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Title

intro — Introduction to treatment-effects manual

Description Also see

Description
This manual documents commands for the analysis of treatment effects and is referred to as [TE]

in cross-references.

After this entry, [TE] treatment effects provides an overview of the treatment-effects estimation
commands. The other parts of this manual are arranged alphabetically. If you are new to Stata’s
treatment-effects commands, we recommend that you read the following sections first:

[TE] teffects intro Introduction to treatment effects for observational data
[TE] teffects intro advanced Advanced introduction to treatment effects for observational data
[TE] teffects multivalued Multivalued treatment effects

If you are interested in survival analysis, we also recommend that you read the following section
first:

[TE] stteffects intro Introduction to treatment effects for observational survival-time data

Stata is continually being updated, and Stata users are always writing new commands. To find out
about the latest treatment-effects features, type search treatment effects.

Also see
[U] 1.3 What’s new
[R] intro — Introduction to base reference manual
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Title

treatment effects — Introduction to treatment-effects commands

Description Also see

Description
This manual documents commands that use observational data to estimate the effect caused by

getting one treatment instead of another. In observational data, treatment assignment is not controlled
by those who collect the data; thus some common variables affect treatment assignment and treatment-
specific outcomes. Observational data is sometimes called retrospective data or nonexperimental data,
but to avoid confusion, we will always use the term “observational data”.

When all the variables that affect both treatment assignment and outcomes are observable, the
outcomes are said to be conditionally independent of the treatment, and the teffects and stteffects
estimators may be used.

When not all of these variables common to both treatment assignment and outcomes are observable,
the outcomes are not conditionally independent of the treatment, and eteffects, etpoisson, or
etregress may be used.

teffects and stteffects offer much flexibility in estimators and functional forms for the
treatment-assignment models. teffects provides models for continuous, binary, count, fractional,
and nonnegative outcome variables. stteffects provides many functional forms for survival-time
outcomes. See [TE] teffects intro, [TE] teffects intro advanced, and [TE] stteffects intro for more
information.

eteffects, etpoisson, and etregress offer less flexibility than teffects because more struc-
ture must be imposed when conditional independence is not assumed. eteffects is for continuous,
binary, count, fractional, and nonnegative outcomes and uses a probit model for binary treatments; see
[TE] eteffects. etpoisson is for count outcomes and uses a normal distribution to model treatment
assignment; see [TE] etpoisson. etregress is for linear outcomes and uses a normal distribution to
model treatment assignment; see [TE] etregress.

Treatment effects
[TE] teffects aipw Augmented inverse-probability weighting
[TE] teffects ipw Inverse-probability weighting
[TE] teffects ipwra Inverse-probability-weighted regression adjustment
[TE] teffects nnmatch Nearest-neighbor matching
[TE] teffects psmatch Propensity-score matching
[TE] teffects ra Regression adjustment

2



treatment effects — Introduction to treatment-effects commands 3

Survival treatment effects
[TE] stteffects ipw Survival-time inverse-probability weighting
[TE] stteffects ipwra Survival-time inverse-probability-weighted regression adjustment
[TE] stteffects ra Survival-time regression adjustment
[TE] stteffects wra Survival-time weighted regression adjustment

Endogenous treatment effects
[TE] eteffects Endogenous treatment-effects estimation
[TE] etpoisson Poisson regression with endogenous treatment effects
[TE] etregress Linear regression with endogenous treatment effects

Also see
[U] 1.3 What’s new
[TE] teffects intro — Introduction to treatment effects for observational data

[TE] teffects intro advanced — Advanced introduction to treatment effects for observational data

[TE] teffects multivalued — Multivalued treatment effects

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data



Title

eteffects — Endogenous treatment-effects estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
eteffects estimates the average treatment effect (ATE), the average treatment effect on the treated

(ATET), and the potential-outcome means (POMs) from observational data when treatment assignment
is correlated with the potential outcomes. It allows for continuous, binary, count, fractional, and
nonnegative outcomes and requires a binary treatment. To control for the endogeneity of the treatment
assignment, the estimator includes residuals from the treatment model in the models for the potential
outcomes, known as a control-function approach.

Quick start
ATE of binary treatment treat using a linear model for outcome y1 on x and the residuals from a

probit model for treat on x and z

eteffects (y1 x) (treat x z)

As above, but estimate ATET
eteffects (y1 x) (treat x z), atet

As above, but estimate POMs
eteffects (y1 x) (treat x z), pomeans

As above, and show parameters from auxiliary equations
eteffects (y1 x) (treat x z), pomeans aequations

ATE of treat using an exponential-mean model for y1
eteffects (y1 x, exponential) (treat x z)

Same as above, but for count outcome y2

eteffects (y2 x, exponential) (treat x z)

As above, but use a probit model for binary outcome y3

eteffects (y3 x, probit) (treat x z)

As above, but use a fractional probit model for y4 ranging from 0 to 1
eteffects (y4 x, fractional) (treat x z)

Menu
Statistics > Treatment effects > Continuous outcomes > Endogenous treatment, control function

Statistics > Treatment effects > Binary outcomes > Endogenous treatment, control function

Statistics > Treatment effects > Count outcomes > Endogenous treatment, control function

Statistics > Treatment effects > Fractional outcomes > Endogenous treatment, control function

Statistics > Treatment effects > Nonnegative outcomes > Endogenous treatment, control function

4



eteffects — Endogenous treatment-effects estimation 5

Syntax
eteffects (ovar omvarlist

[
, omodel noconstant

]
)

(tvar tmvarlist
[
, noconstant

]
)
[

if
] [

in
] [

weight
] [

, stat options
]

ovar is the depvar of the outcome model.

omvarlist is the list of exogenous indepvars in the outcome model.

tvar is the binary treatment variable.

tmvarlist is the list of covariates that predict treatment assignment.

omodel Description

Model

linear linear outcome model; the default
fractional fractional probit outcome model
probit probit outcome model
exponential exponential-mean outcome model

stat Description

Model

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means

options Description

Model

noconstant suppress constant term

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

pstolerance(#) set tolerance for overlap assumption
osample(newvar) generate newvar to mark observations that violate the overlap assumption

coeflegend display legend instead of statistics
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omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar),
and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[
, # . . .

]
, copy

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(1e-5). eteffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.

The following option is available with eteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks and examples
If you are unfamiliar with treatment-effects estimators for observational data or the teffects

commands, we recommend that you look at [TE] teffects intro. For the intuition behind some of the
concepts discussed below, we recommend that you read Defining treatment effects in [TE] teffects
intro advanced.

The estimators implemented in eteffects extend the regression adjustment (RA) estimators
implemented in teffects ra to allow for endogenous treatments, that is, when treatment assignment
is not independent of outcomes. This endogeneity is a violation of the conditional mean independence
assumption used by teffects ra, as discussed in The potential-outcome model in [TE] teffects intro
advanced.

eteffects estimates the average treatment effect (ATE), the average treatment effect on the treated
(ATET), and the potential-outcome means (POMs). It uses a linear, a probit, a fractional probit, or
an exponential-mean model for the potential outcomes and a probit model for treatment assignment.
After conditioning on the observable covariates, eteffects allows some remaining unobservable
components to affect both treatment assignment and the potential outcomes. The treatment assignment
process is endogenous because these unobservable components affect both treatment assignment and
the potential outcomes.

To control for the endogeneity of the treatment assignment, eteffects uses a control-function
approach. This method controls for endogeneity by including the residuals from the treatment-
assignment model as a regressor in the models for the potential outcome. The implementation in
eteffects follows Wooldridge (2010), who provides an excellent discussion of the control-function
approach that addresses endogeneity problems in a treatment-effects context.

The control-function approach estimates the parameters of the conditional means of the potential
outcomes. Sample averages of the conditional means are used to estimate the unconditional ATE,
ATET, or POMs. This method is known as RA.

Taken collectively, the estimators implemented in eteffects are control-function RA estimators.
See Methods and formulas below for details about the estimation procedure.

Example 1: Linear outcome estimates for ATE

Suppose we want to know the effect of a mother smoking while pregnant on the birthweight of
her infant. We use an extract from Cattaneo (2010) in which bweight records the baby’s birthweight
and mbsmoke is the variable (0 or 1) indicating whether a mother smoked while pregnant.

We may believe that birthweight (the potential outcome) is influenced by whether the mother had
a prenatal exam in the first trimester, whether the mother is married, the mother’s age, whether this
is the first birth, and the education level of the father. We may also believe that the smoking decision
(the treatment) is influenced by the mother’s marital status, the education level of the mother, her
age, whether she had a prenatal exam in the first trimester, and whether this baby is her first baby.

Thus we condition on different sets of covariates in the models for treatment assignment and
the potential outcomes. In the probit model for smoking status (mbsmoke), we condition on marital
status (mmarried), age (mage), mother’s education level (medu), father’s education level (fedu), and
whether it was the mother’s first baby (fbaby). We model birthweight (bweight) as a linear function
of whether the mother had a first-trimester prenatal exam (prenatal1), mmarried, mage, and fbaby.
We can estimate the ATE of smoking status using one of the teffects estimators if we believe that
there are no unobservable components that affect both the decision to smoke while pregnant and the
potential birthweights.
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If we believe there is some unobservable factor that affects both assignment to treatment and the
potential outcome, we must select another estimator. For example, we do not observe a mother’s health
consciousness, which affects both the smoking decision and each potential birthweight through other
behaviors such as intake of prenatal vitamins. Under these assumptions, the estimators in eteffects
consistently estimate the ATE, but the estimators in [TE] teffects yield inconsistent estimates.

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. eteffects (bweight i.prenatal1 i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu)

Iteration 0: EE criterion = 4.704e-24
Iteration 1: EE criterion = 1.223e-25

Endogenous treatment-effects estimation Number of obs = 4,642
Outcome model : linear
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -455.9119 212.4393 -2.15 0.032 -872.2853 -39.53852

POmean
mbsmoke

nonsmoker 3437.964 31.21145 110.15 0.000 3376.791 3499.138

When no mother smokes, the average birthweight is 3,438 grams. The average birthweight is 456
grams less when all mothers smoke than when no mother smokes.

We can compare these results with those obtained if we ignore the endogeneity of the smoking
decision. Below we estimate the ATE using the inverse-probability-weighted regression-adjustment
estimator in [TE] teffects ipwra.

. teffects ipwra (bweight i.prenatal1 i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu)

Iteration 0: EE criterion = 3.036e-22
Iteration 1: EE criterion = 3.755e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: logit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -233.6835 25.07695 -9.32 0.000 -282.8335 -184.5336

POmean
mbsmoke

nonsmoker 3403.191 9.529709 357.11 0.000 3384.513 3421.869
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In magnitude, the estimated ATE is more than half the estimate that allows for endogenous treatment
assignment. If there is endogeneity, disregarding it underestimates the effect of smoking on birthweight.
We show how to test for endogeneity in example 1 of [TE] eteffects postestimation.

Example 2: Estimating the ATET

Continuing example 1, we can use the atet option to estimate the ATET.

. eteffects (bweight i.prenatal1 i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu), atet

Iteration 0: EE criterion = 4.688e-24
Iteration 1: EE criterion = 8.479e-26

Endogenous treatment-effects estimation Number of obs = 4,642
Outcome model : linear
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
mbsmoke

(smoker
vs

nonsmoker) -409.8527 161.4816 -2.54 0.011 -726.3507 -93.35466

POmean
mbsmoke

nonsmoker 3547.512 160.0595 22.16 0.000 3233.801 3861.223

In the population of mothers who smoke, the average infant birthweight would be 3,548 grams if
none of these mothers smoked. For the mothers who smoke, the average infant birthweight is 410
grams less than if none of these mothers smoked.

Example 3: Exponential-mean outcomes

We estimate the ATE of living in an urban area on monthly earnings (wage), using a subset of the
National Longitudinal Survey in 1980 found in Wooldridge (2010). We assume that once we condition
on work experience (exper), whether education level attained is college or higher (college), and
IQ (iq), individual wages follow an exponential mean. The variables used to predict residence in an
urban area (urban) are college and whether the respondent’s father attained a bachelor’s degree or
higher (fcollege).
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. use http://www.stata-press.com/data/r14/nlsy80

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege)

Iteration 0: EE criterion = 3.479e-11
Iteration 1: EE criterion = 2.432e-25

Endogenous treatment-effects estimation Number of obs = 935
Outcome model : exponential
Treatment model: probit

Robust
wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
urban

(1 vs 0) 481.0465 31.74882 15.15 0.000 418.82 543.2731

POmean
urban

0 233.8083 13.51028 17.31 0.000 207.3286 260.288

When everyone lives outside urban areas, wages are $234 a month on average. Wages are $481 a
month greater, on average, when everyone lives in urban areas.

Stored results
eteffects stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable
e(rank) rank of e(V)
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) eteffects
e(cmdline) command as typed
e(depvar) name of outcome variable
e(tvar) name of treatment variable
e(omodel) fractional, linear, probit, or exponential
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
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Functions
e(sample) marks estimation sample

Methods and formulas
The treatment-effects models considered in eteffects are given by

yi0 = E (yi0|xi) + εi0 (1)

yi1 = E (yi1|xi) + εi1 (2)

ti = E (ti|zi) + νi (3)

yi = tiyi1 + (1− ti)yi0 (4)

E (εij |xi, zi) = E (εij |zi) = E (εij |xi) = 0 for j ∈ {0, 1} (5)

E (εij |t) 6= 0 for j ∈ {0, 1} (6)

where the subscript i denotes individual level observations, yi1 is the potential outcome of receiving
the treatment, yi0 is the potential outcome when the treatment is not received, ti is the observed
binary treatment, and yi is the observed outcome. Each one of the potential outcomes is determined
by its expected value conditional on a set of regressors xi and an unobserved random component εij ,
for j ∈ {0, 1}. Similarly, the treatment is given by its expectation conditional on a set of regressors
zi, which does not need to differ from xi, and an unobserved component νi.

Equations (1)–(5) describe the parametric treatment-effects models in [TE] teffects. Equation (6)
adds endogeneity to the framework. It states that the unobservables in the potential-outcome equations
are correlated to treatment status. For our birthweight example, this would happen if mothers who
do not smoke are more health conscious than those who smoke and if we do not observe health
awareness in our data. If we do not observe health awareness, the decision to smoke or not to smoke
is not independent of the infant’s birthweight.

Equations (3), (5), and (6) are the basis of the control-function estimator implemented by eteffects.
Equation (5) states that the unobserved components in the potential outcome are independent of zi.
Therefore, the correlation between ti and the unobserved components must be equivalent to the
correlation between εij and νi. Another way of stating this is

E (εij |ti) = E (εij |E (t|zi) + νi)from (3)
= E (εij |νi)from (5)
= νiβ2j

We fit (3) using a probit estimator. We then obtain ν̂i as the difference between the treatment
and our estimate of E (ti|zi) and use this statistic to compute an estimate of E (yij |xi, νi, ti) for
j ∈ {0, 1}. If the outcome is linear, for instance,

E (yij |xi, νi, ti = j) = x′iβ1j + νiβ2j for j ∈ {0, 1} (7)
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For the probit and exponential-mean cases, respectively, we have the following:

E (yij |xi, νi, ti = j) = Φ
(
x′iβ1j + νiβ2j

)
(8)

E (yij |xi, νi, ti = j) = exp
(
x′iβ1j + νiβ2j

)
(9)

The parameters of (3) and (7)–(9), and the ATE, ATET, and POMs are estimated using the
generalized method of moments (GMM). The moment equations used in GMM are the sample analogs
of E {w′iεi(θ)} = 0, where wi are the instruments, εi(θ) are residuals, and θ are the parameters of
the model (see [R] gmm). The moment conditions in the GMM estimation for the linear model are
given by

1

n

n∑
i=1

x′i(yi − x′iβ̂1j + ν̂iβ̂2j)ti = 0 (10)

1

n

n∑
i=1

x′i(yi − x′iβ̂1j + ν̂iβ̂2j)(1− ti) = 0 (11)

1

n

n∑
i=1

z′i

{
ti
φ (z′iπ̂)

Φ (z′iπ̂)
− (1− ti)

φ (z′iπ̂)

1−Φ (z′iπ̂)

}
= 0 (12)

1

n

n∑
i=1

{(
x′iβ̂10 + ν̂iβ̂20

)
− P̂OM0

}
= 0 (13)

1

n

n∑
i=1

{(
x′iβ̂11 + ν̂iβ̂21

)
− P̂OM0− ÂTE

}
= 0 (14)

where ν̂i = ti−Φ (z′iπ̂), n is the number of observations, and β̂11, β̂10, β̂21, β̂20, π̂, ÂTE, and P̂OM0
are the parameters. If we want to estimate the ATET, we replace (14) with

1

n

n∑
i=1

{(
x′iβ̂11 + ν̂iβ̂21

) n

nt
− P̂OM0

n

nt
− ÂTET

}
= 0 (15)

and if we want to estimate the potential-outcome means, we replace (14) with

1

n

n∑
i=1

{(
x′iβ̂11 + ν̂iβ̂21

)
− P̂OM1

}
= 0 (16)

where ÂTET and P̂OM1 are the parameters of the model, and nt is the number of treated units.
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For the exponential-mean outcome model, we replace x′iβ̂1j + ν̂iβ̂2j with exp(x′iβ̂1j + ν̂iβ̂2j) to
obtain the residual equations in (10)–(16). For the probit outcome model, we replace (10) and (11)
with the following:

1

n

n∑
i=1

tix
′
i

yi φ
(
x′iβ̂1j + ν̂iβ̂2j

)
Φ
(
x′iβ̂1j + ν̂iβ̂2j

) − (1− yi)
φ
(
x′iβ̂1j + ν̂iβ̂2j

)
1−Φ

(
x′iβ̂1j + ν̂iβ̂2j

)
 = 0

1

n

n∑
i=1

(1− ti)x′i

yi φ
(
x′iβ̂1j + ν̂iβ̂2j

)
Φ
(
x′iβ̂1j + ν̂iβ̂2j

) − (1− yi)
φ
(
x′iβ̂1j + ν̂iβ̂2j

)
1−Φ

(
x′iβ̂1j + ν̂iβ̂2j

)
 = 0

For the remaining equations, x′iβ̂1j + ν̂iβ̂2j is replaced with Φ(x′iβ̂1j + ν̂iβ̂2j). The fractional
probit model uses the same moment conditions as the probit model.
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eteffects postestimation — Postestimation tools for eteffects

Postestimation commands predict estat Remarks and examples Also see

Postestimation commands
The following postestimation command is of special interest after eteffects:

Command Description

estat endogenousperform tests of endogeneity

The following postestimation commands are available after eteffects:

Command Description

estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

predict

Description for predict

predict creates a new variable containing predictions such as treatment effects, conditional means,
propensity scores, and linear predictions.

Menu for predict

Statistics > Postestimation

14
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Syntax for predict

predict
[

type
] {

stub* | newvar | newvarlist
} [

if
] [

in
] [

, statistic tlevel
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

te treatment effect; the default
cmean conditional mean at treatment level
ps propensity score
xb linear prediction
psxb linear prediction for propensity score
xbtotal linear prediction, using residuals from treatment model

Specify one new variable with te; specify one or two new variables with cmean, ps, and xb.

Options for predict

� � �
Main �

te, the default, calculates the treatment effect.

cmean calculates the conditional mean for the control group. To also obtain the conditional mean for
the treatment group, specify two variables. If you want the conditional mean for only the treatment
group, specify the tlevel option.

ps calculates the probability of being in the control group. To also obtain the probability of being in
the treatment group, specify two variables. If you want the probability of being in the treatment
group only, specify the tlevel option.

xb calculates the linear prediction for the control group. To also obtain the linear prediction for the
treatment group, specify two variables. If you want the linear prediction for only the treatment
group, specify the tlevel option.

psxb calculates the linear prediction for the propensity score.

xbtotal calculates the linear prediction for the control group, including the residuals from the
treatment model as regressors. To also obtain the linear prediction for the treatment group, specify
two variables. If you want the linear prediction, including the residuals from the treatment model
as regressors, only for the treatment group, specify the tlevel option.

tlevel specifies that the statistic be calculated for the treatment group; the default is to calculate
the statistic for the control group.

scores calculates the score variables. For eteffects, this is the same as the residuals in the moment
conditions used by the generalized method of moments (see [R] gmm). For the average treatment
effect, the average treatment effect on the treated, and the potential-outcome means, parameter-level
scores are computed. For the auxiliary equations, equation-level scores are computed.
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estat

Description for estat

estat endogenous performs a Wald test to determine whether the estimated correlations between
the treatment-assignment and potential-outcome models are different from zero. The null hypothesis
is that the correlations are jointly zero. Rejection of the null hypothesis suggests endogeneity.

Menu for estat
Statistics > Postestimation

Syntax for estat

estat endogenous

Remarks and examples

Example 1: Testing for endogeneity

In example 3 of [TE] eteffects, endogeneity could arise if unobservable factors that determine
wages are correlated with the decision to live in an urban area. If there is no endogeneity, we would
prefer to use one of the teffects estimators because they will give us the correct standard errors.
The control-function approach used by eteffects allows us to test for endogeneity.

The control-function approach estimates the correlation between the unobservables of the treatment-
assignment and potential-outcome models. If there is no correlation between the unobservables, then
there is no endogeneity. We test for correlation, and thus for endogeneity, by typing

. use http://www.stata-press.com/data/r14/nlsy80

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege)

(output omitted )
. estat endogenous

Test of endogeneity
Ho: treatment and outcome unobservables are uncorrelated

chi2( 2) = 275.36
Prob > chi2 = 0.0000

We reject the null hypothesis of no endogeneity. This suggests that unobservable factors that
determine wages mediate the decision to live in an urban area.

