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Description

meqgrlogit is a legacy command for fitting mixed-effects models to binary or binomial responses.
melogit is the modern command, and it offers more functionality; see [ME] melogit. The two
commands use different but equivalent estimation methods. melogit performs optimization using
variance components in their original metric, whereas meqrlogit uses the QR decomposition of the
variance-components matrix.

Quick start

Two-level logistic regression of y on x with random intercepts by lev2 using QR decomposition
meqrlogit y x || lev2:

Add random coefficients for x
megrlogit y x || lev2: x

As above, but allow the random effects to be correlated
megrlogit y x || lev2: x, covariance(unstructured)

Three-level random-intercept model of y on x with 1ev2 nested within lev3
megrlogit y x || lev3: || lev2:

Crossed-effects model of y on x with two-way crossed random effects by factors a and b
megrlogit y x || _all:R.a || b:

Menu

Statistics > Multilevel mixed-effects models > Estimation by QR decomposition > Logistic regression


http://stata.com
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Syntax

meqrlogit depvar fe_equation || re_equation [ || re_equation . .. } [ , ()pti()ns}

where the syntax of fe_equation is
[indepvars] [lf] [ln] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ s re_options}
for random effects among the values of a factor variable
levelvar: R.varname [, re_options]

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset (varname) include varname in model with coefficient constrained to 1
re_options Description

Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation

collinear keep collinear variables
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options

Description

Model
binomial (varname | #)

Reporting
level (#)
or
variance

stddeviations

noretable
nofetable
estmetric
noheader
nogroup
display_options

Integration

intpoints(# [#...])

laplace

Maximization
maximize_options
retolerance (#)

reiterate (#)
matsqrt

matlog

refineopts (maximize_options)

set binomial trials if data are in binomial form

set confidence level; default is level (95)
report fixed-effects coefficients as odds ratios

show random-effects parameter estimates as variances and
covariances; the default

show random-effects parameter estimates as standard deviations
and correlations

suppress random-effects table

suppress fixed-effects table

show parameter estimates as stored in e (b)
suppress output header

suppress table summarizing groups

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

set the number of integration (quadrature) points;
default is intpoints(7)

use Laplacian approximation; equivalent to intpoints(1)

control the maximization process; seldom used

tolerance for random-effects estimates; default is
retolerance(1le-8); seldom used

maximum number of iterations for random-effects estimation;
default is reiterate(50); seldom used

parameterize variance components using matrix square roots;
the default

parameterize variance components using matrix logarithms

control the maximization process during refinement of starting
values

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances
0; the default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

indepvars and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

offset (varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, and unstructured.

covariance (independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance (independent), except when the R. notation is used, in which case the default is
covariance(identity) and only covariance(identity) and covariance (exchangeable)
are allowed.

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p+ 1)/2 unique
parameters.

collinear specifies that meqrlogit not omit collinear variables from the random-effects equation.
Usually, there is no reason to leave collinear variables in place; in fact, doing so usually causes
the estimation to fail because of the matrix singularity caused by the collinearity. However, with
certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.

binomial (varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial() is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

Reporting

level (#); see [R] estimation options.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(/3) rather than 3.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified either at estimation or upon replay.
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variance, the default, displays the random-effects parameter estimates as variances and covariances.

stddeviations displays the random-effects parameter estimates as standard deviations and correla-
tions.

noretable suppresses the random-effects table.
nofetable suppresses the fixed-effects table.

estmetric displays all parameter estimates in one table using the metric in which they are stored in
e(b). The results are stored in the same metric regardless of the parameterization of the variance
components, matsqrt or matlog, used at estimation time. Random-effects parameter estimates
are stored as log-standard deviations and hyperbolic arctangents of correlations, with equation
names that organize them by model level. Note that fixed-effects estimates are always stored and
displayed in the same metric.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon (style), cformat (% fint), pformat (% fint),
sformat (%fmt), and nolstretch; see [R] estimation options.

