemploymentvar.dta

. logistic outcome ... unemployment Wunemployment ...

Also see
[SP] intro — Introduction to spatial data and SAR models

[SP] spmatrix create — Create standard weighting matrices

[SP] spregress — Spatial autoregressive models
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spivregress — Spatial autoregressive models with endogenous covariates

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

spivregress is the equivalent of ivregress for spatial data. spivregress fits spatial autore-
gressive (SAR) models, also known as simultaneous autoregressive models, where the models may
contain additional endogenous variables as well as exogenous variables. These models can be used
to account for possible dependence between the outcome variable and the unobserved errors.

For models without endogenous regressors, see [SP] spregress.

If you have not read [SP] intro 1–[SP] intro 8, you should do so before using spivregress. Your
data must be Sp data to use spivregress. See [SP] intro 3 for instructions on how to prepare your
data.

To specify spatial lags, you will need to have one or more spatial weighting matrices. See [SP] intro 2
and [SP] spmatrix for an explanation of the types of weighting matrices and how to create them.

Quick start
Spatial autoregressive model of y1 regressed on x1, x2, endogenous regressor y2, which uses z1 as

an instrument, and a spatial lag for y1 specified by the weighting matrix W

spivregress y1 x1 x2 (y2 = z1), dvarlag(W)

Add an autoregressive error term with the lag given by M

spivregress y1 x1 x2 (y2 = z1), dvarlag(W) errorlag(M)

Add a spatial lag for the exogenous variable x1 based on W

spivregress y1 x1 x2 (y2 = z1), dvarlag(W) errorlag(M) ivarlag(W: x1)

Add a second spatial lag for the outcome variable based on the weighting matrix M

spivregress y1 x1 x2 (y2 = z1), dvarlag(W) errorlag(M) ///
dvarlag(M) ivarlag(W: x1)

Add interaction between x1 and x2 and add categorical instrument z2 using factor variable notation
spivregress y1 x1 x2 c.x1#c.x2 (y2 = z1 i.z2), dvarlag(W) ///

errorlag(M) dvarlag(M) ivarlag(W: x1 x2 c.x1#c.x2)

Menu
Statistics > Spatial autoregressive models

80
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Syntax

spivregress depvar
[

varlist1
]
(varlist2 = varlistiv)

[
if
] [

in
] [

, options
]

varlist1 is the list of included exogenous regressors.

varlist2 is the list of endogenous regressors.

varlistiv is the list of excluded exogenous regressors used with varlist1 as instruments for varlist2.

options Description

Model

dvarlag(spmatname) spatially lagged dependent variable; repeatable
errorlag(spmatname) spatially lagged errors; repeatable
ivarlag(spmatname : varlist) spatially lagged exogenous variables from varlist1; repeatable
noconstant suppress constant term
heteroskedastic treat errors as heteroskedastic
force allow estimation when estimation sample is a subset of the

sample used to create the spatial weighting matrix
impower(#) order of instrumental-variable approximation

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics

varlist1, varlist2, varlistiv , and varlist specified in ivarlag() may contain factor variables; see [U] 11.4.3 Factor
variables.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

dvarlag(spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent
variable. This option is repeatable to allow higher-order models. By default, no spatial lags of the
dependent variable are included.

errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error.
This option is repeatable to allow higher-order models. By default, no spatially lagged errors are
included.

ivarlag(spmatname : varlist) specifies a spatial weighting matrix and a list of exogenous variables
that define spatial lags of the variables. The variables in varlist must be a subset of the exogenous
variables in varlist1. This option is repeatable to allow spatial lags created from different matrices.
By default, no spatial lags of the exogenous variables are included.
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noconstant; see [R] estimation options.

heteroskedastic specifies that the estimator treat the errors as heteroskedastic instead of ho-
moskedastic, which is the default; see Methods and formulas in [SP] spregress.

force requests that estimation be done when the estimation sample is a proper subset of the sample
used to create the spatial weighting matrices. The default is to refuse to fit the model. Weighting
matrices potentially connect all the spatial units. When the estimation sample is a subset of
this space, the spatial connections differ and spillover effects can be altered. In addition, the
normalization of the weighting matrix differs from what it would have been had the matrix been
normalized over the estimation sample. The better alternative to force is first to understand the
spatial space of the estimation sample and, if it is sensible, then create new weighting matrices for
it. See [SP] spmatrix and Missing values, dropped observations, and the W matrix in [SP] intro 2.

impower(#) specifies the order of an instrumental-variable approximation used in fitting the model.
The derivation of the estimator involves a product of # matrices. Increasing # may improve the
precision of the estimation and will not cause harm, but will require more computer time. The
default is impower(2). See Methods and formulas for additional details on impower(#).

� � �
Reporting �

level(#); see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimization options: iterate(#),
[
no
]
log, trace, gradient, showstep, hessian,

showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), and nonrtolerance;
see [M-5] optimize( ).

The following option is available with spivregress but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
See [SP] intro for an overview of SAR models.

spivregress fits spatial autoregressive models that include endogenous regressors. The
spivregress command is for use with cross-sectional data. It requires each observation to represent
one unique spatial unit. See [SP] intro 3 and the introductory sections that follow for instructions
with examples on how to prepare your data for analysis with spivregress.

spivregress fits models like the following:

spivregress y1 x1 x2 (y2 y3 = z1 z2 z3), dvarlag(W) errorlag(M) ///
ivarlag(W: x1)

dvarlag(W) specifies a spatial lag of the dependent variable y1, with the formulation of the lag
given by the spatial weighting matrix W. You can include multiple dvarlag() options, each with
different weighting matrices, to model higher-order spatial lags of the dependent variable.

errorlag(M) specifies an autoregressive error term based on the weighting matrix M. You can
include multiple errorlag() options.
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ivarlag(W: x1) specifies a spatial lag of the exogenous variable x1. You cannot include in the
model spatial lags of the endogenous regressors y2 and y3 or spatial lags of the excluded exogenous
regressors z1, z2, and z3.

spivregress uses a generalized method of moments estimator known as generalized spatial
two-stage least squares (GS2SLS), the same estimator used by spregress, gs2sls. See Methods
and formulas . Also see Choosing weighting matrices and their normalization in [SP] spregress for
details about the GS2SLS estimator.

Example 1: SAR models with endogenous regressors

Suppose we want to know whether prohibiting alcohol sales in a county decreases the rate of arrests
for driving under the influence (DUI). We use the artificial dataset dui southern.dta, containing
DUI rates in counties in southern states of the United States.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory
to spset the data, we first save both dui southern.dta and dui southern shp.dta to our
working directory by using the copy command. We then load the data and type spset to see the Sp
settings.

. copy http://www.stata-press.com/data/r15/dui_southern.dta .

. copy http://www.stata-press.com/data/r15/dui_southern_shp.dta .

. use dui_southern

. spset
Sp dataset dui_southern.dta

data: cross sectional
spatial-unit id: _ID

coordinates: _CX, _CY (planar)
linked shapefile: dui_southern_shp.dta

The outcome of interest is dui, which is the alcohol-related arrest rate per 100,000 daily vehicle
miles traveled (DVMT). Explanatory variables include police, the number of sworn officers per
100,000 DVMT; nondui, the nonalcohol-related arrest rate per 100,000 DVMT; vehicles, the number
of registered vehicles per 1,000 residents; and dry, a variable that indicates whether a county prohibits
the sale of alcohol within its borders.

Because the size of the police force may be a function of dui and nondui arrest rates, we treat
police as endogenous. We assume the variable election is a valid instrument, where election
is 1 if the county government faces an election and is 0 otherwise.

We believe the DUI arrest rate to be spatially correlated, with the rate in a county affecting the
rates in neighboring counties. Formally, the model we want to fit is

dui = β0 + β1× nondui + β2× dry + β3× vehicles + π1× police + λW× dui + u

u = ρWu + ε

The term W× dui defines a spatial lag of dui. See [SP] intro 2 for an explanation of how spatial
lags are defined by weighting matrices, and see Choosing weighting matrices and their normalization
in [SP] spregress. The equation for u gives the error an autoregressive form also specified by the
weighting matrix W. The variable police is endogenous and may be correlated with the error u.
We instrument it with the variable election. See Methods and formulas for how the endogeneity
of police is handled by the estimator.

Before we can fit the model, we must create the weighting matrix W. We will create one that
puts the same positive weight on contiguous counties and a 0 weight on all other counties—a matrix
known as a contiguity matrix. We will use the default spectral normalization for the matrix. See
[SP] intro 2 and [SP] spmatrix create for details. We type
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. spmatrix create contiguity W

We fit the model by typing

. spivregress dui nondui vehicles i.dry (police = elect), dvarlag(W) errorlag(W)
(1422 observations)
(1422 observations (places) used)
(weighting matrix defines 1422 places)

Estimating rho using 2SLS residuals:

initial: GMM criterion = .00254902
alternative: GMM criterion = .00377532
rescale: GMM criterion = .00009468
Iteration 0: GMM criterion = .00009468
Iteration 1: GMM criterion = .00001513
Iteration 2: GMM criterion = .00001512

Estimating rho using GS2SLS residuals:

Iteration 0: GMM criterion = .00086665
Iteration 1: GMM criterion = .00085487
Iteration 2: GMM criterion = .00085486

Spatial autoregressive model Number of obs = 1,422
GS2SLS estimates Wald chi2(5) = 4393.21

Prob > chi2 = 0.0000
Pseudo R2 = 0.7378

dui Coef. Std. Err. z P>|z| [95% Conf. Interval]

dui
police -1.283189 .1138994 -11.27 0.000 -1.506428 -1.059951
nondui -.001833 .0025467 -0.72 0.472 -.0068245 .0031585

vehicles .0906069 .0045059 20.11 0.000 .0817755 .0994384

dry
Yes .4631025 .076754 6.03 0.000 .3126674 .6135377

_cons 8.714745 1.060428 8.22 0.000 6.636345 10.79315

W
dui .3859225 .0194397 19.85 0.000 .3478214 .4240235

e.dui .2169234 .0496595 4.37 0.000 .1195926 .3142541

Wald test of spatial terms: chi2(2) = 408.78 Prob > chi2 = 0.0000
Instrumented: police (W*dui)
Raw instruments: nondui vehicles 1.dry election dui:_cons
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When a spatial lag of the dependent variable is included in the model, covariates have both direct
and indirect effects. See example 1 of [SP] spregress for a discussion. To obtain the direct, indirect,
and total effects of the covariates, we must use estat impact:

. estat impact

progress : 20% 40% 60% 80% 100%

Average impacts Number of obs = 1,422

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
police -1.313426 .1198948 -10.95 0.000 -1.548416 -1.078437
nondui -.0018762 .0026073 -0.72 0.472 -.0069864 .003234

vehicles .092742 .0048427 19.15 0.000 .0832504 .1022336

dry
Yes .4740151 .0788695 6.01 0.000 .3194336 .6285966

indirect
police -.6465736 .1063216 -6.08 0.000 -.8549601 -.4381871
nondui -.0009236 .0012928 -0.71 0.475 -.0034576 .0016103

vehicles .045655 .0057216 7.98 0.000 .0344409 .0568692

dry
Yes .2333482 .0464145 5.03 0.000 .1423774 .3243189

total
police -1.96 .2258604 -8.68 0.000 -2.402678 -1.517322
nondui -.0027998 .0038989 -0.72 0.473 -.0104416 .0048419

vehicles .138397 .0105248 13.15 0.000 .1177688 .1590253

dry
Yes .7073633 .123289 5.74 0.000 .4657213 .9490052

While it is running, estat impact prints percentages at the top of the output to indicate progress.
Calculation of the standard errors of the effects can be intensive and take time, so it reports its
progress as it does the computations.

The average direct, or own-county, effect of going from a wet county to a dry county on alcohol-
related arrest rates is positive. The average indirect, or spillover, effect of going from a wet county
to a dry county on alcohol-related arrest rates is also positive. The total effects are the sum of the
direct and indirect effects, so these are also positive.
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Example 2: SAR models with endogenous regressors and covariate lags

Continuing with example 1, we found that dry, we now add a spatial lag of the covariate dry.

. spivregress dui nondui vehicles i.dry (police = elect), dvarlag(W)
> errorlag(W) ivarlag(W: i.dry)

(1422 observations)
(1422 observations (places) used)
(weighting matrix defines 1422 places)

note: exog*W:0b.dry omitted because of collinearity

(output omitted )
Spatial autoregressive model Number of obs = 1,422
GS2SLS estimates Wald chi2(6) = 4300.29

Prob > chi2 = 0.0000
Pseudo R2 = 0.7337

dui Coef. Std. Err. z P>|z| [95% Conf. Interval]

dui
police -1.301634 .1155866 -11.26 0.000 -1.52818 -1.075089
nondui -.0018725 .0025746 -0.73 0.467 -.0069187 .0031737

vehicles .091364 .0045754 19.97 0.000 .0823965 .1003316

dry
Yes .4754855 .078153 6.08 0.000 .3223085 .6286626

_cons 8.853401 1.07409 8.24 0.000 6.748223 10.95858

W
dry

Yes .2868458 .2209814 1.30 0.194 -.1462697 .7199613
dui .38758 .0196366 19.74 0.000 .349093 .4260669

e.dui .2196418 .0497708 4.41 0.000 .1220929 .3171908

Wald test of spatial terms: chi2(3) = 405.90 Prob > chi2 = 0.0000
Instrumented: police (W*dui)
Raw instruments: nondui vehicles 1.dry election (W*0b.dry) (W*1.dry)

dui:_cons
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We use estat impact to see the effects:

. estat impact

progress : 20% 40% 60% 80% 100%

Average impacts Number of obs = 1,422

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
police -1.332603 .1217453 -10.95 0.000 -1.571219 -1.093986
nondui -.001917 .0026364 -0.73 0.467 -.0070844 .0032503

vehicles .0935378 .0049201 19.01 0.000 .0838945 .1031811

dry
Yes .5044067 .0833742 6.05 0.000 .3409963 .667817

indirect
police -.6601862 .1089584 -6.06 0.000 -.8737408 -.4466316
nondui -.0009497 .0013158 -0.72 0.470 -.0035287 .0016293

vehicles .0463396 .0058501 7.92 0.000 .0348737 .0578055

dry
Yes .6165397 .3004056 2.05 0.040 .0277555 1.205324

total
police -1.992789 .2303197 -8.65 0.000 -2.444207 -1.541371
nondui -.0028668 .003951 -0.73 0.468 -.0106106 .0048771

vehicles .1398774 .0107284 13.04 0.000 .1188501 .1609047

dry
Yes 1.120946 .3442805 3.26 0.001 .446169 1.795724

The direct effect of dry is little changed when we added a lag of dry, going from 0.47 to 0.50. But
the indirect effects of dry go from 0.23 to 0.62. In these fictional data, the indirect effects of dry
become larger than the direct effects when there is a lag of dry in the model.

Note that spivregress does not allow the fitting of spatial lags for police, our endogenous
regressor, nor for election, its instrument.

Example 3: SAR models with endogenous regressors and higher-order lags

In the previous models, we specified all the spatial lags with a single weighting matrix W, a
contiguity weighting matrix with the default spectral normalization. Many researchers use a spatial
weighting matrix whose (i, j)th element is the inverse of the distance between units i and j. With
the GS2SLS estimator used by spivregress, we can include spatial lags using two spatial weighting
matrices. This can be done to model a “higher-order” approximation to the true spatial process. We
will now add lags specified by an inverse-distance matrix, using again a spectral normalization of the
matrix.
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We create the inverse-distance matrix M and use spmatrix dir to list our Sp matrices.

. spmatrix create idistance M

. spmatrix dir

Weighting matrix name N x N Type Normalization

M 1422 x 1422 idistance spectral
W 1422 x 1422 contiguity spectral

We fit the model including both weighting matrices for all the lags:

. spivregress dui nondui vehicles i.dry (police = elect), dvarlag(W)
> errorlag(W) ivarlag(W: i.dry) dvarlag(M) errorlag(M) ivarlag(M: i.dry)

(1422 observations)
(1422 observations (places) used)
(weighting matrices define 1422 places)

note: exog*W:0b.dry omitted because of collinearity
note: exog*M:0b.dry omitted because of collinearity

(output omitted )
Spatial autoregressive model Number of obs = 1,422
GS2SLS estimates Wald chi2(8) = 6447.62

Prob > chi2 = 0.0000
Pseudo R2 = 0.8058

dui Coef. Std. Err. z P>|z| [95% Conf. Interval]

dui
police -.9762244 .0782512 -12.48 0.000 -1.129594 -.8228549
nondui -.0010538 .002093 -0.50 0.615 -.005156 .0030483

vehicles .0786503 .0031164 25.24 0.000 .0725423 .0847582

dry
Yes .4207535 .0631503 6.66 0.000 .2969811 .5445258

_cons 6.067724 .7490414 8.10 0.000 4.59963 7.535818

W
dry

Yes .2353895 .2272276 1.04 0.300 -.2099684 .6807474
dui .3335312 .0134259 24.84 0.000 .3072169 .3598455

e.dui .2206942 .0630468 3.50 0.000 .0971248 .3442636

M
dry

Yes -.0923513 2.70903 -0.03 0.973 -5.401952 5.217249
dui .0005204 .0112677 0.05 0.963 -.0215639 .0226046

e.dui -.1069363 .5910148 -0.18 0.856 -1.265304 1.051431

Wald test of spatial terms: chi2(6) = 649.11 Prob > chi2 = 0.0000
Instrumented: police (W*dui) (M*dui)
Raw instruments: nondui vehicles 1.dry election (W*0b.dry) (W*1.dry)

(M*0b.dry) (M*1.dry) dui:_cons

All the spatial lags specified by the inverse-distance matrix M are nonsignificant. We conclude that
there are no inverse-distance-type effects after we account for contiguity-type effects.
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Stored results
spivregress stores the following in e():
Scalars

e(N) number of observations
e(k) number of parameters
e(df m) model degrees of freedom
e(df c) degrees of freedom for comparison test
e(iterations) number of generalized method of moments iterations
e(iterations 2sls) number of two-stage least-squares iterations
e(rank) rank of e(V)
e(r2 p) pseudo-R2

e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(p) p-value for model test
e(p c) p-value for test of spatial terms
e(converged) 1 if generalized method of moments converged, 0 otherwise
e(converged 2sls) 1 if two-stage least-squares converged, 0 otherwise

Macros
e(cmd) spivregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indeps) names of independent variables
e(idvar) name of ID variable
e(estimator) gs2sls
e(title) title in estimation output
e(constant) hasconstant or noconstant
e(exogr) exogenous regressors
e(dlmat) names of spatial weighting matrices applied to depvar
e(elmat) names of spatial weighting matrices applied to errors
e(het) heteroskedastic or homoskedastic
e(chi2type) Wald; type of model χ2 test
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(delta 2sls) two-stage least-squares estimates of coefficients in spatial lag equation
e(rho 2sls) generalized method of moments estimates of coefficients in spatial error equation
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
We consider a cross-sectional spatial autoregressive model with possible endogenous covariates

and spatial autoregressive disturbances (SARAR), allowing for higher-order spatial dependence in the
dependent variable, the exogenous variables, and the spatial errors. The model is

y =

J∑
j=1

πjỹj +

K∑
k=1

βkxk +

P∑
p=1

γpWp xp +

R∑
r=1

λrWr y + u

u =

S∑
s=1

ρsMsu + ε

(1)
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where

y is an n× 1 vector of observations on the dependent variable;

ỹj is an n × 1 vector of observations on the jth endogenous variable; πj is the corresponding
scalar parameter;

xk is an n × 1 vector of observations on the kth exogenous variable; βk is the corresponding
scalar parameter;

Wp, Wr, and Ms are n× n spatial weighting matrices;

Wp xp, Wr y, and Msu are n× 1 spatial lags for the exogenous variable, dependent variable,
and error terms; γp, λr, and ρs are scalar parameters; and

ε is an n× 1 vector of innovations.

The J endogenous variables ỹj are correlated with the errors u. To estimate the model parameters,
we need Q instrumental variables xe1,x

e
2, . . . ,x

e
Q with Q ≥ J that are correlated with the endogenous

variables in ỹj and uncorrelated with the errors u.

The model in (1) is frequently referred to as a higher-order spatial autoregressive model with
spatial autoregressive disturbances, or namely, a SARAR(R,S) model.

The innovations ε are assumed to be independent and identically distributed or independent but
heteroskedastically distributed, where the heteroskedasticity is of unknown form. The generalized
spatial two-stage least-squares (GS2SLS) estimator implemented in spivregress produces consistent
estimates in both cases when the heteroskedastic option is specified.

For the first-order SARAR model, spivregress implements the GS2SLS estimator discussed in
Arraiz et al. (2010) and Drukker, Egger, and Prucha (2013). This estimation strategy builds on Kelejian
and Prucha (1998, 1999, 2010) and references cited therein. For higher-order SARAR(R,S) models,
spivregress implements an extension of GS2SLS in Badinger and Egger (2011) to allow endogenous
covariates.

Let’s first rewrite (1) in a compact form.

y = Zδ + u

u = Uρ+ ε
(2)

where

Z is the matrix of observations on all the variables in the equation for y; Z contains the endogenous
covariates ỹ1, . . . , ỹJ , the exogenous covariates x1, . . . ,xK , the spatially lagged exogenous
covariates Wx1, . . . ,WxP , and the spatially lagged dependent variables Wy1, . . . ,WyR;

U contains all the spatial lags of the errors u that appear in (1); U contains M1u, . . . ,MSu;

δ = (π1, . . . πJ , β1, . . . , βK , γ1, . . . , γP , λ1, . . . , λR)′ is a vector of all the coefficients on the
variables in the equation for y; and

ρ = (ρ1, . . . , ρS) is the vector of coefficients on the spatially lagged errors.

Given these definitions, the estimator implemented in spivregress is a simple extension to the
GS2SLS estimator documented in the Methods and formulas of spregress.

Specifically, after adding the instrumental variables xe1,x
e
2, . . . ,x

e
Q to the list of exogenous variables

Xf used to create the matrix of instruments H1 in spregress, the other formulas in spregress
specify how the estimator implemented in spivregress works. See Methods and formulas in
[SP] spregress for further details.
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spivregress postestimation — Postestimation tools for spivregress

Postestimation commands predict margins estat impact
Methods and formulas References Also see

Postestimation commands
The following postestimation command is of special interest after spivregress:

Command Description

estat impact direct, indirect, and total impacts

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses
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predict

Description for predict

predict creates a new variable containing predictions such as the reduced-form mean, the direct
mean, the indirect mean, the limited-information mean, the full-information mean, the naı̈ve-form
prediction, the linear prediction, the residuals, or the uncorrelated residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

statistic Description

Main

rform reduced-form mean; the default
direct direct mean
indirect indirect mean
limited limited-information mean
full full-information mean
naive naı̈ve-form prediction
xb linear prediction
residuals residuals
ucresiduals uncorrelated residuals

These statistics are only available in a subset of the estimation sample.

Options for predict

� � �
Main �

rform, the default, calculates the reduced-form mean. It is the predicted mean of the dependent
variable conditional on the independent variables and any spatial lags of the independent variables.
See Methods and formulas .

direct calculates the direct mean. It is a unit’s predicted contribution to its own reduced-form mean.
The direct and indirect means sum to the reduced-form mean.

indirect calculates the indirect mean. It is the predicted sum of the other units’ contributions to a
unit’s reduced-form mean.

limited calculates the limited-information mean. It is the predicted mean of the dependent variable
conditional on the independent variables, any spatial lags of the independent variables, and any
spatial lags of the dependent variable. limited is not available when the heteroskedastic
option is used with spivregress.
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full calculates the full-information mean. It is the predicted mean of the dependent variable conditional
on the independent variables, any spatial lags of the independent variables, and the other units’
values of the dependent variable. full is not available when the heteroskedastic option is
used with spivregress.

naive calculates the naı̈ve-form prediction. It is the predicted linear combination of the independent
variables, any spatial lags of the independent variables, and any spatial lags of the dependent
variable. It is not a consistent estimator of an expectation. See Methods and formulas .

xb calculates the predicted linear combination of the independent variables.

residuals calculates the residuals, including any autoregressive error term.

ucresiduals calculates the uncorrelated residuals, which are estimates of the uncorrelated error
term.

margins

Description for margins

margins estimates margins of response for reduced-form mean, direct mean, indirect mean, and
linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

rform reduced-form mean; the default
direct direct mean
indirect indirect mean
xb linear prediction
limited not allowed with margins

full not allowed with margins

naive not allowed with margins

residuals not allowed with margins

ucresiduals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks for margins

The computations that margins must do to calculate standard errors can sometimes be time
consuming. Time will depend on the complexity of the spatial model and the number of spatial
units in the data. You may want to fit your model with a subsample of your data, run margins,
and extrapolate to estimate the time required to run margins on the full sample. See [P] timer and
[P] rmsg.

estat impact

Description for estat impact

estat impact estimates the mean of the direct, indirect, and total impacts of independent variables
on the reduced-form mean of the dependent variable.

Syntax for estat impact

estat impact
[

varlist
] [

if
] [

in
] [

, nolog vce(vcetype)
]

varlist is a list of independent variables, including factor variables, taken from the fitted model. By
default, all independent variables from the fitted model are used.

Options for estat impact

� � �
Main �

nolog suppresses the calculation progress log that shows the percentage completed. By default, the
log is displayed.

� � �
VCE �

vce(vcetype) specifies how the standard errors of the impacts are calculated.

vce(delta), the default, is the delta method and treats the independent variables as fixed.

vce(unconditional) specifies that standard errors account for sampling variance in the in-
dependent variables. This option is not available when if or in is specified with estat
impact.
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Remarks for estat impact

estat impact is essential for interpreting the output of spivregress. See [SP] intro 7 and
example 1 of [SP] spregress for explanations and examples.

Stored results for estat impact

estat impact stores the following in r():
Scalars

r(N) number of observations
Macros

r(vce) vcetype specified in vce()
r(xvars) names of independent variables

Matrices
r(b direct) vector of estimated direct impacts
r(Jacobian direct) Jacobian matrix for direct impacts
r(V direct) estimated variance–covariance matrix of direct impacts
r(b indirect) vector of estimated indirect impacts
r(Jacobian indirect) Jacobian matrix for indirect impacts
r(V indirect) estimated variance–covariance matrix of indirect impacts
r(b total) vector of estimated total impacts
r(Jacobian total) Jacobian matrix for total impacts
r(V total) estimated variance–covariance matrix of total impacts

Methods and formulas
Methods and formulas are presented under the following headings:

Predictions
Reduced-form mean
Direct and indirect means
Limited-information mean
Full-information mean
Naı̈ve-form predictor
Linear predictor
Residuals
Uncorrelated residuals

Impacts

Predictions
To motivate the predictions, consider the vector form of a spatial autoregressive model

y = λWy + Xβ + ε (1)

where

y is the vector containing each unit’s dependent-variable observation,

Wy is a spatial lag of y,

X is the matrix of independent-variable observations,

ε is a vector of errors, and

λ and β are the coefficients.