Technical note
The estimated correlations between the unobservables of the treatment-assignment and potential-

outcome models are auxiliary parameters. They appear under the headings TEOM0 and TEOM1, which
refer to treatment residuals (TE) for outcome model 0 (OM0) and outcome model 1 (OM1), when the
option aequations is specified.
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For the model in example 3 of [TE] eteffects with the aequations option, the results are the
following:

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege), aequations

Iteration 0: EE criterion = 3.479e-11
Iteration 1: EE criterion = 2.432e-25

Endogenous treatment-effects estimation Number of obs = 935
Outcome model : exponential
Treatment model: probit

Robust
wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
urban

(1 vs 0) 481.0465 31.74882 15.15 0.000 418.82 543.2731

POmean
urban

0 233.8083 13.51028 17.31 0.000 207.3286 260.288

TME1
college

1 .195811 .1012119 1.93 0.053 -.0025607 .3941827
fcollege .1069748 .0992075 1.08 0.281 -.0874683 .3014179

_cons .498012 .056408 8.83 0.000 .3874543 .6085698

OME0
exper .0193244 .0085633 2.26 0.024 .0025405 .0361082

iq .0099473 .0036949 2.69 0.007 .0027053 .0171892

college
1 -.3718598 .2678636 -1.39 0.165 -.8968629 .1531433

OME1
exper .0238566 .017597 1.36 0.175 -.0106329 .058346

iq .0148581 .0113311 1.31 0.190 -.0073505 .0370667

college
1 1.236947 .6401383 1.93 0.053 -.0177013 2.491595

TEOM0
_cons -7.771932 .6406251 -12.13 0.000 -9.027534 -6.51633

TEOM1
_cons 16.7739 4.777519 3.51 0.000 7.410131 26.13766

Among other things, we can use these correlations to test the joint significance of the coefficients
on the residuals from the treatment-assignment models. This is equivalent to the endogeneity test in
example 1. We type

. test [TEOM0]_cons [TEOM1]_cons

( 1) [TEOM0]_cons = 0
( 2) [TEOM1]_cons = 0

chi2( 2) = 275.36
Prob > chi2 = 0.0000
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Also see
[TE] eteffects — Endogenous treatment-effects estimation

[U] 20 Estimation and postestimation commands



Title

etpoisson — Poisson regression with endogenous treatment effects

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

etpoisson estimates the parameters of a Poisson regression model in which one of the regressors
is an endogenous binary treatment. Both the average treatment effect and the average treatment effect
on the treated can be estimated with etpoisson.

Quick start
Poisson model of y on x and endogenous binary treatment treat modeled by x and w

etpoisson y x, treat(treat = x w)

With robust standard errors
etpoisson y x, treat(treat = x w) vce(robust)

Average treatment effect after etpoisson with the required vce(robust) option
margins r.treat, vce(unconditional)

As above, but calculate average treatment effect on the treated
margins, vce(unconditional) predict(cte) subpop(if treat==1)

Menu
Statistics > Treatment effects > Count outcomes > Endogenous treatment, maximum likelihood

19
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Syntax
etpoisson depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

treat(depvart = indepvarst
[
, noconstant offset(varnameo)

]
)
[

options
]

options Description

Model
∗treat() equation for treatment effects
noconstant suppress constant term
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) use # Gauss–Hermite quadrature points; default is intpoints(24)

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗treat( ) is required.
The full specification is treat(depvart = indepvarst

[
, noconstant offset(varnameo)

]
).

indepvars and indepvarst may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, depvart, indepvars, and indepvarst may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

treat(depvart = indepvarst
[
, noconstant offset(varnameo)

]
) specifies the variables and

options for the treatment equation. It is an integral part of specifying a treatment-effects model
and is required.

The indicator of treatment, depvart, should be coded as 0 or 1.

noconstant, exposure(varnamee), offset(varnameo), constraints(constraints), collinear;
see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eβi rather than βi.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be specified at estimation or when
replaying previously estimated results.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Integration �

intpoints(#) specifies the number of integration points to use for integration by quadrature. The
default is intpoints(24); the maximum is intpoints(128). Increasing this value improves
the accuracy but also increases computation time. Computation time is roughly proportional to its
value.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with etpoisson but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Overview
Basic example
Average treatment effect (ATE)
Average treatment effect on the treated (ATET)

Overview

etpoisson estimates the parameters of a Poisson regression model that includes an endogenous
binary-treatment variable. The dependent variable must be a Poisson distributed count. The parameters
estimated by etpoisson can be used to estimate the average treatment effect (ATE) and average
treatment effect on the treated (ATET).

We call the model fit by etpoisson an endogenous treatment-regression model, although it is also
known as an endogenous binary-variable model or as an endogenous dummy-variable model. The
endogenous treatment-regression model fit by etpoisson is a specific endogenous treatment-effects
model; it uses a nonlinear model for the outcome and a constrained normal distribution to model
the deviation from the conditional independence assumption imposed by the estimators implemented
by teffects; see [TE] teffects intro. In treatment-effects jargon, the endogenous binary-variable
model fit by etpoisson is a nonlinear potential-outcome model that allows for a specific correlation
structure between the unobservables that affect the treatment and the unobservables that affect the
potential outcomes. See [TE] etregress for an estimator that allows for a linear-outcome model and
a similar model for the endogeneity of the treatment.

More formally, we have an equation for outcome yj and an equation for treatment tj :

E(yj |xj , tj , εj) = exp(xjβ+ δtj + εj)

tj =

{
1, wjγ+ uj > 0
0, otherwise

The xj are the covariates used to model the outcome, wj are the covariates used to model treatment
assignment, and error terms εj and uj are bivariate normal with mean 0 and covariance matrix[

σ2 σρ
σρ 1

]
The covariates xj and wj are unrelated to the error terms; in other words, they are exogenous. Note
that yj may be a count or continuous and nonnegative in this specification.

Terza (1998) describes the maximum likelihood estimator used in etpoisson. Terza (1998)
categorized the model fit by etpoisson as an endogenous-switching model. These models involve a
binary switch that is endogenous for the outcome. Calculation of the maximum likelihood estimate
involves numeric approximation of integrals via Gauss–Hermite quadrature. This is computationally
intensive, but the computational costs are reasonable on modern computers.
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Basic example

Example 1

In this example, we observe a simulated random sample of 5,000 households. The outcome of
interest is the number of trips taken by members of the household in the 24-hour period immediately
prior to the interview time.

We have fictional household level data on the following variables: number of trips taken in the past
24 hours (trips), distance to the central business district from the household (cbd), distance from
the household to a public transit node (ptn), an indicator of whether there is a full-time worker in the
household (worker), an indicator of whether the examined period is on a weekend (weekend), the
ratio of the household income to the median income of the census tract (realinc), and an indicator
of car ownership (owncar). We suspect that unobservables that affect the number of trips also affect
the household’s propensity to own a car.

We use etpoisson to estimate the parameters of a Poisson regression model for the number of
trips with car ownership as an endogenous treatment. In subsequent examples, we will use margins
(see [R] margins) to estimate the ATE and the ATET of car ownership on the number of trips taken
by the household. In the etpoisson command below, we specify the vce(robust) option because
we need to specify vce(unconditional) when we use margins later.
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. use http://www.stata-press.com/data/r14/trip1
(Household trips, car ownership)

. etpoisson trips cbd ptn worker weekend,
> treat(owncar = cbd ptn worker realinc) vce(robust)

Iteration 0: log pseudolikelihood = -14845.147 (not concave)
Iteration 1: log pseudolikelihood = -14562.997 (not concave)
Iteration 2: log pseudolikelihood = -13655.592 (not concave)
Iteration 3: log pseudolikelihood = -12847.219 (not concave)
Iteration 4: log pseudolikelihood = -12566.037
Iteration 5: log pseudolikelihood = -12440.974
Iteration 6: log pseudolikelihood = -12413.485
Iteration 7: log pseudolikelihood = -12412.699
Iteration 8: log pseudolikelihood = -12412.696
Iteration 9: log pseudolikelihood = -12412.696

Poisson regression with endogenous treatment Number of obs = 5,000
(24 quadrature points) Wald chi2(5) = 397.94
Log pseudolikelihood = -12412.696 Prob > chi2 = 0.0000

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

trips
cbd -.0100919 .0020071 -5.03 0.000 -.0140258 -.006158
ptn -.0204038 .0020289 -10.06 0.000 -.0243805 -.0164272

worker .692301 .0548559 12.62 0.000 .5847854 .7998166
weekend .0930517 .034538 2.69 0.007 .0253585 .160745

1.owncar .5264713 .1124157 4.68 0.000 .3061406 .746802
_cons -.2340772 .0810812 -2.89 0.004 -.3929934 -.0751609

owncar
cbd .007218 .00239 3.02 0.003 .0025337 .0119023
ptn .0084769 .0024518 3.46 0.001 .0036714 .0132824

worker .543643 .0504267 10.78 0.000 .4448085 .6424774
realinc .176479 .0108746 16.23 0.000 .1551652 .1977928

_cons -.4611246 .0592161 -7.79 0.000 -.5771859 -.3450633

/athrho .5741169 .0957832 5.99 0.000 .3863852 .7618486
/lnsigma -.2182037 .0256281 -8.51 0.000 -.2684338 -.1679735

rho .5183763 .0700449 .3682398 .6421645
sigma .8039617 .020604 .764576 .8453762

Wald test of indep. eqns. (rho = 0): chi2(1) = 35.93 Prob > chi2 = 0.0000

The Wald test in the header is highly significant, indicating a good model fit. All the covariates are
statistically significant, and the Wald test in the footer indicates that we can reject the null hypothesis
of no correlation between the treatment errors and the outcome errors.

We can interpret the coefficient on 1.owncar as the logarithm of the ratio of the treatment potential-
outcome mean to the control potential-outcome mean. The treatment variable did not interact with
any of the outcome covariates, so the effect of each regressor is the same in the two regimes and
will cancel from the ratio of potential-outcome means. This means the ratio is equivalent to the
exponentiated coefficient on 1.owncar. After discussing the other parameters, we will use lincom
to obtain this ratio. See [R] lincom for more information.

The estimated correlation between the treatment-assignment errors and the outcome errors is 0.518,
indicating that unobservables that increase the number of trips tend to occur with unobservables that
increase the chance of car ownership.
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The results for the two ancillary parameters require explanation. etpoisson estimates the inverse
hyperbolic tangent of ρ,

atanh ρ =
1

2
ln
(

1 + ρ

1− ρ

)
and lnσ rather than ρ and σ. For numerical stability during optimization, etpoisson does not directly
estimate ρ and σ.

Now we use lincom and the eform option to estimate the exponentiated coefficient for 1.owncar.
This corresponds to the ratio of the treatment regime potential-outcome mean to the control regime
potential-outcome mean.

. lincom [trips]_b[1.owncar], eform

( 1) [trips]1.owncar = 0

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) 1.692948 .1903139 4.68 0.000 1.358173 2.110241

The potential-outcome mean for the treatment regime is 1.69 times the potential-outcome mean
for the control regime. So the average number of trips in the treatment regime is over one and a half
times the average number of trips in the control regime.

By interacting the treatment, owncar, with the other regressors, we could estimate different
coefficients for the regressors in the treatment and control regimes. In the current model, there are
no treatment interactions, so the coefficients are the same in each regime.

Average treatment effect (ATE)

The parameter estimates from etpoisson can be used by margins to estimate the ATE, the average
difference of the treatment and control potential outcomes.

Example 2

Continuing with example 1, we use margins to estimate the ATE of car ownership on the number
of trips taken in a 24-hour period.

We can estimate the ATE of car ownership by using the potential-outcome means obtained through
the predict, pomean command and the margins command; see Methods and formulas below and
[TE] etpoisson postestimation for more details about the use of predict after etpoisson.

The r. notation indicates that the potential-outcome means for treatment and control will be
contrasted. We specify the contrast(nowald) option to suppress the Wald tests that margins
displays by default for contrasts.

. margins r.owncar, vce(unconditional) contrast(nowald)

Contrasts of predictive margins

Expression : Potential-outcome mean, predict()

Unconditional
Contrast Std. Err. [95% Conf. Interval]

owncar
(1 vs 0) 1.058914 .1922909 .6820309 1.435797
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The estimated ATE of car ownership on the number of trips taken is 1.06. The average household
will take 1.06 more trips when it owns a car.

Average treatment effect on the treated (ATET)

The parameter estimates from etpoisson can be used by margins to estimate the ATET, the
average difference of the treatment and control potential outcomes in the treated population.

Example 3

Continuing with the previous example, we use margins to estimate the ATET of car ownership on
the number of trips taken in a 24-hour period.

We can estimate the ATET of car ownership by using the conditional treatment effect (conditional
on exogenous covariates and treatment level) obtained through the predict, cte command and the
margins command; see Methods and formulas below and [TE] etpoisson postestimation for more
details about the use of predict after etpoisson.

We estimate the ATET with margins. We specify cte in the predict() option. Estimation is
restricted to the treated subpopulation by specifying owncar in the subpop() option.

. margins, predict(cte) vce(unconditional) subpop(owncar)

Predictive margins Number of obs = 5,000
Subpop. no. obs = 3,504

Expression : Conditional treatment effect, predict(cte)

Unconditional
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 1.251971 .2059201 6.08 0.000 .8483747 1.655567

The estimated ATET of car ownership on the number of trips taken is 1.25. Thus the average
household in the treated population will take 1.25 more trips than it would if it did not own a car.
This number is higher than the ATE. In this model, the ATE and ATET will only coincide when there is
no correlation between the treatment errors and outcome errors and the exogenous covariates x have
the same distribution in the general population and treated subpopulation. See Methods and formulas
for more details.
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Stored results
etpoisson stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(chi2 c) χ2 for comparison, ρ=0 test
e(n quad) number of quadrature points
e(p) significance
e(p c) significance of comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) etpoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(title2) secondary title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset for regression equation
e(offset2) offset for treatment equation
e(chi2type) Wald; type of model χ2 test
e(chi2 ct) Wald; type of comparison χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
Terza (1998) derives the maximum likelihood estimator implemented here. We provide some details

of the derivation and then explain how the model is nested in a more general potential-outcomes
model. Then the ATE and ATET are derived.

Let xj be the covariates used to model the outcome, and let wj be the covariates used to model
treatment assignment. Define zj = (wj ,xj). The vector zj contains all the exogenous covariates in
the model. When offsets oβj are used in the outcome variable equation, the following formulas apply

with xjβ changed to xjβ + oβj . Similarly, when offsets oγj are used in the endogenous treatment
equation, the following formulas apply with wjγ changed to wjγ+ oγj . If offsets are used in either
equation, they are included in the vector of exogenous covariates zj .

For treatment tj , zj , and εj , outcome yj of this model has conditional mean

E(yj |xj , tj , εj) = exp(xjβ+ δtj + εj) (1)

The probability density function of yj for this model, conditioned on treatment tj , zj , and εj , is
given by

f(yj |zj , tj , εj) =
exp{− exp(xjβ+ δtj + εj)}{ exp(xjβ+ δtj + εj)}yj

yj !

The treatment tj is determined by

tj =

{
1, if wjγ+ uj > 0
0, otherwise

The error terms εj and uj are bivariate normal with mean zero and covariance matrix[
σ2 σρ
σρ 1

]
Conditional on εj , uj is normal with mean εjρ/σ and variance (1 − ρ2); thus we obtain the

following conditional probability density for tj :

Pr(tj |zj , εj) = tjΦ

{
wjγ+ (ρ/σ)εj√

1− ρ2

}
+ (1− tj)

[
1− Φ

{
wjγ+ (ρ/σ)εj√

1− ρ2

}]

Φ denotes the standard normal cumulative distribution function. This leads to the following joint
density of yj , tj , and εj :

f(yj , tj , εj |zj) = f(yj |zj , tj , εj)P (tj |zj , εj)f(εj)

The density of yj and tj , conditioned on zj , is obtained by integrating the above with respect to
εj . Recall that εj is normal with mean 0 and variance σ2.

f(yj , tj |zj) =

∫ ∞
−∞

f(yj |zj , tj , εj)P (tj |zj , εj)
1

σ
√

2π
exp

{
−
(

εj

σ
√

2

)2
}
dεj
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f(yj , tj |zj) cannot be evaluated in a closed form. We change the variable of integration from εj
to ηj = εj/(σ

√
2), which yields

f(yj , tj |zj) =
1√
π

∫ ∞
−∞

f(yj |zj , tj ,
√

2σηj)P (tj |zj ,
√

2σηj) exp(−η2
j ) dηj

We approximate this integral by Gauss–Hermite quadrature. Observing a sample of tj , yj , and
zj , we calculate the log likelihood as the following:

lnL =

n∑
j=1

wj ln {f(yj , tj |zj)}

The wj terms denote optional weights.

In the maximum likelihood estimation, σ and ρ are not directly estimated. Directly estimated are
lnσ and atanh ρ:

atanh ρ =
1

2
ln
(

1 + ρ

1− ρ

)
Now we present formulas for the ATE and ATET. First, we nest the endogenous-treatment Poisson

regression model in a potential-outcome model. A potential-outcome model specifies what each
individual would obtain in each treatment level.

A potential-outcome model that nests the endogenous-treatment Poisson regression fit by etpoisson
is

E(y0j |xj , εj) = exp(xjβ0 + ε0j)

E(y1j |xj , εj) = exp(xjβ1 + ε1j)

tj =

{
1, if wjγ + uj > 0
0, otherwise

where y0j is the outcome that person j obtains if person j selects treatment 0, and y1j is the outcome
that person j obtains if person j selects treatment 1. This formulation allows differing coefficients for
the control (β0) and treatment (β1) regimes. The constant intercept for the control group is β00. The
constant intercept for the treatment group is β11 = β00 + δ, where δ is the coefficient for treatment
tj in the outcome (1). The remaining notation was defined above.

We may allow other coefficients to differ across regimes in the outcome (1) by adding interactions
between the treatment tj and covariates xj to the model. To be concise, we use two coefficient
vectors β0 and β1 here rather than a single coefficient vector with interactions between the treatment
tj and covariates xj . The two formulations are equivalent.

We never observe both y0j and y1j , only one or the other. We observe

yj = tjy1j + (1− tj)y0j

The vector of error terms (ε0j , ε1j , uj)
′ comes from a mean zero trivariate normal distribution

with covariance matrix  σ2 θ σρ
θ σ2 σρ
σρ σρ 1
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The parameters σ and ρ were discussed earlier. The parameter θ is the covariance between the two
potential outcomes. We cannot estimate θ because we have no observations in which an individual
is observed in both potential outcomes. Fortunately, θ is not required for the calculations that we
present.

The ATE is the difference in means of the potential outcomes. The mean of each potential outcome
accounts for each individual’s contribution, regardless of whether that individual selects that treatment
level.

The conditional means of the potential outcomes ytj , t ∈ (0, 1) for exogenous covariates zj are

E(ytj |zj) = exp
(

xjβt +
σ2

2

)

We can see that when the coefficients are the same across the regimes, the ratio of potential-outcome
means will be equal to exp(δ); this is true of the conditional and marginal potential-outcome means.

The difference in potential-outcome means or treatment effect at exogenous covariates zj is

E(y1j − y0j |zj) = { exp (xjβ1)− exp (xjβ0)} exp
(
σ2

2

)

By the law of iterated expectations, the ATE is

E(y1j − y0j) = E{E(y1j − y0j |zj)}

= E

[
{ exp (xjβ1)− exp (xjβ0)} exp

(
σ2

2

)]

This expectation can be estimated as a predictive margin.

Now we will derive an expression for the ATET.

The conditional means of the potential outcomes ytj , t ∈ (0, 1) for exogenous covariates zj and
treatment tj are

E(ytj |zj , tj) = exp
(

xjβt +
σ2

2

){
Φ (ρσ + wjγ)

Φ (wjγ)

}tj {1− Φ (ρσ + wjγ)

1− Φ (wjγ)

}1−tj

Rather than the conditional potential-outcome means, the conditional mean of the observed outcome
may be of interest. The conditional mean of the observed outcome yj for endogenous treatment indicator
tj and exogenous covariates zj is given by

E(yj |zj , tj) = tj exp
(

xjβ1 +
σ2

2

)
Φ (ρσ + wjγ)

Φ (wjγ)

+ (1− tj) exp
(

xjβ0 +
σ2

2

)
1− Φ (ρσ + wjγ)

1− Φ (wjγ)
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The treatment effect at exogenous covariates zj and treatment tj is

E(y1j − y0j |zj , tj) =

{ exp (xjβ1)− exp (xjβ0)} exp
(
σ2

2

){
Φ
(
ρσ + w′jγ

)
Φ (wjγ)

}tj {
1− Φ (ρσ + wjγ)

1− Φ
(
w′jγ

) }1−tj

By the law of iterated expectations, the ATET is

E(y1j − y0j |tj = 1) = E{E(y1j − y0j |zj , tj = 1)|tj = 1}

= E

[
{ exp (xjβ1)− exp (xjβ0)} exp

(
σ2

2

)
Φ (ρσ + wjγ)

Φ (wjγ)

∣∣∣∣∣tj = 1

]

This can be estimated as a predictive margin on the treated subpopulation.

We note that when ρ = 0, the correction factor involving Φ will disappear from the ATET. Then
the ATE and ATET will be equivalent if the distribution of xj under the treated population is identical
to the distribution over the entire population.

The probability of yj conditional on tj and zj is

Pr(yj = n|zj , tj) =
f(yj = n, tj |zj)

Φ (wjγ)
tj Φ (−wjγ)

1−tj

As discussed earlier, we approximate f(yj , tj |zj) using Gauss–Hermite quadrature.
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Title

etpoisson postestimation — Postestimation tools for etpoisson

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following standard postestimation commands are available after etpoisson:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, probabilities, and treatment effects
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗ hausman and lrtest are not appropriate with svy estimation results.

32
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predict

Description for predict

predict creates a new variable containing predictions such as counts, conditional treatment effects,
probabilities, and linear predictions.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvartreat newvarathrho newvarlnsigma

}[
if
] [

in
]
, scores

statistic Description

Main

pomean potential-outcome mean (the predicted count); the default
omean observed-outcome mean (the predicted count)
cte conditional treatment effect at treatment level
pr(n) probability Pr(yj = n)
pr(a,b) probability Pr(a ≤ yj ≤ b)
xb linear prediction
xbtreat linear prediction for treatment equation

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Options for predict

� � �
Main �

pomean, the default, calculates the potential-outcome mean.

omean calculates the observed-outcome mean.

cte calculates the treatment effect, the difference of potential-outcome means, conditioned on treatment
level.
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pr(n) calculates the probability Pr(yj = n), where n is a nonnegative integer that may be specified
as a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ yj ≤ b), where a and b are nonnegative integers that may
be specified as numbers or variables;

b missing (b ≥ .) means +∞;
pr(20,.) calculates Pr(yj ≥ 20);
pr(20,b) calculates Pr(yj ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ yj ≤ b) elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

xb calculates the linear prediction for the dependent count variable, which is xjβ if neither offset()
nor exposure() was specified; xjβ+offsetβj if offset() was specified; or xjβ+ ln(exposurej)
if exposure() was specified.

xbtreat calculates the linear prediction for the endogenous treatment equation, which is wjγ if
offset() was not specified in treat() and wjγ+offsetαj if offset() was specified in treat().

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It
modifies the calculations made by predict so that they ignore the offset or exposure variable.
nooffset removes the offset from calculations involving both the treat() equation and the
dependent count variable.

scores calculates equation-level score variables.

The first new variable will contain ∂ lnL/∂(xjβ).

The second new variable will contain ∂ lnL/∂(wjγ).

