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Description

robust is a programmer’s command that computes a robust variance estimator based on varlist
of equation-level scores and a covariance matrix. It produces estimators for ordinary data (each
observation independent), clustered data (data not independent within groups, but independent across
groups), and complex survey data from one stage of stratified cluster sampling.

robust helps implement estimation commands and is rarely used. That is because other commands
are implemented in terms of it and are easier and more convenient to use. For instance, if all you
want to do is make your estimation command allow the vce(robust) and vce(cluster clustvar)
options, see [R] ml. If you want to make your estimation command work with survey data, it is easier
to make your command work with the svy prefix—see [P] program properties—rather than to use
robust.

If you really want to understand what ml and svy are doing, however, this is the section for you.
Or, if you have an estimation problem that does not fit with the ml or svy framework, then robust
may be able to help.

Syntax
robust varlist

[
if
] [

in
] [

weight
] [

, variance(matname) minus(#)

strata(varname) psu(varname) cluster(varname) fpc(varname)

subpop(varname) vsrs(matname) srssubpop zeroweight
]

robust works with models that have all types of varlists, including those with factor variables and time-series
operators; see [U] 11.4.3 Factor variables and [U] 11.4.4 Time-series varlists.

pweights, aweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.

Options
variance(matname) specifies a matrix containing the unadjusted “covariance” matrix, that is, the

D in V = DMD. The matrix must have its rows and columns labeled with the appropriate
corresponding variable names, that is, the names of the x’s in xβ. If there are multiple equations,
the matrix must have equation names; see [P] matrix rownames. The D matrix is overwritten
with the robust covariance matrix V. If variance() is not specified, Stata assumes that D has
been posted using ereturn post; robust will then automatically post the robust covariance
matrix V and replace D.

minus(#) specifies k = # for the multiplier n/(n − k) of the robust variance estimator. Stata’s
maximum likelihood commands use k = 1, and so does the svy prefix. regress, vce(robust)
uses, by default, this multiplier with k equal to the number of explanatory variables in the model,
including the constant. The default is minus(1). See Methods and formulas for details.
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2 robust — Robust variance estimates

strata(varname) specifies the name of a variable (numeric or string) that contains stratum identifiers.

psu(varname) specifies the name of a variable (numeric or string) that contains identifiers for the
primary sampling unit (PSU). psu() and cluster() are synonyms; they both specify the same
thing.

cluster(varname) is a synonym for psu().

fpc(varname) requests a finite population correction for the variance estimates. If the variable specified
has values less than or equal to 1, it is interpreted as a stratum sampling rate fh = nh/Nh,
where nh is the number of PSUs sampled from stratum h and Nh is the total number of PSUs
in the population belonging to stratum h. If the variable specified has values greater than 1, it is
interpreted as containing Nh.

subpop(varname) specifies that estimates be computed for the single subpopulation defined by the
observations for which varname 6= 0 (and is not missing). This option would typically be used
only with survey data; see [SVY] subpopulation estimation.

vsrs(matname) creates a matrix containing V̂srswor, an estimate of the variance that would have
been observed had the data been collected using simple random sampling without replacement.
This is used to compute design effects for survey data; see [SVY] estat for details.

srssubpop can be specified only if vsrs() and subpop() are specified. srssubpop requests that
the estimate of simple-random-sampling variance, vsrs(), be computed assuming sampling within
a subpopulation. If srssubpop is not specified, it is computed assuming sampling from the entire
population.

zeroweight specifies whether observations with weights equal to zero should be omitted from the
computation. This option does not apply to frequency weights; observations with zero frequency
weights are always omitted. If zeroweight is specified, observations with zero weights are
included in the computation. If zeroweight is not specified (the default), observations with zero
weights are omitted. Including the observations with zero weights affects the computation in that
it may change the counts of PSUs (clusters) per stratum. Stata’s svy prefix command includes
observations with zero weights; all other commands exclude them. This option is typically used
only with survey data.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Formulas and simple examples
Clustered data
Survey data
Controlling the header display
Maximum likelihood estimators
Multiple-equation estimators

Introduction

Before reading this section, you should be familiar with [U] 20.22 Obtaining robust variance
estimates and the Methods and formulas section of [R] regress. We assume that you have already
programmed an estimator in Stata and now wish to have it compute robust variance estimates. If you
have not yet programmed your estimator, see [U] 18 Programming Stata, [R] ml, and [P] ereturn.
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The robust variance estimator goes by many names: Huber/White/sandwich are typically used in
the context of robustness against heteroskedasticity. Survey statisticians often refer to this variance
calculation as a first-order Taylor-series linearization method. Despite the different names, the estimator
is the same.

The equation-level score variables (varlist) consist of one variable for single-equation models or
multiple variables for multiple-equation models, one variable for each equation. The “covariance”
matrix before adjustment is either posted using ereturn post (see [P] ereturn) or specified with the
variance(matname) option. In the former case, robust replaces the covariance in the post with
the robust covariance matrix. In the latter case, the matrix matname is overwritten with the robust
covariance matrix.

If you wish to program an estimator for survey data, then you should write the estimator for
nonsurvey data first and then use the instructions in [P] program properties (making programs
svyable) to get your estimation command to work properly with the svy prefix. See [SVY] variance
estimation for a discussion of variance estimation for survey data.

Formulas and simple examples

This section explains the formulas behind the robust variance estimator and how to use robust
through an informal development with some simple examples. For an alternative discussion, see
[U] 20.22 Obtaining robust variance estimates. See the references cited at the end of this entry for
more formal expositions.

First, consider ordinary least-squares regression. The estimator for the coefficients is

β̂ = (X′X)−1X′y

where y is an n×1 vector representing the dependent variable and X is an n×k matrix of covariates.