Any spatial lags of the independent variables are assumed to be in X. Spatial lags of the error do not
affect the reduced-form, direct, or indirect means, so they are not included in (1) for simplicity.
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Reduced-form mean

Equation (1) represents the spatial autoregressive model as a system of equations. The solution

y = (I− λW)
−1

(Xβ + ε) (2)

implies that the mean of y given the independent variables and the spatial weighting matrix is

E(y |X,W) = (I− λW)
−1

(Xβ) (3)

This is known as the reduced-form mean because the solution in (2) is known as the reduced form
of the model. The predicted reduced-form mean substitutes estimates of λ and β into (3).

Direct and indirect means

To define the direct mean and the indirect mean, let

S = (I− λW)
−1

and let Sd be a matrix with diagonal elements of S on its diagonal and with off-diagonal elements
set to 0.

The direct means are
SdXβ

which capture the contributions of each unit’s independent variables on its own reduced-form mean.
Substituting estimates of λ and β produces the predictions.

The indirect means capture the contributions of the other units’ independent variables on a unit’s
reduced-form prediction, and they are{

(I− λW)
−1 − Sd

}
Xβ

Limited-information mean

Instead of solving for the reduced form, the limited-information mean conditions on the spatial
lag of y for observation i, which we denote by (Wy)i, which yields

E{yi |X,W, (Wy)i} = xiβ + λ(Wy)i + ui (4)

where ui is the predictable part of the error term given (Wy)i. See Kelejian and Prucha (2007) and
Drukker, Prucha, and Raciborski (2013).

Full-information mean

The full-information mean conditions on the dependent-variable values of all the other units instead
of conditioning on the spatial lag of the dependent variable, as does the limited-information mean.
The additional information produces a better prediction of the error term when a spatial lag of the
errors is in the model. See Kelejian and Prucha (2007).
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Naı̈ve-form predictor

The naı̈ve-form predictor sets ui to 0 in (4). It is not consistent for E{yi |X,W, (Wy)i} because
it ignores ui.

Linear predictor

The linear predictor is Xβ.

Residuals

The residuals are ui from (4).

Uncorrelated residuals

The uncorrelated residuals are
ε̂ = (I− ρ̂M)

−1
u

where u is the vector of ui’s, M is the spatial weighting matrix for the autoregressive error term,
and ρ̂ is the estimated correlation of u.

Impacts

The total impact of an independent variable x is the average of the marginal effects it has on the
reduced-form mean,

1

n

n∑
i=1

n∑
j=1

∂E(yi |X,W)

∂xj

where E(yi |X,W) is the ith element of the vector E(y |X,W), whose formula is given in (2),
and xj is the jth unit’s value for x.

The direct impact of an independent variable x is the average of the direct, or own, marginal
effects

1

n

n∑
i=1

∂E(yi |X,W)

∂xi

The indirect impact of an independent variable x is the average of the indirect, or spillover,
marginal effects.

1

n

n∑
i=1

n∑
j=1,j 6=i

∂E(yi |X,W)

∂xj

LeSage and Pace (2009, 36–37) call the average direct impact the “average total direct impact”,
and they call the average indirect impact the “average total indirect impact”.

estat impact with the default vce(delta) uses the delta method to calculate the estimated
variance of the impacts. This variance is conditional on the values of the independent variables in
the model.
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estat impact with vce(unconditional) uses the generalized method of moments estimation
strategy to estimate the unconditional variance of the impacts. It accounts for sampling variance of
the independent variables in the model.
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Title

spmatrix — Categorical guide to the spmatrix command

Description
The spmatrix command creates, imports, manipulates, and exports W spatial weighting matrices.

Listed below are the sections describing the spmatrix command.

Creating standard weighting matrices
spmatrix create Create standard matrix
spdistance Calculator for distance between places

Creating custom weighting matrices
spmatrix userdefined Custom creation using a user-defined function
spmatrix fromdata Custom creation based on variables in the dataset
spmatrix spfrommata Get weighting matrix from Mata
spmatrix matafromsp Copy weighting matrix to Mata
spmatrix normalize Normalize matrix

Manipulating weighting matrices
spmatrix dir List names of weighting matrices in memory
spmatrix summarize Details of weighting matrix stored in memory
spmatrix drop Drop weighting matrix from memory
spmatrix copy Copy weighting matrix to new name
spmatrix save Save spatial weighting matrix to file
spmatrix use Load spatial weighting matrix from file
spmatrix note Set or list note
spmatrix clear Drop all weighting matrices from memory

Importing and exporting weighting matrices
spmatrix export Export weighting matrix in standard format
spmatrix import Import weighting matrix in standard format

Also see
[SP] intro — Introduction to spatial data and SAR models
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Title

spmatrix copy — Copy spatial weighting matrix stored in memory

Description Quick start Menu Syntax
Also see

Description

spmatrix copy copies weighting matrices stored in memory to new names, also stored in memory.

Quick start
Copy existing matrix Wd to Wdistance

spmatrix copy Wd Wdistance

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix copy spmatname1 spmatname2

spmatname1 is the name of an existing weighting matrix.

spmatname2 is a name of a weighting matrix that does not exist.

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] intro — Introduction to spatial data and SAR models
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Title

spmatrix create — Create standard weighting matrices

Description Quick start
Menu Syntax
Options for spmatrix create contiguity Option for spmatrix create idistance
Options for both contiguity and idistance Remarks and examples
Also see

Description

spmatrix create creates standard-format spatial weighting matrices.

Quick start
Create contiguity spatial weighting matrix M with default spectral normalization

spmatrix create contiguity M

Same as above
spmatrix create contiguity M, normalize(spectral)

Create row-standardized contiguity spatial weighting matrix M

spmatrix create contiguity M, normalize(row)

Create contiguity spatial weighting matrix M without normalization
spmatrix create contiguity M, normalize(none)

Create spectral-normalized inverse-distance spatial weighting matrix W

spmatrix create idistance W

Menu
Statistics > Spatial autoregressive models
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Syntax
spmatrix create contiguity spmatname

[
if
] [

in
] [

, contoptions stdoptions
]

spmatrix create idistance spmatname
[

if
] [

in
] [

, idistoption stdoptions
]

spmatname is a weighting matrix name.

contoptions Description

rook share a border and not just a vertex
first first-order neighbors
second

[
(#)

]
second-order neighbors

idistoption Description

vtruncate(#) set (i, j) element to 0 if 1/distance ≤ #

stdoptions Description

normalize(normalize) type of normalization; default is normalize(spectral)

replace replace existing weighting matrix

Options for spmatrix create contiguity

rook specifies that areas that share just a vertex not be treated as neighbors. For instance, consider
the following map:

+-------+
| |

+----------+ C |
| B | |

+----------------+-------+
| A |
+----------------+

If rook is not specified, A and C are neighbors because they have a vertex (corner) in common.
If rook is specified, A and C are not neighbors. Regardless of whether rook is specified, A and
B are neighbors and B and C are neighbors because they share a border (line segment).

first specifies that first-order neighbors be assigned 1. If areas i and j are neighbors, then
spmatnamei,j = spmatnamej,i = 1. first is the default unless second or second(#) is specified.

second
[
(#)

]
specifies that the second-order neighbors—neighbors of neighbors—be assigned a

nonzero value. second specifies that they be assigned 1. second(#) specifies that they be
assigned #.

If you also specify option first, then the matrix created will set first-order neighbors to contain
1. For instance, if you specify first second, both kinds of neighbors will be set to 1. If you
specify first second(.5), first-order neighbors are set to 1 and second-order neighbors are set
to 0.5.
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Option for spmatrix create idistance

vtruncate(#) specifies that areas farther apart than # be set to 0. Type spset without arguments
to determine the units in which # is specified. The coordinates line of spset’s output will be
one of the following:

coordinates: _CX, _CY (planar)
coordinates: _CY, _CX (latitude and longitude, kilometers)
coordinates: _CY, _CX (latitude and longitude, miles)

Units of # will be planar, kilometers, or miles. If planar, see [SP] spdistance for advice on
determining the units.

If spset reports

coordinates: none

then you cannot use spmatrix create.

Options for both contiguity and idistance
normalize(normalize) specifies how the resulting matrix is to be scaled.

normalize(spectral) is the default. The matrix will be normalized so that its largest eigenvalue
is 1.

normalize(minmax) specifies that the matrix elements be divided by the smaller of the largest
row or column sum of absolute values. The min–max calculation is much quicker than the
spectral calculation and in most cases gives similar results as the spectral normalization.

normalize(row) specifies that each row of the matrix be divided by the row’s sum (not absolute
values). This adjustment can be performed even more quickly than the min–max adjustment.

normalize(none) specifies that the matrix not be rescaled. This option has one use: To store
the matrix in unadjusted form so that you can fetch it later, make changes to it while the
matrix is still in its original units, and then repost the matrix, at which point it will be rescaled.
See Choosing weighting matrices and their normalization in [SP] spregress for details about
normalization.

replace specifies that matrix spmatname may be replaced if it already exists.

Remarks and examples
See [SP] intro 1 about the role spatial weighting matrices play in SAR models and see [SP] intro 2

for a thorough discussion of the matrices. To remind you, the (i, j) element of a weighting matrix
specifies the potential spillover from area j to i.

Remarks are presented under the following headings:

Creating contiguity matrices
Creating inverse-distance matrices
Creating inverse-distance contiguity matrices
The normalize() option
Panel data



spmatrix create — Create standard weighting matrices 105

Creating contiguity matrices

spmatrix create contiguity is mostly used to create matrices with elements equal to 1 or 0
(before normalization). spmatnamei,j is 1 when areas i and j are neighbors. The matrix is symmetric.

Creation of contiguity matrices requires that the Sp data in memory be linked to a shapefile. The
data must look like this:

. spset
Sp dataset

data: cross sectional or panel
spatial-unit id: _ID

coordinates: _CY, _CX (latitude and longitude, miles)
linked shapefile: irrelevant

Determining whether places are neighbors requires a linked shapefile. Knowing their locations is not
sufficient.

To create a contiguity matrix named F of first-order neighbors, type

. spmatrix create contiguity F

The contiguity matrix F is automatically normalized using the spectral normalization; see Choosing
weighting matrices and their normalization in [SP] spregress for details about normalization.

In [SP] intro 1, we discussed a spatial weighting matrix containing 1s for first-order neighbors and
0.5s for second-order neighbors. Such a matrix could be created by typing

. spmatrix create contiguity W, first second(0.5)

Also in the introduction, we considered making two weighting matrices, W for first-order neighbors
and V for second. To create W and V, type

. spmatrix create contiguity W

. spmatrix create contiguity V, second

The syntax of the spmatrix create contiguity command is as follows:

Command Meaning

1. spmatrix create contiguity 1st-order neighbors
2. spmatrix create contiguity, first same as command 1
3. spmatrix create contiguity, second 2nd-order neighbors
4. spmatrix create contiguity, second(1) same as command 3
5. spmatrix create contiguity, first second 1st- and 2nd-order neighbors
6. spmatrix create contiguity, first second(1) same as command 5
7. spmatrix create contiguity, first second(0.5) 1st- and 2nd-order neighbors,

1st set to 1, 2nd set to 0.5

Creating inverse-distance matrices

spmatrix create idistance creates matrices with elements equal to the reciprocal of distance
between places (before normalization). The matrix is symmetric.



106 spmatrix create — Create standard weighting matrices

Creation of inverse-distance matrices requires that the Sp data have coordinates, but a shapefile is
not required. The data must look like this:

. spset
Sp dataset

data: cross sectional or panel
spatial-unit id: _ID

coordinates: _CY, _CX (latitude and longitude, miles)
linked shapefile: irrelevant

Coordinates must be defined, although they are not required to be latitude and longitude. If they
are latitude and longitude, however, Sp needs to know; see [SP] intro 4. Whether units are miles or
kilometers is irrelevant.

To create an inverse-distance matrix named Idist, type

. spmatrix create idistance Idist

The inverse-distance matrix Idist is automatically normalized using the spectral normalization; see
Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.

spmatrix create idistance allows option vtruncate(#), which sets spillovers less than or
equal to # to 0. To create an inverse-distance matrix I0 with places more than 100 apart, you could
type

. spmatrix create contiguity IO, vtruncate(.01)

Note that you specify # = 1/distance.

See the description of the vtruncate() option above for the meaning of how far apart 100 means.

Creating inverse-distance contiguity matrices

An inverse-distance contiguity matrix is a weighting matrix that contains inverse distance for
neighbors and 0 otherwise. Here is how you create such a matrix:

1. Create the inverse-distance and contiguity matrices separately.

2. Multiply them element by element in Mata. The result is a matrix containing inverse distance
for neighbors because the contiguity matrix contains 1s and 0s.

3. Store the Mata result as an Sp spatial weighting matrix.

We do that below to create an inverse-distance first-order neighbor matrix named CN.

. // --------------------------- create the matrices separately ---

.

. spmatrix create idistance N, normalize(none) // note 1

. spmatrix create contiguity C, first normalize(none) // note 2

.

. // -------------------------------------- load them into Mata ---

.

. spmatrix matafromsp Wn v = N

. spmatrix matafromsp Wc v = C

.

.

. // ------------------------- multiply them element by element ---

. mata: Wcn = Wc :* Wn // note 3

.

.
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. // ------------------------------------ save the result in Sp ---

.

. spmatrix spfrommata CN = Wcn v // note 4

.

.

. // ------------------------------------------------- clean up ---

.

. mata: mata drop Wcn Wc Wn // note 5

. spmatrix drop C

. spmatrix drop N

. // ----------------------------------------- the final result ---

.

. spmatrix dir

Weighting matrix name N x N Type Normalization

CN 254 x 254 custom spectral

Notes:

1. We specify normalize(none) when we create the matrices separately for speed, not because
it is necessary. Normalization amounts to multiplying the matrices by a constant, and that
will not matter. Calculating the constant, however, takes considerable time.

2. We created C to be first-order neighbors. We could have included second-order neighbors
as well by adding option second to the command.

3. Colon-asterisk (:*) is Mata’s element-by-element matrix multiplication operator. It is called
colon-multiply.

4. spmatrix spfrommata allows the normalize() option and defaults to normal-
ize(spectral), just as spmatrix create does. Thus, the matrix stored in Sp is normalized.

5. Do not skip the clean-up step. Spatial weighting matrices are N × N and can consume
considerable amounts of memory.

It is also important that we cleared the Mata matrices by dropping them and not by typing
clear mata. Sp stores the matrices you create in Mata and, if you cleared Mata, the new
weighting matrix CN would also be dropped!

See [SP] spmatrix matafromsp and [SP] spmatrix spfrommata.

The normalize() option

We have hardly mentioned the normalize() option so far, because spmatrix create normalizes
matrices by default. Normalization is important. All the Sp commands that create spatial weighting
matrices normalize by default and include the normalize() option for cases in which you want to
modify how or whether it is done.

Sp provides three normalizations:

normalize(spectral) the default
normalize(minmax) min–max
normalize(row) row

normalize() provides a fourth setting to skip normalization altogether:

normalize(none) do not perform normalization



108 spmatrix create — Create standard weighting matrices

The Sp commands are so determined you do not forget to normalize spatial weighting matrices at
the last step that you must not forget to specify normalize(none) when you are building a custom
matrix from ingredients. The spectral and min–max normalizations merely change the scale of the
matrix.

normalize(row), however, is a normalization of a different ilk from the others. The others merely
change the scale of the matrix. Changing a matrix’s scale is performed by dividing the elements by
a constant. normalize(row) divides each row by a different constant. Doing this transformation on
the matrix changes the model specification.

See [SP] spmatrix normalize and Choosing weighting matrices and their normalization in
[SP] spregress for details.

Panel data
If you have panel data and want to create a weighting matrix, you must use an if statement with

spmatrix create to restrict the data to a single time value.

Here is an example. We load an Sp panel dataset and type spset to see the Sp settings:
. copy http://www.stata-press.com/data/r15/homicide_1960_1990.dta .

. copy http://www.stata-press.com/data/r15/homicide_1960_1990_shp.dta .

. use homicide_1960_1990
(S.Messner et al.(2000), U.S southern county homicide rate in 1960-1990)

. xtset _ID year
panel variable: _ID (strongly balanced)
time variable: year, 1960 to 1990, but with gaps

delta: 1 unit

. spset
Sp dataset homicide_1960_1990.dta

data: panel
spatial-unit id: _ID

time id: year (see xtset)
coordinates: _CX, _CY (planar)

linked shapefile: homicide_1960_1990_shp.dta

If we tried to create a weighting matrix the usual way, we would not be successful:
. spmatrix create contiguity W
variable _ID does not uniquely identify observations in the master data
r(459);

We get an error message because spmatrix create needs to know which observations to use. We
must restrict spmatrix create to one observation per panel, which is easy to do using an if
statement:

. spmatrix create contiguity W if year == 1990

Do not misinterpret the purpose of if year == 1990. The matrix created will be appropriate for
creating spatial lags for any year, because if two spatial units share a border in 1990, they will share
it in the other years too. The map does not change.

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] intro — Introduction to spatial data and SAR models
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Title

spmatrix drop — List and delete weighting matrices stored in memory

Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description
spmatrix dir lists the Sp weighting matrices stored in memory.

spmatrix drop deletes a single Sp matrix from memory.

spmatrix clear deletes all Sp matrices from memory.

Quick start
List weighting matrices stored in memory

spmatrix dir

Drop weighting matrix Wd

spmatrix drop Wd

Drop all weighting matrices
spmatrix clear

Menu
Statistics > Spatial autoregressive models

Syntax
List the Sp weighting matrices stored in memory

spmatrix dir

Drop an Sp matrix from memory

spmatrix drop spmatname

Drop all weighting matrices from memory

spmatrix clear

spmatname is the name of an Sp weighting matrix stored in memory.

109



110 spmatrix drop — List and delete weighting matrices stored in memory

Remarks and examples
Remarks are presented under the following headings:

spmatrix dir
Save and drop matrices you are not using

spmatrix dir

The spatial weighting matrices that you create are stored in memory. You create them with the
following commands:

spmatrix create

spmatrix import

spmatrix fromdata

spmatrix userdefined

spmatrix spfrommata

spmatrix dir lists spatial weighting matrices names:

. spmatrix dir

Weighting matrix name N x N Type Normalization

Wc 254 x 254 contiguity spectral
Wd 254 x 254 idistance spectral

When spmatrix dir reports that a matrix is a contiguity matrix, as it does with Wc, contiguity is
used in its ex post sense. See [SP] spmatrix summarize or the [SP] Glossary for the definition of ex
post contiguity matrices.

Save and drop matrices you are not using

Spatial weighting matrices are stored in memory, and they can consume a lot of it. The ones above
consume a mere 254× 254 = 517128 bytes each. Had the matrices been 3000× 3000, they would
have consumed 69 megabytes each.

Spatial weighting matrices can be saved on disk. Any that you are not currently using, you can
save to disk and drop from memory:

. spmatrix save Wc using wc
(file wc.stswm saved)

. spmatrix drop Wc

All spatial weighting matrices are dropped when you type

. spmatrix clear

or

. clear mata

or

. clear all
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The clear mata command also clears any Mata functions or objects in memory. The clear all
command also clears any data in memory.

Stored results
spmatrix dir stores the following in r():

Macros
r(names) space-separated list of matrix names

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix summarize — Summarize weighting matrix stored in memory

[SP] intro — Introduction to spatial data and SAR models

[D] clear — Clear memory
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Title

spmatrix export — Export weighting matrix to text file

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
spmatrix export saves one weighting matrix in a text file that you can use for sending to other

researchers.

Stata users can import text files created by spmatrix export; see [SP] spmatrix import.

Quick start
Create file wmat.txt containing weighting matrix Wme

spmatrix export Wme using wmat.txt

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix export spmatname using filename

[
, replace

]
spmatname is the name of a weighting matrix stored in memory.

filename is the name of a file with or without the default .txt suffix.

Option
replace specifies that filename may be overwritten if it already exists.

Remarks and examples
Remarks are presented under the following headings:

Using spmatrix export
The spmatrix export text-file format
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Using spmatrix export

spmatrix export creates files containing spatial weighting matrices that you can send to other
users who are not using Stata. If you want to send to Stata users, it is easier and better if you send
Stata .stswm files created using spmatrix save. spmatrix export produces a text-based format
that is easy for non-Stata users to read.

To send a contiguity matrix, for instance, you could type

. spmatrix create contiguity Wc

. spmatrix export Wc using contig.txt
(matrix Wc saved in file contig.txt)

You could then email the file contig.txt.

The spmatrix export text-file format

An spmatrix export file contains values of the matrix and the ID values to which the matrix’s
rows and columns correspond.

A small sample file is shown below. It corresponds to a 4× 4 weighting matrix for U.S. counties
3137, 960, 298, and 707. If others are to be able to interpret this information, the counties need to
be a standard code. We are using the standard FIPS code because, before creating spatial weighting
matrices in [SP] intro 4, we used spset, modify id(fips).

To create the file listed below, we typed

. spmatrix create idistance Idist

. spmatrix export Idist using small.txt
(matrix Idist saved in file small.txt)

We did this after keeping four observations so that we would have a small file to show you.

The resulting file is

. type small.txt
4
20029 0 .225898983673981 .259698923068494 .746562405514367
33003 .225898983673981 0 .123515701241913 .187089086384635
41021 .259698923068494 .123515701241913 0 .264715523882705
48227 .746562405514367 .187089086384635 .264715523882705 0

The file records a 4× 4 spatial weighting matrix. Real examples would record much larger matrices.
N ×N matrices are recorded in N + 1 lines.

The first line states that N = 4. The matrix is 4× 4.

The second and subsequent lines each record N + 1 values with spaces between them. The first
value, 20029, is the ID (FIPS) value corresponding to the first row of the weighting matrix. The
remaining N values on the line are the first row of the matrix.

The remaining lines are repeats for the second row, third row, and so on. The first value is an
ID value and the rest are that ID’s row of the matrix.

It is a simple and easy-to-read file.
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Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix import — Import weighting matrix from text file

[SP] intro — Introduction to spatial data and SAR models



Title

spmatrix fromdata — Create custom weighting matrix from data

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
spmatrix fromdata creates custom spatial weighting matrices from Sp data.

There are two other ways to create custom weighting matrices: spmatrix userdefined and
spmatrix spfrommata. Those ways may require less work, but they require knowledge of Mata.

Quick start
Create spectral-normalized spatial weighting matrix Wnew from the N×N “matrix” stored in variables

x1, x2, . . . , xn
spmatrix fromdata Wnew = x1 - xn

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix fromdata spmatname = varlist

[
, options

]
spmatname is the name of the spatial weighting matrix to be created.

options Description

idistance store reciprocal of elements
normalize(normalize) type of normalization; default is normalized(spectral)

replace replace existing weighting matrix

Options

idistance converts distance to inverse distance by storing the reciprocal of the elements.

normalize(normalize) specifies how the resulting matrix is to be scaled. normalize(spectral) is
the default. normalize(minmax), normalize(row), and normalize(none) are also allowed.
See [SP] spmatrix create for full details of the option and Choosing weighting matrices and their
normalization in [SP] spregress for details about normalization.

replace specifies that matrix spmatname be overwritten if it already exists.
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Remarks and examples
The fromdata in spmatrix fromdata means that the matrix itself is stored as variables in

the data. Some researchers are used to working this way, and if you are among them, spmatrix
fromdata is for you.

If the matrix is stored with the variables because you created it using the data, you may want to
consider using spmatrix userdefined and spmatrix spfrommata instead. Both require knowledge
of Mata, so that is a disadvantage if you do not already know Mata. On the other hand, spmatrix
userdefined does not require much knowledge and handles the creation of most custom weighting
matrices simply and elegantly. spmatrix spfrommata requires more extensive knowledge of Mata,
but it will handle problems that no other method can.

The problem with spmatrix fromdata is not that the matrix is stored in the data but that
filling in the matrix is more work than it needs to be. Stata draws a distinction between rows and
columns. Rows are observations and columns are variables. Stata is perfectly willing to sweep down
observations, but few Stata commands will sweep across variables. Mata, being a matrix language,
draws no such distinction.

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix userdefined — Create custom weighting matrix

[SP] spmatrix spfrommata — Copy Mata matrix to Sp

[SP] intro — Introduction to spatial data and SAR models
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Title

spmatrix import — Import weighting matrix from text file

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
spmatrix import reads files created by spmatrix export.

Quick start
Create spatial weighting matrix Wme by importing file wmat.txt

spmatrix import Wme using wmat.txt

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix import spmatname using filename

[
, replace

]
spmatname will be the name of the weighting matrix that is created.

filename is the name of a file with or without the default .txt suffix.

Option
replace specifies that weighting matrix spmatname in memory be overwritten if it already exists.

Remarks and examples
spmatrix import reads files written in a particular text-file format. The format is described in

[SP] spmatrix export. Such a file might be named contig.txt. To read the file and store the matrix
in Sp spatial weighting matrix Wcontig, type

. spmatrix import Wcontig using contig.txt

or

. spmatrix import Wcontig using contig

The file extension .txt is assumed.
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The file is read and stored as is. Presumably, the user who created the matrix normalized it, but
if not, you can normalize it by typing

. spmatrix normalize Wcontig

By default, spmatrix normalize uses spectral normalization, but you can specify a different
normalization using the normalize() option. See [SP] spmatrix normalize.

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix export — Export weighting matrix to text file

[SP] spmatrix normalize — Normalize weighting matrix

[SP] intro — Introduction to spatial data and SAR models



Title

spmatrix matafromsp — Copy weighting matrix to Mata

Description Quick start Menu Syntax
Remarks and examples Also see

Description
spmatrix matafromsp copies weighting matrix spmatname from Sp to Mata. Weighting matrix

spmatname remains unchanged.

