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Description
npregress performs nonparametric local-linear and local-constant kernel regression. Like linear

regression, nonparametric regression models the mean of the outcome conditional on the covariates,
but unlike linear regression, it makes no assumptions about the functional form of the relationship
between the outcome and the covariates. npregress may be used to model the mean of a continuous,
count, or binary outcome.

Quick start
Nonparametric regression of y on x and discrete covariate a using the default Epanechnikov kernel

npregress kernel y x i.a

As above, but use 500 replications and compute bootstrap standard errors and percentile confidence
intervals

npregress kernel y x i.a, reps(500)

As above, but use a Gaussian kernel
npregress kernel y x1 i.a, reps(500) kernel(gaussian)

As above, but use the improved AIC to find the optimal bandwidth
npregress kernel y x1 i.a, reps(500) kernel(gaussian) imaic

As above, but additionally specify that only the mean of the outcome be computed
npregress kernel y x1 i.a, reps(500) kernel(gaussian) imaic noderivatives

Specify h as the vector of bandwidths
npregress kernel y x1 i.a, bwidth(h)

Menu
Statistics > Nonparametric analysis > Nonparametric regression
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Syntax
npregress kernel depvar indepvars

[
if
] [

in
] [

, options
]

options Description

Model

estimator(linear | constant) use the local-linear or local-constant kernel estimator
kernel(kernel) kernel density function for continuous covariates
dkernel(dkernel) kernel density function for discrete covariates
predict(prspec) store predicted values of the mean and derivatives using

variable names specified in prspec
noderivatives suppress derivative computation
imaic use improved AIC instead of cross-validation to compute

optimal bandwidth
unidentsample(newvar) specify name of variable that marks identification problems

Bandwidth

bwidth(specs) specify kernel bandwidth for all predictions
meanbwidth(specs) specify kernel bandwidth for the mean
derivbwidth(specs) specify kernel bandwidth for the derivatives

SE
∗vce(vcetype) vcetype may be none or bootstrap
reps(#) equivalent to vce(bootstrap, reps(#))
seed(#) set random-number seed to #; must also specify reps(#)
bwreplace vary bandwidth with each bootstrap replication; seldom used

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

citype(citype) method to compute bootstrap confidence intervals;
default is citype(percentile)

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, and jackknife are allowed; see [U] 11.1.10 Prefix commands.
∗vce(bootstrap) reports percentile confidence intervals instead of the normal-based confidence intervals reported when

vce(bootstrap) is specified with other estimation commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

http://www.stata.com/manuals15/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals15/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals15/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals15/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals15/r.pdf#rnpregressSyntaxkernel
http://www.stata.com/manuals15/r.pdf#rnpregressSyntaxdkernel
http://www.stata.com/manuals15/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals15/r.pdf#rnpregressOptionsspec
http://www.stata.com/manuals15/r.pdf#rnpregressOptionsspec
http://www.stata.com/manuals15/r.pdf#rnpregressOptionsspec
http://www.stata.com/manuals15/r.pdf#rvce_option
http://www.stata.com/manuals15/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals15/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals15/u20.pdf#u20Estimationandpostestimationcommands


npregress — Nonparametric regression 3

kernel Description

epanechnikov Epanechnikov kernel function; the default
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function
cosine cosine trace kernel function
gaussian Gaussian kernel function
parzen Parzen kernel function
rectangle rectangle kernel function
triangle triangle kernel function

dkernel Description

liracine Li–Racine kernel function; the default
cellmean cell means kernel function

citype Description

percentile percentile confidence intervals; the default
bc bias-corrected confidence intervals
normal normal-based confidence intervals

Options

� � �
Model �

estimator(linear | constant) specifies whether the local-constant or local-linear kernel estimator
should be used. The default is estimator(linear).

kernel(kernel) specifies the kernel density function for continuous covariates for use in calculating
the local-constant or local-linear estimator. The default is kernel(epanechnikov).

dkernel(dkernel) specifies the kernel density function for discrete covariates for use in calculating
the local-constant or local-linear estimator. The default is dkernel(liracine); see Methods and
formulas for details on the Li–Racine kernel. When dkernel(cellmean) is specified, discrete
covariates are weighted by their cell means.

predict(prspec) specifies that npregress store the predicted values for the mean and derivatives
of the mean with the specified names. prspec is the following:

predict(varlist | stub*
[
, replace noderivatives

]
)

The option takes a variable list or a stub. The first variable name corresponds to the predicted
outcome mean. The second name corresponds to the derivatives of the mean. There is one derivative
for each indepvar.