Because everything is considered conditional on X, (X′X)−1 can be regarded as a constant matrix.
Hence, the variance of β̂ is

V (β̂) = (X′X)−1 V (X′y) (X′X)−1

What is the variance of X′y, a k × 1 vector? Look at its first element; it is

X′1y = x11y1 + x21y2 + · · ·+ xn1yn

where X1 is the first column of X. Because X is treated as a constant, you can write the variance as

V (X′1y) = x211V (y1) + x221V (y2) + · · ·+ x2n1V (yn)

The only assumption made here is that the yj are independent.

The obvious estimate for V (yj) is ê 2
j , the square of the residual êj = yj − xjβ̂, where xj is the

jth row of X. You must estimate the off-diagonal terms of the covariance matrix for X′y, as well.
Working this out, you have

V̂ (X′y) =

n∑
j=1

ê 2
j x
′
jxj

xj is defined as a row vector so that x′jxj is a k × k matrix.

http://www.stata.com/manuals15/u11.pdf#u11.4varnameandvarlists
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You have just derived the robust variance estimator for linear regression coefficient estimates for
independent observations:

V̂ (β̂) = (X′X)−1
( n∑
j=1

ê 2
j x
′
jxj

)
(X′X)−1

You can see why it is called the sandwich estimator.

Technical note

The only detail not discussed is the multiplier. You will see later that survey statisticians like to
view the center of the sandwich as a variance estimator for totals. They use a multiplier of n/(n−1),
just as 1/(n − 1) is used for the variance estimator of a mean. However, for survey data, n is no
longer the total number of observations but is the number of clusters in a stratum. See Methods and
formulas at the end of this entry.

Linear regression is, however, special. Assuming homoskedasticity and normality, you can derive
the expectation of ê 2

j for finite n. This is discussed in [R] regress. Under the assumptions of
homoskedasticity and normality, n/(n− k) is a better multiplier than n/(n− 1).

If you specify the minus(#) option, robust will use n/(n − #) as the multiplier. regress,
vce(robust) also gives two other options for the multiplier: hc2 and hc3. Because these multipliers
are special to linear regression, robust does not compute them.

Example 1

Before we show how robust is used, let’s compute the robust variance estimator “by hand” for
linear regression for the case in which observations are independent (that is, no clusters).

We need to compute D = (X′X)−1 and the residuals êj . regress with the mse1 option will
allow us to compute both easily; see [R] regress.

. use http://www.stata-press.com/data/r15/_robust
(1978 Automobile Data -- modified)

. regress mpg weight gear_ratio foreign, mse1
(output omitted )

. matrix D = e(V)

. predict double e, residual

We can write the center of the sandwich as

M =

n∑
j=1

ê 2
j x
′
jxj = X′WX

where W is a diagonal matrix with ê 2
j on the diagonal. matrix accum with iweights can be used

to calculate this (see [P] matrix accum):

. matrix accum M = weight gear_ratio foreign [iweight=e^2]
(obs=813.7814109)

http://www.stata.com/manuals15/p__robust.pdf#p_robustMethodsandformulas
http://www.stata.com/manuals15/p__robust.pdf#p_robustMethodsandformulas
http://www.stata.com/manuals15/rregress.pdf#rregress
http://www.stata.com/manuals15/rregress.pdf#rregress
http://www.stata.com/manuals15/pmatrixaccum.pdf#pmatrixaccum
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We now assemble the sandwich. To match regress, vce(robust), we use a multiplier of n/(n−k).
. matrix V = 74/70 * D*M*D

. matrix list V

symmetric V[4,4]
weight gear_ratio foreign _cons

weight 3.788e-07
gear_ratio .00039798 1.9711317

foreign .00008463 -.55488334 1.4266939
_cons -.00236851 -6.9153285 1.2149035 27.536291

The result is the same as that from regress, vce(robust):

. regress mpg weight gear_ratio foreign, vce(robust)
(output omitted )

. matrix Vreg = e(V)

. matrix list Vreg

symmetric Vreg[4,4]
weight gear_ratio foreign _cons

weight 3.788e-07
gear_ratio .00039798 1.9711317

foreign .00008463 -.55488334 1.4266939
_cons -.00236851 -6.9153285 1.2149035 27.536291

If we use robust, the initial steps are the same. We still need D, the “bread” of the sandwich,
and the residuals. The residuals e are the varlist for robust. D is passed via the variance()
option (abbreviation v()). D is overwritten and contains the robust variance estimate.

. drop e

. regress mpg weight gear_ratio foreign, mse1
(output omitted )

. matrix D = e(V)

. predict double e, residual

. _robust e, v(D) minus(4)

. matrix list D

symmetric D[4,4]
weight gear_ratio foreign _cons

weight 3.788e-07
gear_ratio .00039798 1.9711317

foreign .00008463 -.55488334 1.4266939
_cons -.00236851 -6.9153285 1.2149035 27.536291

Rather than specifying the variance() option, we can use ereturn post to post D and the
point estimates. robust alters the post, substituting the robust variance estimates.

. drop e

. regress mpg weight gear_ratio foreign, mse1
(output omitted )

. matrix D = e(V)

. matrix b = e(b)

. local n = e(N)

. local k = colsof(D)

. local dof = ‘n’ - ‘k’

. predict double e, residual

. ereturn post b D, dof(‘dof’)

. _robust e, minus(‘k’)
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. ereturn display

Robust
Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.006139 .0006155 -9.97 0.000 -.0073666 -.0049115
gear_ratio 1.457113 1.40397 1.04 0.303 -1.343016 4.257243

foreign -2.221682 1.194443 -1.86 0.067 -4.603923 .1605598
_cons 36.10135 5.247503 6.88 0.000 25.63554 46.56717

Again what we did matches regress, vce(robust):

. regress mpg weight gear_ratio foreign, vce(robust)

Linear regression Number of obs = 74
F(3, 70) = 48.30
Prob > F = 0.0000
R-squared = 0.6670
Root MSE = 3.4096

Robust
mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.006139 .0006155 -9.97 0.000 -.0073666 -.0049115
gear_ratio 1.457113 1.40397 1.04 0.303 -1.343016 4.257243

foreign -2.221682 1.194443 -1.86 0.067 -4.603923 .1605598
_cons 36.10135 5.247503 6.88 0.000 25.63554 46.56717