Quick start
Create weighting matrix W and ID vector id in Mata from spatial weighting matrix C

spmatrix matafromsp W id = C

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix matafromsp matamatrix matavec = spmatname

Remarks and examples
Remarks are presented under the following headings:

Getting W and id
Using W without involving the data in memory
Using W involving the data in memory

Getting W and id

The command

. spmatrix matafromsp W id = C

copies spatial weighting matrix C to a Mata matrix named W and copies C’s ID vector to a Mata
vector named id.
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What is id? When a spatial weighting matrix such as C is created, stored along with it are the
ID values. Those ID values identify the meaning of the rows and columns.

Consider a spatial weighting matrix created by spmatrix create. We use the datasets downloaded
in [SP] estat moran.

. use homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)

. spset
(output omitted )

. spmatrix create contiguity C

What is the meaning of element c1,2? It is the spillover from ID[2] to ID[1]. If the data were
currently spset on fips, ID[1] might equal 48507 and ID[2] might equal 48003, and thus it
would be the spillover from Andrews to Zavala county in Texas. Sp keeps a copy of the ID vector
so that later, when the data are in a different order, c{1, 2} will still mean the spillover from Andrews
to Zavala county.

You need not concern yourself with id if you plan on doing something with W that does not
involve the data in memory. If what you need to do involves the data in memory, you will need to
address the problem that the order of the data in memory now is not the same as it was when W was
created.

Using W without involving the data in memory

Say that you wish to fetch C from Sp just so you can change values greater than or equal to 0.8
to 0.5. Doing that does not involve the data in memory. You type

. spmatrix matafromsp W id = C

. mata:
mata (type end to exit)

: for (i=1; i<=rows(W); i++) {
> for (j=1; j<=cols(W); j++) {
> if (W[i,j] >= 0.8) W[i,j] = 0.5
> }
> }

: end

You might now store the W back into C by typing
. spmatrix spfrommata C = W id, replace

You specify the same id vector you received because you have not changed the ordering of the rows
or columns of the matrix.

Using W involving the data in memory

If you intend to use W and the data in memory together, you need to align the data and W. The
instructions presented here work with cross-sectional data but not panel data.

First, check whether the data and W are conformable:
. mata:

mata (type end to exit)
: ID = st_data(., "_ID")

: assert( sort(ID, 1) == sort(id, 1) )

: end
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If Mata reports that the assertion is false, then the data and W are not conformable. This has nothing
to do with observations and rows and columns being in different order. Not conformable means that
one, the other, or both are missing ID values that the other one has.

Let’s imagine that Mata responds with silence to the assertion. Thus, the data are conformable. If
they are also in the same order, you can use the data and W together, so find out if they are.

. mata:
mata (type end to exit)

: assert( ID == id )

: end

If they are in the same order, row/column 1 of the matrix corresponds to observation 1 of the
data, row/column 2 of the matrix corresponds to observation 2 of the data, and so on.

If Mata reports that the assertion is false, you have to put the data in the same order. Here is how:

. mata:
mata (type end to exit)

: p = order(id, 1)

: W = W[p, p] // put W in ascending order of id

: id = id[p] // put id in ascending order of id

: end

. sort _ID // put the data in ascending order of _ID

You can now do whatever with W and the data. Row/column 1 of W corresponds to observation 1
of the data, row/column 2 of W corresponds to observation 2 of the data, and so on.

Perhaps whatever you will do involves, as a last step, posting the matrix back to Sp. In that case,
use the id variable you updated:

. spmatrix spfrommata C = W id, replace

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix spfrommata — Copy Mata matrix to Sp

[SP] intro — Introduction to spatial data and SAR models
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Title

spmatrix normalize — Normalize weighting matrix

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
spmatrix normalize normalizes a spatial weighting matrix. It is mostly used after spmatrix

import.

Quick start
Normalize spatial weighting matrix W using the default spectral normalization

spmatrix normalize W

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix normalize spmatname

[
, normalize(normalize)

]
spmatname is the name of an existing spatial weighting matrix stored in memory.

normalize Description

spectral spectral; the default
minmax min–max
row row
none do not normalize; leave matrix as is

Option

normalize(normalize) specifies how the resulting matrix is to be scaled. normalize(spectral) is
the default. normalize(minmax), normalize(row), and normalize(none) are also allowed.
See [SP] spmatrix create for full details of the option and Choosing weighting matrices and their
normalization in [SP] spregress for details about normalization.
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Remarks and examples
Remarks are presented under the following headings:

Using spmatrix normalize after spmatrix import
Using spmatrix normalize after other commands
Using spmatrix normalize to change normalization

Using spmatrix normalize after spmatrix import

With one exception, the commands that create spatial weighting matrices provide a normalize()
option and default to normalize(spectral). spmatrix import is the exception. You can use
spmatrix normalize after importing; see [SP] spmatrix import.

Using spmatrix normalize after other commands

If you create a matrix using normalize(none), you can use spmatrix normalize to normalize
the matrix subsequently. For instance,

. spmatrix create contiguity Wc, normalize(none)

. spmatrix normalize Wc

Using spmatrix normalize to change normalization

Sp provides three normalizations:

normalize(spectral) the default
normalize(minmax) min–max
normalize(row) row

Concerning the first two, you can use spmatrix normalize to change the normalization.

1. If W is normalized spectrally, no matter how you created it, normalizing it again spectrally
leaves the matrix unchanged.

2. The same applies to the min–max normalization. If W is normalized using min–max, nor-
malizing it again leaves the matrix unchanged.

3. If W is normalized spectrally and you renormalize using min–max, the result is the same as
you would have obtained had W been normalized using min–max at the outset.

4. The same applies if the roles of min–max and spectral are reversed. If W is normalized using
min–max and you renormalize it spectrally, the result is the same as if you had normalized
it spectrally at the outset.

Row normalization, meanwhile, is unique. You can apply row normalization repeatedly to an
already row-normalized matrix and obtain the same results, but you cannot change normalizations.

See Choosing weighting matrices and their normalization in [SP] spregress for details about
normalization.

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix import — Import weighting matrix from text file

[SP] intro — Introduction to spatial data and SAR models



Title

spmatrix note — Put note on weighting matrix, or display it

Description Quick start Menu Syntax
Remarks and examples Also see

Description
spmatrix note spmatname: text puts or replaces the note on weighting matrix spmatname stored

in memory.

spmatrix note spmatname displays the note.

Quick start
Place or replace note on spatial weighting matrix W

spmatrix note W: inverse-distance 1st-order contiguity matrix

Display note on spatial weighting matrix W

spmatrix note W

Clear note on spatial weighting matrix W

spmatrix note W:

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix note spmatname : text

spmatrix note spmatname

spmatname is the name of an existing weighting matrix.

Remarks and examples
See [SP] spmatrix save for an example using spmatrix note.

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix save — Save spatial weighting matrix to file

[SP] intro — Introduction to spatial data and SAR models
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Title

spmatrix save — Save spatial weighting matrix to file

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
spmatrix save saves the specified spatial weighting matrix to disk. You can later load the matrix

using spmatrix use.

spmatname is saved to disk but is not dropped from memory. If you wish to eliminate the matrix
from memory, see [SP] spmatrix drop.

Quick start
Save spatial weighting matrix W in file w.stswm

spmatrix save W using w.stswm

Menu
Statistics > Spatial autoregressive models

Syntax

spmatrix save spmatname using filename
[
, replace

]
spmatname is the name of an existing weighting matrix.

filename is the name of a file with or without the .stswm suffix.

Option
replace specifies that filename be overwritten if it already exists.

Remarks and examples
Saving spatial weighting matrices in files allows you to use them from one session to the next.

It is easy to lose track of which files contain which matrices. It can be useful to set the weighting
matrix’s note as a reminder:

. spmatrix note Wme: inverse-distance first-order contiguity matrix

. spmatrix save Wme using wme
(matrix Wme saved in file wme.stswm)
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spmatrix use will display the note when it loads the file:

. spmatrix use W1 using wme
(inverse-distance first-order contiguity matrix)

The name you specify when you use the matrix is not required to match the name you used when
you saved it.

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix export — Export weighting matrix to text file

[SP] spmatrix use — Load spatial weighting matrix from file

[SP] intro — Introduction to spatial data and SAR models



Title

spmatrix spfrommata — Copy Mata matrix to Sp

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
spmatrix spfrommata copies a weighting matrix and an ID vector from Mata to an Sp spatial

weighting matrix.

Quick start
Create Sp spatial weighting matrix Wnew from Mata matrix W and vector v with the default spectral

normalization
spmatrix spfrommata Wnew = W v

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix spfrommata spmatname = matamatrix matavec

[
, options

]
options Description

normalize(normalize) type of normalization; default is normalize(spectral)

replace replace existing weighting matrix

Options

normalize(normalize) specifies how the resulting matrix is to be scaled. normalize(spectral) is
the default. normalize(minmax), normalize(row), and normalize(none) are also allowed.
See [SP] spmatrix create for full details of the option and Choosing weighting matrices and their
normalization in [SP] spregress for details about normalization.

replace specifies that matrix spmatname be overwritten if it already exists.

Remarks and examples
Remarks are presented under the following headings:

W and v
Simple use
Advanced use

127



128 spmatrix spfrommata — Copy Mata matrix to Sp

W and v

Two components are required to set an Sp spatial weighting matrix: the spatial weighting matrix
itself and its vector of ID values. Let’s call them W and v, respectively. v states that the first row
and column of W correspond to ID==v[1], the second row and column correspond to ID==v[2],
and so on. The purpose of v and how it works is explained in [SP] spmatrix matafromsp.

Examples of spmatrix spfrommata can be found in [SP] spmatrix create and [SP] spmatrix
matafromsp.

Simple use

We are going to show you how Mata can be used to construct complicated spatial weighting
matrices. However, we will start with a simple case in which the values of the weighting matrix Wi,j

are a function of variables in observations i and j of the data in memory. Inverse-distance matrices
are an example of this. The distance between i and j is a function of the values of Stata variables
CX and CY in observations i and j.

We start by loading the Sp data into memory:

. use your_sp_data

The Mata solution is

. mata:
mata (type end to exit)

: id = st_data(., "_ID")

: location = st_data(., ("_CX", "_CY"))

: N = st_nobs()

: W = J(N, N, 0)

: for (i=1; i<=N; i++) {
> for (j=1; j<i; j++) {
> delta = location[i,.] - location[j,.]
> W[i,j] = W[j,i] = 1/sqrt(delta*delta’)
> }
> }

: end

. spmatrix spfrommata myIdist = W id

We just created an inverse-distance matrix. If you wanted to create such matrices, it would obviously
be easier to type

. spmatrix create idistance myIdist

The Mata solution has the advantage that you can substitute different inverse-distance functions,
such as inverse-distance squared. There is an easier solution for that case too, namely, the one outlined
in [SP] spmatrix userdefined.

Now that you know how Mata and spmatrix spfrommata work in simple cases, we can show
you an example that could be done no other way than by direct use of Mata.
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Advanced use
You have export.dta, a cross-sectional Sp dataset on countries and their characteristics. Its ID

variable contains standard country codes. You need to construct a spatial weighting matrix to use
with it.

export.dta does not itself contain sufficient information to construct the matrix you want to use.
Instead, you have a second dataset, which is not Sp. It contains

. copy http://www.stata-press.com/data/r15/exports .

. use exports
(country export data)

. describe

Contains data from exports.dta
obs: 38,220 country export data

vars: 4 17 Apr 2017 08:26
size: 458,640

storage display value
variable name type format label variable label

from int %9.0g from (country code)
to int %9.0g to (country code)
exports float %9.0g exports ($ value)
gdp float %9.0g GDP of producer

Sorted by:

The data record exports from one country to another for all 196 countries of the world. We say
exports, but we can just as well interpret the data as imports by reversing the roles of variables from
and to.

To simplify the problem, we are going to assume the country codes recorded in variables from
and to are 1, 2, . . . , 196 and that the same codes are recorded in variable ID of exports.dta. If
the true country codes were not 1, 2, . . . , 196, you could easily construct such country codes.

We are going to create a spatial weighting matrix from these data. Potential spillover from j to i
will be

Wi,j =
(exports from i to j) + (exports from j to i)

i’s GDP

This weighting matrix is a near cousin to one developed by Badinger and Egger (2008).

W would be easy to calculate if we had a matrix E recording exports and a vector g recording
GDP. Ei,j would be the exports from i to j, and gi would record GDP of country i. The formula for
Wi,j would then be

Wi,j = (Ei,j + Ej,i)/gi
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E and g can be easily created in Mata:
. tomata from to export gdp

. mata:
mata (type end to exit)

: g = J(196, 1, 0)

: E = J(196, 196, 0)

: for (k=1; k<=length(exports); k++) {
> i = from[k]
> j = to[k]
> g[i] = gdp[k]
> E[i,j] = exports[k]
> }

: end

tomata (Gould 2006) is a community-contributed command that makes it easy to create Mata matrix
views of individual Stata variables. Type search tomata for details. The matrices will have the same
names as the variables.

We can now calculate the weighting matrix:
. mata:

mata (type end to exit)
: W = (E + E’) :/ g

: end

Finally, we post the result to Sp. We create column vector id containing 1, 2, . . . , 196 because
row/column 1 of W corresponds to country code 1, row/column 2 of W corresponds to country code 2,
and so on.

. mata:
mata (type end to exit)

: id = 1::196

: end

. spmatrix spfrommata Wt = W id

We could now use exports.dta and fit a model using Wt to create spatial lags.

References
Badinger, H., and P. H. Egger. 2008. Intra- and inter-industry productivity spillovers in OECD manu-

facturing: A spatial econometric perspective. Working paper 2181, CESifo Group, Munich, Germany.
http://www.cesifo-group.de/DocDL/cesifo1 wp2181.pdf.

Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428–429.

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix create — Create standard weighting matrices
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Title

spmatrix summarize — Summarize weighting matrix stored in memory

Description Quick start Menu Syntax
Option Remarks and examples Stored results Also see

Description
spmatrix summarize reports the summary values of the elements of a weighting matrix.

Quick start
Display summary statistics for spatial weighting matrix Wd

spmatrix summarize Wd

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix summarize spmatname

[
, generate(newvar)

]
spmatname is the name of a weighting matrix.

Option
generate(newvar) adds new variable newvar to the data. It contains the number of neighbors for

each observation. generate() may be specified only when spmatrix summarize or spmatrix
dir report that the matrix is a contiguity matrix. See [SP] Glossary for a definition of ex post
contiguity matrices.
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Remarks and examples
We will again use the data from [SP] intro 7. spmatrix summarize produces output such as

. use tl_2016_us_county

. keep if STATEFP=="48"
(output omitted )

. spmatrix create idistance Wd

. spmatrix create contiguity Wc

. spmatrix summarize Wd

Weighting matrix Wd

Type idistance
Normalization spectral

Dimension 254 x 254
Elements

minimum 0
minimum > 0 .0008812
mean .0038122
max .0512134

. spmatrix summarize Wc

Weighting matrix Wc

Type contiguity
Normalization spectral

Dimension 254 x 254
Elements

minimum 0
minimum > 0 .1522758
mean .0034177
max .1522758

Neighbors
minimum 1
mean 5.700787
maximum 9

When a matrix is a contiguity matrix, a summary of the number of neighbors is added to the
output. By contiguity matrix, we mean a contiguity matrix in the sense we describe below. A matrix
created by spmatrix create contiguity does not necessarily qualify, and matrices created by
other commands sometimes do.

We call this definition ex post contiguity. Such matrices 1) are symmetric and 2) have all elements
equal to one of two values: 0 or c. In this case, c happens to be 0.1522758, but that is not important.
What is important is that there are two values, one zero and the other nonzero. Spatial weighting
matrices do not have a scale. If there are only two values, the matrix can be fully described as
containing values such that “there is spillover” or “there is no spillover”. Those with spillover are
what we call neighbors.

Matrices created by spmatrix create contiguity are not necessarily ex post contiguity matrices.
For instance, typing

. spmatrix create contiguity W2, first second(.5)

would create a matrix containing three values—0, 0.05, and 1—before normalization and different
values after normalization. If we wanted to count neighbors, we would need to count first- and
second-order neighbors separately. Meanwhile, typing

. spmatrix create contiguity W1
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and

. spmatrix create contiguity W12, first second

would produce ex post contiguity matrices.

spmatrix dir uses the word contiguity in the same way as spmatrix summarize, namely, ex
post contiguity:

. spmatrix dir

Weighting matrix name N x N Type Normalization

Wc 254 x 254 contiguity spectral
Wd 254 x 254 idistance spectral

Matrix Wc is an ex post contiguity matrix regardless of how it was created.

Normalization does not interfere with ex post contiguity. Normalization is performed on a spatial
weighting matrix by dividing its elements by a constant, and thus a matrix that starts out with two distinct
values still has two distinct values after normalization. Row normalization—normalize(row)—works
differently. Each row is divided by potentially a different constant and thus does not satisfy the definition
of ex post contiguity.

Stored results
spmatrix summarize stores the following in r():

Scalars
r(n) number of rows (columns)
r(min) elements: minimum value
r(mean) elements: mean value
r(min0) elements: minimum of elements>0

r(max) elements: maximum value
Macros

r(type) type of matrix: contiguity, idistance, or custom
r(normalization) type of normalization

If r(type) = contiguity, also stored are

Scalars
r(n min) neighbors: minimum value
r(n mean) neighbors: mean value
r(n max) neighbors: maximum values

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] intro — Introduction to spatial data and SAR models



Title

spmatrix use — Load spatial weighting matrix from file

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
spmatrix use loads the spatial weighting matrix previously saved using spmatrix save.

Quick start
Use spatial weighting matrix W stored in file wme.stswm

spmatrix use W using wme.stswm

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix use spmatname using filename

[
, replace

]
spmatname is a weighting matrix name.

filename is the name of a file with or without the .stswm suffix.

Option
replace specifies that weighting matrix spmatname be overwritten if it already exists.

Remarks and examples
See [SP] spmatrix save for an example of spmatrix use.

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix import — Import weighting matrix from text file

[SP] spmatrix save — Save spatial weighting matrix to file

[SP] intro — Introduction to spatial data and SAR models
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Title

spmatrix userdefined — Create custom weighting matrix

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
spmatrix userdefined is one way of creating custom spatial weighting matrices. The function

you write need not be based on coordinate locations.

Quick start
Having written the Mata function SinvD(), create new spatial weighting matrix C with default spectral

normalization
spmatrix userdefined C = SinvD(_CX _CY)

Menu
Statistics > Spatial autoregressive models

Syntax
spmatrix userdefined Wmatname = fcnname(varlist)

[
if
] [

in
] [

, options
]

Wmatname is a weighting matrix name, such as W.

fcnname is the name of a Mata function you have written, such as SinvD or Awind.

1. fcnname must start with the letter S or A, which indicates whether the function produces a
symmetric or an asymmetric result.

2. fcnname receives two row-vector arguments and returns a scalar result. For example,

function SinvD(v1, v2)
{

return(1/sqrt((v1-v2)*(v1-v2)’))
}

Function SinvD() starts with S because for all x and y, SinvD(x, y) = SinvD(y, x).

options Description

normalize(normalize) type of normalization; default is normalize(spectral)

replace replace existing weighting matrix
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Options

normalize(normalize) specifies how the resulting matrix is to be scaled. normalize(spectral) is
the default. normalize(minmax), normalize(row), and normalize(none) are also allowed.
See [SP] spmatrix create for full details of the option and Choosing weighting matrices and their
normalization in [SP] spregress for details about normalization.

replace specifies to overwrite matrix spmatname if it already exists.

Remarks and examples
Sp provides five ways to create spatial weighting matrices:

1. [SP] spmatrix create creates standard weighting matrices. No programming and little effort
is required.

2. [SP] spmatrix import imports weighting matrices produced by others.

3. [SP] spmatrix fromdata lets you create custom weighting matrices without Mata program-
ming.

4. [SP] spmatrix userdefined lets you create custom weighting matrices. Some Mata program-
ming is required.

5. [SP] spmatrix spfrommata leaves it to you to create matrices from start to finish, which you
can do in Mata with or without programs. Once created, you use spmatrix spfrommata
to store it.

This manual entry concerns method 4. Remarks are presented under the following headings:

Overview
Sfcnname() versus Afcnname()
Programming style
Advanced programs
Mixed approaches

Overview

Consider a cross-sectional spatial dataset of N observations. Each observation contains data on a
place. We say place, but it need not be a physical place such as census block 060670011011085, zip
code 77845, city College Station, county Brazos, state Texas, or country United States. It could be a
network node or anything else.

A weighting matrix W is N ×N . Its elements Wi,j record the potential spillover from place j
to i. For simplicity and without loss of generality, we will assume that places i and j correspond to
observations i and j.

spmatrix userdefined handles situations when Wi,j is a function of vi and vj , where v is
a vector. Wi,j could be a function of all the variables in observations i and j, but probably it is a
function of a subset of them. For instance, if the spatial weighting matrix were based on locations,
Wi,j would be a function of variables CX and CY in the two observations. Or if the weighting
were based on industry output, it might be a function of variables f1, f2, . . . , f12 in observations
i and j. The variables might contain the fraction of output within industrial group and so sum to 1,
or they might record total dollar output.
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Whatever the relevant variables are, let’s just call them varlist. Then

vi = row vector of values of varlist in observation i

vj = row vector of values of varlist in observation j

The formula for the elements of a spatial weighting matrix is

Wi,j = 0 if i = j

f(vi, vj) otherwise

spmatrix userdefined handles this problem when you type

spmatrix userdefined Wmatname = fcnname(varlist)

The mapping from the command’s syntax to the mathematics is

Syntax element Corresponding mathematical element

Wmatname W
fcnname() f(·)
varlist vi, vj

Here is an example:

. mata:
mata (type end to exit)

: function SinvD(vi, vj)
> {
> return (1/sqrt( (vi-vj)*(vi-vj)’ ) )
> }

: end

. spmatrix userdefined W = SinvD(_CX _CY)

The above produces the matrix that could also be created by typing

. spmatrix create idistance W

Here is an example that spmatrix create cannot duplicate:

. mata:
mata (type end to exit)

: function Sdistance(vi, vj)
> {
> return ( sqrt( (vi-vj)*(vi-vj)’ ) )
> }

: end

. spmatrix userdefined W = Sdistance(f*)

The above code calculates the distance between the f* variables for all i and j. The “farther” apart
industrial output shares are, the greater is the incentive for places i and j to engage in trade.
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Sfcnname() versus Afcnname()

The Mata functions you write start with the letter S when

Sfcnname(v i, v j) == Sfcnname(v j, v i)

Commutative functions produce symmetric matrices. spmatrix userdefined runs faster in this
case because when it calls the function to calculate Wi,j , it also stores the result in Wj,i.

If the function is not commutative, it produces asymmetric matrices. Name such functions
Afcnname(). Then, the function will be called separately to calculate Wi,j and Wj,i.

Programming style

We wrote inverse distance as

. mata:
: program SinvD(vi, vj)
> {
> return( 1/sqrt( (vi-vj)*(vi-vj)’ ) )
> }
: end

There are other programming styles we could have used. The above used vector and matrix notation.
Here is the same calculation written even more densely:

: program SinvD(vi, vj)
> {
> delta = vi - vj
> return( 1/sqrt( delta*delta’ ) )
> }
: end

And here is the calculation again in more traditional scalar notation:

. mata:
: program SinvD(vi, vj)
> {
> delta_x = vi[1] - vj[1]
> delta_y = vi[2] - vj[2]
> return( 1/sqrt(delta_x^2 + delta_y^2) )
> }
: end

You can write code in whichever style you find easiest.

Advanced programs

The Mata program you write is not required to be simple. If you were an epidemiologist, you
could write a program that accounted for prevailing wind direction so that communicable diseases
were more likely to spillover when location j is west of i and j’s prevailing winds are out of the
west. The program would look something like this:
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: mata
: program Awind(vi, vj)
> {
> locj = (vj[1], vj[2])
> loci = (vi[1], vi[2])
> windfromi = vi[3] // 1=N, 2=E, 3=S, 4=W
>
> j_rel_i = ... // 1 if j N of i,
> // 2 if j E of i,
> // ..
>
> if (j_rel_i == windfrom) c = 1.5
> else c = 0.5
>
> return(SinvD(loci, locj)*c)
> }
: end

We omitted lines, and if we were going to use this approach, we would further complicate the
program by considering the directions N, NE, E, SE, S, SW, W, and NW.

However complicated the code might be, the weighting matrix would be calculated by typing

. spmatrix userdefined Wadj = Awind(_CX _CY winddir)

Wadj would contain a wind-adjusted distance matrix, which will also be spectral normalized.

And then, we would be tempted to convert Wadj to be a wind-adjusted distance matrix for areas
that bordered on each other. Let us show you how.

Mixed approaches

You do not have to calculate everything in your program. Let’s imagine that in the above example,
the researcher only wants to use the wind-adjusted calculation when i and j are first-order neighbors.
Otherwise, the spillover is to be 0. We can use the same approach explained in more detail in
[SP] spmatrix create:

1. Create the wind-adjusted matrix as shown above, but do not normalize it.

2. Create the first-order neighbor matrix using spmatrix create contiguity, also unnor-
malized.

3. Multiply the matrices element by element in Mata.

4. Store the Mata result in Sp.

The code is

. // --------------------------- create the matrices separately ---

. spmatrix userdefined Wadj = Awind(_CX _CY winddir), normalize(none)

. spmatrix create contiguity C, first normalize(none)

.

.

. // -------------------------------------- load them into Mata ---

. spmatrix matafromsp W1 v = Wadj

. spmatrix matafromsp W2 v = C

.

.

. // --------------------------multiply them element by element ---

. mata: W3 = W1 :* W2

.
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. // -------------------------------------save the result in Sp ---

.

. spmatrix spfrommata Wfinal = W3 v

.

. // --------------------------------------------------clean up ---

.

. mata: mata drop W1 W2 W3

. spmatrix drop Wadj

. spmatrix drop C

.

. // ----------------------------------------------final result ---

. spmatrix dir

Weighting matrix name N x N Type Normalization

Wfinal 254 x 254 custom spectral

In the above, :* (colon-asterisk) is Mata’s element-by-element multiply function. See [SP] spmatrix
create for more explanation.

Also see
[SP] spmatrix — Categorical guide to the spmatrix command

[SP] spmatrix spfrommata — Copy Mata matrix to Sp

[SP] intro — Introduction to spatial data and SAR models

Mata Reference Manual



Title

spregress — Spatial autoregressive models

Description Quick start Menu
Syntax Options for spregress, gs2sls Options for spregress, ml
Remarks and examples Stored results Methods and formulas
References Also see

Description

spregress is the equivalent of regress for spatial data. spregress fits spatial autoregressive
(SAR) models, also known as simultaneous autoregressive models. If you have not read [SP] intro 1–
[SP] intro 8, you should do so before using spregress.