When replace is used, variables with the names in varlist or stub* are replaced by those in the
new computation. If noderivatives is specified, only a variable for the mean is created. This
will increase computation speed but will add to the computation burden if you want to obtain
marginal effects after estimation.

noderivatives suppresses the computation of the derivatives. In this case, only the mean function
is computed.

http://www.stata.com/manuals15/r.pdf#rnpregressSyntaxkernel
http://www.stata.com/manuals15/r.pdf#rnpregressSyntaxdkernel
http://www.stata.com/manuals15/u11.pdf#u11.4varnameandvarlists
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imaic specifies to use the improved AIC instead of cross-validation to compute optimal bandwidths.

unidentsample(newvar) specifies the name of a variable that is 1 if the observation violates the
model identification assumptions and is 0 otherwise. By default, this variable is a system variable
( unident sample).

npregress computes a weighted regression for each observation in our data. An observation
violates identification assumptions if the regression cannot be performed at that point. The regression
formula, which is discussed in detail in Methods and formulas, is given by

γ̂ = (Z′WZ)
−1

Z′Wy

npregress verifies that the matrix (Z′WZ) is full rank for each observation to determine
identification. Identification problems commonly arise when the bandwidth is too small, resulting
in too few observations within a bandwidth. Independent variables that are collinear within the
bandwidth can also cause a problem with identification at that point.

Observations that violate identification assumptions are reported as missing for the predicted means
and derivatives.

� � �
Bandwidth �

bwidth(specs) specifies the half-width of the kernel at each point for the computation of the mean
and the derivatives of the mean function. If no bandwidth is specified, one is chosen by minimizing
the integrated mean squared error of the prediction.

specs specifies bandwidths for the mean and derivative for each indepvar in one of three ways: by
specifying the name of a vector containing the bandwidths (for example, bwidth(H), where H is a
properly labeled vector); by specifying the equation and coefficient names with the corresponding
values (for example, bwidth(Mean:x1=0.5 Effect:x1=0.9)); or by specifying a list of values
for the means, standard errors, and derivatives for indepvars given in the order of the corresponding
indepvars and specifying the copy suboption (for example, bwidth(0.5 0.9, copy)).

skip specifies that any parameters found in the specified vector that are not also found in the
model be ignored. The default action is to issue an error message.

copy specifies that the list of values or the vector be copied into the bandwidth vector by position
rather than by name.

meanbwidth(specs) specifies the half-width of the kernel at each point for the computation of the
mean function. If no bandwidth is specified, one is chosen by minimizing the integrated mean
squared error of the prediction. For details on how to specify the bandwidth, see the description
of bwidth(), above.

derivbwidth(specs) specifies the half-width of the kernel at each point for the computation of the
derivatives of the mean. If no bandwidth is specified, one is chosen by minimizing the integrated
mean squared error of the prediction. For details on how to specify the bandwidth, see the
description of bwidth(), above.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which may be either that no standard
errors are reported (none; the default) or that bootstrap standard errors are reported (bootstrap);
see [R] vce option.

We recommend that you select the number of replications using reps(#) instead of specifying
vce(bootstrap), which defaults to 50 replications. Be aware that the number of replications
needed to produce good estimates of the standard errors varies depending on the problem.

http://www.stata.com/manuals15/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals15/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals15/r.pdf#rnpregressOptionsspec
http://www.stata.com/manuals15/r.pdf#rnpregressOptionsspec
http://www.stata.com/manuals15/rvce_option.pdf#rvce_option
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When vce(bootstrap) is specified, npregress reports percentile confidence intervals as rec-
ommended by Cattaneo and Jansson (2017) instead of reporting the normal-based confidence
intervals that are reported when vce(bootstrap) is specified with other commands. Other types
of confidence intervals can be obtained by using the citype(citype) option.

reps(#) specifies the number of bootstrap replications to be performed. Specifying this option is
equivalent to specifying vce(bootstrap, reps(#)).

seed(#) sets the random-number seed. You must specify reps(#) with seed(#).

bwreplace computes a different bandwidth for each bootstrap replication. The default is to compute
the bandwidth once and keep it fixed for each bootstrap replication. This option is seldom used.

� � �
Reporting �

level(#), nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

citype(citype) specifies the type of confidence interval to be computed. By default, bootstrap
percentile confidence intervals are reported as recommended by Cattaneo and Jansson (2017).
citype may be one of percentile, bc, or normal.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, trace, showstep, tolerance(#), ltolerance(#),

from(init specs); see [R] maximize. These options are seldom used.