The third new variable will contain ∂ lnL/∂ atanh ρ.

The fourth new variable will contain ∂ lnL/∂ lnσ.
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margins

Description for margins

margins estimates margins of response for counts, conditional treatment effects, probabilites, and
linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

pomean potential-outcome mean (the predicted count); the default
omean observed-outcome mean (the predicted count)
cte conditional treatment effect at treatment level
pr(n) probability Pr(yj = n)
pr(a,b) probability Pr(a ≤ yj ≤ b)
xb linear prediction
xbtreat linear prediction for treatment equation

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
The average treatment effect (ATE) and the average treatment effect on the treated (ATET) are the

parameters most frequently estimated by postestimation techniques after etpoisson.

You can use the margins command (see [R] margins) after etpoisson to estimate the ATE
or ATET. See example 2 of [TE] etpoisson for an example of ATE estimation. See example 3 of
[TE] etpoisson for an example of ATET estimation.

See example 1 of [TE] etpoisson for an example using lincom after etpoisson.

Methods and formulas
See Methods and formulas of [TE] etpoisson for details.

Also see
[TE] etpoisson — Poisson regression with endogenous treatment effects

[U] 20 Estimation and postestimation commands



Title

etregress — Linear regression with endogenous treatment effects

Description Quick start
Menu Syntax
Options for maximum likelihood estimates Options for two-step consistent estimates
Options for control-function estimates Remarks and examples
Stored results Methods and formulas
References Also see

Description

etregress estimates an average treatment effect (ATE) and the other parameters of a linear
regression model augmented with an endogenous binary-treatment variable. Estimation is by full
maximum likelihood, a two-step consistent estimator, or a control-function estimator.

In addition to the ATE, etregress can be used to estimate the average treatment effect on the
treated (ATET) when the outcome may not be conditionally independent of the treatment.

etreg is a synonym for etregress.

Quick start
ATE and ATET from a linear regression model of y on x and endogenous binary treatment treat

modeled by x and w

etregress y x, treat(treat = x w)

As above, but use a control-function estimator
etregress y x, treat(treat = x w) cfunction

With robust standard errors
etregress y x, treat(treat = x w) vce(robust)

Add the interaction between treat and continuous covariate x using factor variables
etregress y x i.treat#c.x, treat(treat = x w) vce(robust)

ATE after etregress with the required vce(robust) option and endogenous treatment interaction
terms

margins r.treat, vce(unconditional)

As above, but calculate ATET

margins, vce(unconditional) predict(cte) subpop(if treat==1)

Menu
Statistics > Treatment effects > Continuous outcomes > Endogenous treatment, maximum likelihood

36
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Syntax
Basic syntax

etregress depvar
[

indepvars
]
, treat(depvart = indepvarst)

[
twostep | cfunction

]

Full syntax for maximum likelihood estimates only

etregress depvar
[

indepvars
] [

if
] [

in
] [

weight
]
,

treat(depvart = indepvarst
[
, noconstant

]
)
[

etregress ml options
]

Full syntax for two-step consistent estimates only

etregress depvar
[

indepvars
] [

if
] [

in
]
,

treat(depvart = indepvarst
[
, noconstant

]
) twostep

[
etregress ts options

]

Full syntax for control-function estimates only

etregress depvar
[

indepvars
] [

if
] [

in
]
,

treat(depvart = indepvarst
[
, noconstant

]
) cfunction

[
etregress cf options

]
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etregress ml options Description

Model
∗treat() equation for treatment effects
noconstant suppress constant term
poutcomes use potential-outcome model with separate treatment and control

group variance and correlation parameters
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-step probit estimates
hazard(newvar) create newvar containing hazard from treatment equation
noskip perform likelihood-ratio test
nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗treat(depvart = indepvarst
[
, noconstant

]
) is required.

etregress ts options Description

Model
∗treat() equation for treatment effects
∗twostep produce two-step consistent estimate
noconstant suppress constant term

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-step probit estimates
hazard(newvar) create newvar containing hazard from treatment equation
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics
∗treat(depvart = indepvarst

[
, noconstant

]
) and twostep are required.
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etregress cf options Description

Model
∗treat() equation for treatment effects
∗cfunction produce control-function estimate
noconstant suppress constant term
poutcomes use potential-outcome model with separate treatment and control

group variance and correlation parameters

SE

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-step probit estimates
hazard(newvar) create newvar containing hazard from treatment equation
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics
∗treat(depvart = indepvarst

[
, noconstant

]
) and cfunction are required.

indepvars and indepvarst may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, depvart, and indepvarst may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
twostep, cfunction, vce(), first, hazard(), noskip, and weights are not allowed with the svy prefix; see

[SVY] svy.
pweights, aweights, fweights, and iweights are allowed with both maximum likelihood and control-function

estimation; see [U] 11.1.6 weight. No weights are allowed if twostep is specified.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options for maximum likelihood estimates

� � �
Model �

treat(depvart = indepvarst
[
, noconstant

]
) specifies the variables and options for the treatment

equation. It is an integral part of specifying a treatment-effects model and is required.

noconstant; see [R] estimation options.

poutcomes specifies that a potential-outcome model with separate variance and correlation parameters
for each of the treatment and control groups be used.

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before
estimation.

hazard(newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

noskip specifies that a full maximum-likelihood model with only a constant for the regression equation
be fit. This model is not displayed but is used as the base model to compute a likelihood-ratio test
for the model test statistic displayed in the estimation header. By default, the overall model test
statistic is an asymptotically equivalent Wald test that all the parameters in the regression equation
are zero (except the constant). For many models, this option can substantially increase estimation
time.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with etregress but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Options for two-step consistent estimates

� � �
Model �

treat(depvart = indepvarst
[
, noconstant

]
) specifies the variables and options for the treatment

equation. It is an integral part of specifying a treatment-effects model and is required.

twostep specifies that two-step consistent estimates of the parameters, standard errors, and covariance
matrix be produced, instead of the default maximum likelihood estimates.

noconstant; see [R] estimation options.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (conventional) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(conventional), the default, uses the conventionally derived variance estimator for the
two-step estimator of the treatment-effects model.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before
estimation.

hazard(newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with etregress but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for control-function estimates

� � �
Model �

treat(depvart = indepvarst
[
, noconstant

]
) specifies the variables and options for the treatment

equation. It is an integral part of specifying a treatment-effects model and is required.

cfunction specifies that control-function estimates of the parameters, standard errors, and covariance
matrix be produced instead of the default maximum likelihood estimates. cfunction is required.

noconstant; see [R] estimation options.

poutcomes specifies that a potential-outcome model with separate variance and correlation parameters
for each of the treatment and control groups be used.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.
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� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before
estimation.

hazard(newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[

# . . .
]
copy

The following option is available with etregress but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

Remarks are presented under the following headings:

Overview
Basic examples
Average treatment effect (ATE)
Average treatment effect on the treated (ATET)

Overview

etregress estimates an ATE and the other parameters of a linear regression model that also
includes an endogenous binary-treatment variable. In addition to the ATE, the parameters estimated
by etregress can be used to estimate the ATET when the outcome is not conditionally independent
of the treatment.

We call the model fit by etregress an endogenous treatment-regression model, although it is
also known as an endogenous binary-variable model or as an endogenous dummy-variable model.
The endogenous treatment-regression model is a specific endogenous treatment-effects model; it uses
a linear model for the outcome and a normal distribution to model the deviation from the conditional
independence assumption imposed by the estimators implemented in teffects; see [TE] teffects
intro. In treatment-effects jargon, the endogenous binary-variable model is a linear potential-outcome
model that allows for a specific correlation structure between the unobservables that affect the treatment
and the unobservables that affect the potential outcomes. See [TE] etpoisson for an estimator that
allows for a nonlinear outcome model and a similar model for the endogeneity of the treatment.
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Heckman (1976, 1978) brought this model into the modern literature. Maddala (1983) derives
the maximum likelihood and the control-function (CF) estimators of the model. Maddala (1983) also
reviews some empirical applications and describes it as an endogenous-switching model. Barnow,
Cain, and Goldberger (1981) provide another useful derivation of this model. They concentrate on
deriving the conditions for which the self-selection bias of the simple OLS estimator of the treatment
effect, δ, is nonzero and of a specific sign. Cameron and Trivedi (2005, sec. 16.7 and 25.3.4) and
Wooldridge (2010, sec. 21.4.1) discuss the endogenous binary-variable model as an endogenous
treatment-effects model and link it to recent work.

etregress performs CF estimation in one step by using the generalized method of moments
(GMM) with stacked moments. See Newey (1984) and Wooldridge (2010, sec. 14.2) for a description
of this technique. Many econometric and statistical models can be expressed as conditions on the
population moments. The parameter estimates produced by GMM estimators make the sample-moment
conditions as true as possible given the data. See [R] gmm for further information on GMM estimation
and how Stata performs it. Two-step CF estimation is also supported by etregress.

Formally, the endogenous treatment-regression model is composed of an equation for the outcome
yj and an equation for the endogenous treatment tj . The variables xj are used to model the outcome.
When there are no interactions between tj and xj , we have

yj = xjβ+ δtj + εj

tj =

{
1, if wjγ+ uj > 0
0, otherwise

where wj are the covariates used to model treatment assignment, and the error terms εj and uj are
bivariate normal with mean zero and covariance matrix[

σ2 ρσ
ρσ 1

]
The covariates xj and wj are unrelated to the error terms; in other words, they are exogenous. We
call this the constrained model because the variance and correlation parameters are identical across
the treatment and control groups.

This model can be generalized to a potential-outcome model with separate variance and correlation
parameters for the treatment and control groups. The generalized model is

y0j = xjβ0 + ε0j

y1j = xjβ1 + ε1j

tj =

{
1, if wjγ+ uj > 0
0, otherwise

where y0j is the outcome that person j obtains if person j selects treatment 0, and y1j is the outcome
that person j obtains if person j selects treatment 1. We never observe both y0j and y1j , only one
or the other. We observe

yj = tjy1j + (1− tj)y0j
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In this unconstrained model, the vector of error terms (ε0j , ε1j , uj)
′ comes from a mean zero

trivariate normal distribution with covariance matrix σ2
0 σ01 σ0ρ0

σ01 σ2
1 σ1ρ1

σ0ρ0 σ1ρ1 1


The covariance σ01 cannot be identified because we never observe both y1j and y0j . However,

identification of σ01 is not necessary to estimate the other parameters because all covariates and the
outcome are observed in observations from each group. We normalize the treatment error variance to
be 1 because we observe only whether an outcome occurs under treatment. More details are found
in Methods and formulas.

Rather than showing two separate regression equations, etregress reports one outcome equation
with interaction terms between the treatment and outcome covariates. etregress can fit the constrained
and generalized potential-outcome models using either the default maximum likelihood estimator or
the one-step CF estimator obtained with option cfunction. The two-step CF estimator provides
consistent estimates for the constrained model.

Basic examples

When there are no interactions between the treatment variable and the outcome covariates in the
constrained model, etregress directly estimates the ATE and the ATET.

Example 1: Basic example

We estimate the ATE of being a union member on wages of women in 1972 from a nonrepresentative
extract of the National Longitudinal Survey on young women who were ages 14–26 in 1968. We will
use the variables wage (wage), grade (years of schooling completed), smsa (an indicator for living in
an SMSA—standard metropolitan statistical area), black (an indicator for being African-American),
tenure (tenure at current job), and south (an indicator for living in the South).
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We use etregress to estimate the parameters of the endogenous treatment-regression model.

. use http://www.stata-press.com/data/r14/union3
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. etregress wage age grade smsa black tenure, treat(union = south black tenure)

Iteration 0: log likelihood = -3140.811
Iteration 1: log likelihood = -3053.6629
Iteration 2: log likelihood = -3051.5847
Iteration 3: log likelihood = -3051.575
Iteration 4: log likelihood = -3051.575

Linear regression with endogenous treatment Number of obs = 1,210
Estimator: maximum likelihood Wald chi2(6) = 681.89
Log likelihood = -3051.575 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

wage
age .1487409 .0193291 7.70 0.000 .1108566 .1866252

grade .4205658 .0293577 14.33 0.000 .3630258 .4781058
smsa .9117044 .1249041 7.30 0.000 .6668969 1.156512

black -.7882471 .1367078 -5.77 0.000 -1.05619 -.5203048
tenure .1524015 .0369596 4.12 0.000 .0799621 .2248409

1.union 2.945815 .2749621 10.71 0.000 2.4069 3.484731
_cons -4.351572 .5283952 -8.24 0.000 -5.387208 -3.315936

union
south -.5807419 .0851111 -6.82 0.000 -.7475566 -.4139271
black .4557499 .0958042 4.76 0.000 .2679771 .6435226

tenure .0871536 .0232483 3.75 0.000 .0415878 .1327195
_cons -.8855758 .0724506 -12.22 0.000 -1.027576 -.7435753

/athrho -.6544347 .0910314 -7.19 0.000 -.832853 -.4760164
/lnsigma .7026769 .0293372 23.95 0.000 .645177 .7601767

rho -.5746478 .060971 -.682005 -.4430476
sigma 2.019151 .0592362 1.906325 2.138654

lambda -1.1603 .1495097 -1.453334 -.8672668

LR test of indep. eqns. (rho = 0): chi2(1) = 19.84 Prob > chi2 = 0.0000

The likelihood-ratio test in the footer indicates that we can reject the null hypothesis of no correlation
between the treatment-assignment errors and the outcome errors. The estimated correlation between
the treatment-assignment errors and the outcome errors, ρ, is −0.575. The negative relationship
indicates that unobservables that raise observed wages tend to occur with unobservables that lower
union membership. We discuss some details about this parameter in the technical note below.

The estimated ATE of being a union member is 2.95. The ATET is the same as the ATE in this case
because the treatment indicator variable has not been interacted with any of the outcome covariates,
and the correlation and variance parameters are identical across the control and treatment groups.
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Technical note
The results for the ancillary parameters ρ and σ require explanation. For numerical stability during

optimization, etregress does not directly estimate ρ or σ. Instead, etregress estimates the inverse
hyperbolic tangent of ρ,

atanh ρ =
1

2
ln
(

1 + ρ

1− ρ

)
and lnσ. Also etregress reports λ = ρσ, along with an estimate of the standard error of the
estimate and the confidence interval.

In contrast to the constrained model, etregress directly estimates the ATE only when there are no
interactions between the treatment variable and the outcome covariates in the unconstrained model.

Example 2: Allowing group-specific variance and correlation

We estimate the ATE of having health insurance on the natural logarithm of total out-of-pocket
prescription drug expenditures from a simulated random sample of individuals between the ages of
26 and 64. We will use the variables lndrug (natural logarithm of spending on prescription drugs),
age (age of the individual), chron (whether the individual has a chronic condition), lninc (natural
logarithm of income), married (marriage status), and work (employment status). Our treatment is
whether the person has health insurance, ins. We allow the outcome error variance and correlation
parameters to vary between the treated (insured) and control (uninsured) groups in this example,
rather than constraining them to be equal as in example 1.

We use etregress to estimate the parameters of the endogenous treatment-effects model. To
estimate separate variance and correlation parameters for each of the control and treatment groups,
we specify the poutcomes option. We specify the cfunction option to use the CF estimator.
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. use http://www.stata-press.com/data/r14/drugexp
(Prescription drug expenditures)

. etregress lndrug chron age lninc, treat(ins=age married lninc work) poutcomes
> cfunction

Iteration 0: GMM criterion Q(b) = 2.279e-15
Iteration 1: GMM criterion Q(b) = 6.358e-30

Linear regression with endogenous treatment Number of obs = 6,000
Estimator: control-function

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

lndrug
chron .4671725 .0319731 14.61 0.000 .4045064 .5298387

age .1021359 .00292 34.98 0.000 .0964128 .1078589
lninc .0550672 .0225036 2.45 0.014 .0109609 .0991735
1.ins -.8598836 .3483648 -2.47 0.014 -1.542666 -.1771011
_cons 1.665539 .2527527 6.59 0.000 1.170153 2.160925

ins
age .021142 .0022961 9.21 0.000 .0166416 .0256424

married .084631 .0359713 2.35 0.019 .0141286 .1551334
lninc .1023032 .0225009 4.55 0.000 .0582022 .1464041
work .288418 .0372281 7.75 0.000 .2154522 .3613837

_cons -.622993 .108795 -5.73 0.000 -.8362273 -.4097587

/athrho0 .4035094 .1724539 2.34 0.019 .0655059 .7415129
/lnsigma0 .3159269 .0500476 6.31 0.000 .2178353 .4140184
/athrho1 .7929459 .2986601 2.66 0.008 .2075829 1.378309

/lnsigma1 .1865347 .0613124 3.04 0.002 .0663646 .3067048

rho0 .3829477 .1471637 .0654124 .6300583
sigma0 1.37153 .0686418 1.243382 1.512885

lambda0 .5252243 .226367 .0815532 .9688954
rho1 .6600746 .1685343 .2046518 .880572

sigma1 1.205066 .0738855 1.068616 1.35894
lambda1 .7954338 .2513036 .3028878 1.28798

Wald test of indep. (rho0 = rho1 = 0): chi2(2) = 8.88 Prob > chi2 = 0.0118

The Wald test reported in the footer indicates that we can reject the null hypothesis of no correlation
between the treatment-assignment errors and the outcome errors for the control and treatment groups.
The estimate of the correlation of the treatment-assignment errors for the control group (ρ0) is
positive, indicating that unobservables that increase spending on prescription drugs tend to occur with
unobservables that increase health insurance coverage. Because ρ1 is also positive, we make the same
interpretation for individuals with insurance. The estimate ρ1 is larger than the estimate ρ0, indicating
a stronger relationship between the unobservables and treatment outcomes in the treated group.

The estimated ATE of having health insurance is −0.86. Note that while the ATE and ATET were the
same in example 1, that is not the case here. We show how to calculate the ATET for a potential-outcome
model in example 6.

The estimate of the outcome error standard-deviation parameter for the control group (σ0) is
slightly larger than that of the treatment group parameter (σ1), indicating a greater variability in the
unobservables among the untreated group.
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Average treatment effect (ATE)

When there is a treatment variable and outcome covariate interaction, the parameter estimates from
etregress can be used by margins to estimate the ATE, the average difference of the treatment
potential outcomes and the control potential outcomes.

Example 3: Allowing interactions between treatment and outcome covariates, ATE

In example 1, the coefficients on the outcome covariates do not vary by treatment level. The
differences in wages between union members and nonmembers are modeled as a level shift captured
by the coefficient on the indicator for union membership. In this example, we use factor-variable
notation to allow some of the coefficients to vary over treatment level and then use margins (see
[R] margins) to estimate the ATE. (See [U] 11.4.3 Factor variables for an introduction to factor-variable
notation.)

We begin by estimating the parameters of the model in which the coefficients on black and
tenure differ for union members and nonmembers. We specify the vce(robust) option because
we need to specify vce(unconditional) when we use margins below.
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. use http://www.stata-press.com/data/r14/union3
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. etregress wage age grade smsa i.union#c.(black tenure),
> treat(union = south black tenure) vce(robust)

Iteration 0: log pseudolikelihood = -3614.6714
Iteration 1: log pseudolikelihood = -3218.8152
Iteration 2: log pseudolikelihood = -3057.0115
Iteration 3: log pseudolikelihood = -3049.3081
Iteration 4: log pseudolikelihood = -3049.2838
Iteration 5: log pseudolikelihood = -3049.2838

Linear regression with endogenous treatment Number of obs = 1,210
Estimator: maximum likelihood Wald chi2(8) = 493.40
Log pseudolikelihood = -3049.2838 Prob > chi2 = 0.0000

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

wage
age .1489075 .0207283 7.18 0.000 .1082809 .1895342

grade .4200493 .0377621 11.12 0.000 .3460371 .4940616
smsa .9232615 .1201486 7.68 0.000 .6877746 1.158748

union#c.black
0 -.6685582 .1444213 -4.63 0.000 -.9516187 -.3854977
1 -1.1831 .2574817 -4.59 0.000 -1.687755 -.6784455

union#
c.tenure

0 .168746 .0503107 3.35 0.001 .0701388 .2673532
1 .0836367 .0903669 0.93 0.355 -.0934792 .2607526

1.union 3.342859 .5586863 5.98 0.000 2.247854 4.437864
_cons -4.42566 .6493003 -6.82 0.000 -5.698265 -3.153055

union
south -.5844678 .0833069 -7.02 0.000 -.7477464 -.4211893
black .4740688 .093241 5.08 0.000 .2913197 .6568178

tenure .0874297 .0253892 3.44 0.001 .0376678 .1371916
_cons -.8910484 .0746329 -11.94 0.000 -1.037326 -.7447706

/athrho -.6733149 .2215328 -3.04 0.002 -1.107511 -.2391185
/lnsigma .7055907 .0749711 9.41 0.000 .55865 .8525313

rho -.5871562 .1451589 -.8031809 -.234663
sigma 2.025042 .1518197 1.748311 2.345577

lambda -1.189016 .3631079 -1.900695 -.4773378

Wald test of indep. eqns. (rho = 0): chi2(1) = 9.24 Prob > chi2 = 0.0024

The results indicate that the coefficients on black differ by union membership and that the
coefficient on tenure for nonmembers is positive, while the coefficient on tenure for members
is 0. The model fits well overall, so we proceed with interpretation. Because we interacted the
treatment variable with two of the covariates, the estimated coefficient on the treatment level is not
an estimate of the ATE. Below we use margins to estimate the ATE from these results. We specify
the vce(unconditional) option to obtain the standard errors for the population ATE instead of the
sample ATE. We specify the contrast(nowald) option to suppress the Wald tests, which margins
displays by default for contrasts.
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. margins r.union, vce(unconditional) contrast(nowald)

Contrasts of predictive margins

Expression : Linear prediction, predict()

Unconditional
Contrast Std. Err. [95% Conf. Interval]

union
(1 vs 0) 3.042688 .5305151 2.002898 4.082478

The ATE estimate is essentially the same as the one produced by the constrained model in example 1.

We can use the same methods above to obtain the ATE in an unconstrained model.