To use spregress, your data must be Sp data. See [SP] intro 3 for instructions on how to prepare
your data.

To specify spatial lags, you will need to have one or more spatial weighting matrices. See [SP] intro 2
and [SP] spmatrix for an explanation of the types of weighting matrices and how to create them.

Quick start
Spatial autoregressive model of y on x1 and x2 with a spatial lag of y specified by the spatial

weighting matrix W using the GS2SLS estimator
spregress y x1 x2, gs2sls dvarlag(W)

Add a spatially lagged error term also specified by W

spregress y x1 x2, gs2sls dvarlag(W) errorlag(W)

Add spatial lags of covariates x1 and x2

spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2)

Add a higher-order spatial lag of y specified by another weighting matrix M

spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///
dvarlag(M)

Use the ML estimator and include spatial lags of y, x1, x2 and the error term specified by W

spregress y x1 x2, ml dvarlag(W) errorlag(W) ivarlag(W: x1 x2)

Add an additional spatial lag of the covariates specified by the matrix M

spregress y x1 x2, ml dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///
ivarlag(M: x1 x2)

Same model fit by GS2SLS

spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///
ivarlag(M: x1 x2)

Model fit by GS2SLS with spatial lags of y and of the error term and treating the errors as heteroskedastic
spregress y x1 x2, gs2sls heteroskedastic dvarlag(W) errorlag(W)
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Menu
Statistics > Spatial autoregressive models

Syntax
Generalized spatial two-stage least squares

spregress depvar
[

indepvars
] [

if
] [

in
]
, gs2sls

[
gs2sls options

]
Maximum likelihood

spregress depvar
[

indepvars
] [

if
] [

in
]
, ml

[
ml options

]
gs2sls options Description

Model
∗gs2sls use generalized spatial two-stage least-squares estimator
dvarlag(spmatname) spatially lagged dependent variable; repeatable
errorlag(spmatname) spatially lagged errors; repeatable
ivarlag(spmatname : varlist) spatially lagged independent variables; repeatable
noconstant suppress constant term
heteroskedastic treat errors as heteroskedastic
force allow estimation when estimation sample is a subset of the

sample used to create the spatial weighting matrix
impower(#) order of instrumental-variable approximation

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics
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ml options Description

Model
∗ml use maximum likelihood estimator
dvarlag(spmatname) spatially lagged dependent variable; not repeatable
errorlag(spmatname) spatially lagged errors; not repeatable
ivarlag(spmatname : varlist) spatially lagged independent variables; repeatable
noconstant suppress constant term
constraints(constraints) apply specified linear constraints
force allow estimation when estimation sample is a subset of the

sample used to create the spatial weighting matrix
gridsearch(#) resolution of the initial-value search grid; seldom used

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗ You must specify either gs2sls or ml.
indepvars and varlist specified in ivarlag() may contain factor variables; see [U] 11.4.3 Factor variables.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for spregress, gs2sls

� � �
Model �

gs2sls requests that the generalized spatial two-stage least-squares estimator be used.

dvarlag(spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent
variable. This option is repeatable to allow higher-order models. By default, no spatial lags of the
dependent variable are included.

errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error.
This option is repeatable to allow higher-order models. By default, no spatially lagged errors are
included.

ivarlag(spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables
that define spatial lags of the variables. This option is repeatable to allow spatial lags created from
different matrices. By default, no spatial lags of the independent variables are included.

noconstant; see [R] estimation options.

heteroskedastic specifies that the estimator treat the errors as heteroskedastic instead of ho-
moskedastic, which is the default; see Methods and formulas .
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force requests that estimation be done when the estimation sample is a proper subset of the sample
used to create the spatial weighting matrices. The default is to refuse to fit the model. Weighting
matrices potentially connect all the spatial units. When the estimation sample is a subset of
this space, the spatial connections differ and spillover effects can be altered. In addition, the
normalization of the weighting matrix differs from what it would have been had the matrix been
normalized over the estimation sample. The better alternative to force is first to understand the
spatial space of the estimation sample and, if it is sensible, then create new weighting matrices for
it. See [SP] spmatrix and Missing values, dropped observations, and the W matrix in [SP] intro 2.

impower(#) specifies the order of an instrumental-variable approximation used in fitting the model.
The derivation of the estimator involves a product of # matrices. Increasing # may improve the
precision of the estimation and will not cause harm, but will require more computer time. The
default is impower(2). See Methods and formulas for additional details on impower(#).

� � �
Reporting �

level(#); see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimization options: iterate(#),
[
no
]
log, trace, gradient, showstep, hessian,

showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), and nonrtolerance;
see [M-5] optimize( ).

The following option is available with spregress, gs2sls but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for spregress, ml

� � �
Model �

ml requests that the maximum likelihood estimator be used.

dvarlag(spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent
variable. Only one dvarlag() option may be specified. By default, no spatial lags of the dependent
variable are included.

errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. Only
one errorlag() option may be specified. By default, no spatially lagged errors are included.

ivarlag(spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables
that define spatial lags of the variables. This option is repeatable to allow spatial lags created from
different matrices. By default, no spatial lags of the independent variables are included.

noconstant; see [R] estimation options.

constraints(constraints); see [R] estimation options.

force requests that estimation be done when the estimation sample is a proper subset of the sample
used to create the spatial weighting matrices. The default is to refuse to fit the model. This is the
same force option described for use with spregress, gs2sls.
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gridsearch(#) specifies the resolution of the initial-value search grid. The default is
gridsearch(0.1). You may specify any number between 0.001 and 0.1 inclusive.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim) and that are robust to nonnormal independent and identically distributed
(i.i.d.) disturbance (robust). See [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] maximize.

The following option is available with spregress, ml but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Choosing weighting matrices and their normalization

Weighting matrices
Normalization of weighting matrices
Direct and indirect effects and normalization

Examples

Introduction
See [SP] intro 1–[SP] intro 8 for an overview of SAR models. The introductions also describe, in

detail and with examples, how to prepare your data for analysis with spregress and the other Sp
estimation commands.

Datasets for SAR models contain observations on geographical areas or other units; all that is
required is that there be some measure of distance that distinguishes which units are close to each
other. The spregress command models cross-sectional data. It requires each observation to represent
one unique spatial unit. For data with multiple observations on each unit—namely, panel data—see
[SP] spxtregress.

To fit models with endogenous regressors for cross-sectional data, see [SP] spivregress.

spregress, gs2sls uses a generalized method of moments estimator known as generalized
spatial two-stage least squares (GS2SLS). spregress, ml uses a maximum likelihood (ML) estimator.
For normally distributed data, ml is theoretically more efficient than gs2sls, but when data are i.i.d.,
spregress, gs2sls produces results that are not appreciably different from those of spregress,
ml. See Methods and formulas .
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The vce(robust) variance estimator can be used with spregress, ml to produce standard
errors that are robust to nonnormal i.i.d. errors; see [R] vce option. spregress, ml can produce
inconsistent estimates with data that are not identically distributed.

spregress, gs2sls has a heteroskedastic option that relaxes the assumption that errors are
i.i.d. With the heteroskedastic option, errors only need to be independent; see example 2.

Choosing weighting matrices and their normalization

Weighting matrices

It is important to understand that the choice of weighting matrices is part of your SAR model
specification.

The choice of weighting matrix should be based on the formulation of your research question.
Does it make sense to define spatial lags based on only neighboring areas? Or do you want to model
effects across distances that decrease with increasing distance? Or do you want to model spatial lags
based on some measure in your data, for example, the value of imports and exports between countries?

The Sp system has the spmatrix create command, which can create contiguity matrices and
inverse-distance matrices. For instance, typing

spmatrix create contiguity W

creates a symmetric weighting matrix, W, that has the same positive weight for contiguous spatial
units and, by default, a zero weight for all other units, with an option to include nonzero weights for
second-order neighbors (neighbors of neighbors). There are also Sp commands for creating custom
weighting matrices. See [SP] intro 2 and [SP] spmatrix for details.

Both spregress, gs2sls and spregress, ml can fit models with multiple spatial lags of the
independent variables. You can specify multiple ivarlag() options with different spatial weighting
matrices for the same or different variables.

With the gs2sls estimator, you can also include dependent-variable spatial lags and autoregressive
error terms specified by two or more spatial weighting matrices. You do this by specifying multiple
dvarlag() options or multiple errorlag() options. Multiple weighting matrices can be viewed as
providing a “higher-order” approximation to the true dependent variable or error spatial dependence,
and they allow testing of the formulation of the spatial lag.

With the ml estimator, you can include only one dvarlag() and one errorlag(), but each can
have its own, possibly different, spatial weighting matrix.

Normalization of weighting matrices

spmatrix create by default normalizes the weighting matrix it creates by dividing the entries by
the absolute value of the largest eigenvalue of the matrix; this is the normalize(spectral) option.
The normalize(minmax) option scales the matrix using either the maximum of column sums or the
maximum of the row sums, whichever is smaller. The normalize(row) option scales each row of
the matrix by its row sum, so that each row sums to one.

You may have also created your own weighting matrix with good properties for the estimator. In
this case, you may want to leave the matrix unnormalized using the normalize(none) option.

What are the differences among the three normalizations?
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There are two reasons to normalize: interpretability of the spatial lag coefficients and estimability.

normalize(spectral) and normalize(minmax) produce matrices that differ from the original
only by a scalar multiple. This not true for normalize(row), so let’s discuss it first.

Row normalization, normalize(row), has a long history and is popular in applied work. Row
normalization can potentially multiply different rows by different scalars, and if it does so, that changes
the model specification given by the weighting matrix. For example, if you start with a contiguity
matrix, and the first row has two 1s and the second row has four 1s, then after row normalization, the
first row contains two halves and the second four quarters. This amounts to spreading the potential
spillover effects of each spatial unit equally across its neighbors, whereas the original unnormalized
contiguity matrix modeled equal potential spillover effects for each neighbor regardless of the number
of neighbors. normalize(row) also transforms a symmetric contiguity matrix into an asymmetric
matrix. Row normalization should be used when the spatial lags it specifies are appropriate for your
research question and when the lags of the original matrix are not.

When the unnormalized matrix has been formulated to match your research question, there is the
choice of normalize(spectral), normalize(minmax), or normalize(none). The choice affects
the interpretation of the spatial lag coefficients.

Because dependent-variable spatial lags enter the model as λWy, covariate lags enter as γWx,
and the autoregressive errors are modeled using ρWe, we would expect the spatial lag coefficient
estimates to scale inversely by the scale of W. If W is scaled by c to become W/c, then λ̂ becomes
cλ̂, γ̂ becomes cγ̂, and ρ̂ becomes cρ̂.

For example, if an unnormalized matrix results in an estimation of ρ̂unnorm = 0.1, and if the
matrix is then scaled by c = 5, the estimation using the normalized matrix would yield ρ̂norm = 0.5.
So what we want for the interpretation of the parameter estimate is a scaling where ρ̂norm is typically
in the range −1 to 1. Recall from the discussion in [SP] intro 2 and [SP] intro 7 that ρ is not a true
correlation, only something like a correlation. There is no guarantee that the estimate for it will be
between −1 and 1. In an explosive model, the estimate will be outside this range.

The scaling factor c from normalize(spectral) is always less than or equal to the scaling
factor from normalize(minmax). So for the same model run with different normalizations, minmax
will result in an estimate ρ̂minmax that is larger than ρ̂spectral, the estimate resulting from using
spectral. So the spectral normalization is more likely to produce estimates of ρ in the range −1
to 1.

The second reason for normalization is estimability. The scaling from normalize(spectral)
guarantees nonsingularity of certain terms in the model estimation; see Methods and formulas . The
bigger scaling of normalize(minmax), of course, also guarantees nonsingularity, but it is a bigger
scaling than necessary.

Row normalization also guarantees nonsingularity, but because it is not a scalar multiple of the
unnormalized matrix, we cannot in general say how it will change the spatial lag coefficient estimates
relative to the estimates produced using the unnormalized matrix. Row normalization, as we said
earlier, results in a different model specification.

You may have created your own weighting matrix, and you know that based on its properties and
the form of the estimator that it will not yield singularities. In this case, you need not normalize.
If an unnormalized matrix, however, causes a singularity in the estimation, you may get “wrong”
estimation results, that is, ones differing by other than a scale factor from those using a spectral or
min–max normalization.

spmatrix create and other Sp matrix commands use spectral normalization by default because it is
the smallest scaling that in general guarantees nonsingularity without changing the model specification
of the original matrix. However, normalize(spectral) is computationally expensive. It can take
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a long time for large matrices. If this is a consideration, normalize(minmax) is faster to compute
and will yield results that are close to those of normalize(spectral).

Direct and indirect effects and normalization

Direct and indirect, also called spillover, effects were discussed in [SP] intro 1 and [SP] intro 2.
In example 1 below, we show how to get these estimates using the estat impact command.

The scaling property between the spectral and min–max normalizations and the spatial lag coefficient
estimates that we described in the previous section implies that the estimates of the direct and indirect
effects should be scale invariant. spregress, ml has this scaling property and gives scale-invariant
effects. When there is no autoregressive error term, spregress, gs2sls also has this scaling property
and gives scale-invariant effects. When there is an autoregressive error term, however, the GS2SLS
estimator is only asymptotically scale invariant.

Practically speaking, this means when you use estat impact to look at the direct and indirect effects
of the covariates after spregress, ml in all cases, or spregress, gs2sls with no errorlag(),
you will get results differing only by numerical precision whether you used normalize(spectral),
normalize(minmax), or an unnormalized matrix with sound numerical properties.

The GS2SLS estimator, however, is a nonlinear function of the weighting matrix when an autoregres-
sive error term is included. For this nonlinear GS2SLS estimator, models are well defined only if the
coefficient on the spatial lag of the dependent variable and the coefficient on the spatially lagged error
lie within certain intervals. Normalizing the weighting matrix by the spectral normalization or the
row normalization puts the estimates in these intervals when there are no higher-order lags. Because
min–max normalization is a close approximation to spectral normalization, the resulting estimates
should be close.

Again, practically speaking, this means that even though normalize(spectral) and normal-
ize(minmax) both simply multiply the original matrix by a scalar, and the scalars are similar in
size, estat impact may give slightly different estimates depending on the normalization for the
GS2SLS estimator with an autoregressive error term. This is especially the case in small samples, and
the differences will decrease as the sample size increases.

Of course, the normalize(row) normalization will yield different estimates of effects compared
with the other normalizations or with no normalization because row normalization results in a different
model specification.

In higher-order models with GS2SLS and autoregressive error terms, the estimator is a nonlinear
function of multiple weighting matrices. The sets of spatial lag coefficients for which the models are
well defined are multidimensional regions, but the same normalizations are used, and the tradeoffs
mentioned above still apply.

Examples

Example 1: A spatial autoregressive model

We want to model the homicide rate in counties in southern states of the United States.
homicide1990.dta contains hrate, the county-level homicide rate per year per 100,000 per-
sons; ln population, the logarithm of the county population; ln pdensity, the logarithm of the
population density; and gini, the Gini coefficient for the county, a measure of income inequality
where larger values represent more inequality (Gini 1909). The data are an extract of the data originally
used by Messner et al. (2000); see Britt (1994) for a literature review of the topic.
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We used spshape2dta to create homicide1990.dta and homicide1990 shp.dta. The latter
file contains the boundary coordinates for U.S. southern counties. See [SP] intro 4, [SP] intro 7,
[SP] spshape2dta, and [SP] spset.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory to
spset the data, we first save both homicide1990.dta and homicide1990 shp.dta to our working
directory by using the copy command. We then load the data and type spset to see the Sp settings.

. copy http://www.stata-press.com/data/r15/homicide1990.dta .

. copy http://www.stata-press.com/data/r15/homicide1990_shp.dta .

. use homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)

. spset
Sp dataset homicide1990.dta

data: cross sectional
spatial-unit id: _ID

coordinates: _CX, _CY (planar)
linked shapefile: homicide1990_shp.dta

We plot the homicide rate on a map of the counties by using the grmap command; see [SP] grmap.
Figure 1 is the result.

. grmap hrate

(13.039936,64.260999]
(8.22122,13.039936]
(4.803606,8.22122]
[0,4.803606]

Figure 1: Homicide rate in 1990 for southern U.S. counties

The homicide rate appears to be spatially dependent because the high homicide-rate counties appear
to be clustered together. As described in [SP] intro 7, we can fit an ordinary linear regression and
test whether the errors are spatially correlated using the Moran test.

To conduct the test, we need a spatial weighting matrix. We will create one that puts the same
positive weight on contiguous counties and a zero weight on all other counties—a matrix known as
a contiguity matrix. We will use the default spectral normalization for the matrix. See [SP] intro 2,
[SP] spmatrix create, and Choosing weighting matrices and their normalization above for details. We
type

. spmatrix create contiguity W

To create W, spmatrix used the coordinate data in homicide1990 shp.dta behind the scenes.
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Now, we run regress and then estat moran.

. regress hrate

Source SS df MS Number of obs = 1,412
F(0, 1411) = 0.00

Model 0 0 . Prob > F = .
Residual 69908.59 1,411 49.5454217 R-squared = 0.0000

Adj R-squared = 0.0000
Total 69908.59 1,411 49.5454217 Root MSE = 7.0389

hrate Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 9.549293 .1873201 50.98 0.000 9.181837 9.916749

. estat moran, errorlag(W)

Moran test for spatial dependence
Ho: error is i.i.d.
Errorlags: W

chi2(1) = 265.84
Prob > chi2 = 0.0000

The test reports that we can reject that the errors are i.i.d. and confirms our visual appraisal of the
data.

To model the homicide rate hrate, we will use the GS2SLS estimator and specify the option
dvarlag(W) to fit a model with a spatial lag of hrate based on W.

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W)
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(4) = 328.40

Prob > chi2 = 0.0000
Pseudo R2 = 0.1754

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n .195714 .2654999 0.74 0.461 -.3246563 .7160843
ln_pdensity 1.060728 .2303736 4.60 0.000 .6092043 1.512252

gini 77.10293 5.330446 14.46 0.000 66.65544 87.55041
_cons -28.79865 2.945944 -9.78 0.000 -34.57259 -23.02471

W
hrate .2270154 .0607158 3.74 0.000 .1080146 .3460161

Wald test of spatial terms: chi2(1) = 13.98 Prob > chi2 = 0.0002

The estimated coefficient on the spatial lag of hrate is 0.23, indicating positive correlation between
the homicide rate in one county and the homicide rate in a neighboring county.

As we discussed in [SP] intro 7 the coefficients cannot be interpreted as they are in standard
regression models. We can use estat impact to interpret results, but first we will illustrate how to
fit other SAR models.
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We now include a spatial autoregressive error term by adding errorlag(W).

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Estimating rho using 2SLS residuals:

initial: GMM criterion = 16.837319
alternative: GMM criterion = 10.842722
rescale: GMM criterion = 1.1522691
Iteration 0: GMM criterion = 1.1522691
Iteration 1: GMM criterion = 1.1386586
Iteration 2: GMM criterion = 1.1386578
Iteration 3: GMM criterion = 1.1386578

Estimating rho using GS2SLS residuals:

Iteration 0: GMM criterion = .02771702
Iteration 1: GMM criterion = .0262056
Iteration 2: GMM criterion = .02606375
Iteration 3: GMM criterion = .02601873
Iteration 4: GMM criterion = .02601004
Iteration 5: GMM criterion = .02600789
Iteration 6: GMM criterion = .02600742
Iteration 7: GMM criterion = .02600731
Iteration 8: GMM criterion = .02600729

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(4) = 276.72

Prob > chi2 = 0.0000
Pseudo R2 = 0.1736

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n .1034997 .2810656 0.37 0.713 -.4473787 .6543781
ln_pdensity 1.081404 .2520505 4.29 0.000 .5873939 1.575414

gini 82.0687 5.658372 14.50 0.000 70.9785 93.1589
_cons -29.63033 3.070332 -9.65 0.000 -35.64807 -23.61259

W
hrate .1937419 .0654322 2.96 0.003 .0654972 .3219867

e.hrate .3555443 .0786465 4.52 0.000 .2014 .5096887

Wald test of spatial terms: chi2(2) = 226.21 Prob > chi2 = 0.0000

. estimates store gs2sls_model

Note that when an autoregressive error term is included, the estimation procedure becomes an iterative
generalized method of moments procedure.
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We keep the SAR error term e.hrate in our model and add terms representing spatial lags of the
independent variables by using ivarlag(W: . . . ).

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
> ivarlag(W: ln_population ln_pdensity gini)

(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

(output omitted )
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(7) = 394.61

Prob > chi2 = 0.0000
Pseudo R2 = 0.1866

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n -.3489221 .3050009 -1.14 0.253 -.9467129 .2488687
ln_pdensity 1.210485 .3015442 4.01 0.000 .6194695 1.801501

gini 89.17773 6.454876 13.82 0.000 76.5264 101.8291
_cons -28.80191 3.178656 -9.06 0.000 -35.03196 -22.57186

W
ln_populat~n 1.918436 .4598247 4.17 0.000 1.017196 2.819676
ln_pdensity -1.260725 .5326521 -2.37 0.018 -2.304704 -.2167459

gini -43.4606 8.607378 -5.05 0.000 -60.33075 -26.59045
hrate .5071798 .1139532 4.45 0.000 .2838356 .730524

e.hrate -.3135187 .1396411 -2.25 0.025 -.5872103 -.0398271

Wald test of spatial terms: chi2(5) = 61.81 Prob > chi2 = 0.0000

The coefficients for the lagged variables and the autoregressive error term are significant.

We are often unsure which spatial weighting matrix should be used to compute spatial lags. Many
researchers use a spatial weighting matrix whose (i, j)th element is the inverse of the distance between
units i and j. This inverse-distance matrix has many nice properties and a long history in spatial
analysis; see [SP] spmatrix and Choosing weighting matrices and their normalization above.

With the GS2SLS estimator, we can include spatial lags using two spatial weighting matrices, in
which case we might view them as together providing a “higher-order” approximation to the true
spatial process. We had in our model a spatial lag of the dependent variable using a contiguity matrix
alone. Now, we will include that and another lag of the dependent variable using an inverse-distance
matrix.

We create the inverse-distance matrix M with the default spectral normalization and use spmatrix
dir to list our Sp matrices.

. spmatrix create idistance M

. spmatrix dir

Weighting matrix name N x N Type Normalization

M 1412 x 1412 idistance spectral
W 1412 x 1412 contiguity spectral
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Now, we add dvarlag(M) to our model.

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
> ivarlag(W: ln_population ln_pdensity gini) dvarlag(M)

(1412 observations)
(1412 observations (places) used)
(weighting matrices define 1412 places)

(output omitted )
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(8) = 1323.43

Prob > chi2 = 0.0000
Pseudo R2 = 0.1121

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n -.6245268 .2830848 -2.21 0.027 -1.179363 -.0696908
ln_pdensity 1.266528 .2831372 4.47 0.000 .7115889 1.821466

gini 69.30288 5.64501 12.28 0.000 58.23887 80.3669
_cons -19.77152 2.753498 -7.18 0.000 -25.16827 -14.37476

W
ln_populat~n 2.590823 .3806543 6.81 0.000 1.844754 3.336892
ln_pdensity -2.63202 .4261689 -6.18 0.000 -3.467296 -1.796744

gini -59.75958 6.438899 -9.28 0.000 -72.37959 -47.13957
hrate .9269411 .0492867 18.81 0.000 .830341 1.023541

e.hrate -.8531151 .0914652 -9.33 0.000 -1.032384 -.6738465

M
hrate .2289787 .0755038 3.03 0.002 .080994 .3769634

Wald test of spatial terms: chi2(6) = 676.93 Prob > chi2 = 0.0000

The hrate lag specified by M is significant in addition to the hrate lag specified by W. We may well
want to include both in our final model.

We could repeat the process, fitting a model with errorlag(M) in addition to errorlag(W), and
another model with ivarlag(M: . . . ) in addition to ivarlag(W: . . . ). One issue is that we have
“only” N = 1412 spatial units (observations) in this example. To fit higher-order lags, one needs
lots of spatial units, so we need to exercise judgment just as in any other model-building process.
In our final model, we keep a single weighting matrix for each term. We use W for dvarlag() and
ivarlag(), but M for errorlag().
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. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(M)
> ivarlag(W: ln_population ln_pdensity gini)

(1412 observations)
(1412 observations (places) used)
(weighting matrices define 1412 places)

(output omitted )
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(7) = 357.06

Prob > chi2 = 0.0000
Pseudo R2 = 0.1241

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n -.0475582 .3295548 -0.14 0.885 -.6934737 .5983573
ln_pdensity .8989538 .3211524 2.80 0.005 .2695066 1.528401

gini 89.91969 6.409286 14.03 0.000 77.35772 102.4817
_cons -32.21599 3.590014 -8.97 0.000 -39.25229 -25.17969

W
ln_populat~n 2.679931 .5218152 5.14 0.000 1.657192 3.702669
ln_pdensity -2.468953 .6209688 -3.98 0.000 -3.686029 -1.251876

gini -57.38302 9.418108 -6.09 0.000 -75.84217 -38.92387
hrate .6818566 .1141573 5.97 0.000 .4581125 .9056007

M
e.hrate .9533048 .1324392 7.20 0.000 .6937289 1.212881

Wald test of spatial terms: chi2(5) = 169.23 Prob > chi2 = 0.0000

. estimates store model_ex1_last

In [SP] intro 7, we cautioned that interpreting covariate effects based on their coefficient estimates
is difficult when there is a dependent-variable lag or an independent-variable lag in the model.

The spatial lag of hrate modifies the covariate effects. A change in gini in a county changes the
conditional mean of hrate in that county, and that change in hrate changes the conditional mean
of hrate in all contiguous counties. The change in hrate in these counties then affects hrate in all
counties contiguous to them, and so on, until all counties linked by a chain of contiguous counties
are affected.

The effects of a covariate vary over the counties because of how the spatial lag of hrate modifies
the covariate effects. There are as many effects of a covariate as there are spatial units. As discussed
by LeSage and Pace (2009, sec. 2.7), we define the average of these spatial unit-level effects to be
the covariate effect.

The effect of gini on the conditional mean of hrate in other counties is called an indirect, or
spillover, effect.