The following option is available with npregress but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

This entry assumes that you are already familiar with nonparametric regression. For an introduction
to the nonparametric kernel regression methods used in npregress, see [R] npregress intro.

Remarks are presented under the following headings:

Overview
Estimation and effects
Visualizing covariate effects

Overview

npregress implements local-constant and local-linear regression. The covariates may be continuous
or discrete. You can use npregress to nonparametrically estimate a conditional mean. npregress
also allows you to estimate covariate effects after estimation and, in models with one covariate, to
plot the mean function by using npgraph after estimation.

The word “nonparametric” refers to the fact that the parameter of interest, the mean as a function of
the covariates, is given by the unknown function g(xi), which is an element of an infinite-dimensional
space of functions. In contrast, in a parametric model, the mean for a given value of the covariates,
E(yi|xi) = f(xi,β), is a known function that is fully characterized by the parameter of interest, β,
which is a finite-dimensional real vector (Shao 2003).

http://www.stata.com/manuals15/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals15/d.pdf#dformat
http://www.stata.com/manuals15/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals15/rmaximize.pdf#rmaximize
http://www.stata.com/manuals15/restimationoptions.pdf#restimationoptions
http://stata.com
http://www.stata.com/manuals15/rnpregressintro.pdf#rnpregressintro
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The regression model of outcome yi given the k-dimensional vector of covariates xi is given by

yi = g (xi) + εi (1)

E (εi|xi) = 0 (2)

where εi is the error term. The covariates may include discrete and continuous variables. Equations (1)
and (2) imply that

E (yi|xi) = g (xi)

Once we account for the information in the covariates, the error term provides no information about
the mean of our outcome. The conditional mean function is therefore given by g(xi). By estimating
E(yi|xi = x) for all points x in our data, we obtain an estimate of E(yi|xi).

npregress, by default, estimates a local-linear regression. Local-linear regression estimates a
regression for a subset of observations for each point in our data. See Fan and Gijbels (1996) for
a good reference on local-linear regression. Local-linear regression, for each point x, solves the
minimization problem given by

minγ
n∑

i=1

{yi − γ0 − γ′1 (xi − x)}2K(xi,x,h) (3)

where γ = (γ0,γ
′
1)
′.

Equation (3) and its solution are similar to parametric ordinary least squares. The slope and the
constant in (3), however, have a different interpretation. The constant in (3), γ0, is the conditional
mean at a specific point x. The slope parameter, γ1, is the derivative of the mean function with
respect to x. The solution to this least-squares problem gives us the mean function and its derivative
for each one of the elements of x. Repeating this optimization for each point x gives us the entire
mean function and its derivatives.

Another difference between (3) and the minimization problem of parametric ordinary least squares
is how the optimization is weighted. The weights are given by the kernel function K(xi,x,h). The
kernel function assigns weights to observations xi based on how much they differ from x and based
on the bandwidth, h. The smaller h is, the larger the weight assigned to points between xi and x.

The bandwidth also determines the bias and variance of the mean function estimator. npregress
selects the bandwidth using cross-validation, as suggested by Li and Racine (2004), or if the imaic
option is specified, with the improved AIC proposed by Hurvich, Simonoff, and Tsai (1998). Both
methods minimize the trade-off between bias and variance.

npregress computes a conditional mean for each observation in the data and, for each one of
these computations, verifies whether identification conditions are fulfilled. The observations for which
the regression identification assumptions are not satisfied are dropped from the estimation sample.
Additionally, whenever there is a violation of the identification assumption, npregress generates
a system variable or a variable with a name provided in noidsample(newvar). This variable is 1
for observations violating the identification assumption and is 0 otherwise. npregress also issues a
warning, letting you know the number of observations for which the identification assumption is not
satisfied.
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Estimation and effects

The output of npregress reports averages of the mean function and the effects of the mean
function. An average effect from nonparametric regress may be either 1) an average marginal effect,
in the case of the mean of derivatives for continuous covariates or 2) the mean of contrasts for discrete
covariates.