Integration

intpoints(#[# ...]) sets the number of integration points for adaptive Gaussian quadrature. The
more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases with the number of quadrature points, and in models with many levels
or many random coefficients, this increase can be substantial.

You may specify one number of integration points applying to all levels of random effects in
the model, or you may specify distinct numbers of points for each level. intpoints(7) is the
default; that is, by default seven quadrature points are used for each level.

laplace specifies that log likelihoods be calculated using the Laplacian approximation, equivalent
to adaptive Gaussian quadrature with one integration point for each level in the model; laplace
is equivalent to intpoints(1). Computation time increases as a function of the number of
quadrature points raised to a power equaling the dimension of the random-effects specification.
The computational time saved by using laplace can thus be substantial, especially when you
have many levels or random coefficients.

The Laplacian approximation has been known to produce biased parameter estimates, but the bias
tends to be more prominent in the estimates of the variance components rather than in the estimates
of the fixed effects. If your interest lies primarily with the fixed-effects estimates, the Laplace
approximation may be a viable faster alternative to adaptive quadrature with multiple integration
points.

When the R.varname notation is used, the dimension of the random effects increases by the
number of distinct values of varname. Even when this number is small to moderate, it increases
the total random-effects dimension to the point where estimation with more than one quadrature
point is prohibitively intensive.

For this reason, when you use the R. notation in your random-effects equations, the laplace
option is assumed. You can override this behavior by using the intpoints() option, but doing
so is not recommended.
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Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for meqrlogit are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be
specified.

from(init_specs) is particularly useful when combined with refineopts(iterate(0)) (see the
description below), which bypasses the initial optimization stage.

retolerance (#) specifies the convergence tolerance for the estimated random effects used by adaptive
Gaussian quadrature. Although not estimated as model parameters, random-effects estimators are
used to adapt the quadrature points. Estimating these random effects is an iterative procedure,
with convergence declared when the maximum relative change in the random effects is less than
retolerance (). The default is retolerance(1e-8). You should seldom have to use this option.

reiterate (#) specifies the maximum number of iterations used when estimating the random effects
to be used in adapting the Gaussian quadrature points; see the retolerance () option. The default
is reiterate(50). You should seldom have to use this option.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix
square roots of the variance—covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of
the variance—covariance matrices formed by these components at each model level.

The matsqrt parameterization ensures that variance—covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root
is more stable near the boundary of the parameter space. However, if convergence is problematic,
one option may be to try the alternate matlog parameterization. When convergence is not an issue,
both parameterizations yield equivalent results.

refineopts (maximize_options) controls the maximization process during the refinement of starting
values. Estimation in meqrlogit takes place in two stages. In the first stage, starting values
are refined by holding the quadrature points fixed between iterations. During the second stage,
quadrature points are adapted with each evaluation of the log likelihood. Maximization options
specified within refineopts() control the first stage of optimization; that is, they control the
refining of starting values.

maximize_options specified outside refineopts() control the second stage.

The one exception to the above rule is the nolog option, which when specified outside refine-
opts () applies globally.

from(init_specs) is not allowed within refineopts() and instead must be specified globally.

Refining starting values helps make the iterations of the second stage (those that lead toward the so-
lution) more numerically stable. In this regard, of particular interest is refineopts (iterate(#)),
with two iterations being the default. Should the maximization fail because of instability in the
Hessian calculations, one possible solution may be to increase the number of iterations here.

The following option is available with meqrlogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks and examples stata.com

Mixed-effects logistic regression is logistic regression containing both fixed effects and random
effects. In longitudinal data and panel data, random effects are useful for modeling intracluster
correlation; that is, observations in the same cluster are correlated because they share common
cluster-level random effects.

meqrlogit allows for many levels of random effects. For example, in a three-level model you
can specify random effects for schools and then random effects for classes nested within schools. In
this model, the observations (presumably, the students) comprise the first level, the classes comprise
the second level, and the schools comprise the third.