Because a spatial lag of gini is included in the model, there is a second indirect effect. The
equation for hrate includes a term for gini in neighboring counties, so a change in gini in one
county changes the conditional mean of hrate in neighboring counties.

The effect of gini on the conditional mean of hrate in the same county is called a direct, or
own, effect. The sum of the direct and indirect effects is called the total effect.
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We use estat impact to estimate the magnitude of these effects.

. estat impact

progress : 33% 67% 100%

Average impacts Number of obs = 1,412

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
ln_populat~n .3149608 .3545409 0.89 0.374 -.3799266 1.009848
ln_pdensity .6448149 .3426066 1.88 0.060 -.0266817 1.316311

gini 90.45773 6.380729 14.18 0.000 77.95173 102.9637

indirect
ln_populat~n 5.856241 2.256561 2.60 0.009 1.433463 10.27902
ln_pdensity -4.105437 1.883462 -2.18 0.029 -7.796956 -.413919

gini 8.691593 19.58268 0.44 0.657 -29.68975 47.07294

total
ln_populat~n 6.171202 2.411894 2.56 0.011 1.443976 10.89843
ln_pdensity -3.460622 2.029163 -1.71 0.088 -7.437708 .5164636

gini 99.14932 21.03394 4.71 0.000 57.92356 140.3751

See the percentages at the top of the output? For large datasets, calculating standard errors of the
effects can be time consuming, so estat impact reports its progress as it does the computations.

The direct effect of gini is positive because the coefficient of gini is positive. The indirect effect
of gini due to the spatial lag of hrate is positive because the coefficient of the dependent-variable
lag is positive and the coefficient of gini is positive. The indirect effect of gini due to its spatial
lag, however, is negative because the coefficient of its lag is negative. estat impact shows that the
two indirect effects of gini sum to a net positive indirect effect, although the sum is not significantly
different from 0.

Note that the normalization of W affects the size of the coefficient estimates for the lags of the
covariates. For the GS2SLS estimator, the normalization of W (except for the case of row normalization)
does not affect the asymptotic estimates of the covariate effects. In finite samples, this means that
the normalization of W may have a small effect on the estimates produced by estat impact—small
compared with the effect’s standard error. For the ML estimator, the normalization does not affect
the size of estimated effects shown by estat impact. See Choosing weighting matrices and their
normalization.

Running estat impact after spregress is essential for proper interpretation of the model. The
output of estat impact can be read directly as the change in the metric of the dependent variable
per incremental change of the covariate averaged across all the spatial units (observations).

estat impact shows marginal (incremental change) effects. We might want to see the total
effect of a discrete change in a covariate. The expectation of the dependent variable is linear in
the covariates in this example. We did not fit polynomial or other nonlinear terms. We could just
multiply the incremental change by the discrete change of the covariate. Or, we could use the margins
command, which works for both linear and nonlinear terms; see [R] margins.

The median of gini is 0.39, its 25th percentile is 0.37, and its 75th percentile is 0.41. So it is
reasonable to ask how a change of ± 0.02 in the Gini coefficient affects the homicide rate. Here’s
how to get the answer by using margins:
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. margins, at(gini = generate(gini - 0.02)) at(gini = generate(gini))
> at(gini = generate(gini + 0.02))

Predictive margins Number of obs = 1,412

Expression : Reduced-form mean, predict()

1._at : gini = gini - 0.02

2._at : gini = gini

3._at : gini = gini + 0.02

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 2.550868 2.651383 0.96 0.336 -2.645746 7.747482
2 4.533855 2.584986 1.75 0.079 -.5326253 9.600334
3 6.516841 2.586198 2.52 0.012 1.447986 11.5857

A change of ± 0.02 in the Gini coefficient causes the homicide rate to change by roughly ± 2.0 per
100,000 persons per year.

The computations that margins must do to calculate standard errors can sometimes be time
consuming. Time will depend on the complexity of the spatial model and the number of spatial
units in the data. You may want to fit your model with a subsample of your data, run margins,
and extrapolate to estimate the time required to run margins on the full sample. See [P] timer and
[P] rmsg.

Example 2: spregress, gs2sls heteroskedastic

The spregress, gs2sls command has a heteroskedastic option that requires the errors to
be independent but not necessarily identically distributed. Practically speaking, this option causes the
estimates of the spatial autoregressive error correlations and the standard errors to change. In models
without spatially autoregressive errors, only standard errors will change. See Methods and formulas .



spregress — Spatial autoregressive models 157

If we add the heteroskedastic option to the last model we fit in example 1, we get

. spregress hrate ln_population ln_pdensity gini, gs2sls heteroskedastic
> dvarlag(W) errorlag(M) ivarlag(W: ln_population ln_pdensity gini)

(1412 observations)
(1412 observations (places) used)
(weighting matrices define 1412 places)
(output omitted )

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(7) = 248.74

Prob > chi2 = 0.0000
Pseudo R2 = 0.1241

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n -.0475582 .3545931 -0.13 0.893 -.7425479 .6474315
ln_pdensity .8989538 .4016155 2.24 0.025 .1118019 1.686106

gini 89.91969 10.71501 8.39 0.000 68.91866 110.9207
_cons -32.21599 5.013344 -6.43 0.000 -42.04197 -22.39002

W
ln_populat~n 2.679931 .5247129 5.11 0.000 1.651512 3.708349
ln_pdensity -2.468953 .6786844 -3.64 0.000 -3.79915 -1.138756

gini -57.38302 9.719208 -5.90 0.000 -76.43232 -38.33372
hrate .6818566 .13258 5.14 0.000 .4220047 .9417085

M
e.hrate .9614507 .1554489 6.18 0.000 .6567764 1.266125

Wald test of spatial terms: chi2(5) = 156.95 Prob > chi2 = 0.0000

. estimates store heterosk_model



158 spregress — Spatial autoregressive models

We used estimates store to store the results of the earlier model, and we stored this model,
too. We can now use estimates table to display coefficient estimates with their standard errors
side by side. See [R] estimates store and [R] estimates table.

. estimates table model_ex1_last heterosk_model, b(%6.3f) se(%6.3f)

Variable model~t heter~l

hrate
ln_populat~n -0.048 -0.048

0.330 0.355
ln_pdensity 0.899 0.899

0.321 0.402
gini 89.920 89.920

6.409 10.715
_cons -32.216 -32.216

3.590 5.013

W
ln_populat~n 2.680 2.680

0.522 0.525
ln_pdensity -2.469 -2.469

0.621 0.679
gini -57.383 -57.383

9.418 9.719
hrate 0.682 0.682

0.114 0.133

M
e.hrate 0.953 0.961

0.132 0.155

legend: b/se

We see that standard errors are larger, especially those for the direct-effect coefficients of the covariates.
We also see that the estimate of ρ, the SAR error correlation labeled as e.hrate, differs between the
two estimators.

Example 3: spregress, ml

SAR models can be fit using ML estimation. Here’s the second model we fit in example 1 estimated
using ml in place of gs2sls.

. spregress hrate ln_population ln_pdensity gini, ml dvarlag(W) errorlag(W)
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Performing grid search ... finished

Optimizing concentrated log likelihood:

Iteration 0: log likelihood = -4557.201
Iteration 1: log likelihood = -4556.763
Iteration 2: log likelihood = -4556.7539
Iteration 3: log likelihood = -4556.7539

Optimizing unconcentrated log likelihood:

Iteration 0: log likelihood = -4556.7539
Iteration 1: log likelihood = -4556.7539 (backed up)
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Spatial autoregressive model Number of obs = 1,412
Maximum likelihood estimates Wald chi2(4) = 240.21

Prob > chi2 = 0.0000
Log likelihood = -4556.7539 Pseudo R2 = 0.1590

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n .5268247 .3038837 1.73 0.083 -.0687763 1.122426
ln_pdensity .5269135 .3136226 1.68 0.093 -.0877755 1.141603

gini 91.44471 6.263932 14.60 0.000 79.16763 103.7218
_cons -32.8348 3.205075 -10.24 0.000 -39.11663 -26.55297

W
hrate -.1850846 .1218453 -1.52 0.129 -.423897 .0537279

e.hrate .6244211 .0897639 6.96 0.000 .4484871 .8003551

var(e.hrate) 34.79054 1.599235 31.79315 38.07052

Wald test of spatial terms: chi2(2) = 227.84 Prob > chi2 = 0.0000

. estimates store ml_model

We stored the estimation results with estimates store, as we did with the same model fit with
gs2sls, and now we use estimates table to compare coefficient estimates and their standard
errors.

. estimates table gs2sls_model ml_model, b(%6.3f) se(%6.3f)

Variable gs2sl~l ml_mo~l

hrate
ln_populat~n 0.103 0.527

0.281 0.304
ln_pdensity 1.081 0.527

0.252 0.314
gini 82.069 91.445

5.658 6.264
_cons -29.630 -32.835

3.070 3.205

W
hrate 0.194 -0.185

0.065 0.122
e.hrate 0.356 0.624

0.079 0.090

var(e.hrate) 34.791
1.599

legend: b/se

There are meaningful differences in the results. The coefficient of ln pdensity was significant in
the GS2SLS model but is nonsignificant in the ML model. The coefficient estimates for gini, however,
are similar, as are their standard errors. The coefficient of the lag of hrate becomes negative in the
ML model, and the SAR error correlation increases from ρ = 0.36 to ρ = 0.62.

We note that the ML estimator is not consistent under heteroskedasticity; for consistency, the error
distribution needs to be i.i.d., although it need not be normal. Heteroskedasticity may be the reason
why the estimates differ as they do. See Arraiz et al. (2010).
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Stored results
spregress, gs2sls stores the following in e():
Scalars

e(N) number of observations
e(k) number of parameters
e(df m) model degrees of freedom
e(df c) degrees of freedom for test of spatial terms
e(iterations) number of generalized method of moments iterations
e(iterations 2sls) number of two-stage least-squares iterations
e(rank) rank of e(V)
e(r2 p) pseudo-R2

e(chi2) χ2

e(chi2 c) χ2 for test of spatial terms
e(p) p-value for model test
e(p c) p-value for test of spatial terms
e(converged) 1 if generalized method of moments converged, 0 otherwise
e(converged 2sls) 1 if two-stage least-squares converged, 0 otherwise

Macros
e(cmd) spregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indeps) names of independent variables
e(idvar) name of ID variable
e(estimator) gs2sls
e(title) title in estimation output
e(constant) hasconstant or noconstant
e(exogr) exogenous regressors
e(dlmat) names of spatial weighting matrices applied to depvar
e(elmat) names of spatial weighting matrices applied to errors
e(het) heteroskedastic or homoskedastic
e(chi2type) Wald; type of model χ2 test
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(delta 2sls) two-stage least-squares estimates of coefficients in spatial lag equation
e(rho 2sls) generalized method of moments estimates of coefficients in spatial error equation
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

spregress, ml stores the following in e():
Scalars

e(N) number of observations
e(k) number of parameters
e(df m) model degrees of freedom
e(df c) degrees of freedom for test of spatial terms
e(ll) log likelihood
e(iterations) number of maximum log-likelihood estimation iterations
e(rank) rank of e(V)
e(r2 p) pseudo-R2

e(chi2) χ2

e(chi2 c) χ2 for test of spatial terms
e(p) p-value for model test
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e(p c) p-value for test of spatial terms
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) spregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indeps) names of independent variables
e(idvar) name of ID variable
e(estimator) ml
e(title) title in estimation output
e(constant) hasconstant or noconstant
e(dlmat) name of spatial weighting matrix applied to depvar
e(elmat) name of spatial weighting matrix applied to errors
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(ml method) type of ml method
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(Hessian) Hessian matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
SAR models date back to the works of Whittle (1954) and Cliff and Ord (1973, 1981). Cressie (1993),

LeSage and Pace (2009), and Waller and Gotway (2004) provide textbook introductions. Spatial
models have been applied in a variety of disciplines, such as criminology, demography, economics,
epidemiology, political science, and public health. See Darmofal (2015), Waller and Gotway (2004),
Kelejian and Prucha (2010), Drukker, Egger, and Prucha (2013a), and Lee, Liu, and Lin (2010)
for examples in economics, social science, and public health, including examples of nongeographic
models such as social interactions and social networks.

The GS2SLS estimator was derived by Kelejian and Prucha (1998, 1999, 2010) and extended by
Arraiz et al. (2010) and Drukker, Egger, and Prucha (2013a).

The formulas for the GS2SLS without higher-order spatial weighting matrices were published
in Drukker, Prucha, and Raciborski (2013b). For the higher-order models, spregress, gs2sls
implements the estimator derived in Badinger and Egger (2011) and Prucha, Drukker, and Egger (2016).

The properties of the ML estimator were proven by Lee (2004), which also provides the formulas
for the robust estimator of the VCE.



162 spregress — Spatial autoregressive models

Methods and formulas are presented under the following headings:
Model
GS2SLS estimator

2SLS estimator of δ
GMM estimator of ρ based on 2SLS residuals
GS2SLS estimator of δ
Efficient GMM estimator of ρ based on GS2SLS residuals

ML estimator
Log-likelihood function

Pseudo-R2

Model

We consider a cross-sectional spatial autoregressive model with autoregressive disturbances (SARAR),
allowing for higher-order spatial dependence in the dependent variable, exogenous independent
variables, and spatial errors. The model is

y =

K∑
k=1

βkxk +

P∑
p=1

γpWp xp +

R∑
r=1

λrWr y + u

u =

S∑
s=1

ρsMsu + ε

(1)

where

y is an n× 1 vector of observations on the dependent variable;

xk is an n× 1 vector of observations on the exogenous variable; βk is the corresponding scalar
parameter;

Wp, Wr, and Ms are n× n spatial weighting matrices with 0 diagonal elements;

Wp xp, Wr y, and Msu are n× 1 vectors typically referred to as spatial lags for the exogenous
variable, dependent variable, and error term; γp, λr, and ρs are scalar parameters; and

ε is an n× 1 vector of innovations (i.i.d. disturbances).

The model in (1) is frequently referred to as a higher-order spatial autoregressive model with
spatial autoregressive disturbances, or namely, a SARAR(R,S) model.

The spatial weighting matrices Wp, Wr, and Ms are assumed to be known and nonstochastic.
See [SP] intro 2 and Darmofal (2015, chap. 2) for an introduction to spatial weighting matrices, and
see Kelejian and Prucha (2010) for a technical discussion of how normalization affects parameter
definition.

The scalar parameters γp and λr measure the degree to which the dependent variable depends on
its neighboring covariate’s values and outcomes. See example 1 and LeSage and Pace (2009, sec. 2.7)
for discussions of effect estimation.

The innovations ε are assumed to be i.i.d. or independent but heteroskedastically distributed, where
the heteroskedasticity is of unknown form. The errors u are spatially autoregressive.

The GS2SLS estimator produces consistent estimates in both cases when the heteroskedastic
option is specified. For the first-order SARAR model, see Kelejian and Prucha (1998, 1999, 2010),
Arraiz et al. (2010), and Drukker, Egger, and Prucha (2013a) for formal results and discussions; for
the higher-order SARAR(R,S) model, see Badinger and Egger (2011) for formal results. The ML
estimator is consistent in the i.i.d. case for the SARAR(1, 1) model but generally not consistent in the
heteroskedastic case. See Lee (2004) for some results for the ML estimator; see Arraiz et al. (2010)
for evidence that the ML estimator does not produce consistent estimates in the heteroskedastic case.
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The GS2SLS estimator can fit the SARAR(R,S) model, whereas the ML estimator can only fit the
SARAR(1, 1) model.

GS2SLS estimator
In this section, we give a detailed description of the computations performed by spregress,

gs2sls. For the SARAR(1, 1) model, spregress, gs2sls implements the estimator described in
Kelejian and Prucha (2010), Arraiz et al. (2010), and Drukker, Egger, and Prucha (2013a); for
the SARAR(R,S) model, spregress, gs2sls implements the estimator described in Badinger and
Egger (2011). We will describe the GS2SLS estimator for the SARAR(R,S) model, which generalizes
the first-order SARAR model.

Let’s first rewrite (1) in a compact form:

y = Xβ + Xγ + Yλ+ u = Zδ + u

u = Uρ+ ε
(2)

where

X = [xk]k=1,...,K is an n×K matrix of exogenous covariates;

X = [Wp xp]p=1,...,P is an n× P matrix of spatial lags for the exogenous covariates;

Y = [Wr y]r=1,...,R is an n×R matrix of spatial lags for the dependent variables;

U = [Msu]s=1,...,S is an n× S matrix of spatial lags for the error term;

Z =
[
X,X,Y

]
is an n× (K + P +R) matrix;

β, γ, λ, and ρ denote the K × 1, P × 1, R× 1, and S × 1 vectors of coefficients corresponding
to X, X, Y, and U, respectively; and

δ = (β′, γ′, λ′)′ is a (K + P +R)× 1 vector of coefficients for Z.

In the following, we review the two-stage least-squares (2SLS), generalized spatial two-stage
least-squares (GS2SLS), and GMM estimation approaches as discussed in Badinger and Egger (2011).

2SLS estimator of δ

In the first step, we apply 2SLS to (2) using an instrument matrix H1 to estimate δ. The 2SLS

estimator of δ—say, δ̃—is defined as

δ̃ =
(
Z̃′Z

)−1
Z̃′y

where Z̃ = PH1Z and PH1 = H1 (H′1H1)
−1

H′1. The 2SLS estimator δ̃ depends on the instrument
matrix H1. Let Xf denote all the exogenous regressors; that is, Xf =

[
X,X

]
in our case. The

instrument matrix H1 contains the linearly independent columns in

H1 =
[
Xf ,W

1Xf , . . . ,W
qXf

]
where W1 ≡ {Wr}r=1,...,R denotes all the spatial weighting matrices applied to the dependent
variable, and Wq ≡

{
Wj1Wj2 . . .Wjq

}
j1,j2,...,jq=1,...,R

denotes the product of q matrices from

W 1 in any possible permutation order.
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The impower(#) option specifies q, the number of the power in Wq . The default is impower(2).
Increasing q may improve the precision of the estimation of δ.

We now illustrate the construction of H1 with an example. Suppose we use two spatial weighting
matrices W1 and W2 to generate the spatial lags for the dependent variable. So W1 = (W1,W2).
If we have q = 2, then W2 = (W1W1,W1W2,W2W1,W2W2). Plug W1 and W2 into the
definition of H1, and the instrument matrix H1 in this special case contains the linear independent
columns in the following matrix:

H1 = [Xf ,W1Xf ,W2Xf ,W1W1Xf ,W1W2Xf ,W2W1Xf ,W2W2Xf ]

GMM estimator of ρ based on 2SLS residuals

The initial GMM estimates of ρ solve the sample equivalent of the population moment conditions

(1/N)E(ε′Asε) = 0

(1/N)E(ε′Bsε) = 0 for s ∈ {1, . . . , S}

where As = Ms and Bs = M′sMs − diag(M′sMs). See the estimator derived in Badinger and
Egger (2011) and Prucha, Drukker, and Egger (2016) for details.

GS2SLS estimator of δ

The GS2SLS estimator of δ is based on the spatially Cochrane–Orcutt-transformed model.

ynt = Z∗(ρ) δ + ε (3)

where ynt = (In −
∑S
s=1 ρsMs)y, Z∗(ρ) = (In −

∑S
s=1 ρsMs)Z, and In is an n × n identity

matrix.

Now, we apply the 2SLS estimator to (3) by using an instrument matrix H2 and replacing ρ with
ρ̃. The GS2SLS estimator of δ—say, δ̂—is defined as

δ̂ =
{
Ẑ∗(ρ̃)

′
Z∗(ρ̃)

}−1
Ẑ∗(ρ̃)

′
y∗(ρ̃)

where

y∗(ρ̃) = (In −
∑S
s=1 ρ̃sMs)y,

Z∗(ρ̃) = (In −
∑S
s=1 ρ̃sMs)Z,

Ẑ∗(ρ̃) = PH2Z∗(ρ̃), and

PH2 = H2 (H′2H2)
−1

H′2.

The instrument matrix H2 contains the linearly independent columns in

H2 = [H1,M1H1, . . . ,MSH1]
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Efficient GMM estimator of ρ based on GS2SLS residuals

The form of the efficient GMM weighting matrix is given in Badinger and Egger (2011) and Prucha,
Drukker, and Egger (2016). The matrix has one form in the default homoskedastic case and another
in the heteroskedastic case. The form of the matrix causes the estimates of spatially autoregressive
error correlations and the standard errors to differ when the heteroskedastic option is specified.

ML estimator
We implement a quasi–maximum likelihood (QML) estimator for the first-order SARAR model. We

can write SARAR(1, 1) [see (1)] as

y = Xβ + Xγ + λWy + u = Xfζ + λWy + u

u = ρMu + ε
(4)

where

Xf = [X,X] is an n×L matrix containing exogenous covariates and spatial lags for the exogenous
variables, with L = K + P ;

ζ = (β′, γ′)′ is an L× 1 vector of coefficients;

W and M are n× n spatial weighting matrices with 0 diagonal elements; and

λ and ρ are scalar parameters.

Log-likelihood function

We give the log-likelihood function assuming that ε ∼ N(0, σ2In). Lee (2004) gives formal results
on the consistency and asymptotic normality of the QML estimator when the innovations are i.i.d. but
not necessarily normally distributed. Violations of the assumption that the innovations are i.i.d. can
cause the QML estimator to produce inconsistent results.

The reduced form of (4) is

y = (In − λW)−1Xf ζ + (In − λW)−1(In − ρM)−1ε

The unconcentrated log-likelihood function is

lnL(y | ζ, λ, ρ, σ2) = −n
2

ln(2π)− n

2
ln(σ2) + ln||In − λW||+ ln||In − ρM||

+
1

2σ2
{(In − λW)y −Xf ζ}′ (In − ρM)′(In − ρM) {(In − λW)y −Xf ζ}

(5)

We can concentrate the log-likelihood function by taking first-order derivatives with respect to ζ
and σ2 in (5) and setting them to 0, yielding the maximizers

ζ̂(λ, ρ) = {X′f(In − ρM)′(In − ρM)Xf}
−1

X′f(In − ρM)′(In − ρM)(In − λW)y

σ̂2(λ, ρ) =
1

n

{
(In − λW)y −Xf ζ̂(λ, ρ)

}′
(In − ρM)′(In − ρM)

×
{

(In − λW)y −Xf ζ̂(λ, ρ)
}
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Substituting ζ̂(λ, ρ) and σ̂2(λ, ρ) into the log-likelihood function in (5), we have the concentrated
log-likelihood function

lnLc(y |λ, ρ) = −n
2
{ ln(2π) + 1} − n

2
ln{σ2(λ, ρ)}+ ln ||In − λW||+ ln ||In − ρM||

The QML estimates for λ̂ and ρ̂ can be computed by maximizing the concentrated log likelihood.
Then, we can calculate the QML estimates for ζ and σ2 as ζ̂(λ̂, ρ̂) and σ̂2(λ̂, ρ̂).

spregress, ml uses a grid search to find reasonable initial values for λ and ρ.

The formula for the robust VCE is given in Lee (2004).

Pseudo-R2

The pseudo-R2 is calculated as {corr(y, ŷ)}2, where ŷ is the reduced-form prediction of y.
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spregress postestimation — Postestimation tools for spregress

Postestimation commands predict margins estat impact
Methods and formulas References Also see

Postestimation commands
The following postestimation command is of special interest after spregress:

Command Description

estat impact direct, indirect, and total impacts

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗ estat ic and lrtest are not appropriate with gs2sls estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as the reduced-form mean, the direct
mean, the indirect mean, the limited-information mean, the full-information mean, the naı̈ve-form
prediction, the linear prediction, the residuals, or the uncorrelated residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

statistic Description

Main

rform reduced-form mean; the default
direct direct mean
indirect indirect mean
limited limited-information mean
full full-information mean
naive naı̈ve-form prediction
xb linear prediction
residuals residuals
ucresiduals uncorrelated residuals

These statistics are only available in a subset of the estimation sample.

Options for predict

� � �
Main �

rform, the default, calculates the reduced-form mean. It is the predicted mean of the dependent
variable conditional on the independent variables and any spatial lags of the independent variables.
See Methods and formulas .

direct calculates the direct mean. It is a unit’s predicted contribution to its own reduced-form mean.
The direct and indirect means sum to the reduced-form mean.

indirect calculates the indirect mean. It is the predicted sum of the other units’ contributions to a
unit’s reduced-form mean.

limited calculates the limited-information mean. It is the predicted mean of the dependent variable
conditional on the independent variables, any spatial lags of the independent variables, and any
spatial lags of the dependent variable. limited is not available when the heteroskedastic
option is used with spregress, gs2sls.
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full calculates the full-information mean. It is the predicted mean of the dependent variable conditional
on the independent variables, any spatial lags of the independent variables, and the other units’
values of the dependent variable. full is not available when the heteroskedastic option is
used with spregress, gs2sls.

naive calculates the naı̈ve-form prediction. It is the predicted linear combination of the independent
variables, any spatial lags of the independent variables, and any spatial lags of the dependent
variable. It is not a consistent estimator of an expectation. See Methods and formulas .

xb calculates the predicted linear combination of the independent variables.

residuals calculates the residuals, including any autoregressive error term.

ucresiduals calculates the uncorrelated residuals, which are estimates of the uncorrelated error
term.

margins

Description for margins

margins estimates margins of response for the reduced-form mean, direct mean, indirect mean,
and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

rform reduced-form mean; the default
direct direct mean
indirect indirect mean
xb linear prediction
limited not allowed with margins

full not allowed with margins

naive not allowed with margins

residuals not allowed with margins

ucresiduals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks for margins

The computations that margins must do to calculate standard errors can sometimes be time
consuming. Time will depend on the complexity of the spatial model and the number of spatial
units in the data. You may want to fit your model with a subsample of your data, run margins,
and extrapolate to estimate the time required to run margins on the full sample. See [P] timer and
[P] rmsg.

estat impact

Description for estat impact

estat impact estimates the mean of the direct, indirect, and total impacts of independent variables
on the reduced-form mean of the dependent variable.

Syntax for estat impact

estat impact
[

varlist
] [

if
] [

in
] [

, nolog vce(vcetype)
]

varlist is a list of independent variables, including factor variables, taken from the fitted model. By
default, all independent variables from the fitted model are used.

Options for estat impact

� � �
Main �

nolog suppresses the calculation progress log that shows the percentage completed. By default, the
log is displayed.