Some well-established literature estimates these average effects directly and uses an optimal
bandwidth for this computation; see Powell, Stock, and Stoker (1989) and Powell and Stoker (1996).
By taking averages of the local-linear estimates, npregress is more in line with the approach in
Li, Lu, and Ullah (2003). Intuitively, choosing the optimal bandwidth for the derivative produces a
more efficient estimator than using the bandwidth that is optimal for the function. Both estimators
are consistent for the average effect. Cattaneo and Jansson (2017) formally justify the average effect
using the function-optimal bandwidth.

npregress also reports an approximation of n|h| as the expected kernel observations. This statistic
rounds the product of the continuous kernel bandwidth values and the number of observations used
for estimation. For instance, if the estimation sample was 500 and the bandwidth was 0.246, the
expected kernel observations would be 123 (= 500×0.246). The expected kernel observation number
of 123 tells us that, on average, 123 observations are used to compute each one of the 500 regressions
performed by npregress.

Example 1: Nonparametric regression estimation and graphing

dui.dta contains information about the number of monthly drunk driving citations in a local
jurisdiction (citations). Suppose we want to know the effect of increasing fines on the number of
citations. Because citations is a count variable, we could consider fitting the model with poisson
or nbreg. However, both of these estimators make assumptions about the distribution of the data. If
these assumptions are not true, we will obtain inconsistent estimates.

By using npregress, we do not have to make any assumptions about how citations is distributed.
We use npregress to estimate the mean of citations as a function of the value of the fines imposed
for drunk driving (fines).
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. use http://www.stata-press.com/data/r15/dui
(Fictional data on monthly drunk driving citations)

. npregress kernel citations fines

Computing mean function
Minimizing cross-validation function:
Iteration 0: Cross-validation criterion = 35.478784
Iteration 1: Cross-validation criterion = 4.0147129
Iteration 2: Cross-validation criterion = 4.0104176
Iteration 3: Cross-validation criterion = 4.0104176
Iteration 4: Cross-validation criterion = 4.0104176
Iteration 5: Cross-validation criterion = 4.0104176
Iteration 6: Cross-validation criterion = 4.0104006
Computing optimal derivative bandwidth
Iteration 0: Cross-validation criterion = 6.1648059
Iteration 1: Cross-validation criterion = 4.3597488
Iteration 2: Cross-validation criterion = 4.3597488
Iteration 3: Cross-validation criterion = 4.3597488
Iteration 4: Cross-validation criterion = 4.3597488
Iteration 5: Cross-validation criterion = 4.3597488
Iteration 6: Cross-validation criterion = 4.3595842
Iteration 7: Cross-validation criterion = 4.3594713
Iteration 8: Cross-validation criterion = 4.3594713

Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross validation R-squared = 0.4380

citations Estimate

Mean
citations 22.33999

Effect
fines -7.692388

Note: Effect estimates are averages of derivatives.
Note: You may compute standard errors using vce(bootstrap) or reps().

The first table displays the bandwidths used to estimate the mean function and the derivative
of the mean function. Each of these bandwidths is estimated by minimizing a function that trades
off bias and variance; the corresponding iteration logs are displayed also. The expected number of
observations used to estimate the mean function at each point is reported in E(Kernel obs) as 282.

Unlike other estimation commands, npregress does not report standard errors, test statistics,
and confidence intervals by default. In example 2, we demonstrate how to obtain these statistics and
further discuss the output.

Example 2: Bootstrapping standard errors

We can estimate the standard errors by using the bootstrap; see Cattaneo and Jansson (2017) for
formal results. We use the reps(400) option, which is equivalent to vce(bootstrap, reps(400))
and specifies that 400 bootstrap replications be used instead of the default 50 replications that are
used when we specify vce(bootstrap).
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Each estimation problem requires a different number of replications to produce good estimates
of the standard errors. In example 3, we explain how we decided to use 400 replications. Note that
nonparametric estimation and the bootstrap are computationally intensive, so running this example
and others that compute bootstrap standard errors will take a while.

. npregress kernel citations fines, reps(400) seed(12)
(running npregress on estimation sample)

Bootstrap replications (400)
1 2 3 4 5

(output omitted )
Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross validation R-squared = 0.4380

Observed Bootstrap Percentile
citations Estimate Std. Err. z P>|z| [95% Conf. Interval]

Mean
citations 22.33999 .4588298 48.69 0.000 21.48622 23.35956

Effect
fines -7.692388 .491884 -15.64 0.000 -8.693068 -6.757721

Note: Effect estimates are averages of derivatives.

The coefficient table now reports the average of the predicted means and the average of the predicted
derivatives of the mean function with bootstrap standard errors. The average of the observation-level
predicted (citations) is 22.34. The average of the observation-level marginal effects is −7.69,
which indicates that increasing fines reduces the mean number of citations.
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We use npgraph to graph the estimated conditional mean function.