Example 4: Treatment interactions and group-specific variance and correlation, ATE

In example 2, the coefficients on the outcome covariates do not vary by treatment level. Suppose
we believe that the effect of having a chronic condition on out-of-pocket spending differs between
the insured and uninsured. Again, we use an interaction term. Because we are using a CF estimator,
the variance–covariance of the estimator (VCE) is already robust so we do not specify vce(robust).
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. use http://www.stata-press.com/data/r14/drugexp
(Prescription drug expenditures)

. etregress lndrug i.ins#i.chron age lninc, treat(ins=age married lninc work)
> poutcomes cfunction

Iteration 0: GMM criterion Q(b) = 2.279e-15
Iteration 1: GMM criterion Q(b) = 1.561e-28

Linear regression with endogenous treatment Number of obs = 6,000
Estimator: control-function

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

lndrug
ins#chron

0 1 .3798705 .0720713 5.27 0.000 .2386132 .5211277
1 1 .4957773 .0352571 14.06 0.000 .4266746 .5648801

age .1022045 .0029228 34.97 0.000 .0964758 .1079331
lninc .0548917 .0225219 2.44 0.015 .0107497 .0990337
1.ins -.89703 .3493058 -2.57 0.010 -1.581657 -.2124031
_cons 1.691336 .2531222 6.68 0.000 1.195225 2.187446

ins
age .021142 .0022961 9.21 0.000 .0166416 .0256424

married .084631 .0359713 2.35 0.019 .0141286 .1551334
lninc .1023032 .0225009 4.55 0.000 .0582022 .1464041
work .288418 .0372281 7.75 0.000 .2154522 .3613837

_cons -.622993 .108795 -5.73 0.000 -.8362273 -.4097587

/athrho0 .4046007 .1725597 2.34 0.019 .0663899 .7428115
/lnsigma0 .3157561 .0501956 6.29 0.000 .2173746 .4141376
/athrho1 .7950592 .2992825 2.66 0.008 .2084763 1.381642

/lnsigma1 .1868903 .0614281 3.04 0.002 .0664934 .3072871

rho0 .3838786 .1471308 .0662925 .6308408
sigma0 1.371296 .0688329 1.24281 1.513065

lambda0 .5264111 .2264197 .0826366 .9701856
rho1 .6612655 .1684146 .2055076 .8813184

sigma1 1.205495 .0740512 1.068754 1.359731
lambda1 .7971523 .2514293 .3043599 1.289945

Wald test of indep. (rho0 = rho1 = 0): chi2(2) = 8.90 Prob > chi2 = 0.0117

The results indicate that the coefficient on chron differs by whether an individual has insurance.
The model fits well overall, so we proceed with interpretation.

Because we interacted the treatment variable with one of the covariates, the estimated coefficient
on the treatment level is not an estimate of the ATE. Below we use margins to estimate the ATE
from these results. We specify the vce(unconditional) option to obtain the standard errors for the
population ATE instead of the sample ATE. We specify the contrast(nowald) option to suppress
the Wald tests.
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. margins r.ins, vce(unconditional) contrast(nowald)

Contrasts of predictive margins

Expression : Linear prediction, predict()

Unconditional
Contrast Std. Err. [95% Conf. Interval]

ins
(1 vs 0) -.8632045 .3484924 -1.546237 -.1801718

The ATE estimate is similar to the one produced by the constrained model in example 2.

Average treatment effect on the treated (ATET)

When there is a treatment variable and outcome covariate interaction, the parameter estimates from
etregress can be used by margins to estimate the ATET, the average difference of the treatment
potential outcomes and the control potential outcomes on the treated population.

Example 5: Allowing interactions between treatment and outcome covariates, ATET

The ATET may differ from the ATE in example 3 because the interaction between the treatment
variable and some outcome covariates makes the ATE and the ATET vary over outcome covariate
values. Below we use margins to estimate the ATET by specifying the subpop(union) option, which
restricts the sample used by margins to union members.

. use http://www.stata-press.com/data/r14/union3
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. etregress wage age grade smsa i.union#c.(black tenure),
> treat(union = south black tenure) vce(robust)

(output omitted )
. margins r.union, vce(unconditional) contrast(nowald) subpop(union)

Contrasts of predictive margins

Expression : Linear prediction, predict()

Unconditional
Contrast Std. Err. [95% Conf. Interval]

union
(1 vs 0) 2.968977 .5358457 1.918739 4.019215

The estimated ATET and ATE are close, indicating that the average predicted outcome for the
treatment group is similar to the average predicted outcome for the whole population.
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Example 6: Treatment interactions and group-specific variance and correlation, ATET

The ATET may differ from the ATE in example 4 because the interaction between the treatment
variable and some outcome covariates makes the ATE and the ATET vary over values of the covariate
in the outcome equation. Even if there is no interaction between treatment assignment and a covariate
in the outcome equation, the estimated ATE and ATET will differ if the variances of the outcome errors
and their correlations with the treatment-assignment errors differ across the control and treatment
groups.

We can estimate the ATET of having health insurance by using the conditional treatment effect
(conditional on exogenous covariates and treatment level) obtained using the predict, cte and the
margins commands; see Methods and formulas below and [TE] etregress postestimation for more
details about the use of predict after etregress.

We restrict estimation to the treated subpopulation by specifying the subpop(ins) option with
margins.

. use http://www.stata-press.com/data/r14/drugexp
(Prescription drug expenditures)

. etregress lndrug i.ins#i.chron age lninc,
> treat(ins = age married lninc work) poutcomes cfunction

(output omitted )
. margins, predict(cte) subpop(ins) vce(unconditional)

Predictive margins Number of obs = 6,000
Subpop. no. obs = 4,556

Expression : Conditional treatment effect, predict(cte)

Unconditional
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons -.7558373 .3827579 -1.97 0.048 -1.506029 -.0056457

In absolute value, the treatment effect on the treated of −0.76 is smaller than the population
average effect of −0.86 that we found in example 4.
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Stored results
etregress (maximum likelihood) stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model (noskip only)
e(N clust) number of clusters
e(lambda) estimate of λ in constrained model
e(selambda) standard error of λ in constrained model
e(sigma) estimate of σ in constrained model
e(lambda0) estimate of λ0 in potential-outcome model
e(selambda0) standard error of λ0 in potential-outcome model
e(sigma0) estimate of σ0 in potential-outcome model
e(lambda1) estimate of λ1 in potential-outcome model
e(selambda1) standard error of λ1 in potential-outcome model
e(sigma1) estimate of σ1 in potential-outcome model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(p c) p-value for comparison test
e(p) significance
e(rho) estimate of ρ in constrained model
e(rho0) estimate of ρ0 in potential-outcome model
e(rho1) estimate of ρ1 in potential-outcome model
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) etregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(hazard) variable containing hazard
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(title2) secondary title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(method) ml
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved



etregress — Linear regression with endogenous treatment effects 55

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

etregress (two-step) stores the following in e():

Scalars
e(N) number of observations
e(df m) model degrees of freedom
e(lambda) λ

e(selambda) standard error of λ
e(sigma) estimate of sigma
e(chi2) χ2

e(p) significance
e(rho) ρ

e(rank) rank of e(V)

Macros
e(cmd) etregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(hazard) variable containing hazard
e(title) title in estimation output
e(title2) secondary title in estimation output
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) twostep
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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etregress (control-function) stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(lambda) estimate of λ in constrained model
e(selambda) standard error of λ in constrained model
e(sigma) estimate of σ in constrained model
e(lambda0) estimate of λ0 in potential-outcome model
e(selambda0) standard error of λ0 in potential-outcome model
e(sigma0) estimate of σ0 in potential-outcome model
e(lambda1) estimate of λ1 in potential-outcome model
e(selambda1) standard error of λ1 in potential-outcome model
e(sigma1) estimate of σ1 in potential-outcome model
e(chi2 c) χ2 for comparison test
e(p c) p-value for comparison test
e(rho) estimate of ρ in constrained model
e(rho0) estimate of ρ0 in potential-outcome model
e(rho1) estimate of ρ1 in potential-outcome model
e(rank) rank of e(V)
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) etregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(hazard) variable containing hazard
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(title2) secondary title in estimation output
e(chi2 ct) Wald; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) cfunction
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
Maddala (1983, 117–122 and 223–228) derives both the maximum likelihood and the CF estimators

implemented here. Greene (2012, 890–894) also provides an introduction to the treatment-effects model.
Cameron and Trivedi (2005, sections 16.7 and 25.3.4) and Wooldridge (2010, section 21.4.1) discuss
the endogenous binary-variable model as an endogenous treatment-effects model and link it to recent
work.
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Methods and formulas are presented under the following headings:

Constrained model
General potential-outcome model
Average treatment effect
Average treatment effect on the treated

Constrained model

The primary regression equation of interest is

yj = xjβ+ δtj + εj (1)

where tj is a binary-treatment variable that is assumed to stem from an unobservable latent variable:

t∗j = wjγ+ uj

The decision to obtain the treatment is made according to the rule

tj =

{
1, if t∗j > 0
0, otherwise

where ε and u are bivariate normal with mean zero and covariance matrix[
σ2 ρσ
ρσ 1

]
Interactions between xj and the treatment tj are also allowed in (1). The likelihood function for

this model is given in Maddala (1983, 122). Greene (2000, 180) discusses the standard method of
reducing a bivariate normal to a function of a univariate normal and the correlation ρ. The following
is the log likelihood for observation j,

lnLj =


lnΦ

{
wjγ+ (yj − xjβ− δ)ρ/σ√

1− ρ2

}
− 1

2

(
yj − xjβ− δ

σ

)2

− ln(
√

2πσ) tj = 1

lnΦ

{
−wjγ− (yj − xjβ)ρ/σ√

1− ρ2

}
− 1

2

(
yj − xjβ

σ

)2

− ln(
√

2πσ) tj = 0

where Φ(·) is the cumulative distribution function of the standard normal distribution.

In the maximum likelihood estimation, σ and ρ are not directly estimated. Rather lnσ and atanh ρ
are directly estimated, where

atanh ρ =
1

2
ln
(

1 + ρ

1− ρ

)
The standard error of λ = ρσ is approximated through the delta method, which is given by

Var(λ) ≈ D Var
{

(atanh ρ lnσ)
}

D′

where D is the Jacobian of λ with respect to atanh ρ and lnσ.
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Maddala (1983, 120–122) also derives the CF estimator as a two-step estimator. This estimator
is implemented here. We will discuss it and then discuss the one-step CF estimator that is also
implemented.

For the two-step estimator, probit estimates of the treatment equation

Pr(tj = 1 | wj) = Φ(wjγ)

are obtained in the first stage. From these estimates, the hazard, hj , for each observation j is computed
as

hj =


φ(wj γ̂)

/
Φ(wj γ̂) tj = 1

−φ(wj γ̂)
/{

1− Φ(wj γ̂)
}

tj = 0

where φ is the standard normal density function. If

dj = hj(hj + wj γ̂)

then
E (yj | tj ,xj ,wj) = xjβ+ δtj + ρσhj

Var (yj | tj ,xj ,wj) = σ2
(
1− ρ2dj

)
The two-step parameter estimates of β and δ are obtained by augmenting the regression equation

with the hazard h. Thus the regressors become [ x t h ], and the additional parameter estimate βh is
obtained on the variable containing the hazard. A consistent estimate of the regression disturbance
variance is obtained using the residuals from the augmented regression and the parameter estimate
on the hazard

σ̂ 2 =
e′e + β2

h

∑N
j=1 dj

N

The two-step estimate of ρ is then

ρ̂ =
βh
σ̂

To understand how the consistent estimates of the coefficient covariance matrix based on the
augmented regression are derived, let A = [ x t h ] and D be a square diagonal matrix of size N
with (1− ρ̂ 2dj) on the diagonal elements. The conventional VCE is

Vtwostep = σ̂ 2(A′A)−1(A′DA + Q)(A′A)−1

where
Q = ρ̂ 2(A′DA)Vp(A′DA)

and Vp is the variance–covariance estimate from the probit estimation of the treatment equation.

The one-step CF estimator is a GMM estimator with stacked moments. See Newey (1984) and
Wooldridge (2010, sec. 14.2) for a description of this technique. Many econometric and statistical
models can be expressed as conditions on the population moments. The parameter estimates produced
by GMM estimators make the sample-moment conditions as true as possible given the data.

Under CF estimation, as in maximum likelihood estimation, we directly estimate atanh ρ and lnσ
rather than ρ and σ, so the parameter vector is

θ = (β′, δ,γ′, atanh ρ, lnσ)′



etregress — Linear regression with endogenous treatment effects 59

In this case, we have separate error functions for the treatment assignment

ut(tj ,wj , θ) =


φ(wjγ)

/
Φ(wjγ) tj = 1

−φ(wjγ)
/{

1− Φ(wjγ)
}

tj = 0

for the outcome mean

um(yj , tj ,xj ,wj , θ) = yi − xjβ− δtj − ρσut,j

and for the outcome variance

uv(yj , tj ,xj ,wj , θ) = u2
m,j − σ2

[
1− ρ2 {ut,j(ut,j + wjγ)}

]
We calculate the hazard, hj , prior to estimation from a probit regression of the treatment tj on

the treatment covariates wj . Let z̃j = (xj , tj , hj). Now we define

Zj =

 z̃j 0 0
0 wj 0
0 0 1


and

sj(yj , tj ,xj ,wj , θ) = Z′j

um,jut,j
uv,j


The CF estimator θ̂ is the value of θ that satisfies the sample-moment conditions

0 =
1

N

∑
i
sj(yj , tj ,xj ,wj , θ)

The Huber/White/robust sandwich estimator is consistent for the VCE. See Wooldridge (2010,
chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994).

The formula is
V̂ = (1/N)G S G ′

where

G =

{
(1/N)

∑
i

∂sj(yj , tj ,xj ,wj , θ)

∂θ̂

}−1

and
S = (1/N)

∑
i

sj(yj , tj ,xj ,wj , θ)sj(yj , tj ,xj ,wj , θ)′

The matrix G is not symmetric because our estimator comes from stacking the moment conditions
instead of optimizing one objective function. The implication is that the robust formula should always
be used because, even under correct specification, the nonsymmetric G and the symmetric S converge
to different matrices.
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General potential-outcome model

Equation (1) can be generalized to a potential-outcome model with separate variance and correlation
parameters for the control and treatment groups.

The generalized model is
y0j = xjβ0 + ε0j

y1j = xjβ1 + ε1j

tj =

{
1, if wjγ+ uj > 0
0, otherwise

where y0j is the outcome that person j obtains if person j selects treatment 0, and y1j is the outcome
that person j obtains if person j selects treatment 1. We never observe both y0j and y1j , only one
or the other. We observe

yj = tjy1j + (1− tj)y0j

In this unconstrained model, the vector of error terms (ε0j , ε1j , uj)
′ comes from a mean zero

trivariate normal distribution with covariance matrix σ2
0 σ01 σ0ρ0

σ01 σ2
1 σ1ρ1

σ0ρ0 σ1ρ1 1


The likelihood function for this model is given in Maddala (1983, 224).

lnfj =


lnΦ

{
wjγ+ (yj − xjβ1)ρ1/σ1√

1− ρ2
1

}
− 1

2

(
yj − xjβ1

σ1

)2

− ln(
√

2πσ1), tj = 1

lnΦ

{
−wjγ− (yj − xjβ0)ρ0/σ0√

1− ρ2
0

}
− 1

2

(
yj − xjβ0

σ0

)2

− ln(
√

2πσ0), tj = 0

lnL =

n∑
j=1

wj lnfj

where Φ(·) is the cumulative distribution function of the standard normal distribution, and wj is an
optional weight. The covariance between ε0j and ε1j , σ01, cannot be estimated because the potential
outcomes y0j and y1j are never observed simultaneously.

As in the constrained model, σ0 and σ1 are not directly estimated in the maximum likelihood
estimation; rather, lnσ0 and lnσ1 are estimated.

The parameters ρ0 and ρ1 are also not directly estimated; rather, atanhρ0 and atanhρ1 are directly
estimated.

The new parameter vector is

θ = (β′0,β
′
1,γ
′, atanh ρ0, lnσ0, atanh ρ1, lnσ1)′

The CF estimator for this potential-outcome model uses new error functions for the outcome mean

um(yj , tj ,xj ,wj , θ) = yi−tj(xjβ1 + ρ1σ1ut,j)

−(1− tj)(xjβ0 + ρ0σ0ut,j)
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and for the outcome variances

uv,0(yj , tj ,xj ,wj , θ) = (1− tj)
(
u2
m,j − σ2

0

[
1− ρ2

0 {ut,j(ut,j + wjγ)}
])

uv,1(yj , tj ,xj ,wj , θ) = tj
(
u2
m,j − σ2

1

[
1− ρ2

1 {ut,j(ut,j + wjγ)}
])

These error functions are derived based on the identities

E (yj | tj ,xj ,wj) = tj(xjβ1 + ρ1σ1ut,j) + (1− tj)(xjβ0 + ρ0σ0ut,j)

Var (yj | tj = 0,xj ,wj) = σ2
0

[
1− ρ2

0 {ut,j(ut,j + wjγ)}
]

Var (yj | tj = 1,xj ,wj) = σ2
1

[
1− ρ2

1 {ut,j(ut,j + wjγ)}
]

We calculate the hazard, hj , prior to estimation from a probit regression of the treatment, tj , on
the treatment covariates, wj . Let z̃j = {xj , tjhj , (1− tj)hj}. Now we define

Zj =


z̃j 0 0 0
0 wj 0 0
0 0 1 0
0 0 0 1


and

sj(yj , tj ,xj ,wj , θ) = Z′j


um,j
ut,j
uv,0,j
uv,1,j


The CF estimator θ̂ is the value of θ that satisfies the sample-moment conditions

0 =
1

N

∑
i
sj(yj , tj ,xj ,wj , θ)

The Huber/White/robust sandwich estimator is consistent for the VCE. See Wooldridge (2010,
chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994).

The formula is
V̂ = (1/N)G S G ′

where

G =

{
(1/N)

∑
i

∂sj(yj , tj ,xj ,wj , θ)

∂θ̂

}−1

and
S = (1/N)

∑
i

sj(yj , tj ,xj ,wj , θ)sj(yj , tj ,xj ,wj , θ)′

The matrix G is not symmetric because our estimator comes from stacking the moment conditions
instead of optimizing one objective function. The implication is that the robust formula should always
be used because, even under correct specification, the nonsymmetric G and the symmetric S converge
to different matrices.
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Average treatment effect

The ATE is the average difference of the treated potential outcomes and the control potential
outcomes.

By the law of iterated expectations, the ATE is

E(y1j − y0j) = E{E(y1j − y0j |xj , ε0j , ε1j)}
= E(xjβ1 + ε1 − xjβ0 − ε0)

= E {xj(β1 − β0)}

This expectation can be estimated as a predictive margin when xj(β1−β0) varies in xj . Otherwise,
the ATE is estimated as the coefficient of tj in the model.

Average treatment effect on the treated

The ATE is the average difference of the treated potential outcomes and the control potential
outcomes on the treated population.

The conditional means of the potential outcomes ytj , t ∈ (0, 1) for exogenous covariates xj and
treatment covariates wj at treatment tj = 1 are

E(ytj |xj ,wj , tj = 1) = xjβt + ρtσtφ(wjγ)
/

Φ(wjγ)

By the law of iterated expectations, the ATET is

E(y1j − y0j |tj = 1) = E{E(y1j − y0j |xj ,wj , tj = 1)}
= E{xj(β1 − β0) + (ρ1σ1 − ρ0σ0)φ(wjγ)

/
Φ(wjγ)|tj = 1}

This expectation can be estimated as a predictive margin on the treated population when xj(β1−β0)
varies in xj or when the variance and correlation parameters differ by treatment group. Otherwise,
the ATET is estimated as the coefficient of tj in the model.
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Postestimation commands predict margins Remarks and examples
Also see

Postestimation commands
The following postestimation commands are available after etregress:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
∗suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses
∗ estat ic, lrtest, and suest are not appropriate after etregress, twostep or etregress, cfunction.

hausman and lrtest are not appropriate with svy estimation results.

64
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, conditional
treatment effects, standard errors, expected values, and probabilities.

Menu for predict

Statistics > Postestimation

Syntax for predict

After ML, twostep, or cfunction

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

After ML or cfunction for constrained model

predict
[

type
] {

stub* | newvarreg newvartreat newvarathrho newvarlnsigma

}
[

if
] [

in
]
, scores

After ML or cfunction for general potential-outcome model

predict
[

type
] {

stub* | newvarreg newvartreat newvarathrho0
newvarlnsigma0

newvarathrho1 newvarlnsigma1

} [
if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
cte conditional treatment effect at treatment level
stdp standard error of the prediction
stdf standard error of the forecast
yctrt E(yj | treatment = 1)
ycntrt E(yj | treatment = 0)
ptrt Pr(treatment = 1)
xbtrt linear prediction for treatment equation
stdptrt standard error of the linear prediction for treatment equation

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

stdf is not allowed with svy estimation results.
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction, xjb.

cte calculates the treatment effect, the difference of potential-outcome means, conditioned on treatment
level.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for one observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

yctrt calculates the expected value of the dependent variable conditional on the presence of the
treatment: E(yj | treatment = 1).

ycntrt calculates the expected value of the dependent variable conditional on the absence of the
treatment: E(yj | treatment = 0).

ptrt calculates the probability of the presence of the treatment:
Pr(treatment = 1) = Pr(wjγ+ uj > 0).

xbtrt calculates the linear prediction for the treatment equation.

stdptrt calculates the standard error of the linear prediction for the treatment equation.

scores, not available with twostep, calculates equation-level score variables.

The first new variable will contain ∂ lnL/∂(xjβ).

The second new variable will contain ∂ lnL/∂(wjγ).

Under the constrained model, the third new variable will contain ∂ lnL/∂ atanh ρ.

Under the constrained model, the fourth new variable will contain ∂ lnL/∂ lnσ.

Under the general potential-outcome model, the third new variable will contain
∂ lnL/∂ atanh ρ0.

Under the general potential-outcome model, the fourth new variable will contain ∂ lnL/∂ lnσ0.

Under the general potential-outcome model, the fifth new variable will contain ∂ lnL/∂ atanh ρ1.

Under the general potential-outcome model, the sixth new variable will contain ∂ lnL/∂ lnσ1.
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margins

Description for margins

margins estimates margins of response for linear predictions, conditional treatment effects, expected
values, and probabilities.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
Maximum likelihood and control-function estimation results
statistic Description

xb linear prediction; the default
cte conditional treatment effect at treatment level
yctrt E(yj | treatment = 1)
ycntrt E(yj | treatment = 0)
ptrt Pr(treatment = 1)
xbtrt linear prediction for treatment equation
stdp not allowed with margins

stdf not allowed with margins

stdptrt not allowed with margins

Two-step estimation results

statistic Description

xb linear prediction; the default
ptrt Pr(treatment = 1)
xbtrt linear prediction for treatment equation
cte not allowed with margins

yctrt not allowed with margins

ycntrt not allowed with margins

stdp not allowed with margins

stdf not allowed with margins

stdptrt not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
The average treatment effect (ATE) and the average treatment effect on the treated (ATET) are the

parameters most frequently estimated by postestimation techniques after etregress.