� � �
VCE �

vce(vcetype) specifies how the standard errors of the impacts are calculated.

vce(delta), the default, is the delta method and treats the independent variables as fixed.

vce(unconditional) specifies that standard errors account for sampling variance in the in-
dependent variables. This option is not available when if or in is specified with estat
impact.

Remarks for estat impact

estat impact is essential for interpreting the output of spregress. See [SP] intro 7 and example 1
of [SP] spregress for explanations and examples.
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Stored results for estat impact

estat impact stores the following in r():

Scalars
r(N) number of observations

Macros
r(vce) vcetype specified in vce()
r(xvars) names of independent variables

Matrices
r(b direct) vector of estimated direct impacts
r(Jacobian direct) Jacobian matrix for direct impacts
r(V direct) estimated variance–covariance matrix of direct impacts
r(b indirect) vector of estimated indirect impacts
r(Jacobian indirect) Jacobian matrix for indirect impacts
r(V indirect) estimated variance–covariance matrix of indirect impacts
r(b total) vector of estimated total impacts
r(Jacobian total) Jacobian matrix for total impacts
r(V total) estimated variance–covariance matrix of total impacts

Methods and formulas
Methods and formulas are presented under the following headings:

Predictions
Reduced-form mean
Direct and indirect means
Limited-information mean
Full-information mean
Naı̈ve-form predictor
Linear predictor
Residuals
Uncorrelated residuals

Impacts

Predictions

To motivate the predictions, consider the vector form of a spatial autoregressive model

y = λWy + Xβ + ε (1)

where

y is the vector containing each unit’s dependent-variable observation,

Wy is a spatial lag of y,

X is the matrix of independent-variable observations,

ε is a vector of errors, and

λ and β are the coefficients.

Any spatial lags of the independent variables are assumed to be in X. Spatial lags of the error do not
affect the reduced-form, direct, or indirect means, so they are not included in (1) for simplicity.
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Reduced-form mean

Equation (1) represents the spatial autoregressive model as a system of equations. The solution

y = (I− λW)
−1

(Xβ + ε) (2)

implies that the mean of y given the independent variables and the spatial weighting matrix is

E(y |X,W) = (I− λW)
−1

(Xβ) (3)

This is known as the reduced-form mean because the solution in (2) is known as the reduced form
of the model. The predicted reduced-form mean substitutes estimates of λ and β into (3).

Direct and indirect means

To define the direct mean and the indirect mean, let

S = (I− λW)
−1

and let Sd be a matrix with diagonal elements of S on its diagonal and with off-diagonal elements
set to 0.

The direct means are
SdXβ

which capture the contributions of each unit’s independent variables on its own reduced-form mean.
Substituting estimates of λ and β produces the predictions.

The indirect means capture the contributions of the other units’ independent variables on a unit’s
reduced-form prediction, and they are{

(I− λW)
−1 − Sd

}
Xβ

Limited-information mean

Instead of solving for the reduced form, the limited-information mean conditions on the spatial
lag of y for observation i, which we denote by (Wy)i, which yields

E{yi |X,W, (Wy)i} = xiβ + λ(Wy)i + ui (4)

where ui is the predictable part of the error term given (Wy)i. See Kelejian and Prucha (2007) and
Drukker, Prucha, and Raciborski (2013).

Full-information mean

The full-information mean conditions on the dependent-variable values of all the other units instead
of conditioning on the spatial lag of the dependent variable, as does the limited-information mean.
The additional information produces a better prediction of the error term when a spatial lag of the
errors is in the model. See Kelejian and Prucha (2007).
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Naı̈ve-form predictor

The naı̈ve-form predictor sets ui to 0 in (4). It is not consistent for E{yi |X,W, (Wy)i} because
it ignores ui.

Linear predictor

The linear predictor is Xβ.

Residuals

The residuals are ui from (4).

Uncorrelated residuals

The uncorrelated residuals are
ε̂ = (I− ρ̂M)

−1
u

where u is the vector of ui’s, M is the spatial weighting matrix for the autoregressive error term,
and ρ̂ is the estimated correlation of u.

Impacts

The total impact of an independent variable x is the average of the marginal effects it has on the
reduced-form mean,

1

n

n∑
i=1

n∑
j=1

∂E(yi |X,W)

∂xj

where E(yi |X,W) is the ith element of the vector E(y |X,W), whose formula is given in (2),
and xj is the jth unit’s value for x.

The direct impact of an independent variable x is the average of the direct, or own, marginal
effects:

1

n

n∑
i=1

∂E(yi |X,W)

∂xi

The indirect impact of an independent variable x is the average of the indirect, or spillover,
marginal effects:

1

n

n∑
i=1

n∑
j=1,j 6=i

∂E(yi |X,W)

∂xj

LeSage and Pace (2009, 36–37) call the average direct impact the “average total direct impact”,
and they call the average indirect impact the “average total indirect impact”.

estat impact with the default vce(delta) uses the delta method to calculate the estimated
variance of the impacts. This variance is conditional on the values of the independent variables in
the model.
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estat impact with vce(unconditional) uses the generalized method of moments estimation
strategy to estimate the unconditional variance of the impacts. It accounts for sampling variance of
the independent variables in the model.
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spset — Declare data to be Sp spatial data

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
Data must be spset before you can use the other Sp commands. The spset command serves

three purposes:

1. It reports whether the data are spset and if so, how.

2. It sets the spatial data for the first time.

3. It modifies how the data are spset at any time.

Data that are spset are called Sp data.

Quick start
Query whether or how data are spset

spset

In cross-sectional data, specify geographic unit identifier id
spset id

Add coordinates stored in variables x and y to previously spset data
spset, modify coord(x y)

In panel data, specify geographic unit identifier id and time within area identifier tvar
xtset id tvar

spset id

Menu
Statistics > Spatial autoregressive models
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Syntax
Display the current setting

spset

Set data with shapefiles

spshape2dta . . . (see [SP] spshape2dta)

Set data without shapefiles

spset idvar
[
, options

]
Modify how data are set with shapefiles

spset
[

idvar
]
, modify

[
shpmodoptions

]
Modify how data are set without shapefiles

spset, modify
[

modoptions
]

Clear the setting

spset, clear

idvar is an existing, numeric variable that uniquely identifies the geographic units, meaning the
observations in cross-sectional data and the panels in panel data.

shapefile refers to a Stata-format shapefile, specified with or without the .dta suffix. Such files
usually have names of the form name shp.dta.

options Description

coord(xvar yvar) designate xvar and yvar as the location coordinates
coordsys(coordsys) specify how coordinates are interpreted

shpmodoptions Description

coordsys(coordsys) change how coordinates are interpreted
noshpfile break link with shapefile
replace replace current geographic identifier with idvar

modoptions Description

coord(xvar yvar) replace location coordinates with xvar and yvar
coordsys(coordsys) change how coordinates are interpreted
nocoord clear coordinate settings
shpfile(shapefile) establish link to shapefile
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Options

coord(xvar yvar) and nocoord specify coordinates. coord() specifies the variables recording the x
and y coordinates or the longitude and latitude. nocoord specifies that previously set coordinates
be forgotten.

coord(xvar yvar) creates or replaces the contents of Sp variables CX and CY.

coord() and nocoord are allowed only if the data are not linked to a shapefile. If you want
to use different coordinates than the shapefile provides, break the connection to the shapefile by
typing

. spset, modify noshpfile

and then use spset, modify coord(xvar yvar). You can later use spset, modify shp-
file(shapefile) to reestablish the link. Relinking to the shapefiles reestablishes the original
coordinates stored in CX and CY.

coordsys(coordsys) specifies how to interpret coordinates. You may specify coordsys() regardless
of whether you are linked to a shapefile. coordsys() syntax is

coordsys(planar) (default)
coordsys(latlong) (kilometers implied)
coordsys(latlong, kilometers)

coordsys(latlong, miles)

coordsys(latlong) specifies latitude and longitude coordinates. kilometers and miles specify
the units in which distances should be calculated. Distances for planar coordinates are always in
the units of the planar coordinates.

modify specifies that existing spset settings are to be modified. Omitting modify means that the
data are being spset for the first time.

You can modify Sp settings as often as you wish.

clear clears all Sp settings. It drops the variables ID, CX, and CY that spset previously created.

replace replaces the current geographic identifier with idvar.

noshpfile breaks the link to the Stata-format shapefile, the file that usually has shapefile shp.dta.
Data that were linked to a shapefile will be just as if they had never been linked to it. Before
breaking the link, you should make a note of the shapefile’s name:

. spset (make a note of the shapefile’s name)

. spset, modify noshpfile

The shapefile might have been named shapefile shp.dta. You will need the name later should
you wish to reestablish the link.

shpfile(shapefile) and drop are for linking or relinking to a shapefile. To reestablish the link to
the shapefile that was just unlinked above, you would type

. spset, modify shpfile(shapefile_shp)

Not only will the shapefile be relinked, but the coordinates stored in CX and CY will be restored,
too.

shpfile() will refuse to link the shapefile if the data in memory contain observations for ID
values not found in the shapefile. In this case, specify shpfile() and drop if you are willing to
drop the extra observations from the data in memory.
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Remarks and examples
Remarks are presented under the following headings:

Determining whether and how data are spset
Setting data for the first time
Setting data with a standard-format shapefile
Setting data with a Stata-format shapefile
Setting data without a shapefile but with coordinates
Setting data without a shapefile

Modifying settings
Modifying coordinates
Modifying how coordinates are interpreted
Modifying the ID variable
Modifying whether the data are linked to a shapefile

Converting cross-sectional data to panel data and vice versa

Determining whether and how data are spset

spset without arguments queries the Sp setting. Data starts out not being spset:

. spset
data not spset

r(459);

After the data have been spset, the output might be

. spset
Sp dataset

data: cross sectional
spatial-unit ID: _ID

coordinates: _CY, _CX (latitude-and-longitude, miles)
linked shapefile: shapefile_shp.dta

These data are as described in [SP] intro 4. They are linked to a Stata-format shapefile.

Or, the output might be

. spset
Sp dataset

data: cross sectional
spatial-unit ID: _ID (equal to fips)

coordinates: _CY, _CX (latitude-and-longitude, miles)
linked shapefile: none

These data are as described in [SP] intro 5. The data contain coordinates but are not linked to a
shapefile.

Or, the output might be

. spset
Sp dataset

data: cross sectional
spatial-unit ID: _ID (equal to fips)

coordinates: none
linked shapefile: none

These data are as described in [SP] intro 6. They do not contain coordinates nor are they linked to a
shapefile.

All the examples above are for cross-sectional data. If the data were panel data, the output might
be
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. spset
Sp dataset

data: panel
spatial-unit ID: _ID

time id: time (see xtset)
coordinates: _CY, _CX (latitude-and-longitude, miles)

linked shapefile: shapefile_shp.dta

Setting data for the first time

There are two kinds of data as far as Sp is concerned: cross-sectional and panel. In brief, cross-
sectional data contain one observation per spatial unit, such as one observation per county. Panel data
contain multiple observations, such as one observation per county per calendar year. The kinds of
data are described in more detail in [SP] intro 3.

We are about to explain the various spset cases one at a time. We will discuss cross-sectional
and panel data together. In all the examples, we will assume that you want to spset analysis.dta.
This example dataset has the following characteristics:

1. It is cross-sectional or panel.

2. It contains data on U.S. counties. Variable fips contains the standard federal information
processing standard (FIPS) code identifying U.S. counties.

If the data are cross-sectional, then fips uniquely identifies the observations.

If the data are panel, then variable time will be assumed to contain the second-level identifier.
fips and time uniquely identify the observations. The time variable need not be named time, nor
is the second-level identifier required to be time. See [SP] intro 3.

spset adds one or three variables to your data.

1. ID, which identifies the geographical areas.

2. CX and CY, which record the coordinates of the areas. Variables CX and CY are added
only if the coordinates are known.

spset also adds information stored in Stata characteristics.

3. coordsys, the system in which coordinates are recorded and whether distances should be
measured in kilometers or miles.

4. shpfile, the name of the Stata-format shapefile to which the data are linked, if they are linked.

The variables and characteristics that spset adds to your data should be viewed as spset’s
property. Do not modify or drop them. Use spset, modify to change settings.

Setting data with a standard-format shapefile

Shapefiles contain maps for each of the spatial units, which we will imagine are counties of the
United States. You obtain shapefiles over the web.

You use [SP] spshape2dta to translate standard-format *.zip shapefiles to Stata-format * shp.dta
files. How you do that is explained in [SP] intro 4.

spshape2dta performs the initial Sp setting of the data for you. That initial setting will be
. spset

data: cross sectional
spatial-unit id: _ID

coordinates: _CY, _CX (planar)
linked shapefile: shapefile_shp.dta
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Note that spshape2dta derived the centroid coordinates for each of the spatial units (counties) and
spset them.

You can modify settings. One important setting specifies how the coordinates are recorded. They
are either planar, which is another word for rectangular, or they are degrees latitude and longitude.
By default, Sp assumes coordinates are planar. Sp provides two coordinate-system settings:

. spset, modify coordsys(planar)

. spset, modify coordsys(latlong)

It is important that you modify coordsys() to be latlong if that is what the data record, because
the formulas for calculating distances differ; see [SP] spdistance. Sp datasets record the coordinate
values in variables CX and CY.

coordsys(latlong) has an extra setting that may be important to you:

. spset, modify coordsys(latlong, kilometers)

. spset, modify coordsys(latlong, miles)

By default, coordsys(latlong) calculates distances in kilometers.

Setting data with a Stata-format shapefile

All shapefiles start out as standard-format shapefiles and are translated into Stata-format shp.dta
files. It is possible that you have a Stata-format shp.dta file from a previous analysis that is
appropriate for this analysis. In that case, you can just link to it.

Let’s assume that we want to spset analysis.dta, which you may recall is county data and
contains variable fips (and time if it is panel data).

Let’s assume that you also have Stata-format shapefile shapefile shp.dta from a previous analysis.
The shp.dta file is indexed on FIPS codes.

To spset the data and link them to shapefile shp.dta, type

Cross-sectional data:

. use analysis

. spset fips

. spset, modify shpfile(shapefile_shp)

Panel data:

. use analysis

. xtset fips time

. spset fips

. spset, modify shpfile(shapefile_shp)

The above will work as long as analysis.dta does not contain counties that do not appear in
shapefile shp.dta; see shpfile() and drop under Options above.

Notice that spset expects xtset to handle panel-data details. With panel data, you are required
to xtset the data first. After the spset, if you typed xtset without arguments, you would discover
that the spset modified the xtset setting. Data that were xtset on fips and time will now be
xtset on ID and time. When you typed spset fips, spset created the variable ID equal to
fips, and then it changed the xtset setting to match its own. spset does not drop the variable
fips; it just makes its own copy of it.
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Actually, what we typed for the panel-data case may not be sufficient. We should have typed

Panel data:
. use analysis
. xtset fips time

. spbalance, balance // <-- new

. spset fips

. spset, modify shpfile(shapefile_shp)

spset requires that panel data be strongly balanced. spbalance, balance will make panel data
strongly balanced if they are not already. We omitted it because spset will verify that the data
are strongly balanced and, if they are not, will issue an error. If spset complains, we can type
spbalance, balance and then type the spset command again. See [SP] spbalance.

Whether data are cross-sectional or panel, you may need to modify the coordsys() setting. Use

All data:
. spset, modify coordsys(latlong, kilometers)

. spset, modify coordsys(latlong, miles)

It is important that the coordinate system be set correctly; see [SP] spdistance.

Setting data without a shapefile but with coordinates

Assume that analysis.dta is the same county dataset used previously. In addition to fips and
perhaps time, the data also contain variables x and y recording the coordinates of each county.

To spset the data without a shapefile, type

Cross-sectional data:
. use analysis
. spset fips, coord(x y)

Panel data:
. use analysis
. xtset fips time

. spset fips, coord(x y)

If x contains longitude and y contains latitude, also type

All data:
. spset, modify coordsys(latlong, kilometers)

. spset, modify coordsys(latlong, miles)

Setting data without a shapefile

Assume that analysis.dta no longer contains variables x and y. We have no shapefile and no
coordinates. At this point, the data are probably not even geographically based. So rather than fips,
we will assume the spatial units are uniquely identified by node. If the data are panel data, we assume
observations are identified by node and time.

To spset the data, type

Cross-sectional data:
. use analysis
. spset node
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Panel data:

. use analysis

. xtset node time

. spset fips

Modifying settings

You use spset, modify to modify settings of data that are already spset. You may modify
whether the data contain coordinates, whether the coordinates are planar or latitude and longitude,
the ID-variable codes used to identify the spatial units, and whether the data are linked to a shapefile.

Modifying coordinates

The coordinates for each of the spatial units in your data are stored in variables CX and CY if
Sp knows them.

Sp knows the coordinates if you are linked to a shapefile. It knows them because Sp itself calculated
the centroids of the spatial units from the information in the shapefile and stored the results in CX
and CY.

Sp also knows the coordinates if you are not linked to a shapefile but specified the coordinates
when you originally spset the data. In that case, it copied the coordinates you supplied into CX
and CY.

If you are linked to a shapefile, you may not modify the coordinates Sp has stored—nor would
you want to modify them.

If you are not linked to a shapefile, you can add or replace coordinates by typing

spset, modify coord(xvar yvar)

If you want to delete the coordinates, type

spset, modify nocoord

Modifying how coordinates are interpreted

The coordinates stored in CX and CY are interpreted as planar or as degrees latitude and longitude.
The interpretation determines how distances are calculated; see [SP] spdistance. You can change the
interpretation by typing

spset, modify coordsys(planar)

spset, modify coordsys(latlong)

In the case of the latlong setting, you can specify the units to be used for distances, too:

spset, modify coordsys(latlong, kilometers)

spset, modify coordsys(latlong, miles)

When you set or reset coordsys(latlong), kilometers are assumed.
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Modifying the ID variable

Variable ID identifies the spatial units in your data. Each unit has a different code. The codes
could be 1, 2, and 3 or any set of numbers.

If you started with a standard-format shapefile, Sp used 1, 2, 3, and so on for ID when you used
spshape2dta to translate the file to Stata format. Perhaps you subsequently modified the coding
stored in ID. We did in [SP] intro 4 when we showed you how to prepare data using a shapefile.
We modified ID to contain FIPS codes.

You can modify the codes stored in ID at any time. The commands are as follows:

spset newidvar, modify if you are not linked to a shapefile
spset newidvar, modify replace if you are linked to a shapefile

Avoid doing this. These commands exist so that you can modify ID at the outset when you are
preparing your data. At that stage, you have no investment in the codes that are being used.

Later, you have an investment. The codes were used to identify the rows and columns of spatial
weighting matrices you created. If you change the codes, any weighting matrices you have saved will
become unusable.

If you are linked to a shapefile and change the codes, Sp will reindex both your data and its linked
shapefile. If other datasets are linked to the same shapefile, their links to it will no longer work.

In [SP] intro 4, [SP] intro 5, and [SP] intro 6, we modified codes before you became invested in
the coding system used.

Sometimes, you really do have to change codes later. Let’s imagine the unimaginable situation
where the U.S. Census Bureau changes from FIPS in favor of NEWFIPS. Even then, we would ask
you whether you really need to migrate to NEWFIPS, but for this example we will assume that you
do. We will assume that you have a migration dataset containing two variables, fips and newfips.
Variable newfips is never missing, but some fips values might be. Start by taking the migration
dataset and dropping any observations for which fips is missing:

. use migration, clear

. drop if missing(fips)

. save mymigration

Now, merge with your analysis file:

. use project, clear

. merge 1:1 fips using mymigration

. assert _merge!=1 // no master unmatched

. keep if _merge==3 // keep the matches

. drop _merge

You can now change Sp’s ID variable. If project.dta is not linked to a shapefile, type

. spset newfips, modify

. save, replace

If it is linked to a shapefile, type

. spset newfips, modify replace

. save, replace

File project.dta now uses NEWFIPS. There is no solution that will allow the use of old spatial
weighting matrices indexed on FIPS. You will be using the NEWFIPS codes.

If your data were linked to a shapefile and you have other datasets linked to the shapefile you just
reindexed, you need to do the following with each dataset:
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. use dataset, clear

. spset, modify noshpfile

. merge 1:1 fips using mymigration

. assert _merge!=1 // no master unmatched

. keep if _merge==3 // keep the matches

. drop _merge

. spset newfips, modify

. spset, modify shpfile(shapefile_shp.dta)

. save, replace

Modifying whether the data are linked to a shapefile

The commands

spset, modify shpfile(shapefile)
spset, modify noshpfile

make and break links to shapefiles. When you establish a connection, variable ID must use the same
codes as the Stata-format shapefile shapefile.

We used these commands in the example in the previous section.

Converting cross-sectional data to panel data and vice versa

Cross-sectional data can become panel data and vice versa. A cross-sectional dataset could become
panel because of a merge. A panel dataset could become cross-sectional because of a drop.

Here is a case of cross-sectional data becoming panel data:

. use analysis // cross-sectional data

. spset
Sp dataset

data: cross sectional
spatial-unit id: _ID

coordinates: _CY, _CX (latitude and longitude, miles)
linked shapefile: shapefile_shp.dta

. merge 1:m fips using paneldata

(output omitted )

Note that the data were spset before the merge, and after the merge, the data are panel data, but
they are not yet xtset. If you typed spset without arguments right now, it would complain about
repeated ID values. To fix the problem, xtset the data:

. xtset fips time

Now, spset will report

. spset
Sp dataset

data: panel
spatial-unit ID: _ID

time id: time (see xtset)
coordinates: _CY, _CX (latitude-and-longitude, miles)

linked shapefile: shapefile_shp.dta

Now, let’s convert these panel data back to cross-sectional data:

. keep if time==1
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Here is how you tell Sp that the data are no longer panel data:

. xtset, clear

Now, spset will report

. spset
Sp dataset

data: cross sectional
spatial-unit ID: _ID

coordinates: _CY, _CX (latitude-and-longitude, miles)
linked shapefile: shapefile_shp.dta

Stored results
spset stores the following in r():

Macros
r(sp ver) 1
r(sp id) ID
r(sp id var) varname or empty
r(sp shp dta path) path to shp.dta file
r(sp shp dta) shapefile shp.dta
r(sp cx) CX or empty
r(sp cy) CY or empty
r(sp coord sys) planar or latlong
r(sp coord sys dunit) kilometers or miles if r(sp coord sys)= latlong

Also see
[SP] intro 3 — Preparing data for analysis

[SP] intro 4 — Preparing data: Data with shapefiles

[SP] intro 5 — Preparing data: Data containing locations (no shapefiles)

[SP] intro 6 — Preparing data: Data without shapefiles or locations

[SP] intro 7 — Example from start to finish

[SP] spbalance — Make panel data strongly balanced

[SP] spdistance — Calculator for distance between places

[SP] spshape2dta — Translate shapefile to Stata format

[XT] xtset — Declare data to be panel data



Title

spshape2dta — Translate shapefile to Stata format

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
spshape2dta name reads files name.shp and name.dbf and creates Sp dataset name.dta

and translated shapefile name shp.dta. The translated shapefile will be linked to the Sp dataset
name.dta.

Quick start
Create myfile.dta and myfile shp.dta from myfile.shp and myfile.dbf

spshape2dta myfile

Create newfile.dta and newfile shp.dta from oldfile.shp and oldfile.dbf

spshape2dta oldfile, saving(newfile)

Menu
Statistics > Spatial autoregressive models

Syntax
spshape2dta name

[
, options

]
options Description

clear clear existing data from memory
replace if name.dta or name shp.dta exists, replace them
saving(name2) create new files named name2.dta and name2 shp.dta instead of

name.dta and name shp.dta

spshape2dta translates files name.shp and name.dbf. They must be in the current directory.
spshape2dta creates files name.dta and name shp.dta. They will be created in the current directory. The data in

memory, if any, remain unchanged.
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Options
clear specifies to clear any data in memory.

replace specifies that if the new files being created already exist on disk, they can be replaced.

saving(name2) specifies that rather than the new files being named name.dta and name shp.dta,
they be named name2.dta and name2 shp.dta.

Remarks and examples
spshape2dta is the first step in preparing data to be used with shapefiles. See [SP] intro 4 for

step-by-step instructions.

spshape2dta creates two files:

name.dta
name_shp.dta

name.dta is an ordinary Stata dataset. The dataset will have N observations, one for each spatial
unit. The dataset will be spset.

. use name

. spset
Sp dataset

data: cross sectional
spatial-unit ID: _ID

coordinates: _CY, _CX (latitude-and-longitude, miles)
linked shapefile: name_shp.dta

name.dta will contain the variables

ID values 1, 2, . . . , N . This variable links observations in the
data to observations in the Stata-format shapefile, name shp.dta.

CX, CY contain the centroids for the places (spatial units)

name.dta will include the other variables defined in name.dbf. Usually, there will be five or ten.
What they contain varies but can usually be determined from their names and by looking at their
values.

name.dta will be linked to name shp.dta, which is called the Stata-format shapefile. It contains
the map. It too is an ordinary Stata dataset, but you ignore it. Sp will use name shp.dta behind the
scenes when you construct contiguity spatial weighting matrices using spmatrix create contiguity
or when you graph choropleth maps using grmap.

Also see
[SP] intro 3 — Preparing data for analysis

[SP] intro 4 — Preparing data: Data with shapefiles
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spxtregress — Spatial autoregressive models for panel data

Description Quick start Menu
Syntax Options for spxtregress, fe Options for spxtregress, re
Remarks and examples Stored results Methods and formulas
References Also see

Description

spxtregress fits spatial autoregressive (SAR) models, also known as simultaneous autoregressive
models, for panel data. The commands spxtregress, fe and spxtregress, re are extensions of
xtreg, fe and xtreg, re for spatial data; see [XT] xtreg.

If you have not read [SP] intro 1–[SP] intro 8, you should do so before using spxtregress.

To use spxtregress, your data must be Sp data and xtset. See [SP] intro 3 for instructions on
how to prepare your data.

To specify spatial lags, you will need to have one or more spatial weighting matrices. See [SP] intro 2
and [SP] spmatrix for an explanation of the types of weighting matrices and how to create them.