. npgraph
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The graph shows the negative association between fines and the number of drunk driving citations.

npregress generates system variables for the mean function and the derivative of the mean
function. To see the variables that npregress generated for example 1, we type

. describe *_*, fullnames

storage display value
variable name type format label variable label

_Mean_citations double %10.0g mean function
_d_Mean_citations_dfines

double %10.0g derivative of mean function w.r.t
fines

To specify a name for each system variable, we can use the predict() option.

. npregress kernel citations fines, predict(mean deriv)
(output omitted )

. describe mean deriv

storage display value
variable name type format label variable label

mean double %10.0g mean function
deriv double %10.0g derivative of mean function w.r.t

fines

Alternatively, we can use the same stub for all the variable names by typing predict(hatvar*),
which would generate variables hatvar1 and hatvar2.

You may add noderivatives to the option, as in predict(hatvar*, noderivatives), to
specify that no derivatives be generated. You save memory when you use noderivatives, but you
add to the computational burden. As you will see below, an important feature of npregress is the
availability of the margins command after estimation. margins must compute the derivatives and
their optimal bandwidth.

http://www.stata.com/manuals15/rnpregresspostestimation.pdf#rnpregresspostestimation
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Example 3: Selecting the number of bootstrap replications

We start by fitting the model using 200 bootstrap replications. We want to find the number of
replications for which the confidence intervals do not change much.

. npregress kernel citations fines, reps(200) seed(12)
(running npregress on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross validation R-squared = 0.4380

Observed Bootstrap Percentile
citations Estimate Std. Err. z P>|z| [95% Conf. Interval]

Mean
citations 22.33999 .4769389 46.84 0.000 21.49744 23.42156

Effect
fines -7.692388 .5088819 -15.12 0.000 -8.742081 -6.77816

Note: Effect estimates are averages of derivatives.

For 200 replications, the confidence interval for the mean ranges from 21.50 to 23.42. For the effect
of fines, this range is −8.74 to −6.78.

We repeat the estimation using 300 replications and the same seed as in the previous case.

. npregress kernel citations fines, reps(300) seed(12)
(running npregress on estimation sample)

Bootstrap replications (300)
1 2 3 4 5

(output omitted )
Bandwidth

Mean Effect

fines .5631079 .924924
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Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross validation R-squared = 0.4380

Observed Bootstrap Percentile
citations Estimate Std. Err. z P>|z| [95% Conf. Interval]

Mean
citations 22.33999 .4570611 48.88 0.000 21.49359 23.36299

Effect
fines -7.692388 .4981956 -15.44 0.000 -8.673813 -6.720508

Note: Effect estimates are averages of derivatives.

The confidence interval for the mean ranges from 21.49 to 23.36. For the effect of fines, this range
is −8.67 to −6.72. There are some differences so we try estimation with 400 replications.

. npregress kernel citations fines, reps(400) seed(12)
(running npregress on estimation sample)

Bootstrap replications (400)
1 2 3 4 5

(output omitted )
Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross validation R-squared = 0.4380

Observed Bootstrap Percentile
citations Estimate Std. Err. z P>|z| [95% Conf. Interval]

Mean
citations 22.33999 .4588298 48.69 0.000 21.48622 23.35956

Effect
fines -7.692388 .491884 -15.64 0.000 -8.693068 -6.757721

Note: Effect estimates are averages of derivatives.

The confidence interval for the mean ranges from 21.49 to 23.36. In the case of the effect of fines,
these ranges are −8.69 to −6.76. The changes are small so we decide to use 400 replications.

Example 4: Estimating the effect of a percentage change in a covariate

Nonparametric estimation and the bootstrap are computationally intensive, so we use only 200
replications here.

We now extend example 2. In addition to fines, we model citations as a function of whether the
jurisdiction taxes alcoholic beverages (taxes); whether the city is small, medium, or large (csize);
and whether there is a college in the jurisdiction (college).
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. npregress kernel citations fines i.taxes i.csize i.college, nolog
> reps(200) seed(12)
(running npregress on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Bandwidth

Mean Effect

fines .4471373 .6537197
taxes .4375656 .4375656
csize .3938759 .3938759

college .554583 .554583

Local-linear regression Number of obs = 500
Continuous kernel : epanechnikov E(Kernel obs) = 224
Discrete kernel : liracine R-squared = 0.8010
Bandwidth : cross validation

Observed Bootstrap Percentile
citations Estimate Std. Err. z P>|z| [95% Conf. Interval]

Mean
citations 22.26306 .4642464 47.96 0.000 21.46204 23.2516

Effect
fines -7.332833 .3316656 -22.11 0.000 -8.013487 -6.741899

taxes
(tax

vs
no tax) -4.502718 .5012 -8.98 0.000 -5.437733 -3.544934

csize
(medium

vs
small) 5.300524 .2687413 19.72 0.000 4.758121 5.797119
(large

vs
small) 11.05053 .502633 21.99 0.000 10.00169 11.94311

college
(college

vs
not coll..) 5.953188 .461057 12.91 0.000 5.086511 6.88612

Note: Effect estimates are averages of derivatives for continuous covariates
and averages of contrasts for factor covariates.