However, for simplicity, for now we consider the two-level model, where for a series of M
independent clusters, and conditional on a set of random effects u;,

Pr(yi; = 1|u;) = H (x;58 + ziju;) (1)

for j = 1,..., M clusters, with cluster j consisting of ¢ = 1,...,n; observations. The responses are
the binary-valued y;;, and we follow the standard Stata convention of treating y;; = 1 if depvar;; # 0
and treating y;; = O otherwise. The 1 X p row vector X;; are the covariates for the fixed effects,
analogous to the covariates you would find in a standard logistic regression model, with regression
coefficients (fixed effects) 3.

The 1 x g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean 0 and ¢ X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known
as variance components. One special case of (1) places z;; = X;; so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

Finally, because this is logistic regression, H (-) is the logistic cumulative distribution function, which
maps the linear predictor to the probability of a success (y;; = 1), with H (v) = exp(v)/{1+ exp(v)}.

Model (1) may also be stated in terms of a latent linear response, where only y;; = I (y,*] > 0)
is observed for the latent
ko

Yij = XijB + 2iju; + €
The errors €;; are distributed as logistic with mean 0 and variance 72 /3 and are independent of u;.

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in Introduction, for more
information.

Multilevel models with binary responses have been used extensively in the health and social
sciences. As just one example, Leyland and Goldstein (2001, sec. 3.6) describe a study of equity
of healthcare in Great Britain. Multilevel models with binary and other limited dependent responses
also have a long history in econometrics; Rabe-Hesketh, Skrondal, and Pickles (2005) provide an
excellent survey.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out the
random effects. One widely used modern method is to directly estimate the integral required to calculate
the log likelihood by Gauss—Hermite quadrature or some variation thereof. The estimation method
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used by meqrlogit is a multicoefficient and multilevel extension of one of these quadrature types,
namely, adaptive Gaussian quadrature (AGQ) based on conditional modes, with the multicoefficient
extension from Pinheiro and Bates (1995) and the multilevel extension from Pinheiro and Chao (2006);
see Methods and formulas.

> Example 1: Two-level random-intercept model

Ng et al. (2006) analyze a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception.
. use http://www.stata-press.com/data/r15/bangladesh
(Bangladesh Fertility Survey, 1989)
. describe

Contains data from http://www.stata-press.com/data/r15/bangladesh.dta

obs: 1,934 Bangladesh Fertility Survey, 1989
vars: 7 28 May 2016 20:27
size: 19,340 (_dta has notes)

storage display value
variable name  type format label variable label
district byte %9.0g District
c_use byte %9.0g yesno Use contraception
urban byte %9.0g urban Urban or rural
age float  %6.2f Age, mean centered
childl byte %9.0g 1 child
child2 byte %9.0g 2 children
child3 byte %9.0g 3 or more children

Sorted by: district

The women sampled were from 60 districts, identified by the variable district. Each district
contained either urban or rural areas (variable urban) or both. The variable c_use is the binary
response, with a value of 1 indicating contraceptive use. Other covariates include mean-centered age
and three indicator variables recording number of children.

Consider a standard logistic regression model, amended to have random effects for each district.
Defining 7;; = Pr(c_use;; = 1), we have

IOgit(ﬂ'ij) =By + ﬂlurbanij + ﬁgageij + ﬁgChildlij + ,B4Child21‘j + ﬁ5Child3ij + u; (2)

for j =1,...,60 districts, with ¢ = 1,...,n; women in district j.
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. meqrlogit c_use urban age child* || district:

Refining starting values:

Iteration O: log likelihood = -1219.2682
Iteration 1: log likelihood = -1209.3544
Iteration 2: log likelihood = -1207.1895

Performing gradient-based optimization:

Iteration O: log likelihood = -1207.1895
Iteration 1: log likelihood = -1206.8323
Iteration 2: log likelihood = -1206.8322