Technical note
Note the simple ways in which robust was called. When we used the variance() option, we

called it by typing

. _robust e, v(D) minus(4)

As we described, robust computed

V̂ (β̂) = D

(
n

n− k

n∑
j=1

ê 2
j x
′
jxj

)
D

We passed D to robust by using the v(D) option and specified êj as the variable e. So how did
robust know what variables to use for xj? It got them from the row and column names of the

matrix D. Recall how we generated D initially:

. regress mpg weight gear_ratio foreign, mse1
(output omitted )

. matrix D = e(V)

. matrix list D

symmetric D[4,4]
weight gear_ratio foreign _cons

weight 5.436e-08
gear_ratio .00006295 .20434146

foreign .00001032 -.08016692 .1311889
_cons -.00035697 -.782292 .17154326 3.3988878
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Stata’s estimation commands and the ml commands produce matrices with appropriately labeled
rows and columns. If that is how we generate our D, this will be taken care of automatically. But if
we generate D in another manner, we must be sure to label it appropriately; see [P] matrix rownames.

When robust is used after ereturn post, it gets the variable names from the row and column
names of the posted matrices. So again, the matrices must be labeled appropriately.

Let us make another rather obvious comment. robust uses the variables from the row and
column names of the D matrix at the time robust is called. It is the programmer’s responsibility
to ensure that the data in these variables have not changed and that robust selects the appropriate
observations for the computation, using an if restriction if necessary (for instance, if e(sample)).

Clustered data

Example 2

To get robust variance estimates for clustered data or for complex survey data, simply use the
cluster(), strata(), etc., options when you call robust.

The first steps are the same as before. For clustered data, the number of degrees of freedom of
the t statistic is the number of clusters minus one (we will discuss this later).

. drop e

. quietly regress mpg weight gear_ratio foreign, mse1

. generate byte samp = e(sample)

. matrix D = e(V)

. matrix b = e(b)

. predict double e, residual

. local k = colsof(D)

. tabulate rep78

Repair
Record 1978 Freq. Percent Cum.

1 2 2.90 2.90
2 8 11.59 14.49
3 30 43.48 57.97
4 18 26.09 84.06
5 11 15.94 100.00

Total 69 100.00

. local nclust = r(r)

. display ‘nclust’
5

. local dof = ‘nclust’ - 1

. ereturn post b D, dof(‘dof’) esample(samp)

. _robust e, minus(‘k’) cluster(rep78)

http://www.stata.com/manuals15/pmatrixrownames.pdf#pmatrixrownames
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. ereturn display
(Std. Err. adjusted for 5 clusters in rep78)

Robust
Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.006139 .0008399 -7.31 0.002 -.008471 -.0038071
gear_ratio 1.457113 1.801311 0.81 0.464 -3.544129 6.458355

foreign -2.221682 .8144207 -2.73 0.053 -4.482876 .0395129
_cons 36.10135 3.39887 10.62 0.000 26.66458 45.53813

What you get is, of course, the same as regress, vce(cluster rep78). Wait a minute. It is not
the same!

. regress mpg weight gear_ratio foreign, vce(cluster rep78)

Linear regression Number of obs = 69
F(3, 4) = 78.61
Prob > F = 0.0005
R-squared = 0.6631
Root MSE = 3.4827

(Std. Err. adjusted for 5 clusters in rep78)

Robust
mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.005893 .0008214 -7.17 0.002 -.0081735 -.0036126
gear_ratio 1.904503 2.18322 0.87 0.432 -4.157088 7.966093

foreign -2.149017 1.20489 -1.78 0.149 -5.49433 1.196295
_cons 34.09959 4.215275 8.09 0.001 22.39611 45.80307

Not even the point estimates are the same. This is the classic programmer’s mistake of not using the
same sample for the initial regress, mse1 call as done with robust. The cluster variable rep78
is missing for 5 observations. robust omitted these observations, but regress, mse1 did not.

robust is best used only in programs for just this reason. So, you can write a program and use
marksample and markout (see [P] mark) to determine the sample in advance of running regress
and robust.

http://www.stata.com/manuals15/pmark.pdf#pmark
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begin myreg.ado
program myreg, eclass sortpreserve

version 15.1
syntax varlist [if] [in] [, CLuster(varname) ]
marksample touse
markout ‘touse’ ‘cluster’, strok

tempvar e count
tempname D b

quietly {
regress ‘varlist’ if ‘touse’, mse1
matrix ‘D’ = e(V)
matrix ‘b’ = e(b)
local n = e(N)
local k = colsof(‘D’)
predict double ‘e’ if ‘touse’, residual

if "‘cluster’"!="" {
sort ‘touse’ ‘cluster’
by ‘touse’ ‘cluster’: gen byte ‘count’ = 1 if _n==1 & ‘touse’
summarize ‘count’, meanonly
local nclust = r(sum)
local dof = ‘nclust’ - 1
local clopt "cluster(‘cluster’)"

}
else local dof = ‘n’ - ‘k’

ereturn post ‘b’ ‘D’, dof(‘dof’) esample(‘touse’)

_robust ‘e’ if e(sample), minus(‘k’) ‘clopt’
}
ereturn display

end
end myreg.ado

Running this program produces the same results as regress, vce(cluster clustvar).