The mean number of citations predicted by the mean estimates is 22.26. The average marginal
effect of fines is −7.33, slightly less in magnitude than the −7.69 that we estimated in example 2.

The average marginal effect tells us the result of an infinitesimal change in fines on citations.
Instead of talking about infinitesimal changes, we want to know the effect of increasing fines by
15%. We can use margins to estimate the mean number of citations that would occur if fines were
increased by 15%.
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. margins, at(fines=generate(fines*1.15)) reps(200) seed(12)
(running margins on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Predictive margins Number of obs = 500
Replications = 200

Expression : mean function, predict()
at : fines = fines*1.15

Observed Bootstrap Percentile
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 14.00818 .862868 16.23 0.000 11.40867 15.00145

The estimated mean number of citations with the new level of fines is 14.01, which is smaller
than the mean 22.26 that was estimated with the observed fines. We can formally compare this
estimate with the mean at the original level of fines. We use the contrast() option with margins
to estimate the difference in these means.

. margins, at(fines=generate(fines)) at(fines=generate(fines*1.15))
> contrast(atcontrast(r) nowald) reps(200) seed(12)
(running margins on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200
Contrasts of predictive margins

Number of obs = 500
Replications = 200

Expression : mean function, predict()

1._at : fines = fines

2._at : fines = fines*1.15

Observed Bootstrap Percentile
Contrast Std. Err. [95% Conf. Interval]

_at
(2 vs 1) -8.254875 .8021741 -10.44121 -7.381583

We find that increasing fines by 15% reduces the average number of drunk driving citations by
8.25. This number is the effect of interest, and therefore, we use the bootstrap only for this particular
margins computation.
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Example 5: Estimating the effect of a change in level

Now we estimate the effect of increasing fines from $10,000 to $11,000 for fixed levels of the
other covariates. The other covariate values identify a jurisdiction with a set of characteristics of
interest: of medium size, with a college, and taxes alcohol.

First, we use margins to estimate the means for a jurisdiction with the characteristics of interest
for the two levels of fines.

. margins, at(fines=10 taxes=1 csize=2 college=1)
> at(fines=11 taxes=1 csize=2 college=1) reps(200) seed(12)
(running margins on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Adjusted predictions Number of obs = 500
Replications = 200

Expression : mean function, predict()

1._at : fines = 10
taxes = 1
csize = 2
college = 1

2._at : fines = 11
taxes = 1
csize = 2
college = 1

Observed Bootstrap Percentile
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 23.17242 .5746008 40.33 0.000 21.95222 24.30412
2 15.90157 .972558 16.35 0.000 13.87449 17.7134

For a medium-sized jurisdiction that taxes alcohol and has a college, the estimated mean of citations
when fines are $10,000 is 23.17, and the estimated mean of citations when fines are $11,000 is 15.90.

We now use margins to estimate the difference in these means.
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. margins, at(fines=10 taxes=1 csize=2 college=1)
> at(fines=11 taxes=1 csize=2 college=1)
> contrast(atcontrast(r) nowald) reps(200) seed(12)
(running margins on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200
Contrasts of predictive margins

Number of obs = 500
Replications = 200

Expression : mean function, predict()

1._at : fines = 10
taxes = 1
csize = 2
college = 1

2._at : fines = 11
taxes = 1
csize = 2
college = 1

Observed Bootstrap Percentile
Contrast Std. Err. [95% Conf. Interval]

_at
(2 vs 1) -7.270858 1.003861 -9.096777 -5.162513

In these jurisdictions, increasing fines from $10,000 to $11,000 reduces the average number of citations
by 7.27.

Example 6: Population-averaged covariate effects

In example 5, we estimated the means for two values of fines for a medium-sized jurisdiction with
a college and taxes on alcohol. We specified values for each covariate in our model. In this example,
we will now estimate population-averaged means instead of means at specific levels of all covariates.