Iteration 3: log likelihood = -1206.8322

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60
Obs per group:

min = 2

avg = 32.2

max = 118

Integration points = 7 Wald chi2(5) = 109.60

Log likelihood = -1206.8322 Prob > chi2 = 0.0000

c_use Coef.  Std. Err. z P>|z| [95% Conf. Intervall

urban . 7322764 .1194857 6.13 0.000 .4980887 .9664641

age -.0264982 .0078916 -3.36 0.001 -.0419654 -.0110309

childl 1.116002 .1580921 7.06 0.000 .8061466 1.425856

child2 1.365895 .174669 7.82 0.000 1.02355 1.70824

child3 1.344031 .1796549 7.48 0.000 .9919141 1.696148

_cons -1.68929 .1477592 -11.43  0.000 -1.978892  -1.399687

Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
district: Identity

var (_cons) .2156188 .0733234 .1107202 .4199007

LR test vs. logistic model: chibar2(01) = 43.39 Prob >= chibar2 = 0.0000

Notes:
1. The estimation log consists of two parts:

(a) A set of iterations aimed at refining starting values. These are designed to be relatively quick
iterations aimed at getting the parameter estimates within a neighborhood of the eventual
solution, making the iterations in (b) more numerically stable.

(b) A set of gradient-based iterations. By default, these are Newton—Raphson iterations, but other
methods are available by specifying the appropriate maximize _options; see [R] maximize.

2. The first estimation table reports the fixed effects, and these can be interpreted just as you would
the output from logit. You can also specify the or option at estimation or on replay to display
the fixed effects as odds ratios instead.

If you did display results as odds ratios, you would find urban women to have roughly double the
odds of using contraception as that of their rural counterparts. Having any number of children will
increase the odds from three- to fourfold when compared with the base category of no children.
Contraceptive use also decreases with age.

3. The second estimation table shows the estimated variance components. The first section of the table
is labeled district: Identity, meaning that these are random effects at the district level
and that their variance—covariance matrix is a multiple of the identity matrix; that is, ¥ = JZI.
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Because we have only one random effect at this level, meqrlogit knew that Identity is the

only possible covariance structure. In any case, o2 was estimated as 0.22 with standard error 0.07.

4. A likelihood-ratio test comparing the model to ordinary logistic regression, (2) without u;, is
provided and is highly significant for these data.
d

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by | |.

Stored results

meqrlogit stores the following in e():

e(reparm_rc)
e(rc)
e(converged)

e(datasignature)
e(datasignaturevars)

e(properties)
e(estat_cmd)
e(predict)

e(marginsnotok)
e(marginsdefault)

Scalars
e(N) number of observations
e(k) number of parameters
e(k_f) number of fixed-effects parameters
e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(chi2) X2
e(p) p-value for model test
e(11l_c) log likelihood, comparison model
e(chi2_c) x?, comparison test
e(df_c) degrees of freedom, comparison test
e(p_c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

return code, final reparameterization
return code
1 if converged, O otherwise

Macros
e(cmd) meqrlogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivars) grouping variables
e(model) logistic
e(title) title in estimation output
e(offset) offset
e(binomial) binomial number of trials
e(redim) random-effects dimensions
e(vartypes) variance-structure types
e(revars) random-effects covariates
e(n_quad) number of integration points
e(laplace) laplace, if Laplace approximation
e(chi2type) Wald; type of model x>
e (method) ML
e(opt) type of optimization
e(ml_method) type of m1 method
e(technique) maximization technique

the checksum

variables used in calculation of checksum

bV

program used to implement estat
program used to implement predict
predictions disallowed by margins

default predict() specification for margins
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e(asbalanced) factor variables fvset as asbalanced

e (asobserved) factor variables fvset as asobserved
Matrices

e(b) coefficient vector

e(N_g) group counts

e(g_min) group-size minimums

e(g_avg) group-size averages

e(g_max) group-size maximums

e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

Methods and formulas

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by meqrlogit (option binomial()), the methods presented below are in terms of the
more general binomial mixed-effects model.