. myreg mpg weight gear_ratio foreign, cluster(rep78)
(Std. Err. adjusted for 5 clusters in rep78)

Robust
Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.005893 .0008214 -7.17 0.002 -.0081735 -.0036126
gear_ratio 1.904503 2.18322 0.87 0.432 -4.157088 7.966093

foreign -2.149017 1.20489 -1.78 0.149 -5.49433 1.196295
_cons 34.09959 4.215275 8.09 0.001 22.39611 45.80307
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Survey data

Example 3

We will now modify our myreg command so that it handles complex survey data. Our new version
will allow pweights and iweights, stratification, and clustering.

begin myreg.ado
program myreg, eclass

version 15.1
syntax varlist [if] [in] [pweight iweight] [, /*

*/ STRata(varname) CLuster(varname) ]
marksample touse, zeroweight
markout ‘touse’ ‘cluster’ ‘strata’, strok
if "‘weight’"!="" {

tempvar w
quietly generate double ‘w’ ‘exp’ if ‘touse’
local iwexp "[iw=‘w’]"
if "‘weight’" == "pweight" {

capture assert ‘w’ >= 0 if ‘touse’
if c(rc) error 402

}
}
if "‘cluster’"!="" {

local clopt "cluster(‘cluster’)"
}
if "‘strata’"!="" {

local stopt "strata(‘strata’)"
}
tempvar e
tempname D b
quietly {

regress ‘varlist’ ‘iwexp’ if ‘touse’, mse1
matrix ‘D’ = e(V)
matrix ‘b’ = e(b)
predict double ‘e’ if ‘touse’, residual
_robust ‘e’ ‘iwexp’ if ‘touse’, v(‘D’) ‘clopt’ ‘stopt’ zeroweight
local dof = r(N_clust) - r(N_strata)
local depn : word 1 of ‘varlist’
ereturn post ‘b’ ‘D’, depn(‘depn’) dof(‘dof’) esample(‘touse’)

}
display
ereturn display

end
end myreg.ado

Note the following details about our version of myreg for survey data:

• We called robust before we posted the matrices with ereturn post, whereas in our previous
version of myreg, we called ereturn post and then robust. Here we called robust first so
that we could use its r(N strata), containing the number of strata, and r(N clust), containing
the number of clusters; see Stored results at the end of this entry. We did this so that we could
pass the correct degrees of freedom (= number of clusters − number of strata) to ereturn post.

This works even if the strata() and cluster() options are not specified: r(N strata) = 1 if
strata() is not specified (there truly is one stratum); and r(N clust) = number of observations
if cluster() is not specified (each observation is a cluster).

• The call to robust was made with iweights, whether myreg was called with pweights
or iweights. Computationally, robust treats pweights and iweights the same. The only
difference is that it puts out an error message if it encounters a negative pweight, whereas

http://www.stata.com/manuals15/p__robust.pdf#p_robustStoredresults
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negative iweights are allowed. As good programmers, we put out the error message early before
any time-consuming computations are done.

• We used the zeroweight option with the marksample command so that zero weights would not
be excluded from the sample. We gave the zeroweight option with robust so that it, too,
would not exclude zero weights.

Observations with zero weights affect results only by their effect (if any) on the counts of the clusters.
Setting some weights temporarily to zero will, for example, produce subpopulation estimates. If
subpopulation estimates are desired, however, it would be better to implement robust’s subpop()
option and restrict the call to regress, mse1 to this subpopulation.

• Stata’s svyset accepts a psu variable rather than having a cluster() option. This is only a
matter of style. They are synonyms, as far as robust is concerned.

Our program gives the same results as svy: regress. For our example, we add a strata variable
and a psu variable to the auto dataset.

. use http://www.stata-press.com/data/r15/auto, clear
(1978 Automobile Data)

. set seed 1

. generate strata = int(3*runiform()) + 1

. generate psu = int(5*runiform()) + 1

. myreg mpg weight gear_ratio foreign [pw=displ], strata(strata) cluster(psu)

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0057248 .000388 -14.75 0.000 -.0065702 -.0048794
gear_ratio .7775839 1.20131 0.65 0.530 -1.839845 3.395013

foreign -1.86776 1.122833 -1.66 0.122 -4.314202 .5786828
_cons 36.64061 3.844625 9.53 0.000 28.26389 45.01733

. svyset psu [pw=displ], strata(strata)

pweight: displacement
VCE: linearized

Single unit: missing
Strata 1: strata

SU 1: psu
FPC 1: <zero>

. svy: regress mpg weight gear_ratio foreign
(running regress on estimation sample)

Survey: Linear regression

Number of strata = 3 Number of obs = 74
Number of PSUs = 15 Population size = 14,600

Design df = 12
F( 3, 10) = 68.37
Prob > F = 0.0000
R-squared = 0.6900

Linearized
mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0057248 .000388 -14.75 0.000 -.0065702 -.0048794
gear_ratio .7775839 1.20131 0.65 0.530 -1.839845 3.395013

foreign -1.86776 1.122833 -1.66 0.122 -4.314202 .5786828
_cons 36.64061 3.844625 9.53 0.000 28.26389 45.01733
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Controlling the header display

Example 4

Let’s compare the output for our survey version of myreg with the earlier version that handled
only clustering. The header for the earlier version was

(Std. Err. adjusted for 5 clusters in rep78)

Robust
Coef. Std. Err. t P>|t| [95% Conf. Interval]

The header for the survey version lacked the word “Robust” above “Std. Err.”, and it lacked the
banner “(Std. Err. adjusted for # clusters in varname)”.

Both of these headers were produced by ereturn display, and programmers can control what
it produces. The word above “Std. Err.” is controlled by setting e(vcetype). The banner “(Std. Err.
adjusted for # clusters in varname)” is controlled by setting e(clustvar) to the cluster variable
name. These can be set using the ereturn local command; see [P] ereturn.

When robust is called after ereturn post (as it was in the earlier version that produced the
above header), it automatically sets these macros. To not display the banner, the code should read

ereturn post ...
_robust ...
ereturn local clustvar ""

We can also change the phrase displayed above “Std. Err.” by resetting e(vcetype). To display
nothing there, reset e(vcetype) to empty—ereturn local vcetype "".