When there are no interactions between the treatment variable and the outcome covariates in
the constrained model, etregress directly estimates the ATE and the ATET; see example 1 of
[TE] etregress.

When there are no interactions between the treatment variable and the outcome covariates in
the general potential-outcome model, etregress directly estimates the ATE; see example 2 of
[TE] etregress.

When there are interactions between the treatment variable and the outcome covariates, you can
use margins after etregress to estimate the ATE. See example 3 and example 4 of [TE] etregress
for examples of ATE estimation.

When there are interactions between the treatment variable and the outcome covariates in the
constrained model, you can use margins after etregress to estimate the ATET. See example 5 of
[TE] etregress for an example of ATET estimation in the constrained model.

In the general potential-outcome model, you can use margins after etregress to estimate the ATET.
See example 6 of [TE] etregress for an example of ATET estimation in the general potential-outcome
model.

Also see
[TE] etregress — Linear regression with endogenous treatment effects

[U] 20 Estimation and postestimation commands



Title

stteffects — Treatment-effects estimation for observational survival-time data

Description Syntax Also see

Description
stteffects estimates average treatment effects, average treatment effects on the treated, and

potential-outcome means using observational survival-time data. The available estimators are regres-
sion adjustment, inverse-probability weighting, and more efficient methods that combine regression
adjustment and inverse-probability weighting.

For a brief description and example of each estimator, see Remarks and examples in [TE] stteffects
intro.

Syntax

stteffects subcommand . . .
[
, options

]
subcommand Description

ra regression adjustment
ipw inverse-probability weighting
ipwra inverse-probability-weighted regression adjustment
wra weighted regression adjustment

Also see
[TE] stteffects intro — Introduction to treatment effects for observational survival-time data
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Title

stteffects intro — Introduction to treatment effects for observational survival-time data

Description Remarks and examples Acknowledgments References
Also see

Description

This entry provides an overview of the treatment-effects estimators that use observational survival-
time data and are implemented in stteffects. It also provides an overview of the potential-outcomes
framework and its application to survival-time data and to the interpretation of the treatment-effects
parameters estimated.

The stteffects command estimates average treatment effects (ATEs), average treatment effects
on the treated (ATETs), and potential-outcome means (POMs). Each of these effect parameters is
discussed in this entry. stteffects implements a variety of estimators for the ATE, ATET, and POM.
The treatment effects can be estimated using regression adjustment (RA), inverse-probability weights
(IPW), inverse-probability-weighted regression adjustment (IPWRA), and weighted regression adjustment
(WRA). This entry also provides some intuition for the estimators and discusses the trade-offs between
them.

Remarks and examples

Remarks are presented under the following headings:
Introduction
A quick tour of the estimators

Regression adjustment
Inverse-probability weighting
Combinations of RA and IPW
Weighted regression adjustment

Average treatment effect on the treated
Comparison of treatment-effects estimators
Assumptions and trade-offs

The conditional independence assumption
The sufficient overlap assumption
The correct adjustment for censoring assumption
Assumptions for the ATET

Specification diagnostics and tests
Multivalued treatments

Introduction

The stteffects command estimates treatment effects using observational survival-time data.

For some intuition about the methods implemented in the stteffects command, consider the
following question: Does smoking decrease the time to a second heart attack in the population of
women aged 45–55 who have had one heart attack? Three aspects of this question stand out.

1. For ethical reasons, these data will be observational.

2. This question is about the time to an event, and such data are commonly known as survival-time
data or time-to-event data. These data are nonnegative and, frequently, right-censored.

3. Many researchers and practitioners want an effect estimate in easy-to-understand units of time.
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Aspect 1 is one of the most common reasons for using observational data, and aspect 2 focuses
interest on survival-time data.

We are most concerned with aspect 3 because it helps us define and understand the effect of
interest. In particular, we would like to know the average change in time to a second heart attack
that would occur in the population if all women smoked instead of if no women smoked. This effect
is an ATE.

We must solve a missing-data problem to estimate the ATE. The ATE is the population average
of the contrast in outcomes when everyone gets the treatment and when no one gets the treatment.
Formally, we write this as

ATE = E(t1 − t0)

where t1 is the survival time when a subject gets the treatment and t0 is the survival time when a
subject does not get the treatment. For each treatment level, there is a potential outcome that would
be observed if a subject received that treatment level: t1 is the potential outcome that would occur
if someone gets the treatment and t0 is the potential outcome that would occur if someone does not
get the treatment. The missing-data problem arises because each subject receives only one treatment
level, and so we observe only one of the two potential outcomes.

Much of the survival-time literature uses a hazard ratio as the effect of interest. The ATE has three
advantages over the hazard ratio as an effect measure.

1. The ATE measures the effect in the same time units as the outcome instead of in relative
conditional probabilities.

2. The ATE is much easier to explain to nontechnical audiences.

3. The models used to estimate the ATE can be much more flexible. Hazard ratios are useful for
population effects when they are constant, which occurs when the treatment enters linearly and
the distribution of the outcome has a proportional-hazards form. Neither linearity in treatment
nor proportional-hazards form is required for the ATE, and neither is imposed on the models fit
by the estimators implemented in stteffects.

The estimators implemented in stteffects use the common missing-data techniques of regression
modeling, weighting, and combinations thereof to account for data lost to censoring and to unobserved
potential outcomes.

Here we note only a few contributions and entry points to the vast literature on estimating
ATEs. The use of potential outcomes to define treatment effects has proved extraordinarily useful;
see Holland (1986), Rubin (1974), and Heckman (1997). Cameron and Trivedi (2005, chap. 25),
Wooldridge (2010, chap. 21), and Vittinghoff et al. (2012, chap. 9) provide excellent general intro-
ductions to estimating ATEs.

Technical note

Left-truncation would be another type of missing data. The estimators implemented in stteffects
do not adjust for left-truncation, so stteffects cannot be used with delayed-entry data.

stteffects cannot be used with time-varying covariates or multiple-record data because these
add a repeated-measure structure that significantly complicates the estimation problem.
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A quick tour of the estimators

The stteffects command implements five estimators of treatment effects. We introduce each
one by showing the basic syntax used to apply it to a common example dataset. See each command’s
entry for detailed information.

We have some fictional data on the time to a second heart attack among women aged 45–55 years.
The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain each woman’s
age at the time of her first heart attack (age), and indices of her exercise level (exercise), diet
quality (diet), and education attainment (education) prior to her first heart attack.

Like streg and other survival-time commands, stteffects uses the outcome variable and the
failure indicator computed by stset. In this dataset, atime is the observed time in years to the
second heart attack, and fail is the 0/1 indicator that a second heart attack was observed and recorded
in atime. (When fail is 1, atime records the time to the second attack; when fail is 0, atime
records a censored observation of the time to the second attack.)

We begin our examples by first reading in the data and then specifying the raw outcome and failure
variables to stset.

. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))

. stset atime, failure(fail)

failure event: fail != 0 & fail < .
obs. time interval: (0, atime]
exit on or before: failure

2000 total observations
0 exclusions

2000 observations remaining, representing
1208 failures in single-record/single-failure data

3795.226 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 34.17743

The output indicates that 1,208 of the 2,000 observations record actual time to a second heart
attack. The remaining observations were censored. Now that we have stset the data, we can use
stteffects.

Regression adjustment

Regression modeling of the outcome variable is a venerable approach to solving the missing-data
problem in treatment-effects estimation. Known as the regression-adjustment (RA) estimator, this
method uses averages of predicted outcomes to estimate the ATE. If the outcome model is well
specified, this approach is surprisingly robust.
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Example 1: RA estimation

We now use stteffects ra to estimate the ATE by RA. We model the outcome as a function of
age, exercise, diet, and education, and we specify that smoke is the treatment variable.

. stteffects ra (age exercise diet education) (smoke)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 1.525e-19
Iteration 1: EE criterion = 1.931e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.956657 .3331787 -5.87 0.000 -2.609676 -1.303639

POmean
smoke

Nonsmoker 4.243974 .2620538 16.20 0.000 3.730358 4.75759

When all women in the population smoke, the average time to a second heart attack is estimated
to be 1.96 years less than when no women smoke. The estimated average time to a second heart
attack when no women smoke is 4.24 years.

The output reports that a Weibull model was used for the outcome. The other outcome models
available are exponential, gamma, and log normal. See example 2 in [TE] stteffects ra for an application
of the gamma parameterization to this model.

The ratio of the ATE to control-level POM measures the importance of the effect. In this example,
when all women smoke, the time to a second heart attack falls by an estimated 46% relative to the
case in which none of them smoke. See example 3 in [TE] stteffects ra for an example that uses
nlcom to compute a point estimate and a confidence interval for this ratio.

Unlike the IPW estimator discussed in the next section, RA does not model treatment assignment or the
censoring process. Treatment assignment is handled by fitting separate models for each treatment level
and averaging the predicted outcomes. As is standard in the survival-time literature, the censoring
term in the log-likelihood function accounts for censoring; see Kalbfleisch and Prentice (2002,
chap. 3), Cameron and Trivedi (2005, chap. 17), Cleves, Gould, and Marchenko (2016, chap. 13),
and Wooldridge (2010, chap. 22).

See [TE] stteffects ra for further discussion of this command and the RA estimator.
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Inverse-probability weighting

Sometimes researchers are more comfortable modeling treatment assignment than the outcome.
Inverse-probability-weighted (IPW) estimators use weighted averages of the observed outcome to
estimate the POMs and the ATE. The weights correct for the missing data. When there is no censoring,
the missing potential outcome is the only missing data, and the weights are constructed from a model
of treatment assignment. When the data may be censored, the weights must control for censoring and
the missing potential outcome. In this case, IPW estimators construct the weights from two models,
one for the censoring time and one for treatment assignment.

Example 2: IPW estimation

Here we use stteffects ipw to estimate the effect of smoking on the time to a second heart
attack. The model of assignment to the treatment smoke depends on age, exercise, diet, and
education. The time-to-censoring model also depends on age, exercise, diet, and education.

. stteffects ipw (smoke age exercise diet education)
> (age exercise diet education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 3.283e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.187297 .6319837 -3.46 0.001 -3.425962 -.9486314

POmean
smoke

Nonsmoker 4.225331 .517501 8.16 0.000 3.211047 5.239614

When all women in the population smoke, the average time to a second heart attack is estimated
to be 2.19 years less than when no women smoke. The estimated average time to a second heart
attack when no women smoke is 4.23 years. When all women smoke, the average time to a second
heart attack falls by an estimated 52% relative to the case when no women smoke.

The estimates have changed; however, the interpretation is the same as for the RA estimator
because the IPW and RA estimators are estimating the same population effects. Under correct model
specification, the estimates will differ in finite samples, but the size of these differences will decrease
as the sample size gets larger. For the case at hand, the estimated ATE and control-level POM are
roughly similar to those produced by the RA estimator using the Weibull model for the outcome.

Recall that IPW estimators are weighted averages of observed outcomes and that the weights control
for the missing outcomes. Weights in survival-time data have two components: one for the missing
potential outcome and one for data lost to censoring. We used a logit model for treatment assignment,
so the component of the weights that controls for the missing potential outcome comes from the
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estimated logit parameters. We used a Weibull model for the time to censoring, so the component of
the weights that controls for data lost to censoring comes from the estimated Weibull parameters.

Using weighting from an estimated treatment-assignment model to control for the missing potential
outcome is standard in the treatment-effects literature; for example, see [TE] teffects intro advanced,
Wooldridge (2010, chap. 21), Vittinghoff et al. (2012, chap. 9), Hirano, Imbens, and Ridder (2003),
Cattaneo (2010), and Cattaneo, Drukker, and Holland (2013). Modeling the time to censoring is
specific to the survival-time treatment-effects literature; see Bai, Tsiatis, and O’Brien (2013) and
Robins and Rotnitzky (2006). See Methods and formulas in [TE] stteffects ipwra for more details.

See [TE] stteffects ipw for further discussion of this command and the IPW estimator.

Combinations of RA and IPW

More efficient estimators are obtained by combining IPW and RA, due to Wooldridge (2007)
and Wooldridge (2010, chap. 21) and denoted by IPWRA. Unlike the estimators discussed in
Wooldridge (2010, chap. 21), both the treatment and the outcome models must be correctly specified
to estimate the ATE.

The IPWRA estimator uses estimated weights that control for missing data to obtain missingness-
adjusted regression coefficients that are used to compute averages of predicted outcomes to estimate
the POMs. The estimated ATE is a contrast of the estimated POMs. These weights always involve a
model for treatment assignment. You choose whether to account for censoring by including a term in
the log-likelihood function or whether to use weights that also account for the data lost to censoring.

Example 3: Likelihood-adjusted-censoring IPWRA estimation

We model the outcome (time to a second heart attack) as a function of age, exercise, diet,
and education. We model assignment to the treatment smoke as a function of the same covariates.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.153e-16
Iteration 1: EE criterion = 2.940e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.592494 .4872777 -3.27 0.001 -2.54754 -.637447

POmean
smoke

Nonsmoker 4.214523 .2600165 16.21 0.000 3.7049 4.724146

The estimated ATE of −1.59 and control-level POM of 4.21 are similar to the reported values of
−1.96 and 4.24 in example 1.
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We did not specify a model for the time to censoring, so censoring is handled by including a term in
the log-likelihood function in the Weibull outcome model. We denote this likelihood-adjusted-censoring
(LAC) version of the IPWRA estimator by LAC-IPWRA.

Example 4: Weighted-adjusted-censoring IPWRA estimation

Instead of including a term in the log-likelihood function, the weighted-adjusted-censoring IPWRA
(WAC-IPWRA) estimator uses estimated weights to adjust for censoring. We model the time to a second
heart attack as a function of age, exercise, diet, and education; we model assignment to the
treatment smoke as a function of the same covariates; and we model the time to censoring as a
function of age, exercise, and diet.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education) (age exercise diet)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 1.632e-16
Iteration 1: EE criterion = 2.367e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.037944 .6032549 -3.38 0.001 -3.220302 -.855586

POmean
smoke

Nonsmoker 4.14284 .4811052 8.61 0.000 3.199891 5.085789

The estimated ATE of −2.04 and control-level POM of 4.14 are similar to the reported values of
−1.96 and 4.24 in example 1.

The weights for censoring are constructed from the estimated parameters because we specified a
time-to-censoring model.

Under correct specification, both versions of the IPWRA estimator estimate the same ATE and
control-level POM as estimated by RA and IPW.

The addition of the time-to-censoring model makes the WAC-IPWRA somewhat less robust than
the LAC-IPWRA estimator. Weighting methods to control for censoring also place more restrictive
assumptions on the censoring process. For example, the censoring time must be random, otherwise it
would be impossible to construct the weights. In Assumptions and trade-offs below, we discuss the
trade-offs among the estimators and the assumptions that each requires. For the moment, we note
that we believe the LAC-IPWRA estimator is more robust than the WAC-IPWRA estimator.

See [TE] stteffects ipwra for further discussion of this command and the IPWRA estimator.
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Weighted regression adjustment

When estimating the parameters of an outcome model, the weighted regression-adjustment (WRA)
estimator uses weights instead of a term in the log-likelihood function to adjust for censoring.
These weights are constructed from a model for the censoring process. The estimated parameters are
subsequently used to compute averages of predicted outcomes that estimate the POMs. A contrast of
the estimated POMs estimates the ATE.

Example 5: WRA estimation

We model the time to a second heart attack as a function of age, exercise, diet, and education;
we specify that smoke is the treatment; and we model the time to censoring as a function of age,
exercise, and diet.

. stteffects wra (age exercise diet education) (smoke) (age exercise diet)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 7.037e-19
Iteration 1: EE criterion = 1.110e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : weighted regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.152014 .4986005 -4.32 0.000 -3.129253 -1.174775

POmean
smoke

Nonsmoker 4.079273 .4379517 9.31 0.000 3.220903 4.937642

The estimated ATE of −2.15 and control-level POM of 4.08 are similar to the reported values of
−1.96 and 4.24 in example 1. Like the other estimators discussed, the WRA estimators estimate the
same effect parameters as the RA estimator, so the interpretation is the same.

In many survival-time applications, using weights to adjust for censoring is probably less robust
than just including a term in the log-likelihood function for the outcome model. The model used to
construct the weights is just as complicated as the outcome model, and including the term in the
log-likelihood function places fewer restrictions on the censoring process, as discussed in The correct
adjustment for censoring assumption below.

See [TE] stteffects wra for further discussion of this command and the WRA estimator.
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Average treatment effect on the treated

Intuitively, the average treatment effect on the treated (ATET) is the effect in a well-defined,
at-risk subpopulation. Sometimes the subpopulation that gets the treatment defines such an at-risk
subpopulation. For example, we may want to know the average change in time to a second heart
attack among female smokers aged 45–55 who have had a heart attack if they all became nonsmokers.
This effect is the ATET.

Below, we use stteffects ra to estimate the ATET by RA.

. stteffects ra (age exercise diet education) (smoke), atet

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 1.525e-19
Iteration 1: EE criterion = 2.002e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.527476 .2489203 -6.14 0.000 -2.015351 -1.039602

POmean
smoke

Nonsmoker 3.436937 .2217808 15.50 0.000 3.002255 3.87162

Now, all effects are calculated only for the subpopulation of women aged 45–55 years who smoke
after their first heart attack. If no women in the subpopulation were to smoke, the average time to a
second heart attack would be 3.44 years. When all women in the subpopulation smoke (the observed
behavior), the average time to a second heart attack is estimated to be 1.53 years less than if no
women in the subpopulation had smoked. In other words, if we could somehow turn all smokers in
the subpopulation into nonsmokers, the average time to a second heart attack would be 3.44 years
instead of 1.91 years (3.44− 1.53 = 1.91).

These point estimates are a little different than those for the ATE and the control-level POM in the
full population of women aged 45–55 years who have had one heart attack. The difference indicates
that this particular health cost of smoking may be smaller among women who choose to smoke than
in the full population.

Comparison of treatment-effects estimators

We can classify the estimators implemented in stteffects into five categories: 1) estimators
based on a model for the outcome variable; 2) estimators based on models for the treatment assignment
and the censoring time; 3) estimators based on models for the outcome variable and the treatment
assignment; 4) estimators based on models for the outcome variable, the treatment assignment, and
the censoring time; and 5) estimators based on models for the outcome variable and the censoring
time.
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Because there are several categories of estimators, the user must decide whether to model the
outcome, the probability of treatment, the time to censoring, or some combination thereof.

Each category of estimator contains a variety of choices about the functional forms for the models.

We now provide some intuition behind each category of estimator and discuss the relationships.

1. When modeling only the outcome, separate outcome models for each treatment level account
for treatment assignment, and censoring is adjusted for in the log-likelihood function. This
approach is used in the RA estimators.

2. Some researchers would rather avoid modeling the outcome. Some estimators use weighted
averages of the observed outcome to estimate the effect. When estimating treatment effects
from observational survival-time data, the weights used must account for treatment assignment
and censoring. Models for treatment assignment and time to censoring are used to construct
the weights. This approach is used in the IPW estimators.

3. When seeking a more efficient estimator, it is natural to model both the outcome and the
treatment and to adjust for censoring in the outcome model. This approach is used in the
LAC-IPWRA estimators.

4. When seeking a more efficient estimator, another natural approach is to model both the outcome
and the treatment and to adjust for censoring by weights that come from a time-to-censoring
model. This approach is used in the WAC-IPWRA estimators.

5. We could modify approach 1 to model the outcome and the time to censoring so that censoring
is handled by weighting and its own model instead of by likelihood adjustment. This approach
is used in the WRA estimators.

While researcher preferences over what to model largely dictate the approach selected, we quickly
note two points that could affect which approach works best. First, we can adjust for censoring by
weighting only when censoring time is random. Second, weighting estimators become unstable if the
weights get too large.

In the next section, we elaborate on the assumptions needed and the trade-offs among the approaches
to estimation.

Assumptions and trade-offs

The estimators implemented in stteffects require three assumptions: conditional independence,
sufficient overlap, and correct adjustment for censoring.

The conditional independence assumption

All estimators implemented in stteffects require the potential outcomes to be independent of the
treatment assignment after conditioning on the covariates. Randomized experiments and the Heckman
selection model are two motivating frameworks for the conditional independence assumption.

When the treatment is assigned randomly, the randomization ensures that the potential outcomes
are independent of the treatment assignment. In observational data, the treatment is not randomly
assigned. However, many important questions can only be answered using observational data because it
would be unethical to randomly allocate hazardous treatments, for example, smoking. The conditional
independence assumption in observational data says that treatment assignment is as good as random
after conditioning on the covariates.
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We can also understand conditional independence from a modeling framework. The Heckman
selection model specifies that each of the potential outcomes and the treatment assignment process are
functions of observable covariates and unobservable errors. The potential outcomes are conditionally
independent of the treatment assignment when the unobservable errors in the treatment-assignment
process are independent of the unobservable errors in each of the potential-outcome processes. See
The CI assumption in [TE] teffects intro advanced for a detailed example.

Both frameworks lead to the same conclusion: we need to observe and to condition on a sufficient
number of covariates.

Essentially, all the estimators in stteffects are equally susceptible to violations of the conditional
independence assumption. No one estimator is any more robust to the conditional independence
assumption than any other one.

Estimating the ATE among the subpopulation of those who get the treatment requires a significantly
weaker version of the CI assumption; see Assumptions for the ATET below.

For more details about the conditional independence assumption, see The CI assumption in
[TE] teffects intro advanced, and see Rosenbaum and Rubin (1983), Heckman (1997), Imbens
and Wooldridge (2009), Cameron and Trivedi (2005, sec. 25.2), Wooldridge (2010, chap. 21), and
Vittinghoff et al. (2012, chap. 9).

The sufficient overlap assumption

The sufficient overlap assumption requires that each individual have a sufficiently positive probability
of being assigned to each treatment level. We believe that the RA estimator is more robust than the
other estimators to near violations of the sufficient overlap condition, under correct model specification.

The overlap condition has no specification test, but using teffects overlap and then summarizing
the predicted treatment probabilities presents good diagnostics of overlap problems.

The correct adjustment for censoring assumption

The correct adjustment for censoring assumption has two parts. First, either the censoring time must
be fixed or the process must be conditionally-on-covariates independent of the potential outcomes and
the treatment-assignment process. This assumption is standard in survival analysis; see, for example,
Kalbfleisch and Prentice (2002, chap. 3).

Second, the method used to adjust to censoring must be correct. For the RA and LAC-IPWRA
estimators, which use likelihood-adjusted censoring, the second assumption is no more restrictive than
assuming correct specification of the outcome model. For the IPW, WAC-IPWRA, and WRA estimators,
which adjust by weighting, the second assumption requires that the censoring be random and that the
censoring process be correctly modeled.