For a two-level binomial model, consider the response y;; as the number of successes from a
series of 7;; Bernoulli trials (replications). For cluster j, j = 1,..., M, the conditional distribution
of y¥; = (Yj1,---,¥Yjn;) > given a set of cluster-level random effects u, is

fly;luy) = ﬁ [(”) {H (x4;8+ zi;u;) YY" {1 — H (x;;8+ zuuj)}”jy”}

=1 L\Yid

i T
= exp (Z |:yij (xijB + ziju;) — rijlog {1 + exp (xi;8 + z5u;) } + log <yj>}>
i=1 ij
for H(v) = exp(v)/{1 + exp(v)}.
Defining rj = (rj1,...,7jn,;) and

c(y;,r;) :i 1og<”j)

i=1 Yij

where c(y;,r;) does not depend on the model parameters, we can express the above compactly in
matrix notation,

fly;hag) = exp [y} (X;8+ Zju;) —rflog {1 + exp (X;8+ Z;u;)} + c(y;,1;)]
where X; is formed by stacking the row vectors X;; and Z; is formed by stacking the row vectors z;;.

We extend the definitions of the functions log(:) and exp(-) to be vector functions where necessary.

Because the prior distribution of u; is multivariate normal with mean 0 and ¢ X ¢ variance matrix
Y, the likelihood contribution for the jth cluster is obtained by integrating u; out of the joint density

f(yj.u5),

L;(8,%) (QW)_Q/z|2|71/2/f(yg‘|uj)exp (—u}z'u;/2) du;

— exp{c(y;.r;)} (2m) /2 571/ / exp {1 (8, 5, u;)} du,
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where
h(B,2,u5) =y} (X;8+ Zju;) —r;log {1+ exp (X;8 + Z;u;)} — u}Eiluj/2

and for convenience, in the arguments of h(-) we suppress the dependence on the observable data
(vj. 15, Xy, Zj).
The integration in (5) has no closed form and thus must be approximated. The Laplacian approx-

imation (Tierney and Kadane 1986; Pinheiro and Bates 1995) is based on a second-order Taylor
expansion of 1 (3, ¥, u;) about the value of u; that maximizes it. Taking first and second derivatives,

we obtain oh (ﬁ 5 )
y 24, Uy _
W (B,3,u,) = TJ = Z;- {y; —m(B,u;)} - X luj
j
9%h (B, %, u;) B
R (8,2, u)) = W =—{Z)V(B,u,)Z; + = "

where m(03, uj) is the vector function with the ¢th element equal to the conditional mean of y;;
given u;, that is, r;; H(x;;3 + z;;u;). V(B,u;) is the diagonal matrix whose diagonal entries v;;
are the conditional variances of ¥;; given u;, namely,

vij = ri H (%458 + ziju;) {1 — H (%58 + ziju;) }

The maximizer of & (3, ¥, u;) is U; such that A’ (3, £, 1;) = 0. The integrand in (5) is proportional
to the posterior density f(u,;|y;), so U; also represents the posterior mode, a plausible estimator of
u; in its own right.

Given the above derivatives, the second-order Taylor approximation then takes the form
~ 1 ~ ~ ~
h(8,%,w) = h(B,%,8;) + 5 (0 — &))" B (8,2, ;) (0 - ;) (6)

The first-derivative term vanishes because h’ (3, X, U;) = 0. Therefore,

/ exp {h (6,3, u;)} du; ~ exp {1 (8, %, 1))}
< e |5 05— ) (- (8.2, (- ) aw D
= exp {h (8,2,4,)} (2m)9/2 |[~h" (8. %, 4;)| "/

because the latter integrand can be recognized as the “kernel” of a multivariate normal density.

Combining the above with (5) (and taking logs) gives the Laplacian log-likelihood contribution of
the jth cluster,

a 1 -
L£5™(B.%) = — 5 log 2] — log|Ry| + h(8, 2.1;) + c(y; 1))

where R;; is an upper-triangular matrix such that —h" (8, %, u;) = R;R/;. Pinheiro and Chao (2006)
show that 1i; and R; can be efficiently computed as the iterative solution to a least-squares problem
by using matrix decomposition methods similar to those used in fitting LME models (Bates and
Pinheiro 1998; Pinheiro and Bates 2000; [ME] mixed).
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The fidelity of the Laplacian approximation is determined wholly by the accuracy of the approxi-
mation in (6). An alternative that does not depend so heavily on this approximation is integration via
AGQ (Naylor and Smith 1982; Liu and Pierce 1994).