For our survey version of myreg, we called robust before calling ereturn post. Here robust
does not set these macros. Trying to do so would be futile because ereturn post clears all previous
estimation results, including all e() macros, but you can set them yourself after calling ereturn
post. We make this addition to our survey version of myreg:

_robust ...
ereturn post ...
ereturn local vcetype "Design-based"

The output is

. myreg mpg weight gear_ratio foreign [pw=displ], strata(strata) cluster(psu)

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0057248 .000388 -14.75 0.000 -.0065702 -.0048794
gear_ratio .7775839 1.20131 0.65 0.530 -1.839845 3.395013

foreign -1.86776 1.122833 -1.66 0.122 -4.314202 .5786828
_cons 36.64061 3.844625 9.53 0.000 28.26389 45.01733

http://www.stata.com/manuals15/pereturn.pdf#pereturn
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Maximum likelihood estimators
Maximum likelihood estimators are basically no different from linear regression when it comes to

the use of robust. We will first do a little statistics and then give a simple example.

We can write our maximum-likelihood estimation equation as

G(β) =

n∑
j=1

S(β; yj ,xj) = 0

where S(β; yj ,xj) = ∂ lnLj/∂β is the score and lnLj is the log likelihood for the jth observation.
Here β represents all the parameters in the model, including any auxiliary parameters. We will discuss
how to use robust when there are auxiliary parameters or multiple equations in the next section.
But for now, all the theory works out fine for any set of parameters.

Using a first-order Taylor-series expansion (that is, the delta method), we can write the variance
of G(β) as

V̂ {G(β)}
∣∣
β=β̂

=
∂G(β)

∂β

∣∣∣∣∣
β=β̂

V̂ (β̂)
∂G(β)

∂β′

∣∣∣∣∣
β=β̂

Solving for V̂ (β̂) gives

V̂ (β̂) =

[{
∂G(β)

∂β

}−1
V̂ {G(β)}

{
∂G(β)

∂β′

}−1] ∣∣∣∣∣
β=β̂

but

H =
∂G(β)

∂β

is the Hessian (matrix of second derivatives) of the log likelihood. Thus we can write

V̂ (β̂) = D V̂ {G(β)}
∣∣
β=β̂

D

where D = −H−1 is the traditional covariance estimate.

Now G(β) is simply a sum, and we can estimate its variance just as we would the sum of any
other variable—it is n2 times the standard estimator of the variance of a mean:

n

n− 1

n∑
j=1

(zj − z)2

But here, the scores uj = S(β̂; yj ,xj) are (row) vectors. Their sum, and thus their mean, is zero.
So, we have

V̂ {G(β)}
∣∣
β=β̂

=
n

n− 1

n∑
j=1

u′juj

Thus our robust variance estimator is

V̂ (β̂) = D

(
n

n− 1

n∑
j=1

u′juj

)
D
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so we see that the robust variance estimator is just the delta method combined with a simple estimator
for totals!

The above estimator for the variance of the total (the center of the sandwich) is appropriate only
when observations are independent. For clustered data and complex survey data, this estimator is
replaced by one appropriate for the independent units of the data. Clusters (or PSUs) are independent,
so we can sum the scores within a cluster to create a “superobservation” and then use the standard
formula for a total on these independent superobservations. Our robust variance estimator thus becomes

V̂ (β̂) = D

{
nc

nc − 1

nc∑
i=1

(∑
j∈Ci

uj

)
′
(∑
j∈Ci

uj

)}
D

where Ci contains the indices of the observations belonging to the ith cluster for i = 1, 2, . . . , nc,
with nc the total number of clusters.

See [SVY] variance estimation for the variance estimator for a total that is appropriate for complex
survey data. Our development here has been heuristic. We have, for instance, purposefully omitted
sampling weights from our discussion; see [SVY] variance estimation for a better treatment.

See Gould, Pitblado, and Poi (2010) for a discussion of maximum likelihood and of Stata’s ml
command.

Technical note

It is easy to see where the appropriate degrees of freedom for the robust variance estimator come
from: the center of the sandwich is n2 times the standard estimator of the variance for the mean of n
observations. A mean divided by its standard error has exactly a Student’s t distribution with n− 1
degrees of freedom for normal i.i.d. variables but also has approximately this distribution under many
other conditions. Thus a point estimate divided by the square root of its robust variance estimate is
approximately distributed as a Student’s t with n− 1 degrees of freedom.

More importantly, this also applies to clusters, where each cluster is considered a “superobservation”.
Here the degrees of freedom is nc − 1, where nc is the number of clusters (superobservations). If
there are only a few clusters, confidence intervals using t statistics can become quite large. It is just
like estimating a mean with only a few observations.

When there are strata, the degrees of freedom is nc − L, where L is the number of strata; see
[SVY] variance estimation for details.

Not all of Stata’s maximum likelihood estimators that produce robust variance estimators for
clustered data use t statistics. Obviously, this matters only when the number of clusters is small.
Users who want to be rigorous in handling clustered data should use the svy prefix, which always
uses t statistics and adjusted Wald tests (see [R] test). Programmers who want to impose similar rigor
should do likewise.

We have not yet given any details about the functional form of our scores uj = ∂ lnLj/∂β. The
log likelihood lnLj is a function of xjβ (the “index”). Logistic regression, probit regression, and
Poisson regression are examples. There are no auxiliary parameters, and there is only one equation.

We can then write uj = ŝjxj , where

ŝj =
∂ lnLj
∂(xjβ)

∣∣∣∣∣
β=β̂

http://www.stata.com/manuals15/svyvarianceestimation.pdf#svyvarianceestimation
http://www.stata.com/manuals15/svyvarianceestimation.pdf#svyvarianceestimation
http://www.stata.com/manuals15/svyvarianceestimation.pdf#svyvarianceestimation
http://www.stata.com/manuals15/rtest.pdf#rtest
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We refer to sj as the equation-level score. Our formula for the robust estimator when observations
are independent becomes

V̂ (β̂) = D

(
n

n− 1

n∑
j=1

ŝ2j x
′
jxj

)
D

This is precisely the formula that we used for linear regression, with êj replaced by ŝj and k = 1
in the multiplier.

Before we discuss auxiliary parameters, let’s show how to implement robust for single-equation
models.

Example 5

The robust variance implementation for single-equation maximum-likelihood estimators with no
auxiliary parameters is almost the same as it is for linear regression. The only differences are that D is
now the traditional covariance matrix (the negative of the inverse of the matrix of second derivatives)
and that the variable passed to robust is the equation-level score ŝj rather than the residuals êj .