We first estimate the means for two levels of fines. We do not specify values for csize, college,
or taxes, so the estimated means are unconditional on these covariates. We use margins to estimate
means of citations when fines are $10,000 and when fines are $11,000:
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. margins, at(fines=10) at(fines=11) reps(200) seed(12)
(running margins on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Predictive margins Number of obs = 500
Replications = 200

Expression : mean function, predict()

1._at : fines = 10

2._at : fines = 11

Observed Bootstrap Percentile
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 20.50161 .3281821 62.47 0.000 19.90257 21.08954
2 14.97432 .3815647 39.24 0.000 14.14858 15.59955

The estimated mean of citations when fines are $10,000 is 20.50, and the estimated mean of citations
when fines are $11,000 is 14.97. We now use margins to estimate the difference in these means:

. margins, at(fines=10) at(fines=11)
> contrast(atcontrast(r) nowald) reps(200) seed(12)
(running margins on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200
Contrasts of predictive margins

Number of obs = 500
Replications = 200

Expression : mean function, predict()

1._at : fines = 10

2._at : fines = 11

Observed Bootstrap Percentile
Contrast Std. Err. [95% Conf. Interval]

_at
(2 vs 1) -5.527288 .3529352 -6.277903 -4.925523

When fines increase from $10,000 to $11,000, the mean number of citations is estimated to decrease
by 5.53.
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Next, we consider the effect of taxing alcoholic beverages. We first estimate the population-averaged
number of citations with and without such taxes.

. margins taxes, reps(200) seed(12)
(running margins on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Predictive margins Number of obs = 500
Replications = 200

Expression : mean function, predict()

Observed Bootstrap Percentile
Margin Std. Err. z P>|z| [95% Conf. Interval]

taxes
no tax 25.47052 .6445729 39.52 0.000 24.17515 26.6114

tax 20.96781 .4448277 47.14 0.000 20.17071 21.88565

The estimated mean number of citations is 25.47 when there are no alcohol taxes and 20.97 when
there are alcohol taxes. We again use margins to estimate the difference in these means.

. margins r.taxes, reps(200) seed(12)
(running margins on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200
Contrasts of predictive margins

Number of obs = 500
Replications = 200

Expression : mean function, predict()

df chi2 P>chi2

taxes 1 80.71 0.0000

Observed Bootstrap Percentile
Contrast Std. Err. [95% Conf. Interval]

taxes
(tax vs no tax) -4.502719 .5011999 -5.437733 -3.544934

The mean number of citations is estimated to decrease by 4.50 when alcohol sales are taxed.
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Visualizing covariate effects

Example 7: Using margins to visualize the mean function and covariate effects

We can also estimate the mean function for the jurisdiction with characteristics of interest over a
range of observed fines. We simply add a range of fines to our margins specification from example 4.

. margins, at(fines=(8(0.5)12) taxes=1 csize=2 college=1) reps(200) seed(12)
(output omitted )

We graph these results using marginsplot.

. marginsplot
(output omitted )
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Adjusted Predictions with 95% CIs

We estimated the mean when fines are $8,000, $8,500, and so on. From these estimated means,
we can estimate the effect of a $500 increase for each of these levels of fines.

We simply reissue our margins command and specify a reverse adjacent contrast that subtracts
the current level from the next level for each level of fines.

. margins, at(fines=(8(0.5)12) taxes=1 csize=2 college=1)
> contrast(atcontrast(ar)) reps(200) seed(12)

(output omitted )

We again graph the results, adding a reference line at 0 that designates no change in citations:

. marginsplot, yline(0)
(output omitted )

http://www.stata.com/manuals15/rmarginsplot.pdf#rmarginsplot
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Contrasts of Adjusted Predictions with 95% CIs

For each level of fines between $8,500 and $11,500, the effect of a $500 increase reduces the
mean number of drunk driving incidents. Between $11,500 and $12,000, the difference of a $500
increase is not statistically different than 0.

It would be easy to construct a similar graph for the population-averaged effects in example 6.
Simply omit the terms that set the other covariates at fixed values.