Under correct specification, all the estimators in stteffects perform well. However, we believe
that estimators that use likelihood adjustment instead of weighting are more robust for three reasons.

1. The estimators that use weighting to adjust for censoring cannot handle fixed censoring processes.
If the censoring process is not random, the weights are not well defined.

2. The estimators that use weighting to adjust for censoring do not allow the random censoring
process to vary by treatment level.

3. The estimators that use weighting to adjust for censoring require an additional sufficient overlap
condition: the probability of not being censored must be sufficiently greater than 0 or else the
weights that adjust for censoring get too large.
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While the estimators that use WAC instead of LAC require a few more assumptions, some researchers
are more comfortable modeling the treatment and censoring than the outcome. In this case, the IPW
or WAC-IPWRA estimator would be the estimator of choice.

See Specification diagnostics and tests below for information about testing these assumptions.

Assumptions for the ATET

We noted in Average treatment effect on the treated that the ATET is sometimes more interesting than
the ATE. We can also estimate the ATET under less restrictive versions of the conditional independence
assumption and the sufficient overlap assumption than those required for the ATE.

While ATE estimation requires that the potential outcomes for both the treated and the not treated
be conditionally independent of treatment assignment, ATET estimation requires that only the not
treated potential outcome be conditionally independent of treatment assignment.

This weaker version of conditional independence allows the gains from the treatment to be related
to treatment assignment, after conditioning on the covariates. We can estimate the ATET, but not the
ATE, if some unobserved factor increases (or decreases) the likelihood of assignment to the treatment,
increases (or decreases) the time to event in the treatment group, and has no effect on the time to
event when not in the treatment group.

For example, suppose that smoking is an acquired taste and that individuals who acquire the taste
for smoking more easily are less adversely affected by smoking and otherwise similar to everyone
else when not smoking. Taste for smoking is unobservable, and our data have no measure of this
variable. In this case, we could estimate the ATET but not the ATE.

The weaker version of the sufficient overlap assumption only requires that each individual in the
treated subpopulation have a positive probability of not getting treated. In contrast, ATE estimation
requires that each individual in the population have a positive probability of getting each treatment
level. In particular, we can estimate the ATET, but not the ATE, when some individuals in the population
have zero chance of getting the treatment. For example, we could estimate the ATET, but not the ATE,
if some women will never smoke for religious reasons.

Even when the conditions for ATE estimation hold, the ATE and ATET may differ. Finding that the
ATET is significantly different from the ATE does not mean that the ATE is incorrectly estimated.

See Heckman (1997) and Wooldridge (2010, 911–912) for more information about the assumptions
necessary to estimate the ATET.

Specification diagnostics and tests

After stteffects ipw and stteffects ipwra, some specification checks for the treatment-
assignment model and the overlap condition are available.

The checks for the treatment-assignment model are known as balance checks. When the covariate
distributions are invariant to the treatment level, the covariates are said to be balanced. The concept
of balanced covariates comes from the experimental literature, in which random treatment assignment
ensures that the covariates are balanced.

In observational data, the covariates are almost never balanced in the raw data. Weighting methods
can be viewed as using a treatment-assignment model to balance the covariates. If the treatment-
assignment model is well specified, the weights constructed from this model will balance the covariates.
One of the nice features of balance checks is that they do not depend on the outcome or its distribution.
This fact is especially useful for survival-time outcomes because censoring of the outcome has no effect
on the balance checks, so the balance checks implemented in tebalance work without modification.
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Conditional on the treatment-assignment model being well specified, we can use the estimated
probabilities of treatment, known as the propensity scores, to look for signs that the overlap condition
is violated. These checks depend only on the estimated treatment probabilities and are not affected
by any censoring of the outcome, so the methods implemented in teffects overlap work without
modification.

We begin examining our model by using tebalance summarize after refitting the models used
by the LAC-IPWRA estimator.

. quietly stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education)

. tebalance summarize

Covariate balance summary
Raw Weighted

Number of obs = 2,000 2,000.0
Treated obs = 738 994.1
Control obs = 1,262 1,005.9

Standardized differences Variance ratio
Raw Weighted Raw Weighted

age -.3122094 -.0184574 .8547308 .9370065
exercise -.4975269 -.0458412 .4966778 .8342339

diet -.2479756 .0021802 .7937645 1.095347
education -.4801442 -.0216366 .6015139 .978078

The weighted standardized differences are much closer to 0 than the raw standardized differences,
and the weighted variance ratios are much closer to 1 than the raw variance ratios. These results
indicate that the model-based treatment weights balanced the covariates; see [TE] tebalance and
[TE] tebalance summarize for details.

The diagnostics presented by tebalance summarize are not a formal test. However, we can use
tebalance overid to conduct a formal test of the hypothesis that the weights constructed from the
treatment-assignment model balanced the covariates.

. tebalance overid

Iteration 0: criterion = .22681884
Iteration 1: criterion = .22692316 (backed up)
Iteration 2: criterion = .23090158
Iteration 3: criterion = .2311461
Iteration 4: criterion = .23256285
Iteration 5: criterion = .23286304
Iteration 6: criterion = .23335858
Iteration 7: criterion = .2335567
Iteration 8: criterion = .2335671
Iteration 9: criterion = .23356711

Overidentification test for covariate balance
H0: Covariates are balanced:

chi2(5) = 3.28142
Prob > chi2 = 0.6567

There is no significant evidence against the null hypothesis. The interpretation is that we do not
reject the null hypothesis that the treatment-assignment model is well specified; see [TE] tebalance
and [TE] tebalance overid for details.

Given that we do not reject the treatment-assignment model, we can use this model to look for
evidence that the overlap condition is violated. We begin by using teffects overlap.



stteffects intro — Introduction to treatment effects for observational survival-time data 83

. teffects overlap, ptlevel(Smoker)
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Propensity score, smoke=Nonsmoker

smoke=Nonsmoker smoke=Smoker

The densities of the propensity scores for the smokers and nonsmokers appear to have the same
support, indicating that there is no violation of the overlap condition. The only indicator of a possible
problem is that the support of the density for nonsmokers gets very close to 0. This problem would
affect ATE estimation but not ATET estimation, as discussed in Assumptions and trade-offs. To further
investigate, we compute and summarize the predicted propensity score by treatment level.
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. predict ps1, ps tlevel(Smoker)

. summarize ps1 if smoke == 0

Variable Obs Mean Std. Dev. Min Max

ps1 1,262 .3410001 .1381673 .014819 .6161401

. summarize ps1 if smoke == 1

Variable Obs Mean Std. Dev. Min Max

ps1 738 .4168805 .1107557 .0454891 .6216282

To interpret these results, recall that ATE estimation requires that the minimum propensity score
for each treatment level be sufficiently greater than 0 and that the maximum propensity score for
each treatment level be sufficiently less than 1. Also recall that ATET estimation only requires that
the maximum propensity score for each treatment level be sufficiently less than 1.

For ATE estimation, only the minimum predicted propensity score for nonsmokers presents a
challenge, and 0.015 is probably not too small. For ATET estimation, neither maximum causes
concern.

For information about choosing among the stteffects estimators and their functional forms for
the different models, see Model choice under Remarks and examples in [TE] teffects intro advanced.

Multivalued treatments
stteffects can estimate treatment effects for multivalued treatments; here we provide some

examples. See [TE] teffects multivalued for an introduction to interpreting effects from multivalued
treatments.

Example 6: Multivalued ATE estimation

We have another fictional dataset that records the time to a second heart attack among women
aged 45–55 years. In this dataset, atime is the observed time in years to the second heart attack,
and fail is the 0/1 indicator that a second heart attack was observed and recorded in atime. (When
fail is 1, atime records the time to the second attack; when fail is 0, atime records a censored
observation of the time to the second attack.)

These data also contain the age at the time of the first heart attack (age), and indices of each
woman’s exercise level (exercise), diet quality (diet), and education attainment (education) prior
to her first heart attack.

The treatment, smoking, is stored in the categorical variable smoke, which has the following value
labels. The women who never smoked are labeled as N; the women who previously smoked but quit
before their first heart attack are labeled as B; the women who previously smoked but quit after their
first heart attack are labeled as A; and the women who continued to smoke after their first heart attack
are labeled as S.
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We begin by first reading in the data and then reviewing information previously stored using
stset.

. use http://www.stata-press.com/data/r14/sheartm, clear
(Time to second heart attack (fictional))

. stset
-> stset atime, failure(fail)

failure event: fail != 0 & fail < .
obs. time interval: (0, atime]
exit on or before: failure

10000 total observations
0 exclusions

10000 observations remaining, representing
9741 failures in single-record/single-failure data

27999.155 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 17.40826

We continue by tabulating the treatment variable smoke.

. tabulate smoke

Smoking
level Freq. Percent Cum.

N 3,167 31.67 31.67
B 2,263 22.63 54.30
A 1,924 19.24 73.54
S 2,646 26.46 100.00

Total 10,000 100.00

We see that 31.67% of the women never smoked, 22.63% of the women previously smoked but quit
before their first heart attack, 19.24% of the women previously smoked but quit after their first heart
attack, and 26.46% of the women continued to smoke after their first heart attack.
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We now use stteffects ra to estimate the ATE by RA. We model the outcome as a function of
age, exercise, diet, and education, and we specify that smoke is the treatment variable.

. stteffects ra (age exercise diet education) (smoke)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 6.709e-21
Iteration 1: EE criterion = 8.284e-30

Survival treatment-effects estimation Number of obs = 10,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(B vs N) -.4129793 .0317 -13.03 0.000 -.47511 -.3508485
(A vs N) -1.281031 .032866 -38.98 0.000 -1.345447 -1.216614
(S vs N) -2.167359 .0338994 -63.93 0.000 -2.233801 -2.100917

POmean
smoke

N 3.745919 .0289014 129.61 0.000 3.689273 3.802565

The average time to a second heart attack is 0.41 years sooner when all the women smoked at
some point but quit before their first heart attack than when all the women never smoked. The average
time to a second heart attack is 1.28 years sooner when all the women smoked at some point but quit
after their first heart attack than when all the women never smoked. The average time to a second
heart attack is 2.17 years sooner when all the women continued to smoke after their first heart attack
than when all the women never smoked.
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Example 7: Multivalued ATET estimation

In the at-risk subpopulation of women who continued to smoke, we want to estimate the effect of
continuing to smoke (S) versus quitting after the first heart attack (A). Below we estimate the ATETs
by RA, specifying A to be the control level and S to be the treatment level.

. stteffects ra (age exercise diet education) (smoke), atet control(A) tlevel(S)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 6.709e-21
Iteration 1: EE criterion = 6.836e-30

Survival treatment-effects estimation Number of obs = 10,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
smoke

(N vs A) 1.290123 .0377552 34.17 0.000 1.216125 1.364122
(B vs A) .8748349 .0239595 36.51 0.000 .8278751 .9217946
(S vs A) -.8869257 .0272301 -32.57 0.000 -.9402958 -.8335557

POmean
smoke

A 2.500108 .0217833 114.77 0.000 2.457413 2.542802

The parameter (S vs A) is the one of interest. The estimate implies that the average time to a
second heart attack among women who continue to smoke is 0.89 years sooner when they all continue
to smoke than when they all quit smoking after their first heart attack.
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stteffects ipw — Survival-time inverse-probability weighting

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

stteffects ipw estimates the average treatment effect (ATE), the average treatment effect on the
treated (ATET), and the potential-outcome means (POMs) from observational survival-time data with
random time to censoring. Estimation is by inverse-probability weighting (IPW). IPW estimators use
weighted averages of the observed outcome. The estimated weights correct for missing data on the
potential outcomes and for censored survival times. stteffects ipw offers several choices for the
functional forms of the treatment model and the time-to-censoring model. Binary and multivalued
treatments are accommodated.

See [TE] stteffects intro for an overview of estimating treatment effects from observational
survival-time data.

Quick start
Specify time as observed failure time and fail as failure indicator

stset time, failure(fail)

ATE of binary treat2 on time by IPW using a logistic model of treat2 on x and w and using x
and w in a Weibull model for the censoring time

stteffects ipw (treat2 x w) (x w)

As above, but estimate the ATET

stteffects ipw (treat2 x w) (x w), atet

ATE of treat2 on time by IPW using a probit model of treat2 on x and w and using x and w in a
gamma model for the censoring time

stteffects ipw (treat2 x w, probit) (x w, gamma)

ATE for treatment levels 2 and 3 of three-valued treatment treat3
stteffects ipw (treat3 x w) (x w)

As above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3
stteffects ipw (treat3 x w) (x w), control("MyControl")

Menu
Statistics > Treatment effects > Survival outcomes > Inverse-probability weighting (IPW)

89
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Syntax
stteffects ipw (tvar tmvarlist

[
, tmoptions

]
) (cmvarlist

[
, cmoptions

]
)[

if
] [

in
] [

, stat options
]

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the variables that predict treatment assignment in the treatment model.

cmvarlist specifies the variables that predict censoring in the censoring model.

tmoptions Description

Model

logit logistic treatment model; the default
probit probit treatment model
hetprobit(varlist) heteroskedastic probit treatment model
noconstant suppress constant from treatment model

cmoptions Description

Model

weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary(avarlist

[
, noconstant

]
) specify variables used to model ancillary parameter

noconstant suppress constant from censoring model

stat Description

Stat

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means
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options Description

SE/Robust

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
noshow do not show st setting information
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
iterinit(#) specify starting-value iterations; seldom used

Advanced

pstolerance(#) set the tolerance for the overlap assumption
osample(newvar) identify observations that violate the overlap assumption
control(# | label) specify the level of tvar that is the control
tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.
tmvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in

[ST] stset. However, weights may not be specified if you are using the bootstrap prefix.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ancillary(avarlist
[
, noconstant

]
) specifies the variables used to model the ancillary parameter.

By default, the ancillary parameter does not depend on covariates. Specifying ancillary(avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

noconstant; see [R] estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ipw from showing the key st variables. This option is rarely used
because most people type stset, show or stset, noshow to permanently set whether they want
to see these variables mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[
, # . . .

]
, copy

iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This
option is seldom used.

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(1e-5). stteffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() may not be specified with the statistic pomeans. control() and
tlevel() may not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel() may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks and examples
If you are not familiar with the framework for treatment-effects estimation from observational

survival-time data, please see [TE] stteffects intro.

IPW estimators use contrasts of weighted averages of observed outcomes to estimate treatment
effects. The estimated weights correct for data that are missing because each subject is only observed
after receiving one of the possible treatment levels and because some survival-time outcomes are
censored.

The IPW estimators implemented in stteffects ipw use a three-step approach to estimating the
ATE:

1. Estimate the parameters of a treatment-assignment model, and compute the component of the
estimated weights that accounts for data missing because each subject is only observed after
receiving one of the possible treatment levels.

2. Estimate the parameters of a time-to-censoring model, and compute the component of the
estimated weights that accounts for data lost to censoring.

3. Use the estimated weights to compute weighted averages of the outcomes for each treatment
level.

To estimate the ATET, we use different weights in step 2.

The time to censoring must be random to use stteffects ipw because the model in step 2
is not well defined if the time to censoring is fixed. See [TE] stteffects intro for more details. For
information about estimators that accommodate a fixed time to censoring, see [TE] stteffects ra and
[TE] stteffects ipwra.

Here we note only a few entry points to the vast literature on IPW estimators. Hirano, Imbens,
and Ridder (2003), Imbens (2000, 2004), Imbens and Wooldridge (2009), Rosenbaum and Ru-
bin (1983), Robins and Rotnitzky (2006), Wooldridge (2002, 2007), Cameron and Trivedi (2005,
chap. 25), Wooldridge (2010, chap. 21), and Vittinghoff et al. (2012, chap. 9) provide excellent
general introductions to estimating ATEs and to the IPW estimators in particular.

Like streg and other survival-time commands, stteffects ipw uses the outcome variable and
the failure indicator computed by, and optionally weights specified with, stset. stteffects ipw
is not appropriate for data with time-varying covariates, also known as multiple-record survival-time
data, or for delayed-entry data.

Example 1: Estimating the ATE

Suppose we wish to study the effect of smoking on the time to a second heart attack among women
aged 45–55 years. In our fictional sheart dataset, atime is the observed time in years to a second
heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed.
(When fail is 1, atime records the time to the second heart attack; when fail is 0, atime records
a censored observation of the time to a second heart attack.) We previously stset these data; see A
quick tour of the estimators in [TE] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the
time of the first heart attack (age), and indices of the level of exercise (exercise), diet quality
(diet), and education (education) prior to the first heart attack.

We can use stteffects ipw to estimate the ATE. We model treatment assignment using the default
logit model with covariates on age, exercise, and education. We model the time to censoring
using the default Weibull model with covariates on age, exercise, diet, and education.
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. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))

. stteffects ipw (smoke age exercise education) (age exercise diet education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 5.191e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.22226 .6307573 -3.52 0.000 -3.458522 -.9859983

POmean
smoke

Nonsmoker 4.235569 .5210937 8.13 0.000 3.214244 5.256894

When every woman smoked in the population of women aged 45–55 years who have had a heart
attack, the average time to a second heart attack is estimated to be 2.22 years less than when no
women in the population of interest smoked. The estimated average time to a second heart attack
when no women in the population of interest smoked is 4.24 years.

The ratio of the ATE to the control-level POM measures the importance of the effect. In this example,
when every woman smoked, the average time to a second heart attack falls by an estimated 52%
relative to the case when none of them smoked. See example 3 in [TE] stteffects ra for an example
that uses nlcom to compute a point estimate and a confidence interval for this ratio.

Example 2: Different treatment and censoring models

Instead of a logit model for the treatment assignment, we could have used a probit or a heteroskedastic
probit model. Instead of a Weibull model for the censoring time, we could have used an exponential,
a gamma, or a lognormal model. For a quick comparison, we now estimate the ATE using a probit
model for the treatment assignment and using a gamma model for the censoring time.
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. stteffects ipw (smoke age exercise education, probit)
> (age exercise diet education, gamma)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 3.534e-15
Iteration 1: EE criterion = 5.263e-27

Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
Censoring model: gamma

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.646808 .8368254 -3.16 0.002 -4.286956 -1.006661

POmean
smoke

Nonsmoker 4.702301 .7404567 6.35 0.000 3.251033 6.15357

The estimated ATE of −2.65 and control-level POM of 4.70 are similar to the values of −2.22 and
4.24 reported in example 1.

Example 3: Estimating the ATET

Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes
the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the
added benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and
trade-offs under Remarks and examples in [TE] stteffects intro.
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. stteffects ipw (smoke age exercise education) (age exercise diet education),
> atet

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 1.248e-32

Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.846136 .5076872 -3.64 0.000 -2.841185 -.8510877

POmean
smoke

Nonsmoker 3.543788 .474395 7.47 0.000 2.613991 4.473585

When every woman in the subpopulation smoked, the average time to a second heart attack is
estimated to be 1.85 years less than when no women in the subpopulation smoked. The estimated
average time to a second heart attack when no women in the subpopulation smoked is 3.54 years.

Stored results
stteffects ipw stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) stteffects
e(cmdline) command as typed
e(dead) d
e(depvar) t
e(tvar) name of treatment variable
e(subcmd) ipw
e(tmodel) treatment model: logit, probit, or hetprobit
e(cmodel) censoring model: weibull, exponential, gamma, or lognormal
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
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e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
The methods and formulas for the IPW estimators implemented in stteffects ipw are given in

Methods and formulas of [TE] stteffects ipwra.
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Also see
[TE] stteffects postestimation — Postestimation tools for stteffects

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data

[ST] streg — Parametric survival models

[ST] stset — Declare data to be survival-time data

[U] 20 Estimation and postestimation commands



Title

stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

stteffects ipwra estimates the average treatment effect (ATE), the average treatment effect on
the treated (ATET), and the potential-outcome means (POMs) from observational survival-time data
by inverse-probability-weighted regression adjustment (IPWRA). IPWRA estimators use missingness-
adjusted regression coefficients to compute averages of treatment-level predicted outcomes. Contrasts
of these averages estimate the treatment effects. stteffects ipwra offers several choices for the
functional forms of the outcome model, of the treatment model, and of the optional time-to-censoring
model. Binary and multivalued treatments are accommodated.

See [TE] stteffects intro for an overview of estimating treatment effects from observational
survival-time data.

Quick start
Specify time as observed failure time and fail as failure indicator

stset time, failure(fail)

ATE of binary treatment treat2 estimated by IPWRA using a Weibull model for time on x1 and x2
and a logistic model for treat2 on x1 and w

stteffects ipwra (x1 x2) (treat2 x1 w)

As above, but estimate the ATET

stteffects ipwra (x1 x2) (treat2 x1 w), atet

Gamma model for time and probit model for treat2
stteffects ipwra (x1 x2, gamma) (treat2 x1 w, probit)

ATE for each level of three-valued treatment treat3
stteffects ipwra (x1 x2) (treat3 x1 w)

As above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3
stteffects ipwra (x1 x2) (treat3 x1 w), control("MyControl")

ATE of treat2 estimated by IPWRA using a Weibull model for time on x1 and x2, a logistic model
for treat2 on x1 and w, and a Weibull model for the time to censoring with covariates x1 and x2

stteffects ipwra (x1 x2) (treat2 x1 w) (x1 x2)

Gamma model for time, probit model for treat2, and gamma model for censoring
stteffects ipwra (x1 x2, gamma) (treat2 x1 w, probit) (x1 x2, gamma)

99
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Menu
Statistics > Treatment effects > Survival outcomes > Regression adjustment with IPW

Syntax
stteffects ipwra (omvarlist

[
, omoptions

]
) (tvar tmvarlist

[
, tmoptions

]
)[

(cmvarlist
[
, cmoptions

]
)
] [

if
] [

in
] [

, stat options
]

omvarlist specifies the variables that predict the survival-time variable in the outcome model.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the variables that predict treatment assignment in the treatment model.

cmvarlist specifies the variables that predict censoring in the censoring model.

omoptions Description

Model

weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary(avarlist

[
, noconstant

]
) specify variables used to model ancillary parameter

noconstant suppress constant from outcome model

tmoptions Description

Model

logit logistic treatment model; the default
probit probit treatment model
hetprobit(varlist) heteroskedastic probit treatment model
noconstant suppress constant from treatment model

cmoptions Description

Model

weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary(avarlist

[
, noconstant

]
) specify variables used to model ancillary parameter

noconstant suppress constant from censoring model
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stat Description

Stat

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means

options Description

SE/Robust

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
noshow do not show st setting information
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
iterinit(#) specify starting-value iterations; seldom used

Advanced

pstolerance(#) set the tolerance for the overlap assumption
osample(newvar) identify observations that violate the overlap assumption
control(# | label) specify the level of tvar that is the control
tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.
omvarlist, tmvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in

[ST] stset. However, weights may not be specified if you are using the bootstrap prefix.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ancillary(avarlist
[
, noconstant

]
) specifies the variables used to model the ancillary parameter.