Let’s alter our last myreg program for survey data to make a program that does logistic regression
for survey data. We have to change only a few lines of the program.

begin mylogit.ado
program mylogit, eclass

version 15.1
syntax varlist [if] [in] [pweight] [, /*

*/ STRata(varname) CLuster(varname) ]
marksample touse, zeroweight
markout ‘touse’ ‘strata’ ‘cluster’, strok
if "‘weight’"!="" {

tempvar w
quietly generate double ‘w’ ‘exp’ if ‘touse’
local iwexp "[iw=‘w’]"
capture assert ‘w’ >= 0 if ‘touse’
if c(rc) error 402

}
if "‘cluster’"!="" {

local clopt "cluster(‘cluster’)"
}
if "‘strata’"!="" {

local stopt "strata(‘strata’)"
}
tempvar s
tempname D b
quietly {

logit ‘varlist’ ‘iwexp’ if ‘touse’
matrix ‘D’ = e(V)
matrix ‘b’ = e(b)
predict double ‘s’ if e(sample), score
_robust ‘s’ ‘iwexp’ if e(sample), v(‘D’) ‘clopt’ ‘stopt’ zeroweight
local dof = r(N_clust) - r(N_strata)
local depn : word 1 of ‘varlist’
replace ‘touse’ = e(sample)
ereturn post ‘b’ ‘D’, depn(‘depn’) dof(‘dof’) esample(‘touse’)
ereturn local vcetype "Design-based"

}
display
ereturn display

end
end mylogit.ado
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Note the following about our program:

• We use the score option of predict after logit to obtain the equation-level scores. If predict
does not have a score option, then we must generate the equation-level score variable some other
way.

• logit is a unique command in that it will sometimes drop observations for reasons other than
missing values (for example, when success or failure is predicted perfectly), so our ‘touse’
variable may not represent the true estimation sample. That is why we used the if e(sample)
condition with the predict and robust commands. Then, to provide ereturn post with an
appropriate esample() option, we set the ‘touse’ variable equal to the e(sample) from the
logit command and then use this ‘touse’ variable in the esample() option.

Our mylogit program gives the same results as svy: logit:

. mylogit foreign mpg weight gear_ratio [pw=displ], strata(strata) cluster(psu)

Design-based
foreign Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign
mpg -.3489011 .1258802 -2.77 0.017 -.6231705 -.0746317

weight -.0040789 .0012508 -3.26 0.007 -.0068042 -.0013536
gear_ratio 6.324169 1.729436 3.66 0.003 2.556051 10.09229

_cons -2.189748 7.75427 -0.28 0.782 -19.08485 14.70536

. svyset psu [pw=displ], strata(strata)

pweight: displacement
VCE: linearized

Single unit: missing
Strata 1: strata

SU 1: psu
FPC 1: <zero>

. svy: logit foreign mpg weight gear_ratio
(running logit on estimation sample)

Survey: Logistic regression

Number of strata = 3 Number of obs = 74
Number of PSUs = 15 Population size = 14,600

Design df = 12
F( 3, 10) = 6.89
Prob > F = 0.0085

Linearized
foreign Coef. Std. Err. t P>|t| [95% Conf. Interval]

mpg -.3489011 .1258802 -2.77 0.017 -.6231705 -.0746317
weight -.0040789 .0012508 -3.26 0.007 -.0068042 -.0013536

gear_ratio 6.324169 1.729436 3.66 0.003 2.556051 10.09229
_cons -2.189748 7.75427 -0.28 0.782 -19.08485 14.70536

Technical note
The theory developed here applies to full-information maximum-likelihood estimators. Conditional

likelihoods, such as conditional (fixed-effects) logistic regression (clogit) and Cox regression (stcox),
use variants on this theme. The vce(robust) option on stcox uses a similar, but not identical,
formula; see [ST] stcox and Lin and Wei (1989) for details.

http://www.stata.com/manuals15/ststcox.pdf#ststcox
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On the other hand, the theory developed here applies not only to maximum likelihood estimators
but also to general estimating equations:

G(β) =

n∑
j=1

g(β; yj ,xj) = 0

See Binder (1983) for a formal development of the theory.

Programmers: You are responsible for the theory behind your implementation.

Multiple-equation estimators
The theory for auxiliary parameters and multiple-equation models is no different from that described

earlier. For independent observations, just as before, the robust variance estimator is

V̂ (β̂) = D

(
n

n− 1

n∑
j=1

u′juj

)
D

where uj = ∂ lnLj/∂β is the score (row) vector and D is the traditional covariance estimate (the
negative of the inverse of the matrix of second derivatives).

With auxiliary parameters and multiple equations, β can be viewed as the vector of all the
parameters in the model. Without loss of generality, you can write the log likelihood as

lnLj = lnLj(x
(1)
j β(1),x

(2)
j β(2), . . . ,x

(p)
j β(p))

An auxiliary parameter is regarded as x
(i)
j β(i) with xj ≡ 1 and β(i) a scalar. The score vector

becomes
uj = ( s

(1)
j x

(1)
j s

(2)
j x

(2)
j . . . s

(p)
j x

(p)
j )

where s(i)j = ∂ lnLj/∂(xjβ(i)) is the equation-level score for the ith equation.

This notation has been introduced so that it is clear how to call robust. You use

. robust s
(1)
j s

(2)
j . . . s

(p)
j , options

where s(1)j , etc., are variables that contain the equation-level score values. The D matrix that you
pass to robust or post with ereturn post must be labeled with exactly p equation names.

robust takes the first equation-level score variable, s(1)j , and matches it to the first equation on

the D matrix to determine x
(1)
j , takes the second equation-level score variable and matches it to the

second equation, etc. Some examples will make this perfectly clear.