The application of AGQ to this particular problem is from Pinheiro and Bates (1995). When we
reexamine the integral in question, a transformation of integration variables yields

/exp {h(B,%,u;)}du; = |Rj\_1/ exp{h(B,E,ﬁj +Rj_1t)}dt
(8)
= (2m)9/? |Rj\*1/ exp { (8,20, + R;'t) +t't/2} ¢(t)dt

where ¢(-) is the standard multivariate normal density. Because the integrand is now expressed as
some function multiplied by a normal density, it can be estimated by applying the rules of standard
Gauss—Hermite quadrature. For a predetermined number of quadrature points N, define aj, = \@az
and wy, = wi/y/m, for k = 1,...,Ng, where (a},w;) are a set of abscissas and weights for

Gauss—Hermite quadrature approximations of f exp(—a?) f(z)dx, as obtained from Abramowitz and
Stegun (1964, 924).

Define ax = (ag,,ax,,--,ak,)’s that is, ay is a vector that spans the N¢ abscissas over the
dimension g of the random effects. Applying quadrature rules to (8) yields the AGQ approximation,

/ exp {1 (8. 5, u;)} du,

Nq Ng q
~ (2m) 72 R, Z Z [exp {h(B,%,19; + R, ax) + ajax/2} H Wy,
k)lzl qul p:l

= (2m)7/2G;(8,%)

resulting in the AGQ log-likelihood contribution of the ¢th cluster,
1 o~
AG
L1998, %) = —5 log 3] + log { G (8.9) | + (v, 1)

The “adaptive” part of adaptive Gaussian quadrature lies in the translation and rescaling of the
integration variables in (8) by using U; and R;l, respectively. This transformation of quadrature
abscissas (centered at 0 in standard form) is chosen to better capture the features of the integrand,
which through (7) can be seen to resemble a multivariate normal distribution with mean ﬁj and

variance R;lR;T. AGQ is therefore not as dependent as the Laplace method upon the approximation
in (6). In AGQ, (6) serves merely to redirect the quadrature abscissas, with the AGQ approximation
improving as the number of quadrature points N¢ increases. In fact, Pinheiro and Bates (1995)
point out that AGQ with only one quadrature point (¢ = 0 and w = 1) reduces to the Laplacian
approximation.

The log likelihood for the entire dataset is then simply the sum of the contributions of the M individual
clusters, namely, £(3,%) = Z]Nil £?ap (8, %) for Laplace and L(3,X) = E;Vil L’?GQ (B,%) for
AGQ.

Maximization of £(3,X) is performed with respect to (3, ), where 0 is a vector comprising the
unique elements of the matrix square root of X¥. This is done to ensure that ¥ is always positive
semidefinite. If the matlog option is specified, then O instead consists of the unique elements of
the matrix logarithm of ¥. For well-conditioned problems, both methods produce equivalent results,
yet our experience deems the former as more numerically stable near the boundary of the parameter
space.
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Once maximization is achieved, parameter estimates are mapped from (3,8) to (3,7), where
4 is a vector containing the unique (estimated) elements of X, expressed as logarithms of standard
deviations for the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal
elements. This last step is necessary to (a) obtain a parameterization under which parameter estimates
can be displayed and interpreted individually, rather than as elements of a matrix square root (or
logarithm), and (b) parameterize these elements such that their ranges each encompass the entire real
line.

Parameter estimates are stored in e (b) as (3,7), with the corresponding variance—covariance matrix

stored in e (V). Parameter estimates can be displayed in this metric by specifying the estmetric option.
However, in meqrlogit output, variance components are displayed as variances and covariances.

The approach outlined above can be extended from two-level models to higher-level models; see
Pinheiro and Chao (2006) for details.
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