By default, the ancillary parameter does not depend on covariates. Specifying ancillary(avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

ancillary() may be specified for the model for survival-time outcome, for the model for the
censoring variable, or for both. If ancillary() is specified for both, the varlist used for each
model may be different.



102 stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment

noconstant; see [R] estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ipwra from showing the key st variables. This option is rarely used
because most people type stset, show or stset, noshow to permanently set whether they want
to see these variables mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[
, # . . .

]
, copy

iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This
option is seldom used.

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(1e-5). stteffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() may not be specified with the statistic pomeans. control() and
tlevel() may not specify the same treatment level.
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tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel() may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
If you are not familiar with the framework for treatment-effects estimation from observational

survival-time data, please see [TE] stteffects intro.

IPWRA estimators use estimated weights to obtain missingness-adjusted outcome-regression pa-
rameters. The missingness-adjusted outcome-regression parameters are used to compute averages of
treatment-level predicted outcomes. Contrasts of these averages estimate the treatment effects.

The estimated weights account for the missing potential outcome and, optionally, for data lost to
censoring. The weights are estimated using a treatment-assignment model and, optionally, a model
for the censoring time. A term in the estimator for the outcome-regression parameters accounts for
data lost to censoring when estimated weights are not used.

There are two versions of the IPWRA estimator because there are two methods of accounting for
the data lost to censoring.

1. IPWRA estimators that adjust for censoring by including a term in the likelihood function for
the outcome-model parameters are known as likelihood-adjusted-censoring IPWRA (LAC-IPWRA)
estimators.

2. IPWRA estimators that adjust for censoring by weighting the likelihood function for the outcome-
model parameters by estimated inverse-probability-of-censoring weights are known as weighted-
adjusted-censoring IPWRA (WAC-IPWRA) estimators.

The LAC-IPWRA estimators require fewer assumptions than the WAC-IPWRA estimators. Outlining
the steps performed by LAC-IPWRA and WAC-IPWRA estimators allows us to be more specific about
the trade-offs between the estimators.

LAC-IPWRA estimators use a three-step approach to estimating treatment effects:

1. Estimate the parameters of a treatment-assignment model and compute inverse-probability-of-
treatment weights.

2. Obtain the treatment-specific predicted mean outcomes for each subject by using the weighted
maximum likelihood estimators. Estimated inverse-probability-of-treatment weights are used
to weight the maximum likelihood estimator. A term in the likelihood function adjusts for
right-censored survival times.

3. Compute the means of the treatment-specific predicted mean outcomes. Contrasts of these
averages provide the estimates of the ATEs. By restricting the computations of the means to the
subset of treated subjects, we can obtain the ATETs.
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WAC-IPWRA estimators use a four-step approach to estimating treatment effects:

1. Estimate the parameters of a treatment-assignment model and compute inverse-probability-of-
treatment weights.

2. Estimate the parameters of a time-to-censoring model and compute inverse-probability-of-
censoring weights.

3. Obtain the treatment-specific predicted mean outcomes for each subject by using the weighted
maximum likelihood estimators. Estimated inverse-probability-of-treatment weights and inverse-
probability-of-censoring weights are used to weight the maximum likelihood estimator. The
inverse-probability-of-censoring weights account for right-censored survival times.

4. Compute the means of the treatment-specific predicted mean outcomes. Contrasts of these
averages provide the estimates of the ATEs. By restricting the computations of the means to the
subset of treated subjects, we can obtain the ATETs.

The WAC-IPWRA estimators require that the censoring time be random and that the time-to-
censoring model be well specified. The implemented WAC-IPWRA estimators also require that the
time-to-censoring process not vary by treatment level. The LAC-IPWRA estimators do not require these
extra assumptions because they use a likelihood term instead of weights to adjust for the data lost to
censoring.

Here we note only a few entry points to the vast literature on estimators that combine IPW and RA
methods. Hirano, Imbens, and Ridder (2003), Imbens (2000, 2004), Imbens and Wooldridge (2009),
Rosenbaum and Rubin (1983), Robins and Rotnitzky (1995, 2006), Robins, Rotnitzky, and Zhao (1995),
Wooldridge (2002, 2007), Cameron and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21), and
Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to estimating ATEs and to
the IPWRA estimators in particular.

Like streg and other survival-time commands, stteffects ipwra uses the outcome variable and
the failure indicator computed by, and optionally weights specified with, stset. stteffects ipwra
is not appropriate for data with time-varying covariates, also known as multiple-record survival-time
data, or for delayed-entry data.

Example 1: Estimating the ATE by LAC-IPWRA

Suppose we wish to study the effect of smoking on the time to a second heart attack among women
aged 45–55 years. In our fictional sheart dataset, atime is the observed time in years to a second
heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed.
(When fail is 1, atime records the time to the second heart attack; when fail is 0, atime records
a censored observation of the time to a second heart attack.) We previously stset these data; see A
quick tour of the estimators in [TE] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the
time of the first heart attack (age), and indices of the level of exercise (exercise), diet quality
(diet), and education (education) prior to the first heart attack.

We can use stteffects ipwra to estimate the ATE. We model the mean survival time using the
default Weibull model, controlling for age, exercise, diet, and education. We model treatment
assignment using the default logit model with covariates age, exercise, and education. We do
not specify a time-to-censoring model so that we obtain the LAC estimator.
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. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))

. stteffects ipwra (age exercise diet education) (smoke age exercise education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.432e-16
Iteration 1: EE criterion = 1.021e-29

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.591874 .4837332 -3.29 0.001 -2.539973 -.643774

POmean
smoke

Nonsmoker 4.214263 .2598689 16.22 0.000 3.704929 4.723597

When every woman smoked in the population of women aged 45–55 years who have had a heart
attack, the average time to a second heart attack is estimated to be 1.59 years less than when no
women in the population of interest smoked. The estimated average time to a second heart attack
when no women in the population of interest smoked is 4.21 years.

The ratio of the ATE to the control-level potential-outcome mean (POM) measures the importance
of the effect. In this example, when all women smoked, the time to the second heart attack falls by
an estimated 38% relative to the case in which no women smoked. See example 3 in [TE] stteffects
ra for an example that uses nlcom to compute a point estimate and a confidence interval for this
ratio.
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Example 2: Different outcome and treatment models

Instead of a Weibull model for the outcome model, we could have used an exponential, a gamma,
or a lognormal model. Instead of a logit model for the treatment assignment, we could have used a
probit or a heteroskedastic probit model. This example uses a gamma model for the outcome and a
probit model for the treatment assignment.

. stteffects ipwra (age exercise diet education, gamma)
> (smoke age exercise education, probit)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.644e-13
Iteration 1: EE criterion = 2.153e-23

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : gamma
Treatment model: probit
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.387303 .4786032 -2.90 0.004 -2.325348 -.4492583

POmean
smoke

Nonsmoker 3.97986 .2258474 17.62 0.000 3.537207 4.422512

The estimated ATE of −1.39 and control-level POM of 3.98 are similar to the values of −1.59 and
4.21 that we obtained in example 1.
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Example 3: Estimating the ATE by WAC-IPWRA

Rather than using LAC, we may want to specify a time-to-censoring model. We now use stteffects
ipwra to estimate the ATE by WAC-IPWRA. We use the same specification of the outcome and treatment
models that we used in example 1. However, now we specify a time-to-censoring model, using the
default Weibull model with covariates age, exercise, diet, and education.

. stteffects ipwra (age exercise diet education) (smoke age exercise education)
> (age exercise diet education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 1.217e-17
Iteration 1: EE criterion = 9.176e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.285057 .7318456 -3.12 0.002 -3.719448 -.8506656

POmean
smoke

Nonsmoker 4.385841 .6427521 6.82 0.000 3.12607 5.645612

The estimated ATE of −2.29 differs from the ATE of −1.59 estimated by LAC-IPWRA, but the
estimates of the control-level POM are similar between the two models: 4.39 for the WAC compared
with 4.21 for the LAC.
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Example 4: Estimating the ATET by LAC-IPWRA

Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes
the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the
added benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and
trade-offs under Remarks and examples in [TE] stteffects intro.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise education), atet

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.671e-18
Iteration 1: EE criterion = 1.638e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.775107 .3437506 -5.16 0.000 -2.448846 -1.101368

POmean
smoke

Nonsmoker 4.062424 .2779877 14.61 0.000 3.517578 4.60727

When all women in the subpopulation smoked, the average time to a second heart attack is
estimated to be 1.78 years less than when no women in the subpopulation of interest smoked. If no
women in the subpopulation of interest smoked, the average time to a second heart attack is 4.06
years.

Stored results
stteffects ipwra stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) stteffects
e(cmdline) command as typed
e(dead) d
e(depvar) t
e(tvar) name of treatment variable
e(subcmd) ipwra
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e(omodel) outcome model: weibull, exponential, gamma, or lognormal
e(tmodel) treatment model: logit, probit, or hetprobit
e(cmodel) censoring model: weibull, exponential, gamma, or lognormal (if specified)
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Regression-adjusted estimators
Weighted-adjusted-censoring assumptions
Weighted regression-adjusted estimators
Inverse-probability-weighted estimators

Uncensored data
Inverse-probability-weighted regression-adjustment estimators

Weighted-adjusted-censoring IPWRA
Likelihood-adjusted-censoring IPWRA

Functional-form details

Introduction

This section presents the methods and formulas used by the estimators implemented in stteffects
ra, stteffects wra, stteffects ipw, and stteffects ipwra. This section assumes that you are
familiar with the concepts and intuition from the estimators discussed in [TE] teffects intro advanced.

Each of the estimators implemented in stteffects has a multistep logic but is implemented
as one step by simultaneously solving the estimating equations that define each step. This one-step
estimating-equation approach provides consistent point estimates and a consistent variance–covariance
of the estimator (VCE); see Newey (1984), Wooldridge (2010), and Drukker (2014).

Survival-time treatment-effects estimators handle two types of missing data. First, only one of the
potential outcomes is observed, as is standard in causal inference. Second, the potential outcome for
the received treatment may be censored. The data missing because of censoring may be handled by
an outcome model, a censoring model, or both, just like the data missing due to observing only one
potential outcome.
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Technical note

Delayed entry would be a third type of missing data. The left-truncation process caused by delayed
entry would also need to be modeled to estimate ATE parameters. The estimators implement in
stteffects do not allow for delayed entry because they do not have a method for modeling how
the left-truncation process selects the sample, conditional on the covariates.

All the implemented estimators are combinations of regression-adjustment (RA) and inverse-
probability-weighted (IPW) techniques. RA estimators use an outcome model to account for the
missing potential outcome and for censoring. IPW estimators use models for treatment assignment
and censoring to construct weights that account for the missing potential outcome and for censoring.

The remainder of this section provides technical details about how the estimators in stteffects
were implemented. We provide details only for the two-treatment-level case to simplify the formulas.
We provide outlines for how the extensions to the multiple-treatment-level case were implemented.

Regression-adjusted estimators

We begin with the RA estimators implemented in stteffects ra. The RA estimators have the
following logic:

RA1. For each treatment level τ ∈ {0, 1}, estimate by maximum likelihood (ML) the parameters βτ
of a parametric model for the survival-time outcome t in which F (t|x, τ,βτ ) is the distribution
of t conditional on covariates x and treatment level τ . Denote the estimates βτ by β̂ra,τ .

RA2. Use the estimated β̂ra,τ and the functional form implied by F (t|x, τ,βτ ) to estimate the mean
survival time, conditional on x and treatment level τ , for each sample observation, denoted by
Ê(ti|xi, τ, β̂ra,τ ). Conditional independence of the treatment and the survival-time potential
outcomes ensures that E(t|x, τ,βτ ) = E(tτ |x,βτ ), where tτ is the potential survival-time
outcome corresponding to treatment level τ . Under correct model specification, sample averages
of Ê(ti|xi, τ, β̂ra,τ ) consistently estimate the POM for treatment level τ , denoted by POMτ .

RA3. A contrast of the estimated POMs estimates the ATE.

If estimating an ATET, step RA2 is modified to use only the treated observations when estimating
the POMs. A contrast of these POMs then estimates the ATET.

The contribution of the ith observation to the log likelihood that is maximized in step RA1 is

Lra(ti,xi, τ, β̂ra,τ ) = $i(τi == τ)
[
(1− ci) ln{f(ti|xi, τ, β̂ra,τ )}

+ ci ln{1− F (ti|xi, τ, β̂ra,τ )}
] (1)

where $i is the observation-level weight, ci is the 0/1 indicator for whether the survival-time
observation on person i was censored, and f(ti|xi, τ, β̂ra,τ ) is the density corresponding to distri-
bution F (ti|xi, τ, β̂ra,τ ). The first term inside the curly braces in (1) accounts for the noncensored
observations, and the second term inside the curly braces accounts for the censored observations.
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The RA estimators for the POMs simultaneously solve estimating equations (2a) through (2d) for
β̂ra,0, β̂ra,1, P̂OMra,0, and P̂OMra,1.

1/N

N∑
i=1

sra(ti,xi, 0, β̂ra,0, F ) = 0 (2a)

1/N

N∑
i=1

sra(ti,xi, 1, β̂ra,1, F ) = 0 (2b)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂ra,0)− P̂OMra,0

}
= 0 (2c)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ra,1)− P̂OMra,1

}
= 0 (2d)

where

sra(ti,xi, 0, β̂ra,0, F ) =
∂Lra(ti,xi,0,β̂ra,0)

∂β̂ra,0

is the vector of score equations from the ML estimator

for β̂ra,0 based on survival-time model F ,

sra(ti,xi, 1, β̂ra,1, F ) =
∂Lra(ti,xi,1,β̂ra,1)

∂β̂ra,1

is the vector of score equations from the ML estimator

for β̂ra,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂ra,0) is the predicted mean survival time assuming treatment level 0 for observation
i conditional on xi, and

Ê(ti|xi, τ = 1, β̂ra,1) is the predicted mean survival time assuming treatment level 1 for observation
i conditional on xi.

The ATE is estimated by replacing (2d) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ra,1)− P̂OMra,0 − ÂTEra

}
= 0 (3)

and the ATET is estimated by replacing (2c) and (3) with

1/N1

N∑
i=1

$i(τi == 1)
{

Ê(ti|xi, τ = 0, β̂ra,0)− P̂OMra,cot,0

}
= 0

1/N1

N∑
i=1

$i(τi == 1)
{

Ê(ti|xi, τ = 1, β̂ra,1)− P̂OMra,cot,0 − ÂTETra

}
= 0

where N1 =
∑N
i=1(ti == 1) and P̂OMra,cot,0 is the estimated conditional-on-treatment POM for

treatment level 0.
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Asymptotic standard errors for estimating equation estimators, also known as exactly identified
generalized method of moments estimators, are standard in the literature; see Newey (1984), Newey
and McFadden (1994), Tsiatis (2006), and Wooldridge (2010). These standard errors always have a
robust structure and have been generalized to cluster–robust standard errors (see Wooldridge [2010]).

The score equations and the functional form for the predicted mean survival time depend on the
model for survival-time outcome F . We provide these details below, under Functional-form details.

Weighted-adjusted-censoring assumptions

All estimators that permit you to model the time to censoring are subject to three assumptions:

1. The censoring time must be random.

2. The censoring time must be from a known distribution.

3. The distribution of the censoring time cannot vary by treatment level.

We call these three requirements the WAC assumptions. If the WAC assumptions are violated, you
can use either an RA estimator or the LAC version of the IPWRA estimator.

Technical note

We now describe how the observed survival-time outcome t is generated from the random censoring
time tc, the received treatment τ , and the potential-outcome survival times t0 and t1 under the WAC
assumptions. First, each potential outcome is either censored or not censored.

t̃0 = tc(t0 ≥ tc) + t0{1− (t0 ≥ tc)}
t̃1 = tc(t1 ≥ tc) + t1{1− (t1 ≥ tc)}

Under the WAC assumptions, tc is a random variable from a known distribution, and tc does not vary
by treatment level.

Next, the received treatment τ ∈ {0, 1} determines which, possibly censored, potential outcome
is observed.

t = (1− τ)t̃0 + τ t̃1

The 0/1 indicator for whether the observed t was censored, denoted by c, is given by

c = (1− τ)(t0 ≥ tc) + τ(t1 ≥ tc)

Weighted regression-adjusted estimators

As is standard in the survival literature, the RA estimators account for censored survival times by
adding a term to the log-likelihood function for censored observations [see (1)]. In contrast, weighted
regression-adjustment (WRA) estimators use weights to account for censored observations and are
subject to the WAC assumptions.

Wooldridge (2007) and Lin (2000) derived estimators for the regression parameters that maximize
a weighted objective function of the uncensored observations. Each observation-level weight is the
inverse of the probability of not being censored. Like the RA estimators, the WRA estimators use
averages of the predicted mean survival times to estimate treatment-effect parameters.
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The WRA estimators have the following logic.

WRA1. Estimate by ML the parameters γ of a parametric survival-time model for the time to censoring
tc, in which Fc(tc|w,γ) is the distribution of tc conditional on covariates w. Note that the
censoring process does not vary by treatment level and that we only observe tc when the
observed potential outcome was censored. Denote the estimates of γ by γ̂.

WRA2. For each treatment level τ ∈ {0, 1}, estimate by weighted maximum likelihood (WML) the
βτ parameters of a parametric survival-time model, denoted by F (t|x, τ,βτ ), where t is the
survival-time outcome and x are the covariates. The weights are the inverse of the estimated
probabilities of not being censored, 1/{1−Fc(tc|w, γ̂)}, and only the uncensored observations
are used. Denote the estimates of βτ by β̂wra,τ .

WRA3. Use the estimated β̂wra,τ and the functional form implied by F (t|x, τ,βτ ) to estimate the mean
survival time, conditional on x and treatment level τ , for each sample observation, denoted by
Ê(ti|xi, τ, β̂wra,τ ). Conditional independence of the treatment and the survival-time potential
outcomes ensures that E(t|x, τ,βτ ) = E(tτ |x,βτ ), where tτ is the potential survival-time
outcome corresponding to treatment level τ . Under correct model specification, sample averages
of Ê(ti|xi, τ, β̂wra,τ ) consistently estimate the POM for treatment level τ , denoted by POMτ .

WRA4. A contrast of the estimated POMs estimates the ATE.

If estimating an ATET, step WRA3 is modified to use only the treated observations when estimating
the POMs. A contrast of these POMs then estimates the ATET.

The contribution of the ith observation to the log likelihood that is maximized in step WRA1 is

Lc,wra(ti,wi, γ̂) = $i [ci ln{fc(ti|wi, γ̂)}+ (1− ci) ln{1− Fc(ti|wi, γ̂)}] (4)

where $i is the observation-level weight, ci is the 0/1 indicator for whether the survival-time
observation on person i was censored, ti is the observed failure time, and fc(ti|wi, γ̂) is the density
corresponding to conditional time-to-censoring distribution Fc(ti|wi, γ̂). When ci = 1, ti is the time
to censoring. When ci = 0, the censoring time is not observed; we only know that it is greater
than the observed ti. The first term accounts for the observations in which ti is observed to be the
censoring time, and the second term accounts for the observations in which the censoring time is
greater than the observed ti.

The contribution of the ith observation to the log likelihood that is maximized in step WRA2 is

Lwra(ti,xi, τ, β̂wra,τ ) = $i(τi == τ)

[
(1− ci)

{1− Fc(ti|wi, γ̂)}

]
ln{f(ti|xi, τ, β̂wra,τ )} (5)

where f(ti|xi, τ, β̂wra,τ ) is the density corresponding to distribution F (ti|xi, τ, β̂wra,τ ). Equation
(5) does not contain a term that adjusts for censoring; see (1) for a comparison. Rather, it uses
inverse-probability weights to account for both the censored and the uncensored observations.

The WRA estimators for the POMs simultaneously solve estimating equations (6a) through (6e) for
γ̂, β̂wra,0, β̂wra,1, P̂OMwra,0, and P̂OMwra,1.

1/N

N∑
i=1

swra(ti,wi, γ̂, Fc) = 0 (6a)

1/N

N∑
i=1

swra(ti,xi, 0, β̂wra,0, F ) = 0 (6b)
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1/N

N∑
i=1

swra(ti,xi, 1, β̂wra,1, F ) = 0 (6c)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂wra,0)− P̂OMwra,0

}
= 0 (6d)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂wra,1)− P̂OMwra,1

}
= 0 (6e)

where

swra(ti,wi, γ̂, Fc) =
∂Lc,wra(ti,wi,γ̂)

∂γ̂
is the vector of score equations from the ML estimator for

γ̂ based on survival-time model Fc,

swra(ti,xi, 0, β̂wra,0, F ) =
∂L(ti,xi,0,β̂wra,0)

∂β̂wra,0

is the vector of score equations from the WML

estimator for β̂wra,0 based on survival-time model F ,

swra(ti,xi, 1, β̂wra,1, F ) =
∂L(ti,xi,1,β̂wra,1)

∂β̂wra,1

is the vector of score equations from the WML

estimator for β̂wra,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂wra,0) is the predicted mean survival time assuming treatment level 0 for
observation i conditional on xi, and

Ê(ti|xi, τ = 1, β̂wra,1) is the predicted mean survival time assuming treatment level 1 for
observation i conditional on xi.

The observation-level scores swra(ti,xi, 0, β̂wra,0, F ) and swra(ti,xi, 1, β̂wra,1, F ) also depend on
ci, wi, γ̂, and Fc, but we ignored this dependence to simplify the notation.

The ATE is estimated by replacing (6e) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂wra,1)− P̂OMwra,0 − ÂTEwra

}
= 0 (7)

and the ATET is estimated by replacing (6e) and (7) with

1/N1

N∑
i=1

$i(τi == 1)
{

Ê(ti|xi, τ = 0, β̂wra,0)− P̂OMwra,cot,0

}
= 0

1/N1

N∑
i=1

$i(τi == 1)
{

Ê(ti|xi, τ = 1, β̂wra,1)− P̂OMwra,cot,0 − ÂTETwra

}
= 0

where P̂OMwra,cot,0 is the estimated conditional-on-treatment POM.
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Inverse-probability-weighted estimators

IPW estimators are weighted averages of the observed outcome. The weights correct for missing
data due to unobserved potential outcomes and censoring. Each weight is the inverse of the probability
that a given value is observed. Observed values that were not likely to be observed have higher weights.