Quick start
SAR fixed-effects model of y on x1 and x2 with a spatial lag of y specified by the spatial weighting

matrix W

spxtregress y x1 x2, fe dvarlag(W)

Add a spatially lagged error term also specified by W

spxtregress y x1 x2, fe dvarlag(W) errorlag(W)

Add spatial lags of covariates x1 and x2

spxtregress y x1 x2, fe dvarlag(W) errorlag(W) ivarlag(W: x1 x2)

Add an additional spatial lag of the covariates specified by the matrix M

spxtregress y x1 x2, fe dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///
ivarlag(M: x1 x2)

SAR random-effects model
spxtregress y x1 x2, re dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///

ivarlag(M: x1 x2)

An re model with panel effects that follow the same spatial process as the errors using sarpanel

spxtregress y x1 x2, re sarpanel dvarlag(W) errorlag(W) ///
ivarlag(W: x1 x2) ivarlag(M: x1 x2)
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Menu
Statistics > Spatial autoregressive models

Syntax
Fixed-effects maximum likelihood

spxtregress depvar
[

indepvars
] [

if
] [

in
]
, fe

[
fe options

]
Random-effects maximum likelihood

spxtregress depvar
[

indepvars
] [

if
] [

in
]
, re

[
re options

]
fe options Description

Model
∗fe use fixed-effects estimator
dvarlag(spmatname) spatially lagged dependent variable
errorlag(spmatname) spatially lagged errors
ivarlag(spmatname : varlist) spatially lagged independent variables; repeatable
force allow estimation when estimation sample is a subset of the

sample used to create the spatial weighting matrix
gridsearch(#) resolution of the initial-value search grid; seldom used

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics
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re options Description

Model
∗re use random-effects estimator
dvarlag(spmatname) spatially lagged dependent variable
errorlag(spmatname) spatially lagged errors
ivarlag(spmatname : varlist) spatially lagged independent variables; repeatable
sarpanel alternative formulation of the estimator in which the panel

effects follow the same spatial process as the errors
noconstant suppress constant term
force allow estimation when estimation sample is a subset of the

sample used to create the spatial weighting matrix

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗ You must specify either fe or re.
indepvars and varlist specified in ivarlag() may contain factor variables; see [U] 11.4.3 Factor variables.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for spxtregress, fe

� � �
Model �

fe requests the fixed-effects regression estimator.

dvarlag(spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent
variable. Only one dvarlag() option may be specified. By default, no spatial lags of the dependent
variable are included.

errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. Only
one errorlag() option may be specified. By default, no spatially lagged errors are included.

ivarlag(spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables
that define spatial lags of the variables. This option is repeatable to allow spatial lags created from
different matrices. By default, no spatial lags of the independent variables are included.

force requests that estimation be done when the estimation sample is a proper subset of the sample
used to create the spatial weighting matrices. The default is to refuse to fit the model. Weighting
matrices potentially connect all the spatial units. When the estimation sample is a subset of
this space, the spatial connections differ and spillover effects can be altered. In addition, the
normalization of the weighting matrix differs from what it would have been had the matrix been
normalized over the estimation sample. The better alternative to force is first to understand the
spatial space of the estimation sample and, if it is sensible, then create new weighting matrices for
it. See [SP] spmatrix and Missing values, dropped observations, and the W matrix in [SP] intro 2.
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gridsearch(#) specifies the resolution of the initial-value search grid. The default is
gridsearch(0.1). You may specify any number between 0.001 and 0.1 inclusive.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] maximize.

The following option is available with spxtregress, fe but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for spxtregress, re

� � �
Model �

re requests the generalized least-squares random-effects estimator.

dvarlag(spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent
variable. Only one dvarlag() option may be specified. By default, no spatial lags of the dependent
variable are included.

errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. Only
one errorlag() option may be specified. By default, no spatially lagged errors are included.

ivarlag(spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables
that define spatial lags of the variables. This option is repeatable to allow spatial lags created from
different matrices. By default, no spatial lags of the independent variables are included.

sarpanel requests an alternative formulation of the estimator in which the panel effects follow the
same spatial process as the errors. By default, the panel effects are included in the estimation
equation as an additive term, just as they are in the standard nonspatial random-effects model.
When sarpanel and errorlag(spmatname) are specified, the panel effects also have a spatial
autoregressive form based on spmatname. If errorlag() is not specified with sarpanel, the
estimator is identical to the estimator when sarpanel is not specified. The sarpanel estimator
was originally developed by Kapoor, Kelejian, and Prucha (2007); see Methods and formulas .

noconstant; see [R] estimation options.

force requests that estimation be done when the estimation sample is a proper subset of the sample
used to create the spatial weighting matrices. The default is to refuse to fit the model. This is the
same force option described for use with spxtregress, fe.
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� � �
Reporting �

level(#); see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] maximize.

The following option is available with spxtregress, re but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
See [SP] intro for an overview of SAR models.

Datasets for Sp panel models contain observations on geographical areas or other units with multiple
observations on each unit. See [SP] intro 3 for an explanation of how to work with Sp panel data.
The data must be xtset and must be strongly balanced. There must be a within-panel identifier, a
variable indicating time or the equivalent, and the values of this identifier must be the same for every
panel. The command spbalance will strongly balance datasets that are not strongly balanced. See
[SP] intro 3, [SP] intro 7, and [SP] spbalance.

Remarks and examples are presented under the following headings:

Sp panel models
The fixed-effects model
The random-effects model
The random-effects model with autoregressive panel effects
Differences among models
Examples

Sp panel models

Both the fixed-effects and the random-effects models for spatial panel data can be written as

ynt = λWynt + Xntβ + cn + unt

unt = ρMunt + vnt t = 1, 2, . . . , T
(1)

where ynt = (y1t, y2t, . . . , ynt)
′ is an n × 1 vector of observations for the dependent variable for

time period t with n number of panels; Xnt is a matrix of time-varying regressors; cn is a vector of
panel-level effects; unt is the spatially lagged error; vnt is a vector of disturbances and is independent
and identically distributed (i.i.d.) across panels and time with variance σ2; and W and M are spatial
weighting matrices.
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The fixed-effects model
For fixed effects, spxtregress, fe implements the quasi–maximum likelihood (QML) estimator

in Lee and Yu (2010a) to fit the model. A transformation is used to eliminate the fixed effects from
the equations, yielding

ỹnt = λWỹnt + X̃ntβ + ũnt

ũnt = ρMũnt + ṽnt t = 1, 2, . . . , T − 1

Both panel effects and effects that are constant within time are conditioned out of the likelihood.
Only covariates that vary across both panels and time can be fit with this estimator.

The random-effects model
For random effects, spxtregress, re assumes that cn in (1) is normal i.i.d. across panels with

mean 0 and variance σ2
c . The output of spxtregress, re displays estimates of σc, labeled as

/sigma u, and σ, labeled as /sigma e, which is consistent with how xtreg, re labels the output.

The random-effects model with autoregressive panel effects

The sarpanel option for random-effects models fits a slightly different set of equations from (1):

ynt = λWynt + Xntβ + unt

unt = ρMunt + cn + vnt, t = 1, 2, . . . , T

In this variant due to Kapoor, Kelejian, and Prucha (2007), the panel-level effects cn are considered
a disturbance in the error equation. Because cn enters the equation as an additive term next to vnt,
the panel-level effects cn have the same autoregressive form as the time-level errors vnt.

Differences among models

All three of the models—fe, re, and re sarpanel—are fit using maximum likelihood (ML)
estimation. The differences are 1) fe removes the panel-level effects from the estimation and no
distributional assumptions are made about them; 2) re models the panel-level effects as normal
i.i.d.; and 3) re sarpanel assumes a normal distribution for panel-level effects but with the same
autoregressive form as the time-level errors. The fe model allows the panel-level effects to be
correlated with the observed covariates, whereas the re models require that the panel-level effects are
independent of the observed covariates. See Methods and formulas for details. Also see Choosing
weighting matrices and their normalization in [SP] spregress; the discussion there applies to these
three estimation models.
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Examples

Example 1: spxtregress, re

We have data on the homicide rate in counties in southern states of the U.S. for the years 1960,
1970, 1980, and 1990. homicide 1960 1990.dta contains hrate, the county-level homicide rate
per year per 100,000 persons for each of the four years. It also contains ln population, the logarithm
of the county population; ln pdensity, the logarithm of the population density; and gini, the
Gini coefficient for the county, a measure of income inequality where larger values represent more
inequality (Gini 1909). The data are an extract of the data originally used by Messner et al. (2000);
see Britt (1994) for a literature review of the topic. The 1990 data are used in the examples in
[SP] spregress.

We used spshape2dta to convert shapefiles into Stata .dta files, and then we merged the data
file by county ID with our homicide-rate data. See [SP] intro 4, [SP] intro 7, [SP] spshape2dta, and
[SP] spset.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory to
spset the data, we first save both homicide 1960 1990.dta and homicide 1960 1990 shp.dta
to our working directory by using the copy command. We then load the data and type spset to see
the Sp settings.

. copy http://www.stata-press.com/data/r15/homicide_1960_1990.dta .

. copy http://www.stata-press.com/data/r15/homicide_1960_1990_shp.dta .

. use homicide_1960_1990
(S.Messner et al.(2000), U.S southern county homicide rate in 1960-1990)

. spset
Sp dataset homicide_1960_1990.dta

data: cross sectional
spatial-unit id: _ID

coordinates: _CX, _CY (planar)
linked shapefile: homicide_1960_1990_shp.dta

variable _ID does not uniquely identify the observations
Do these data need to be xtset?

r(459);

We get an error! The data have not been xtset, and spxtregress requires it. Our data consist of
1,412 counties, and for each county we have data for four years. Our data look like this:

. list _ID year in 1/8, sepby(_ID)

_ID year

1. 876 1960
2. 876 1970
3. 876 1980
4. 876 1990

5. 921 1960
6. 921 1970
7. 921 1980
8. 921 1990
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We type

. xtset _ID year
panel variable: _ID (strongly balanced)
time variable: year, 1960 to 1990, but with gaps

delta: 1 unit

xtset reports that our data are strongly balanced. Each county has data for the same four years.
spxtregress requires the data to be strongly balanced. Missing values in our variables could cause
the estimation sample to be unbalanced. The Sp panel estimators will complain, and we will have to
make the data strongly balanced for the nonmissing values of the variables in our model. If you get
a message that your data are not strongly balanced, see [SP] spbalance.

After having xtset our data, we type spset to check our Sp settings.

. spset
Sp dataset homicide_1960_1990.dta

data: panel
spatial-unit id: _ID

time id: year (see xtset)
coordinates: _CX, _CY (planar)

linked shapefile: homicide_1960_1990_shp.dta

We first run a nonspatial random-effects model by using xtreg, re and include dummies for the
years by using the i.year factor-variable notation.

. xtreg hrate ln_population ln_pdensity gini i.year, re

Random-effects GLS regression Number of obs = 5,648
Group variable: _ID Number of groups = 1,412

R-sq: Obs per group:
within = 0.0478 min = 4
between = 0.1666 avg = 4.0
overall = 0.0905 max = 4

Wald chi2(6) = 414.32
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_populat~n .4394103 .1830599 2.40 0.016 .0806194 .7982012
ln_pdensity .3220698 .1591778 2.02 0.043 .0100872 .6340525

gini 34.43792 2.905163 11.85 0.000 28.7439 40.13193

year
1970 1.411074 .2579218 5.47 0.000 .9055562 1.916591
1980 1.347822 .2499977 5.39 0.000 .8578352 1.837808
1990 .3668468 .2648395 1.39 0.166 -.1522291 .8859228

_cons -10.07267 1.800932 -5.59 0.000 -13.60243 -6.542908

sigma_u 3.5995346
sigma_e 5.646151

rho .28898083 (fraction of variance due to u_i)

We emphasize that you can ignore the spatial aspect of the data and use any of Stata’s estimation
commands even though the data are spatial. Doing that is often a good idea. It provides a baseline
against which you can compare subsequent spatial results.

We are now going to estimate a spatial random-effects model. To do that, we need a spatial
weighting matrix. We will create one that puts the same positive weight on contiguous counties and
a 0 weight on all other counties—a matrix known as a contiguity matrix. We will use the default
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spectral normalization for this example. See [SP] spmatrix create. When we create the matrix, we
must restrict spmatrix create to one observation per panel. That is easy to do using an if statement:

. spmatrix create contiguity W if year == 1990

Do not misinterpret the purpose of if year == 1990. The matrix created will be appropriate for
creating spatial lags for any year, because our map does not change. If two counties share a border
in 1990, they share it in the other years too.

We can now fit our model. We include a spatial lag of the dependent variable and a spatially
autoregressive error term.

. spxtregress hrate ln_population ln_pdensity gini i.year, re dvarlag(W)
> errorlag(W)

(5648 observations)
(5648 observations used)
(data contain 1412 panels (places) )
(weighting matrix defines 1412 places)

Fitting starting values:

Iteration 0: log likelihood = -13299.332
Iteration 1: log likelihood = -13298.431
Iteration 2: log likelihood = -13298.43
Iteration 3: log likelihood = -13298.43

Optimizing concentrated log likelihood:

initial: log likelihood = -18826.009
improve: log likelihood = -18826.009
rescale: log likelihood = -18826.009
rescale eq: log likelihood = -18500.374
Iteration 0: log likelihood = -18500.374 (not concave)
Iteration 1: log likelihood = -18473.617 (not concave)
Iteration 2: log likelihood = -18465.333
Iteration 3: log likelihood = -18434.609
Iteration 4: log likelihood = -18356.316
Iteration 5: log likelihood = -18354.863
Iteration 6: log likelihood = -18354.84
Iteration 7: log likelihood = -18354.84

Optimizing unconcentrated log likelihood:

Iteration 0: log likelihood = -18354.84
Iteration 1: log likelihood = -18354.84 (backed up)
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Random-effects spatial regression Number of obs = 5,648
Group variable: _ID Number of groups = 1,412

Obs per group = 4

Wald chi2(7) = 1421.80
Prob > chi2 = 0.0000

Log likelihood = -1.835e+04 Pseudo R2 = 0.0911

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n -.2988716 .1622148 -1.84 0.065 -.6168068 .0190637
ln_pdensity .7893219 .1380612 5.72 0.000 .518727 1.059917

gini 22.77053 2.604624 8.74 0.000 17.66556 27.8755

year
1970 .3977166 .1906034 2.09 0.037 .0241408 .7712924
1980 .4033441 .1825721 2.21 0.027 .0455094 .7611789
1990 -.1284627 .1946898 -0.66 0.509 -.5100478 .2531224

_cons -4.182034 1.607561 -2.60 0.009 -7.332796 -1.031272

W
hrate .5740163 .0249799 22.98 0.000 .5250565 .622976

e.hrate -.4626342 .0508732 -9.09 0.000 -.5623438 -.3629245

/sigma_u 3.087658 .1046893 2.88914 3.299816
/sigma_e 5.40831 .0661566 5.280188 5.539542

Wald test of spatial terms: chi2(2) = 713.88 Prob > chi2 = 0.0000

spxtregress, re first fits an spxtregress, fe model to get starting values. Then, it optimizes
the concentrated log likelihood and then optimizes the unconcentrated log likelihood. The final log
likelihood of the concentrated will always be equal to the optimized log likelihood of the unconcentrated.
The unconcentrated starts at the right point, takes a step to check that it is the right point, backs up
to this point, and declares convergence as it should.

We can compare estimates of /sigma u, the standard deviation of the panel effects, and /sigma e,
the standard deviation of the errors, with those fit by xtreg, re. They are similar. We cannot, however,
directly compare the coefficient estimates with those of xtreg, re. When a spatial lag of the dependent
variable is included in the model, covariates have both direct and indirect effects, as explained in
example 1 of [SP] spregress. To obtain the direct, indirect, and total effects of the covariates, we
must use estat impact.
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Here are the averages of the effects of gini:

. estat impact gini

progress :100%

Average impacts Number of obs = 5,648

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
gini 24.1144 2.715901 8.88 0.000 18.79133 29.43747

indirect
gini 22.73746 2.787574 8.16 0.000 17.27391 28.201

total
gini 46.85185 5.126096 9.14 0.000 36.80489 56.89882

The percentages at the top of the output indicate progress in the estimation process. For large datasets,
calculating standard errors of the effects can be time consuming, so estat impact reports its progress
as it does the computations.

gini has significant average direct and average indirect effects on hrate, with both being positive.
An increase in inequality is associated with an increase in the homicide rate.

We used a contiguity weighting matrix W for the spatial lags. Alternatively, we can use a weighting
matrix based on the inverse distance between counties. We create this matrix, using again the default
spectral normalization:

. spmatrix create idistance M if year == 1990

. spmatrix dir

Weighting matrix name N x N Type Normalization

M 1412 x 1412 idistance spectral
W 1412 x 1412 contiguity spectral
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We would like to know if the effects of gini differ over time, so we include an interaction of
gini and year in our model, and we use the weighting matrix M that we just created.

. spxtregress hrate ln_population ln_pdensity c.gini##i.year, re
> dvarlag(M) errorlag(M)

(5648 observations)
(5648 observations used)
(data contain 1412 panels (places) )
(weighting matrix defines 1412 places)

(output omitted )
Random-effects spatial regression Number of obs = 5,648
Group variable: _ID Number of groups = 1,412

Obs per group = 4

Wald chi2(10) = 710.10
Prob > chi2 = 0.0000

Log likelihood = -1.827e+04 Pseudo R2 = 0.1150

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n .7908003 .1764818 4.48 0.000 .4449023 1.136698
ln_pdensity -.1223671 .166526 -0.73 0.462 -.448752 .2040178

gini 17.82039 4.278775 4.16 0.000 9.434144 26.20663

year
1970 -2.456656 2.303069 -1.07 0.286 -6.970587 2.057275
1980 -9.470622 2.501527 -3.79 0.000 -14.37353 -4.567718
1990 -22.81817 2.528685 -9.02 0.000 -27.7743 -17.86204

year#c.gini
1970 6.664314 6.130443 1.09 0.277 -5.351133 18.67976
1980 24.86122 6.715026 3.70 0.000 11.70001 38.02243
1990 57.40946 6.691086 8.58 0.000 44.29517 70.52374

_cons -11.17804 2.061044 -5.42 0.000 -15.21762 -7.138471

M
hrate .694492 .0496075 14.00 0.000 .5972631 .7917209

e.hrate 1.950078 .0513563 37.97 0.000 1.849422 2.050735

/sigma_u 2.696022 .1147302 2.480277 2.930533
/sigma_e 5.645628 .0618616 5.525674 5.768186

Wald test of spatial terms: chi2(2) = 1711.10 Prob > chi2 = 0.0000

Using the contrast command, we test the significance of the gini and year interaction:

. contrasts c.gini#year

Contrasts of marginal linear predictions

Margins : asbalanced

df chi2 P>chi2

hrate
year#c.gini 3 81.59 0.0000
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The interaction is significant. We can explore the effect of gini by year using estat impact with
an if statement.

. estat impact gini if year == 1960

progress :100%

Average impacts Number of obs = 1,412

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
gini 17.85376 4.285821 4.17 0.000 9.453709 26.25382

indirect
gini 37.06435 11.60646 3.19 0.001 14.31612 59.81259

total
gini 54.91812 14.85782 3.70 0.000 25.79732 84.03891

. estat impact gini if year == 1970

progress :100%

Average impacts Number of obs = 1,412

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
gini 24.53056 5.033537 4.87 0.000 14.66501 34.39611

indirect
gini 50.92536 15.21235 3.35 0.001 21.10971 80.741

total
gini 75.45591 18.8175 4.01 0.000 38.57429 112.3375

. estat impact gini if year == 1980

progress :100%

Average impacts Number of obs = 1,412

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
gini 42.76155 5.683654 7.52 0.000 31.62179 53.9013

indirect
gini 88.77282 23.09515 3.84 0.000 43.50716 134.0385

total
gini 131.5344 26.20928 5.02 0.000 80.16512 182.9036
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. estat impact gini if year == 1990

progress :100%

Average impacts Number of obs = 1,412

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
gini 75.37074 5.628577 13.39 0.000 64.33893 86.40255

indirect
gini 156.4694 37.24055 4.20 0.000 83.47925 229.4595

total
gini 231.8401 39.0186 5.94 0.000 155.3651 308.3152

The if year == · · · statement used with estat impact allows us to estimate the average effects
for each year. The direct, indirect, and total effects of gini trend upward.

Until now, we used the default form of the random-effects estimator. Let’s run the command again,
specifying the sarpanel option to use the alternative form of the estimator, where the panel-level
effects have the same autoregressive form as the time-level errors.
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. spxtregress hrate ln_population ln_pdensity c.gini##i.year, re sarpanel
> dvarlag(M) errorlag(M)

(5648 observations)
(5648 observations used)
(data contain 1412 panels (places) )
(weighting matrix defines 1412 places)

(output omitted )
Random-effects spatial regression Number of obs = 5,648
Group variable: _ID Number of groups = 1,412

Obs per group = 4

Wald chi2(10) = 1136.49
Prob > chi2 = 0.0000

Log likelihood = -1.824e+04 Pseudo R2 = 0.1177

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n .4366742 .1752502 2.49 0.013 .0931901 .7801583
ln_pdensity .1896 .1641334 1.16 0.248 -.1320955 .5112956

gini 18.92328 4.42621 4.28 0.000 10.24807 27.59849

year
1970 -.9590229 2.362015 -0.41 0.685 -5.588488 3.670442
1980 -8.19778 2.554504 -3.21 0.001 -13.20452 -3.191045
1990 -22.4189 2.610152 -8.59 0.000 -27.53471 -17.3031

year#c.gini
1970 5.865776 6.255297 0.94 0.348 -6.39438 18.12593
1980 24.20335 6.834194 3.54 0.000 10.80858 37.59812
1990 58.38273 6.881893 8.48 0.000 44.89447 71.87099

_cons -6.535916 2.257841 -2.89 0.004 -10.9612 -2.110629

M
hrate .3317434 .0967132 3.43 0.001 .142189 .5212978

e.hrate 2.860571 .0558304 51.24 0.000 2.751145 2.969996

/sigma_u 2.686156 .1123355 2.474764 2.915605
/sigma_e 5.609948 .0612095 5.491253 5.731208

Wald test of spatial terms: chi2(2) = 2685.83 Prob > chi2 = 0.0000

The re and re sarpanel estimators give appreciably different estimates for the coefficient of the
spatial lag of hrate and for the autoregressive error term. Estimates of other terms are similar. It
appears that some of the spatial-lag effect of hrate is being accounted for by the autoregressive form
of the panel effects in the sarpanel model.
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Example 2: spxtregress, fe

The random-effects estimator assumes that the panel-level effects are uncorrelated with the covariates
in the model. We can relax that assumption using the fixed-effects estimator.

We will fit fixed-effects models for the same data we used in example 1. Here’s a nonspatial model
fit with xtreg, fe.

. xtreg hrate ln_population ln_pdensity gini, fe

Fixed-effects (within) regression Number of obs = 5,648
Group variable: _ID Number of groups = 1,412

R-sq: Obs per group:
within = 0.0356 min = 4
between = 0.0084 avg = 4.0
overall = 0.0131 max = 4

F(3,4233) = 52.04
corr(u_i, Xb) = -0.2819 Prob > F = 0.0000

hrate Coef. Std. Err. t P>|t| [95% Conf. Interval]

ln_populat~n -2.16467 1.702073 -1.27 0.204 -5.501627 1.172286
ln_pdensity 1.007573 1.659751 0.61 0.544 -2.246409 4.261555

gini 35.12694 2.816652 12.47 0.000 29.60483 40.64906
_cons 13.90421 10.91007 1.27 0.203 -7.485242 35.29366

sigma_u 5.2469262
sigma_e 5.7428609

rho .45496484 (fraction of variance due to u_i)

F test that all u_i=0: F(1411, 4233) = 2.61 Prob > F = 0.0000

We now use spxtregress, fe and include a spatial lag of the dependent variable hrate.

. spxtregress hrate ln_population ln_pdensity gini, fe dvarlag(M)
(5648 observations)
(5648 observations used)
(data contain 1412 panels (places) )
(weighting matrix defines 1412 places)

Performing grid search ... finished

Optimizing concentrated log likelihood:

Iteration 0: log likelihood = -13321.27
Iteration 1: log likelihood = -13321.27 (backed up)
Iteration 2: log likelihood = -13321.269

Optimizing unconcentrated log likelihood:

Iteration 0: log likelihood = -13321.269
Iteration 1: log likelihood = -13321.269 (backed up)
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Fixed-effects spatial regression Number of obs = 5,648
Group variable: _ID Number of groups = 1,412

Obs per group = 4

Wald chi2(4) = 548.39
Prob > chi2 = 0.0000

Log likelihood = -1.332e+04 Pseudo R2 = 0.0146

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n -1.852636 1.662249 -1.11 0.265 -5.110586 1.405313
ln_pdensity -.0352675 1.621715 -0.02 0.983 -3.21377 3.143235

gini 11.58058 3.001197 3.86 0.000 5.698348 17.46282

M
hrate .8982519 .0457977 19.61 0.000 .80849 .9880138

/sigma_e 5.608237 .0609629 5.490016 5.729004

Wald test of spatial terms: chi2(1) = 384.69 Prob > chi2 = 0.0000

spxtregress, fe does not give an estimate of /sigma u because the spatial fixed-effects estimator
does not give consistent estimates for the levels of the panel fixed effects nor for their standard
deviation. See Methods and formulas .

We cannot fit a fixed-effects model with all of the terms we included in example 1. The i.year
dummies are constant within panel and the fixed-effects estimator is already conditional on constant
effects for each panel and constant effects for each time. Models can include only variables that vary
across both panels and time.

We cannot fit a time effect because time does not vary across panels, but we can fit a time-variable
interaction because it varies across time and panels. This will model the effects of a variable over
time.
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In example 1, we found that gini was an important regressor and that the effect of gini differed
across time. We will use Stata’s factor-variable notation and add to the model c.gini#i.year, which
is gini interacted by year without main effects.