Example 6

Here is what a matrix with equation names looks like, ending with a call to robust

. generate cat = rep78 - 3
(5 missing values generated)

. replace cat = 2 if cat < 0
(10 real changes made)

. mlogit cat price foreign, base(0)
(output omitted )

. matrix D = e(V)
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. matrix list D

symmetric D[9,9]
0: 0: 0: 1: 1:
o. o. o.

price foreign _cons price foreign
0:o.price 0

0:o.foreign 0 0
0:o._cons 0 0 0

1:price 0 0 0 1.240e-08
1:foreign 0 0 0 -1.401e-06 .59355402

1:_cons 0 0 0 -.00007592 -.13992997
2:price 0 0 0 4.265e-09 -5.366e-07

2:foreign 0 0 0 -1.590e-06 .37202359
2:_cons 0 0 0 -.0000265 -.0343682

1: 2: 2: 2:
_cons price foreign _cons

1:_cons .61347545
2:price -.00002693 1.207e-08

2:foreign -.02774147 -3.184e-06 .56833686
2:_cons .20468675 -.00007108 -.1027108 .54017838

. predict s*, scores

. _robust s1 s2 s3, v(D)

where s1, s2, and s3 are the equation-level score variables.

Covariance matrices from models with auxiliary parameters look just like multiple-equation matrices.
The second equation consists of the auxiliary parameter only. We again end with a call to robust.

. matrix list D

symmetric D[5,5]
eq1: eq1: eq1: eq1: sigma:

weight gear_ratio foreign _cons _cons
eq1:weight 5.978e-07

eq1:gear_ratio .00069222 2.2471526
eq1:foreign .00011344 -.88159935 1.4426905

eq1:_cons -.00392566 -8.6029018 1.8864693 37.377729
sigma:_cons -3.527e-14 -3.915e-10 -1.035e-10 -4.552e-09 .07430437

. _robust s1 s2, v(D)

Example 7

We will now give an example using ml and robust to produce an estimation command that has
vce(robust) and vce(cluster clustvar) options. You can actually accomplish all of this easily
by using ml without using the robust command because ml has robust and cluster() options.
We will pretend that these two options are unavailable to illustrate the use of robust.

To keep the example simple, we will do linear regression as a maximum likelihood estimator.
Here the log likelihood is

lnLj = −
1

2

{(
yj − xjβ

σ

)2

+ ln
(
2πσ2

)}
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There is an auxiliary parameter, σ, and thus we have two equation-level scores:

∂ lnLj
∂(xjβ)

=
yj − xjβ

σ2

∂ lnLj
∂σ

=
1

σ

{(
yj − xjβ

σ

)2

− 1

}

Here are programs to compute this estimator. We have two ado-files: mymle.ado and likereg.ado.
The first ado-file contains two programs, mymle and Scores. mymle is the main program, and Scores
is a subprogram that computes the equation-level scores after we compute the maximum likelihood
solution. Because Scores is called only by mymle, we can nest it in the mymle.ado file; see
[U] 17 Ado-files.

begin mymle.ado
program mymle, eclass

version 15.1
local options "Level(cilevel)"
if replay() {

if "‘e(cmd)’"!="mymle" {
error 301

}
syntax [, ‘options’]
ml display, level(‘level’)
exit

}
syntax varlist [if] [in] [, /*

*/ ‘options’ Robust CLuster(varname) * ]

/* Determine estimation sample. */
marksample touse

if "‘cluster’"!="" {
markout ‘touse’ ‘cluster’, strok
local clopt "cluster(‘cluster’)"

}

/* Get starting values. */

tokenize ‘varlist’
local depn "‘1’"
macro shift

quietly summarize ‘depn’ if ‘touse’
local cons = r(mean)
local sigma = r(sd)

/* Do ml. */
ml model lf likereg (‘depn’=‘*’) (sigma:) if ‘touse’, /*

*/ init(/eq1=‘cons’ /sigma=‘sigma’) max /*
*/ title("MLE linear regression") ‘options’

if "‘robust’"!="" | "‘cluster’"!="" {
tempvar s1 s2
Scores ‘depn’ ‘s1’ ‘s2’
_robust ‘s1’ ‘s2’ if ‘touse’, ‘clopt’

}

ereturn local cmd "mymle"
ml display, level(‘level’)

end

http://www.stata.com/manuals15/u17.pdf#u17Ado-files
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program Scores
version 15.1
args depn s1 s2

quietly {
predict double ‘s1’
gen double ‘s2’ = (((‘depn’ - ‘s1’)/[sigma][_cons])^2 - 1) /*
*/ /[sigma][_cons]

replace ‘s1’ = (‘depn’ - ‘s1’)/([sigma][_cons]^2)
}

end
end mymle.ado

Our likereg program computes the likelihood. Because it is called by Stata’s ml commands, we
cannot nest it in the other file.

begin likereg.ado
program likereg

version 15.1
args lf xb s
qui replace ‘lf’ = -0.5*((($ML_y1 - ‘xb’)/‘s’)^2 + log(2*_pi*‘s’^2))

end
end likereg.ado

Note the following:

• Our command mymle will produce robust variance estimates if either the robust or the cluster()
option is specified. Otherwise, it will display the traditional estimates.

• We used the lf method with ml; see [R] ml. We could have used the d1 or d2 methods. Because
we would probably include code to compute the first derivatives analytically for the vce(robust)
option, there is no point in using d0. (However, we could compute the first derivatives numerically
and pass these to robust.)

• Our Scores program uses predict to compute the index xjβ. Because we had already posted
the results using ml, predict is available to us. By default, predict computes the index for the
first equation.

• Again because we had already posted the results by using ml, we can use [sigma][ cons] to
get the value of σ; see [U] 13.5 Accessing coefficients and standard errors for the syntax used
to access coefficients from multiple-equation models.

• ml calls ereturn post, so when we call robust, it alters the posted covariance matrix, replacing
it with the robust covariance matrix. robust also sets e(vcetype), and if the cluster() option
is specified, it sets e(clustvar) as well.