Stored results
npregress stores the following in e():

Scalars
e(N) number of observations
e(mean) mean of mean function
e(r2) R-squared
e(nh) expected kernel observations
e(converged effect) 1 if effect optimization converged, 0 otherwise
e(converged mean) 1 if mean optimization converged, 0 otherwise
e(converged) 1 if effect and mean optimization converged, 0 otherwise

Macros
e(cmd) npregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(estimator) linear or constant
e(kname) name of continuous kernel
e(dkname) name of discrete kernel
e(bselector) criterion function for bandwidth selection
e(title) title in estimation output
e(vce) vcetype specified in vce()
e(properties) b (or b V if reps() specified)
e(datasignaturevars) variables used in calculation of checksum
e(datasignature) the checksum
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsprop) signals to the margins command
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Matrices
e(b) coefficient vector
e(bwidth) bandwidth for all predictions
e(derivbwidth) bandwidth for the derivative
e(meanbwidth) bandwidth for the mean
e(ilog mean) iteration log for mean (up to 20 iterations)
e(ilog effect) iteration log for effects (up to 20 iterations)

Functions
e(sample) marks estimation sample

Methods and formulas
The regression model of outcome yi given the k-dimensional vector of covariates xi was defined

in (1) and (2) of Remarks and examples and repeated here:

yi = g (xi) + εi (1)

E (εi|xi) = 0 (2)

where εi is the error term. The covariates may include discrete and continuous variables. Equations (1)
and (2) imply that

E (yi|xi) = g (xi)

npregress, by default, estimates a local-linear regression; see Fan and Gijbels (1996) for a
good reference on local-linear regression. As we discussed in Remarks and examples, local-linear
regression estimates a regression for a subset of observations for each point in our data and solves
the minimization problem given by

minγ
n∑

i=1

{yi − γ0 − γ′1 (xi − x)}2K(xi,x,h) (3)

where γ = (γ0,γ
′
1)
′ and K(xi,x,h) is the product of the kernels for each covariate.

K(xi,x,h) =

k∏
j=1

Kj(xij , xj , hj)

The kernel for a continuous covariate is of the form

Kj(xij , xj , hj) = kj

(
xij − xj
hj

)
where kj(·) is one of the kernels listed in [R] kdensity. For discrete covariates, npregress uses the
Li–Racine kernel given by

Kj(xij , xj , hj) =

{
1 if xij = xj

hj otherwise

By estimating E(yi|xi = x) for all points x in our data, we obtain an estimate of E(yi|xi). For a
given x, the solution to the minimization problem in (3) is given by

γ̂ = (Z′WZ)
−1

Z′Wy

http://www.stata.com/manuals15/rkdensity.pdf#rkdensitySyntaxkernel
http://www.stata.com/manuals15/rkdensity.pdf#rkdensity
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where γ̂ = (γ̂0, γ̂
′
1)
′, Z is an n × (k + 1) matrix with an ith row given by {1, (xi − x)′}′, W is

an n × n diagonal matrix with an ith diagonal given by K(xi,x,h), and y is the n × 1 outcome
vector. γ̂0 is an estimate of g(x), whereas γ̂1 is an estimate of the derivative of g(x) with respect
to x. When the matrix (Z′WZ) is not full rank, the parameter γ is not identified. The observations
for which this is true are dropped from the estimation sample.

The local-constant estimator of g(x) is a special case of (3) with γ1 = 0. In this case, the solution
to the optimization problem is given by∑n

i=1 yiK(xi,x,h)∑n
i=1K(xi,x,h)

This is also known as the Nadaraya–Watson kernel estimator, for Nadaraya (1965) and Watson (1964).

npregress and margins, when used after npregress, use a bootstrap estimate of the standard
errors for all the estimated effects and report percentile confidence intervals by default. Cattaneo
and Jansson (2017) formally justify this use of the bootstrap and provide a definitive reference for
semiparametric estimation and inference using kernel-based estimators. Their work demonstrates that
the percentile bootstrap provides better coverage than a normal-based confidence interval for statistics
based on kernel estimates. See Methods and formulas in [R] bootstrap for confidence interval formulas.

The rate of convergence of nonparametric regression estimates is given by the product of the sample
size and the bandwidths

√
n|h|, where |h| is the product of the bandwidths for each covariate. As

the sample size increases, the bandwidth decreases. Thus, the rate of convergence of the estimator is
slower than the parametric rate

√
n. Another way of thinking about n|h| is that, because we are not

using all our observations to estimate the mean at each point, we require more data to get more reliable
estimates; the convergence rate is thus slower. The rate of convergence also decreases as the number
of covariates increases, because |h| decreases. This is referred to as the curse of dimensionality; see
Li and Racine (2007, chap. 2) and Stinchcombe and Drukker (2013) for details.

The convergence rate for the derivative of the mean function is different from the convergence
rate of the mean function. Therefore, the bandwidth and bandwidth computation for the derivative are
different. npregress computes the bandwidth for the derivative function by using cross-validation,
as suggested by Henderson et al. (2015).
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