. spxtregress hrate ln_population ln_pdensity c.gini#i.year, fe
> dvarlag(M) errorlag(M)

(5648 observations)
(5648 observations used)
(data contain 1412 panels (places) )
(weighting matrix defines 1412 places)

(output omitted )
Fixed-effects spatial regression Number of obs = 5,648
Group variable: _ID Number of groups = 1,412

Obs per group = 4

Wald chi2(7) = 128.16
Prob > chi2 = 0.0000

Log likelihood = -1.330e+04 Pseudo R2 = 0.0001

hrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

hrate
ln_populat~n -2.169113 1.70931 -1.27 0.204 -5.519298 1.181073
ln_pdensity -.7395584 1.638919 -0.45 0.652 -3.95178 2.472663

year#c.gini
1960 4.637191 4.648658 1.00 0.319 -4.474012 13.74839
1970 11.15786 4.234693 2.63 0.008 2.858016 19.45771
1980 11.92355 4.158854 2.87 0.004 3.77235 20.07476
1990 11.13694 3.975612 2.80 0.005 3.344885 18.929

M
hrate .1251126 .2552473 0.49 0.624 -.3751629 .625388

e.hrate 1.604259 .1898228 8.45 0.000 1.232213 1.976305

/sigma_e 5.582721 .0606909 5.465027 5.702949

Wald test of spatial terms: chi2(2) = 116.83 Prob > chi2 = 0.0000
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We look at the effects:

. estat impact

progress : 33% 67% 100%

Average impacts Number of obs = 5,648

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
ln_populat~n -2.169186 1.709375 -1.27 0.204 -5.5195 1.181127
ln_pdensity -.7395835 1.638973 -0.45 0.652 -3.951911 2.472744

gini 9.714218 4.112071 2.36 0.018 1.654707 17.77373

indirect
ln_populat~n -.2894662 .7155598 -0.40 0.686 -1.691938 1.113005
ln_pdensity -.0986934 .3143279 -0.31 0.754 -.7147649 .517378

gini 1.29631 3.022576 0.43 0.668 -4.62783 7.22045

total
ln_populat~n -2.458653 2.065714 -1.19 0.234 -6.507378 1.590073
ln_pdensity -.838277 1.867989 -0.45 0.654 -4.499469 2.822915

gini 11.01053 5.357526 2.06 0.040 .5099701 21.51109

The output shows the effects of gini across all the years. estat impact is smart enough to know
that there are not year effects in the fixed-effects model. When it looks at the term c.gini#i.year,
it only gives the effects for gini. If year were replaced by a variable that varied within time, estat
impact would show the effects for that variable, too.

If we want to see how the effects of gini change across the years, we can use if with estat
impact as we did in example 1.

. estat impact gini if year == 1960

progress :100%

Average impacts Number of obs = 1,412

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
gini 4.637349 4.648981 1.00 0.319 -4.474486 13.74918

indirect
gini .6188292 1.70156 0.36 0.716 -2.716167 3.953826

total
gini 5.256178 5.794721 0.91 0.364 -6.101266 16.61362



208 spxtregress — Spatial autoregressive models for panel data

. estat impact gini if year == 1970

progress :100%

Average impacts Number of obs = 1,412

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
gini 11.15824 4.234355 2.64 0.008 2.859059 19.45743

indirect
gini 1.489007 3.335444 0.45 0.655 -5.048344 8.026358

total
gini 12.64725 5.00173 2.53 0.011 2.844039 22.45046

. estat impact gini if year == 1980

progress :100%

Average impacts Number of obs = 1,412

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
gini 11.92396 4.158654 2.87 0.004 3.773148 20.07477

indirect
gini 1.591188 3.62961 0.44 0.661 -5.522717 8.705093

total
gini 13.51515 5.380726 2.51 0.012 2.96912 24.06118

. estat impact gini if year == 1990

progress :100%

Average impacts Number of obs = 1,412

Delta-Method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

direct
gini 11.13732 3.975637 2.80 0.005 3.345217 18.92943

indirect
gini 1.486215 3.459169 0.43 0.667 -5.293632 8.266063

total
gini 12.62354 5.485123 2.30 0.021 1.872894 23.37418

There is no evidence of a trend in the average total effect of gini from the fe model.
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Stored results
spxtregress, fe and spxtregress, re store the following in e():

Scalars
e(N) number of observations
e(N g) number of groups (panels)
e(g) group size
e(k) number of parameters
e(df m) model degrees of freedom
e(df c) degrees of freedom for test of spatial terms
e(ll) log likelihood
e(iterations) number of maximum log-likelihood estimation iterations
e(rank) rank of e(V)
e(r2 p) pseudo-R2

e(chi2) χ2

e(chi2 c) χ2 for test of spatial terms
e(p) p-value for model test
e(p c) p-value for test of spatial terms
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) spxtregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indeps) names of independent variables
e(idvar) name of ID variable
e(model) fe, re, or re sarpanel
e(title) title in estimation output
e(constant) hasconstant or noconstant (re only)
e(dlmat) name of spatial weighting matrix applied to depvar
e(elmat) name of spatial weighting matrix applied to errors
e(chi2type) Wald; type of model χ2 test
e(vce) oim
e(ml method) type of ml method
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(Hessian) Hessian matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
spxtregress, fe estimates the parameters of the SAR model with spatially autoregressive errors

and fixed effects using the QML estimator derived by Lee and Yu (2010a).

spxtregress, re estimates the parameters of two different SAR models with spatially autoregressive
errors and random effects. In the default model, the random effects enter the equation for the
dependent variable linearly. This model and the ML estimator for its parameters were derived by
Lee and Yu (2010b). When the sarpanel option is specified, the random effects are subject to the
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same spatial autoregressive process as the idiosyncratic errors. This model and the ML estimator of
its parameters were derived by Lee and Yu (2010b), which builds on the original formulation by
Kapoor, Kelejian, and Prucha (2007). All of these papers build on theoretical work in Kelejian and
Prucha (2001) and Lee (2004). We use the estimator derived by Baltagi and Liu (2011) to get initial
values.

Methods and formulas are presented under the following headings:
Fixed-effects estimators
Random-effects estimators

Fixed-effects estimators

The Lee and Yu (2010a) SAR model for panel data with fixed effects is

ynt = λWynt + Xntβ + cn + unt

unt = ρMunt + vnt t = 1, 2, . . . , T
(2)

where

ynt = (y1t, y2t, . . . , ynt)
′ is an n× 1 vector of observations on the dependent variable for time

period t;

Xnt is an n× k matrix of nonstochastic time-varying regressors for time period t. Xnt may also
contain spatial lag of exogenous covariates;

cn is an n× 1 vector of individual effects;

unt is an n× 1 vector of spatially lagged error;

vnt = (v1t, v2t, . . . , vnt)
′ is an n× 1 vector of innovations, and vit is i.i.d. across i and t with

variance σ2; and

W and M are n× n spatial weighting matrices.

spxtregress, fe estimates the parameters in this model by using the QML estimator derived
by Lee and Yu (2010a). Lee and Yu (2010a) uses an orthogonal transformation to remove the fixed
effects cn without inducing dependence in the transformed errors. The transform FT,T−1 is part of
[FT,T−1, 1/

√
T lT ], which is the orthonormal eigenvector matrix of (IT − 1/T lT l

′
T ), where IT is

the T ×T identity matrix and lT is a T × 1 vector of 1s. Kuersteiner and Prucha (2015) discuss this
class of transforms.

For any n× T matrix [zn1, zn2, . . . , znT ], the transformed n× (T − 1) matrix is defined as

[z̃n1, z̃n2, . . . , z̃n,T−1] = [zn1, zn2, . . . , znT ]FT,T−1

Thus, the transformed model for (2) is

ỹnt = λWỹnt + X̃ntβ + ũnt

ũnt = ρMũnt + ṽnt t = 1, 2, . . . , T − 1

The transformed innovations ṽnt are uncorrelated for all i and t.

The log-likelihood function for the transformed model is

lnLn,T (θ) = −n(T − 1)

2
ln(2πσ2) + (T − 1)[ ln|Sn(λ)|+ ln|Rn(ρ)|]− 1

2σ2

T−1∑
t=1

ṽ′nt(θ)ṽnt(θ)

where Sn(λ) = In − λW, Rn(ρ) = In − ρM, and θ = (β′, λ, ρ, σ2)′.
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Random-effects estimators
spxtregress, re fits two different random-effects SAR models for panel data. In the default

model, the random effects enter the equation for ynt linearly.

ynt = λWynt + Zntβ + cn + unt

unt = ρMunt + vnt t = 1, 2, . . . , T
(3)

where

Znt may contain time-variant and -invariant regressors;

cn is random effects with mean 0 and variance σ2
c ; and

all the other terms are defined as in (2).

When the sarpanel option is specified, xtspregress, re fits a model in which the random
effects cn are subject to the same spatial autoregressive process as the errors.

ynt = λWynt + Zntβ + unt

unt = ρMunt + cn + vnt t = 1, 2, . . . , T
(4)

When the cn are treated as fixed effects and transformed out of the model, the default model in (3) is
equivalent to the sarpanel model in (4). When treating the cn as random effects, these two models
are different.

For (3) or (4), we can stack all the time periods and write the equations as an nT × 1 vector form

ynT = λ(IT ⊗W)ynT + ZnTβ + ξnT (5)

where

ynT = (y′n1,y
′
n2, . . . ,y

′
nt)
′ is an nT × 1 vector of observations of the dependent variable for

i = 1, . . . , n and t = 1, . . . , T ;

vnT = (v′n1,v
′
n2, . . . ,v

′
nt)
′ is an nT × 1 vector of innovations;

ZnT = {Z′n1,Z′n2, . . . ,Z∗(ρ)
′}′ is an nT × k matrix of k regressors for i = 1, . . . , n and

t = 1, . . . , T ; and

ξnT is the overall disturbance nT × 1 vector.

For (3), the overall disturbance vector ξnT is

ξnT = lT ⊗ cn + {IT ⊗Rn(ρ)−1}vnT

where Rn(ρ) = In − ρM. Its variance matrix is

ΩnT (θ) = σ2
c (lT l

′
T ⊗ IT ) + σ2{IT ⊗Rn(ρ)−1R′n(ρ)−1}

For (4), the overall disturbance vector ξnT is

ξnT = lT ⊗Rn(ρ)−1cn + {IT ⊗Rn(ρ)−1}vnT

Its variance matrix is

ΩnT (θ) = σ2
c{lT l′T ⊗Rn(ρ)−1R′n(ρ)−1}+ σ2{IT ⊗Rn(ρ)−1R′n(ρ)−1}
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The log-likelihood function for (5) is

lnLnT (θ) = −nT
2

ln(2π)− 1

2
ln|ΩnT (θ)|+ T ln|Sn(λ)| − 1

2
ξ′nT (θ)ΩnT (θ)−1ξnT (θ)

where Sn(λ) = In − λW, and θ = (β′, λ, ρ, σ2
c, σ

2)′.
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spxtregress postestimation — Postestimation tools for spxtregress

Postestimation commands predict margins estat impact
Methods and formulas Reference Also see

Postestimation commands
The following postestimation command is of special interest after spxtregress:

Command Description

estat impact direct, indirect, and total impacts

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses
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predict

Description for predict

predict creates a new variable containing predictions such as the reduced-form mean, the direct
mean, the indirect mean, or the linear prediction.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

statistic Description

Main

rform reduced-form mean; the default
direct direct mean
indirect indirect mean
xb linear prediction

These statistics are only available in a subset of the estimation sample.

Options for predict

� � �
Main �

rform, the default, calculates the reduced-form mean. It is the predicted mean of the dependent
variable conditional on the independent variables and any spatial lags of the independent variables.
See Methods and formulas .

direct calculates the direct mean. It is a unit’s predicted contribution to its own reduced-form mean.
The direct and indirect means sum to the reduced-form mean.

indirect calculates the indirect mean. It is the predicted sum of the other units’ contributions to a
unit’s reduced-form mean.

xb calculates the predicted linear combination of the independent variables.
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margins

Description for margins

margins estimates margins of response for reduced-form mean, direct mean, indirect mean, and
linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

rform reduced-form mean; the default
direct direct mean
indirect indirect mean
xb linear prediction

For the full syntax, see [R] margins.

Remarks for margins

The computations that margins must do to calculate standard errors can sometimes be time
consuming. Time will depend on the complexity of the spatial model and the number of spatial
units in the data. You may want to fit your model with a subsample of your data, run margins,
and extrapolate to estimate the time required to run margins on the full sample. See [P] timer and
[P] rmsg.

estat impact

Description for estat impact

estat impact estimates the mean of the direct, indirect, and total impacts of independent variables
on the reduced-form mean of the dependent variable.
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Syntax for estat impact

estat impact
[

varlist
] [

if
] [

in
] [

, nolog
]

varlist is a list of independent variables, including factor variables, taken from the fitted model. By
default, all independent variables from the fitted model are used.

Options for estat impact

� � �
Main �

nolog suppresses the calculation progress log that shows the percentage completed. By default, the
log is displayed.

Remarks for estat impact

estat impact is essential for interpreting the output of spxtregress. See [SP] intro 7, example 1
of [SP] spregress, and examples 1 and 2 of [SP] spxtregress for explanations and examples.

Stored results for estat impact

estat impact stores the following in r():

Scalars
r(N) number of observations

Macros
r(xvars) names of independent variables

Matrices
r(b direct) vector of estimated direct impacts
r(Jacobian direct) Jacobian matrix for direct impacts
r(V direct) estimated variance–covariance matrix of direct impacts
r(b indirect) vector of estimated indirect impacts
r(Jacobian indirect) Jacobian matrix for indirect impacts
r(V indirect) estimated variance–covariance matrix of indirect impacts
r(b total) vector of estimated total impacts
r(Jacobian total) Jacobian matrix for total impacts
r(V total) estimated variance–covariance matrix of total impacts

Methods and formulas
Methods and formulas are presented under the following headings:

Predictions
Reduced-form mean
Direct and indirect means
Linear predictor

Impacts in random-effects models
Impacts in fixed-effects models
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Predictions

To motivate the predictions, consider the vector form of a spatial panel autoregressive model

ynt = λWynt + Xntβ + cn + εnt t = 1, 2, . . . , T (1)

where

ynt is the n× 1 vector containing each unit’s dependent-variable observations for time period t,

Wynt is a spatial lag of ynt,

Xnt is the matrix of independent-variable observations for time period t,

cn are individual effects, which can be either fixed effects or random effects,

εnt are the vector errors, and

λ and β are the coefficients.

Any spatial lags of the independent variables are assumed to be in Xnt. Spatial lags of the error do
not affect the reduced-form, direct, or indirect means, so they are not included in (1) for simplicity.

Reduced-form mean

Equation (1) represents the spatial autoregressive model as a system of equations. The solution to
this system is

ynt = (I− λW)
−1

(Xntβ + cn + εnt) (2)

To simplify later notation, we define ỹnt as ynt minus the spatial spillover of the individual effects
cn.

ỹnt = ynt − (I− λW)
−1

cn

= (I− λW)
−1

(Xntβ + εnt)
(3)

For the random-effects model, the individual effects cn are treated as part of random errors. Thus,
(2) implies that the mean of ynt conditional on the independent variables and their spatial lags is

E(ynt |Xnt,W) = (I− λW)
−1

(Xntβ) (4)

This is known as the reduced-form mean because the solution in (2) is known as the reduced form
of the model. The predicted reduced-form mean substitutes estimates of λ and β into (4).

For the fixed-effects model, the individual effects cn are treated as fixed effects, and they cannot
be consistently estimated. The reduced-form prediction after spxtregress, fe is the conditional
mean of ỹnt given the independent variables and their spatial lags:

E(ỹnt |Xnt,W) = (I− λW)
−1

(Xntβ) (5)
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Direct and indirect means

To define the direct mean and the indirect mean, let

Sn = (I− λW)
−1

and let Sd be a matrix with diagonal elements of Sn on its diagonal and with all off-diagonal elements
set to 0.

The direct means are
SdXntβ

which capture the contributions of each unit’s independent variables on its own reduced-form mean.
Substituting estimates of λ and β produces the predictions.

The indirect means capture the contributions of the other units’ independent variables on a unit’s
reduced-form mean. They are {

(I− λW)
−1 − Sd

}
Xntβ

Linear predictor

The linear predictor is Xntβ.

Impacts in random-effects models

The total impact of an independent variable x is the average of the marginal effects it has on the
reduced-form mean of ynt,

1

nT

T∑
t=1

n∑
i=1

n∑
j=1

∂E(yit|Xnt,W)

∂xjt

where E(yit |Xnt,W) is the ith element of the vector E(ynt |Xnt,W), whose formula is given
in (3), and xjt is the jth unit’s value for x at time t.

The direct impact of an independent variable x is the average of the direct, or own, marginal
effects:

1

nT

T∑
t=1

n∑
i=1

∂E(yit |Xnt,W)

∂xit

The indirect impact of an independent variable x is the average of the indirect, or spillover,
marginal effects:

1

nT

T∑
t=1

n∑
i=1

n∑
j=1,j 6=i

∂E(yit |Xnt,W)

∂xjt

LeSage and Pace (2009, 36–37) call the average direct impact the “average total direct impact”
and they call the average indirect impact the “average total indirect impact”.
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Impacts in fixed-effects models

The total impact of an independent variable x is the average of the marginal effects it has on the
reduced-form mean of ỹnt,

1

nT

T∑
t=1

n∑
i=1

n∑
j=1

∂E(ỹit |Xnt,W)

∂xjt

where E(ỹit |Xnt,W) is the ith element of the vector E(ỹnt |Xnt,W), whose formula is given
in (5), and xjt is the jth unit’s value for x at time t.

The direct impact of an independent variable x is the average of the direct, or own, marginal
effects:

1

nT

T∑
t=1

n∑
i=1

∂E(ỹit |Xnt,W)

∂xit

The indirect impact of an independent variable x is the average of the indirect, or spillover,
marginal effects:

1

nT

T∑
t=1

n∑
i=1

n∑
j=1,j 6=i

∂E(ỹit |Xnt,W)

∂xjt
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Also see
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adjacent. Two areas are said to be adjacent if they share a border. Also see contiguity matrix.

AR(1). See autoregressive errors.

areal data. Areal data is a term for data on areas. SAR models are appropriate for areal and lattice
data.

areas. Areas is an informal term for geographic units.

attributes. Attributes is the name given to the variables included in standard-format shapefiles.

autoregressive errors. Spatially autoregressive errors account for spatially lagged correlation of the
residuals. ρ is the correlation parameter. It is not a correlation coefficient, but it shares certain
properties with correlation coefficients. It is bounded by −1 and 1, and 0 has the same meaning,
namely, no correlation.

autoregressive models. Spatially autoregressive models include a spatially lagged dependent variable
or spatially autoregressive errors. See [SP] intro 1.

balanced and strongly balanced. Panel data are balanced if each panel contains the same number
of observations. They are strongly balanced if they record data for the same times (subcategory).

border and vertex. Consider the following map:

+-------+
| |

+----------+ C |
| B | |

+----------------+-------+
| A |
+----------------+

A and B share a border because there is a line segment separating them. For the same reasons,
B and C share a border.

A and C share a vertex. They have only a single point in common.

How should you treat vertex-only adjacency? This issue arises when constructing a contiguity
matrix. It is up to you whether a vertex in common is sufficient to label the areas as contiguous.
Vertex-only adjacency occurs frequently when the shapes of the geographic units are rectangular.

choropleth map. A choropleth map is a map in which shading or coloring is used to indicate values
of a variable within areas.

contiguity matrix and ex post contiguity matrix. A contiguity matrix is a symmetric matrix containing
0s and 1s before normalization, with 1s indicating that areas are adjacent.

spmatrix create contiguity creates contiguity matrices and other matrices that would not be
considered contiguity matrices by the above definition. It can create first-order neighbor matrices
containing 0s and 1s. That is a contiguity matrix. It can create first- and second-order neighbor
matrices containing 0s and 1s. That is not a contiguity matrix strictly speaking. And it can create
other matrices where second-order neighbors are recorded as 0.5 or any other value of your
choosing.

And finally, even if the matrix started out as a contiguity matrix strictly speaking, after normalization
the two values that it contains are 0 and c.

As a result, commands like spmatrix summarize use a different definition for contiguity matrix.
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An ex post contiguity matrix is any matrix in which all values are either 0 or c, a positive constant.
It is meaningful to count neighbors in such cases. Thus, the matrix W2 created by typing

. spmatrix create contiguity W2, second

is an ex post contiguity matrix, and the matrix W created by typing

. spmatrix create contiguity W, first second(0.5)

is not.

coordinate system. A coordinate system is the encoding used by numbers used to designate locations.
Latitude and longitude are a coordinate system. As far as Sp is concerned, the only other coordinate
system is planar. Planar coordinates are also known as rectangular or Cartesian coordinates. In
theory, standard-format shapefiles provide planar coordinates. In practice, they sometimes use
latitude and longitude, but standards for encoding the system used are still developing. See
[SP] spdistance for a more complete description, and see [SP] intro 4 for how you can determine
whether coordinates are planar or latitude and longitude.

covariate. See explanatory variable.

cross-sectional data. Cross-sectional data contain one observation per spatial unit. Also see panel
data.

.dbf files. See shapefiles.

dependent variable. See outcome variable.

distance matrix. A distance matrix is a spatial weighting matrix based on some function of distance.
Usually that function is 1/distance, and the matrix is then called an inverse-distance spatial
weighting matrix.

explanatory variable. An explanatory variable is a variable that appears on the right-hand side of
the equation used to “explain” the values of the outcome variable.

FIPS codes. FIPS stands for federal information processing standard. FIPS codes are used for designating
areas of the United States. At the most detailed level is the five-digit FIPS county codes, which
range from 01001 for Autauga County in Alabama to 78030 for St. Thomas Island in the Virgin
Islands. The FIPS county code includes counties, U.S. possessions, and freely associated areas.

The first two digits of the five-digit code are FIPS state codes. The two-digit code covers states,
U.S. possessions, and freely associated areas.

The five-digit code appears in some datasets as the two-digit state code plus a three-digit county
code. The full five-digit code is formed by joining the two-digit and three-digit codes.

geographic units. Geographic units is the generic term for places or areas such as zip-code areas,
census blocks, cities, counties, countries, and the like. The units do not need to be based on
geography. They could be network nodes, for instance. In this manual, we also use the words
places and areas for the geographic units. Also see spatial units.

GIS data. GIS is an acronym for geographic information system. Some of the information in shapefiles
is from such systems.

ID, ID variable. An ID variable is a variable that uniquely identifies the observations. Sp’s ID
variable is an example of an ID variable that uniquely identifies the geographic units. Sp’s ID
variable is a numeric variable that uniquely identifies the observations in cross-sectional data and
uniquely identifies the panels in panel data.

idistance spatial weighting matrix. An idistance spatial weighting matrix is Sp jargon for an inverse-
distance spatial weighting matrix.



222 Glossary

i.i.d. I.i.d. stands for independent and identically distributed. A variable is i.i.d. when each observation
of the variable has the same probability distribution as all the other observations and all are
independent of one another.

imported spatial weighting matrix. An imported spatial weighting matrix is a spatial weighting
matrix created with the spmatrix import command.

instrumental variables. Instrumental variables are variables related to the covariates (explanatory
variables) and unrelated to the errors (residuals).

inverse-distance spatial weighting matrix. An inverse-distance spatial weighting matrix is a matrix
in which the elements Wi,j before normalization contain the reciprocal of the distance between
places j and i. The term is also used for inverse-distance matrices in which places farther apart
than a specified distance are set to 0.

lags. See spatial lags.

latitude and longitude. See coordinate system.

lattice data. Lattice data are a kind of area data. In lattice data, all places are vertices appearing on
a grid. SAR models are appropriate for lattice data and areal data.

neighbors, first- and second-order. First-order neighbors share borders. Second-order neighbors are
neighbors of neighbors.

normalized spatial weighting matrix. A normalized spatial weighting matrix is a spatial weight-
ing matrix multiplied by a constant to improve numerical accuracy and to make nonexplosive
autoregressive parameters bounded by −1 and 1. See Choosing weighting matrices and their
normalization in [SP] spregress for details about normalization.

outcome variable (dependent variable). The outcome variable of a model is the variable appearing
on the left-hand side of the equation. It is the variable being “explained” or predicted.

panel data. Panel data contain data on geographic units at various times. Each observation contains
data on a geographic unit at a particular time, and thus the data contain multiple observations per
geographic unit. Also see cross-sectional data.

places. Places is an informal term for geographic units.

planar coordinates. See coordinate system.

proximity matrix. Proximity matrix is another word for distance matrix.

SAR. SAR stands for spatial autoregressive or simultaneous autoregressive, which themselves mean
the same thing but are used by researchers in different fields. See autoregressive models and
autoregressive errors.

shapefiles. Shapefiles are files defining maps and more that you find on the web. A shapefile might
be name.zip. name.zip contains name.shp, name.dbf, and files with other suffixes.

In this manual, shapefiles are also the shapefiles as described above translated into Stata format.
They are Stata datasets named name shp.dta.

To distinguish the two meanings, we refer to standard-format and Stata-format shapefiles.

Sp. Sp stands for spatial and refers to the SAR system described in this manual.

Sp data. Sp data are data that have been spset, whether directly or indirectly. You can type spset
without arguments to determine whether your data are spset.

spatial lags. Spatial lags are the spatial analogy of time-series lags. In time series, the lag of xt is
xt−1. In spatial analysis, the lag of xi—x in place i—is a weighted sum of x in nearby places
given by Wx. See [SP] intro 1.
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spatial units. Spatial units is the term we use for the units measuring distance when the coordinates
are planar. For instance, New York and Boston might be recorded in planar units as being at
( CX, CY) = (1.3, 7.836) and (1.447, 7.118). In that case, the distance between them is 0.0284
spatial units. Because they are about 190 miles apart, evidently a spatial unit is 6,690 miles. Also
see [SP] spdistance.

spatial weighting matrix. A spatial weighting matrix is square matrix W. Wx plays the same role in
spatial analysis that L.x plays in time-series analysis. One can think of W’s elements as recording
the potential spillover for place j to i.

Spatial weighting matrices have zero on the diagonal and nonzero or zero values elsewhere. A
contiguity spatial weighting matrix would have 0s and 1s. Wi,j = Wj,i would equal 1 when i
and j were neighbors.

The scale in which the elements of spatial weighting matrices are recorded is irrelevant. See
[SP] intro 2.

spatially autoregressive errors. See autoregressive errors.

spillover effects. Spillover effects and potential spillover effects are the informal words we use to
describe the elements of a spatial weighting matrix. Wi,j records the (potential) spillover from
place j to i. See [SP] intro 2.

standard-format shapefile. See shapefiles.

Stata-format shapefile. See shapefiles.

strongly balanced. See balanced and strongly balanced.

time variable. The time variable is the variable in panel data that identifies the second level of the
panel. The variable is not required to measure time, but it usually does.

user-defined matrix. A user-defined matrix is a spatial weighting matrix created by typing

spmatrix userdefined

spmatrix fromdata

spmatrix spfrommata

vertex. See border and vertex.



Subject and author index

See the combined subject index and the combined author index in the Glossary and Index.
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