• We let ml produce z statistics, even when we specified the cluster() option. If the number of
clusters is small, it would be better to use t statistics. To do this, we could specify the dof()
option on the ml command, but we would have to compute the number of clusters in advance. We
could also get the number of clusters from robust’s r(N clust) and then repost the matrices
by using ereturn repost.

http://www.stata.com/manuals15/rml.pdf#rml
http://www.stata.com/manuals15/u13.pdf#u13.5Accessingcoefficientsandstandarderrors
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If we run our command with the cluster() option, we get

. mymle mpg weight gear_ratio foreign, cluster(rep78)

initial: log likelihood = -219.4845
rescale: log likelihood = -219.4845
rescale eq: log likelihood = -219.4845
Iteration 0: log likelihood = -219.4845 (not concave)
Iteration 1: log likelihood = -207.02829 (not concave)
Iteration 2: log likelihood = -202.6134
Iteration 3: log likelihood = -190.01198
Iteration 4: log likelihood = -181.94871
Iteration 5: log likelihood = -181.94473
Iteration 6: log likelihood = -181.94473

MLE linear regression Number of obs = 69
Wald chi2(3) = 135.82

Log likelihood = -181.94473 Prob > chi2 = 0.0000

(Std. Err. adjusted for 5 clusters in rep78)

Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
weight -.005893 .000803 -7.34 0.000 -.0074669 -.0043191

gear_ratio 1.904503 2.134518 0.89 0.372 -2.279075 6.08808
foreign -2.149017 1.178012 -1.82 0.068 -4.457879 .1598441

_cons 34.09959 4.121243 8.27 0.000 26.02211 42.17708

sigma
_cons 3.380223 .8840543 3.82 0.000 1.647508 5.112937

These results are similar to the earlier results that we got with our first myreg program and regress,
vce(cluster rep78).

Our likelihood is not globally concave. Linear regression is not globally concave in β and σ. ml’s
lf convergence routine encountered a little trouble in the beginning but had no problem coming to
the right solution.

Stored results
robust stores the following in r():

Scalars
r(N) number of observations
r(N sub) subpopulation observations
r(N strata) number of strata
r(N clust) number of clusters (PSUs)
r(singleton) 1 if singleton strata, 0 otherwise
r(census) 1 if census data, 0 otherwise
r(df r) variance degrees of freedom
r(sum w) sum of weights
r(N subpop) number of observations for subpopulation (subpop() only)
r(sum wsub) sum of weights for subpopulation (subpop() only)

Macros
r(subpop) subpop from subpop()

r(N strata) and r(N clust) are always set. If the strata() option is not specified, then
r(N strata)=1 (there truly is one stratum). If neither the cluster() nor the psu() option
is specified, then r(N clust) equals the number of observations (each observation is a PSU).
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When robust alters the post of ereturn post, it also stores the following in e():

Macros
e(vcetype) Robust
e(clustvar) name of cluster (PSU) variable

e(vcetype) controls the phrase that ereturn display displays above “Std. Err.”; e(vcetype) can
be set to another phrase (or to empty for no phrase). e(clustvar) displays the banner “(Std. Err.
adjusted for # clusters in varname)”, or it can be set to empty (ereturn local clustvar "").

Methods and formulas
We give the formulas here for complex survey data from one stage of stratified cluster sampling,

as this is the most general case.

Our parameter estimates, β̂, are the solution to the estimating equation

G(β) =

L∑
h=1

nh∑
i=1

mhi∑
j=1

whijS(β; yhij ,xhij) = 0

where (h, i, j) index the observations: h = 1, . . . , L are the strata; i = 1, . . . , nh are the sampled
PSUs (clusters) in stratum h; and j = 1, . . . , mhi are the sampled observations in PSU (h, i). The
outcome variable is represented by yhij ; the explanatory variables are xhij (a row vector); and whij
are the weights.

If no weights are specified, whij = 1. If the weights are aweights, they are first normalized to
sum to the total number of observations in the sample: n =

∑L
h=1

∑nh

i=1mhi. If the weights are
fweights, the formulas below do not apply; fweights are treated in such a way to give the same
results as unweighted observations duplicated the appropriate number of times.

For maximum likelihood estimators, S(β; yhij ,xhij) = ∂ lnLj/∂β is the score vector, where
lnLj is the log likelihood. For survey data, this is not a true likelihood, but a “pseudolikelihood”;
see [SVY] survey.

Let

D = −∂G(β)

∂β

∣∣∣∣∣
−1

β=β̂

For maximum likelihood estimators, D is the traditional covariance estimate—the negative of the
inverse of the Hessian. In the following, the sign of D does not matter.

The robust covariance estimate calculated by robust is

V̂ (β̂) = DMD

where M is computed as follows. Let uhij = S(β; yhij ,xhij) be a row vector of scores for the
(h, i, j) observation. Let

uhi• =

mhi∑
j=1

whijuhij and uh•• =
1

nh

nh∑
i=1

uhi•
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M is given by

M =
n− 1

n− k

L∑
h=1

(1− fh)
nh

nh − 1

nh∑
i=1

(uhi• − uh••)
′(uhi• − uh••)

where k is the value given in the minus() option. By default, k = 1, and the term (n− 1)/(n− k)
vanishes. Stata’s regress, vce(robust) and regress, vce(cluster clustvar) commands use k
equal to the number of explanatory variables in the model, including the constant (Fuller et al. 1986).
The svy prefix uses k = 1.

The specification k = 0 is handled differently. If minus(0) is specified, (n − 1)/(n − k) and
nh/(nh − 1) are both replaced by 1.

The factor (1−fh) is the finite population correction. If the fpc() option is not specified, fh = 0
is used. If fpc() is specified and the variable is greater than or equal to nh, it is assumed to contain
the values of Nh, and fh is given by fh = nh/Nh, where Nh is the total number of PSUs in the
population belonging to the hth stratum. If the fpc() variable is less than or equal to 1, it is assumed
to contain the values of fh. See [SVY] variance estimation for details.

For the vsrs() option and the computation of V̂srswor, the subpop() option, and the srssubpop
option, see [SVY] estat and [SVY] subpopulation estimation.
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