When the outcome variable is never censored, the missing data is the unobserved potential outcome
and an observation’s weight is the inverse of a treatment probability. When the outcome may be
censored, the censoring is an additional source of missing data. In this case, an observation’s weight
is the inverse of the joint probability that an observation is uncensored and has a particular treatment
level.

To define this joint probability, the censoring time must be random. In practice, we make the WAC
assumptions.

As is standard in the survival-time literature, we assume that the censoring-time process is
independent of treatment assignment after conditioning on the covariates. This conditional independence
assumption implies that the probability that observation i receives treatment level 1 and is not censored
is the product of the probability that i gets treatment level 1 and the probability that i is not censored
at time ti, which we denote by

p(zi,α){1− Fc(ti|wi,γ)}

where

p(zi,α) is the modeled probability that i gets treatment level 1, conditional on covariates zi with
parameters α, and

Fc(ti|wi,γ) is the survival-time model for the censoring time, conditional on covariates wi with
parameters γ, and evaluated at time ti.

Bai, Tsiatis, and O’Brien (2013) formally derive these weights to control jointly for the missing
potential outcome and censoring.

The IPW estimators have the following logic.

IPW1. Estimate by ML the parameters γ of a parametric survival-time model for the time to censoring,
in which Fc(tc|w,γ) is the distribution of censoring time, conditional on covariates w. Denote
the estimates of γ by γ̂.

IPW2. Estimate by ML the parameters α of a parametric model for the probability of treatment model
p(zi,α). Denote the estimates of α by α̂.

IPW3. Use the γ̂ estimated in IPW1 and the α̂ estimated in IPW2 to construct inverse-probability weights
by (8a) for treatment level 1 and by (8b) for treatment level 0.

ωi,1 =
(τi == 1)(ci == 0)

[p(zi, α̂){1− Fc(ti|wi, γ̂)}]
(8a)

ωi,0 =
(τi == 0)(ci == 0)

[{1− p(zi, α̂)}{1− Fc(ti|wi, γ̂)}]
(8b)

IPW4. Use the estimated weights to estimate each POMτ by a weighted average of the uncensored
observations on the observed potential outcome.
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The contribution of the ith observation to the log likelihood that is maximized in step IPW1 is

Lc,ipw(ti,wi, γ̂) = $i [ci ln{fc(ti|wi, γ̂)}+ (1− ci) ln{1− Fc(ti|wi, γ̂)}]

where the definitions and intuition are as described after (4).

The contribution of the ith observation to the log likelihood that is maximized in step IPW2 is

Lp,ipw(τi, zi, α̂) = $i [(τi == 1) ln{p(zi, α̂)}+ {1− (τi == 1)} ln{1− p(zi, α̂)}]

where p(zi, α̂) is the model for the probability that i gets treatment level 1.

The IPW estimators for the POMs simultaneously solve estimating equations (9a) through (9d) for
γ̂, α̂, P̂OMipw,0, and P̂OMipw,1.

1/N

N∑
i=1

sipw(ti,wi, γ̂, Fc) = 0 (9a)

1/N

N∑
i=1

sipw(τi, zi, α̂, p) = 0 (9b)

1/N

N∑
i=1

$iωi,0
(
ti − P̂OMipw,0

)
= 0 (9c)

1/N

N∑
i=1

$iωi,1
(
ti − P̂OMipw,1

)
= 0 (9d)

where

sipw(ti,wi, γ̂, Fc) =
∂Lc,ipw(ti,wi,γ̂)

∂γ̂
is the vector of score equations from the ML estimator for

γ̂ based on survival-time model Fc, and

sipw(τi, zi, α̂, p) =
∂Lp,ipw(τi,zi,α̂)

∂α̂
is the vector of score equations from the ML estimator for α̂

based on probability model p.

The literature on IPW estimators discusses using normalized versus unnormalized weights, with
normalized weights doing better in simulation studies; see Busso, DiNardo, and McCrary (2014) for
example. The way that weights enter moment equations (9c) and (9d) implies that they are normalized,
because the scale of the weights does not affect the estimates.

The estimated ATE is computed as

P̂OMipw,1 − P̂OMipw,0 = ÂTEipw

The estimated ATET uses weights

ωi,cot,1 =
(τi == 1)(ci == 0)

[{1− Fc(ti|wi, γ̂)}]
(10a)

for treatment level 1 and

ωi,cot,0 =
p(zi, α̂)(τi == 0)(ci == 0)

[{1− p(zi, α̂)}{1− Fc(ti|wi, γ̂)}]
(10b)
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for treatment level 0, and replaces (9c) and (9d) with

1/N1

N∑
i=1

$iωi,cot,0

(
ti − P̂OMipw,cot,0

)
= 0 (11a)

1/N1

N∑
i=1

$iωi,cot,1

(
ti − P̂OMipw,cot,1

)
= 0 (11b)

and then computes
P̂OMipw,cot,1 − P̂OMipw,cot,0 = ÂTETipw

These IPW estimators can be viewed as weighted IPW estimators and are thus related to those in
Hirano, Imbens, and Ridder (2003).

Uncensored data

As mentioned, when the outcome variable is never censored, the missing data is the unobserved
potential outcome and an observation’s weight is the inverse of a treatment probability. In the never-
censored case, the IPW estimators are identical to those implemented in teffects ipw; see IPW
estimators under Methods and formulas in [TE] teffects aipw.

stteffects ipw computes the estimator for never-censored data when a censoring model is
not specified and there are no censored observations in the sample. In the never-censored case, the
following changes are made to the IPW estimator for the POMs and the ATE.

1. Step IPW1 is not performed.

2. The weights in (8a) and (8b) for the POMs and the ATE are replaced with (12a) for treatment
level 1 and (12b) for treatment level 0.

ωi,1 =
(τi == 1)

p(zi, α̂)
(12a)

ωi,0 =
(τi == 0)

{1− p(zi, α̂)}
(12b)

3. Only moment conditions (9b), (9c), and (9d) are used.

The following changes also are made to the IPW estimator for the ATET.

1. Step IPW1 is not performed.

2. The weights in (10a) and (10b) are replaced with (13a) for treatment level 1 and (13b) for
treatment level 0.

ωi,cot,1 = (τi == 1) (13a)

ωi,cot,0 =
p(zi, α̂)(τi == 0)

{1− p(zi, α̂)}
(13b)

3. Only moment conditions (9b), (11a), and (11b) are used.
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Inverse-probability-weighted regression-adjustment estimators

IPWRA estimators are averages of treatment-specific predicted conditional means that were made
using missingness-adjusted regression parameters. These estimators are Wooldridge’s IPWRA for
survival-time outcomes; see Wooldridge (2010, chap. 21) and Wooldridge (2007).

The censored observations can be handled either by weighting under the WAC assumptions to
obtain the WAC-IPWRA estimator or by adding a term to the log-likelihood function (which we call
likelihood-adjusted censoring) to obtain the LAC-IPWRA estimator. Correspondingly, there are two
versions of formulas for the IPWRA estimator.

1. When a censoring model is specified, stteffects ipwra uses the formulas for the WAC-IPWRA
estimator given in Weighted-adjusted-censoring IPWRA.

2. When a censoring model is not specified, stteffects ipwra uses the formulas for the
LAC-IPWRA given in Likelihood-adjusted-censoring IPWRA, below.

The WAC-IPWRA estimator requires that some observations be censored and that the WAC assumptions
hold; see Weighted-adjusted-censoring assumptions, above. The LAC-IPWRA estimator handles the case
in which no observations are censored and requires the weaker independent censoring assumptions,
which allows for fixed censoring times.

Weighted-adjusted-censoring IPWRA

When a censoring model is specified, stteffects ipwra uses the formulas for the WAC-IPWRA
estimator to obtain the model-based weights that account for censoring. For notational conciseness
and to reinforce its dependence on random censoring, we denote the WAC-IPWRA estimator by IPWRAR
in lists and formulas. The WAC-IPWRA estimators have the following logic.

IPWRAR1. Estimate by ML the parameters γ of a parametric survival-time model for the time to
censoring, in which Fc(tc|w,γ) is the censoring-time distribution, conditional on covariates
w. We denote the estimates of γ by γ̂.

IPWRAR2. Estimate by ML the parameters α of a parametric model for the probability of treatment
model p(zi,α). We denote the estimates of α by α̂.

IPWRAR3. For each treatment level τ ∈ {0, 1}, estimate by WML the parameters βτ of a parametric
model for the survival-time outcome t, in which F (t|x, τ,βτ ) is the distribution of t
conditional on covariates x and treatment level τ . For the ATE, the weights are those in
equations (8a) and (8b). For the ATET, the weights are those in equations (10a) and (10b).
We denote the estimates of βipwrar,τ by β̂τ .

IPWRAR4. Use the estimated β̂ipwrar,τ and the functional form implied by F (t|x, τ,βτ ) to estimate the
mean survival time, conditional on x and treatment level τ , for each sample observation,
denoted by Ê(ti|xi, τ, β̂ipwrar,τ ). Conditional independence of the treatment and the
survival-time potential outcomes ensures that E(t|x, τ,βτ ) = E(tτ |x,βτ ), where tτ is
the potential survival-time outcome corresponding to treatment level τ . Under correct model
specification, sample averages of Ê(ti|xi, τ, β̂ipwrar,τ ) consistently estimate the POM for
treatment level τ , denoted by POMτ .

The contribution of the ith observation to the log likelihood that is maximized in step IPWRAR1 is

Lc,ipwrar(ti,wi, γ̂) = $i [ci ln{fc(ti|wi, γ̂)}+ (1− ci) ln{1− Fc(ti|wi, γ̂)}]

where the definitions and intuition are as described after (4).
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The contribution of the ith observation to the log likelihood that is maximized in step IPWRAR2 is

Lp,ipwrar(τi, zi, α̂) = $i [(τi == 1) ln{p(zi, α̂)}+ {1− (τi == 1)} ln{1− p(zi, α̂)}]

where p(zi, α̂) is the model for the probability that i gets treatment level 1.

The weights and the parameters in step IPWRAR3 used to estimate the ATE differ from those used
to estimate the ATET. For the ATE, the contribution of the ith observation to the log likelihood that
is maximized in step IPWRAR3 is

Lipwrar(ti,xi, τ, β̂ipwrar,ate,τ ) = $iωi,τ ln{f(ti|xi, τ, β̂ipwrar,ate,τ )}

where ωi,1 is given in (8a), ωi,0 is given in (8b), and f(ti|xi, τ, β̂ipwrar,ate,τ ) is the density
corresponding to distribution F (ti|xi, τ, β̂ipwrar,ate,τ ). Like WRA, only the uncensored observations
are used because the weights account for censoring.

The IPWRAR estimators for the POMs simultaneously solve estimating equations (14a) through (14f)
for γ̂, α̂, β̂ipwrar,ate,0, β̂ipwrar,ate,0, P̂OMipwrar,0, and P̂OMipwrar,1.

1/N

N∑
i=1

sipwrar(ti,wi, γ̂, Fc) = 0 (14a)

1/N

N∑
i=1

sipwrar(τi, zi, α̂, p) = 0 (14b)

1/N

N∑
i=1

sipwrar(ti,xi, 0, β̂ipwrar,ate,0, F ) = 0 (14c)

1/N
N∑
i=1

sipwrar(ti,xi, 1, β̂ipwrar,ate,1, F ) = 0 (14d)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂ipwrar,ate,0)− P̂OMipwrar,0

}
= 0 (14e)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwrar,ate,1)− P̂OMipwrar,1

}
= 0 (14f)

where

sipwrar(ti,wi, γ̂, Fc) =
∂Lc,ipwrar(ti,wi,γ̂)

∂γ̂
is the vector of score equations from the ML estimator

for γ̂ based on survival-time model Fc,

sipwrar(τi, zi, α̂, p) =
∂Lp,ipwrar(τi,zi,α̂)

∂α̂
is the vector of score equations from the ML estimator

for α̂ based on probability model p,

sipwrar(ti,xi, 0, β̂ipwrar,ate,0, F ) =
∂Lipwrar(ti,xi,0,β̂ipwrar,ate,0)

∂β̂ipwrar,ate,0

is the vector of score equations

from the ML estimator for β̂ipwrar,ate,0 based on survival-time model F ,



120 stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment

sipwrar(ti,xi, 1, β̂ipwrar,ate,1, F ) =
∂Lipwrar(ti,xi,1,β̂ipwrar,ate,1)

∂β̂ipwrar,ate,1

is the vector of score equations

from the ML estimator for β̂ipwrar,ate,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂ipwrar,ate,0) is the predicted mean survival time assuming treatment level 0 for
observation i conditional on xi, and

Ê(ti|xi, τ = 1, β̂ipwrar,ate,1) is the predicted mean survival time assuming treatment level 1 for
observation i conditional on xi.

The ATE is estimated by replacing (14f) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwrar,ate,1)− P̂OMipwrar,0 − ÂTEipwrar

}
= 0

For the ATET, the contribution of the ith observation to the weighted log likelihood that is maximized
in step IPWRAR3 is

Lipwrar(ti,xi, τ, β̂ipwrar,ate,τ ) = $iωi,cot,τ (τi == τ) ln{f(ti|xi, τ, β̂ipwrar,atet,τ )}

where ωi,cot,1 is given in (10a), ωi,cot,0 is given in (10b), and f(ti|xi, τ, β̂ipwrar,atet,τ ) is the density
corresponding to distribution F (ti|xi, τ, β̂ipwrar,atet,τ ).

The WAC-IPWRA estimators for the conditional-on-treatment POMs simultaneously solve esti-
mating equations (15a) through (15f) for β̂ipwrar,atet,0, β̂ipwrar,atet,0, γ̂, α̂, P̂OMipwrar,cot,0, and
P̂OMipwrar,cot,1.

1/N

N∑
i=1

sipwrar(ti,wi, γ̂, Fc) = 0 (15a)

1/N

N∑
i=1

sipwrar(τi, zi, α̂, p) = 0 (15b)

1/N

N∑
i=1

sipwrar(ti,xi, 0, β̂ipwrar,atet,0, F ) = 0 (15c)

1/N

N∑
i=1

sipwrar(ti,xi, 1, β̂ipwrar,atet,1, F ) = 0 (15d)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂ipwrar,atet,0)− P̂OMipwrar,cot,0

}
= 0 (15e)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwrar,atet,1)− P̂OMipwrar,cot,1

}
= 0 (15f)

where

sipwrar(ti,wi, γ̂, Fc) =
∂Lc,ipwrar(ti,wi,γ̂)

∂γ̂
is the vector of score equations from the ML estimator

for γ̂ based on survival-time model Fc,
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sipwrar(τi, zi, α̂, p) =
∂Lp,ipwrar(τi,zi,α̂)

∂α̂
is the vector of score equations from the ML estimator

for α̂ based on probability model p,

sipwrar(ti,xi, 0, β̂ipwrar,atet,0, F ) =
∂Lipwrar(ti,xi,0,β̂ipwrar,atet,0)

∂β̂ipwrar,atet,0

is the vector of score equations

from the WML estimator for β̂ipwrar,atet,0 based on survival-time model F ,

sipwrar(ti,xi, 1, β̂ipwrar,atet,1, F ) =
∂Lipwrar(ti,xi,1,β̂ipwrar,atet,1)

∂β̂ipwrar,atet,1

is the vector of score equations

from the WML estimator for β̂ipwrar,atet,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂ipwrar,atet,0) is the predicted mean survival time assuming treatment level 0 for
observation i conditional on xi, and

Ê(ti|xi, τ = 1, β̂ipwrar,atet,1) is the predicted mean survival time assuming treatment level 1 for
observation i conditional on xi.

The ATET is estimated by replacing (15f) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwrar,atet,1)− P̂OMipwrar,cot,0 − ÂTETipwrar

}
= 0

Likelihood-adjusted-censoring IPWRA

When a censoring model is not specified, stteffects ipwra uses the formulas for the LAC-IPWRA
estimator that add a term to the log-likelihood function. For notational conciseness and to reinforce
its use of an additional term in the log likelihood, we denote the LAC-IPWRA estimator by IPWRAL
in lists and formulas.

The methods and formulas for the LAC-IPWRA estimator differ in three ways from those for the
WAC-IPWRA estimator.

1. No censoring model is specified, so LAC-IPWRA does not perform a version of step IPWRAR1
and it does not use the moment equations (14a).

2. The weights only depend on the treatment level and treatment assignment probabilities, not on
the censoring.

3. The WML estimator for βτ includes a term for censored observations and censored observations
are used. Recall that for the WAC-IPWRA estimator, the weights used in the WML estimator for
βτ account for the censoring, and the censored observations are not used in the WML estimator.

The LAC-IPWRA estimators have the following logic.

IPWRAL1. Estimate by ML the parameters α of a parametric model for the probability of treatment
model p(zi,α).

IPWRAL2. For each treatment level τ ∈ {0, 1}, estimate by WML the parameters βτ of a parametric
model for the survival-time outcome t in which F (t|x, τ,βτ ) is the distribution of
t conditional on covariates x and treatment level τ . The weights depend only on the
treatment level and the treatment-assignment probabilities. For the ATE, the weights are
those in (12a) and (12b). For the ATET, the weights are those in (13a) and (13b). We denote
the estimates of βτ by β̂ipwral,τ .
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IPWRAL3. Use the estimated β̂ipwral,τ and the functional form implied by F (t|x, τ,βτ ) to estimate
the mean survival time, conditional on x and treatment level τ , for each sample observa-
tion, denoted by Ê(ti|xi, τ, β̂ipwral,τ ). Conditional independence of the treatment and the
survival-time potential outcomes ensures that E(t|x, τ,βτ ) = E(tτ |x,βτ ), where tτ is the
potential survival-time outcome corresponding to treatment level τ . Under correct model
specification, sample averages of Ê(ti|xi, τ, β̂ipwral,τ ) consistently estimate the POM for
treatment level τ , denoted by POMτ .

The contribution of the ith observation to the log likelihood that is maximized in step IPWRAL1 is

Lp,ipwral(τi, zi, α̂) = $i [(τi == 1) ln{p(zi, α̂)}+ {1− (τi == 1)} ln{1− p(zi, α̂)}]

where p(zi, α̂) is the model for the probability that i gets treatment level 1.

The weights and the parameters in step IPWRAL2 used to estimate the ATE differ from those used
to estimate the ATET. For the ATE, the contribution of the ith observation to the log likelihood that
is maximized in step IPWRAL2 is

Lipwral(ti,xi, τ, β̂ipwral,ate,τ ) = (τi == τ)$iωi,τ

{
(1− ci) ln{f(ti|xi, τ, β̂ipwrar,ate,τ )}

ci ln{1− F (ti|xi, τ, β̂ipwrar,ate,τ )}
}

where ωi,1 is given in (12a), ωi,0 is given in (12b), and f(ti|xi, τ, β̂ipwral,ate,τ ) is the density corre-
sponding to distribution F (ti|xi, τ, β̂ipwral,ate,τ ). Unlike the WRA estimator, the censored observations
are used, and there is a term in the likelihood function to account for censoring.

The LAC-IPWRA estimators for the POMs simultaneously solve estimating equations (16a) through
(16e) for α̂, β̂ipwral,ate,0, β̂ipwral,ate,0, P̂OMipwral,0, and P̂OMipwral,1.

1/N

N∑
i=1

sipwral(τi, zi, α̂, p) = 0 (16a)

1/N

N∑
i=1

sipwral(ti,xi, 0, β̂ipwral,ate,0, F ) = 0 (16b)

1/N

N∑
i=1

sipwral(ti,xi, 1, β̂ipwral,ate,1, F ) = 0 (16c)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂ipwral,ate,0)− P̂OMipwral,0

}
= 0 (16d)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwral,ate,1)− P̂OMipwral,1

}
= 0 (16e)

where

sipwral(τi, zi, α̂, p) =
∂Lp,ipwral(τi,zi,α̂)

∂α̂
is the vector of score equations from the ML estimator

for α̂ based on probability model p,
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sipwral(ti,xi, 0, β̂ipwral,ate,0, F ) =
∂Lipwral(ti,xi,0,β̂ipwral,ate,0)

∂β̂ipwral,ate,0

is the vector of score equations

from the WML estimator for β̂ipwral,ate,0 based on survival-time model F ,

sipwral(ti,xi, 1, β̂ipwral,ate,1, F ) =
∂Lipwral(ti,xi,1,β̂ipwral,ate,1)

∂β̂ipwral,ate,1

is the vector of score equations

from the WML estimator for β̂ipwral,ate,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂ipwral,ate,0) is the predicted mean survival time assuming treatment level 0 for
observation i conditional on xi, and

Ê(ti|xi, τ = 1, β̂ipwral,ate,1) is the predicted mean survival time assuming treatment level 1 for
observation i conditional on xi.

The ATE is estimated by replacing (16e) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwral,ate,1)− P̂OMipwral,0 − ÂTEipwral

}
= 0

For the ATET, the contribution of the ith observation to the WML function that is maximized in step
IPWRAL2 is

Lipwral(ti,xi, τ, β̂ipwral,atet,τ ) = (τi == τ)$iωi,cot,τ

{
(1− ci) ln{f(ti|xi, τ, β̂ipwrar,atet,τ )}

ci ln{1− F (ti|xi, τ, β̂ipwrar,atet,τ )}
}

where ωi,cot,1 is given in (13a), ωi,cot,0 is given in (13b), and f(ti|xi, τ, β̂ipwral,atet,τ ) is the
density corresponding to distribution F (ti|xi, τ, β̂ipwral,atet,τ ). Again unlike the WRA, the censored
observations are used, and there is a term in the likelihood function to account for censoring.

The LAC-IPWRA estimators for the conditional-on-treatment POMs simultaneously solve estimating
equations (17a) through (17e) for α̂, β̂ipwral,atet,0, β̂ipwral,atet,0, P̂OMipwral,cot,0, and P̂OMipwral,cot,1.

1/N

N∑
i=1

sipwral(τi, zi, α̂, p) = 0 (17a)

1/N

N∑
i=1

sipwral(ti,xi, 0, β̂ipwral,atet,0, F ) = 0 (17b)

1/N

N∑
i=1

sipwral(ti,xi, 1, β̂ipwral,atet,1, F ) = 0 (17c)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂ipwral,atet,0)− P̂OMipwral,cot,0

}
= 0 (17d)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwral,atet,1)− P̂OMipwral,cot,1

}
= 0 (17e)
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where

sipwral(τi, zi, α̂, p) =
∂Lp,ipwral(τi,zi,α̂)

∂α̂
is the vector of score equations from the ML estimator

for α̂ based on probability model p,

sipwral(ti,xi, 0, β̂ipwral,atet,0, F ) =
∂Lipwral(ti,xi,0,β̂ipwral,atet,0)

∂β̂ipwral,atet,0

is the vector of score equations

from the WML estimator for β̂ipwral,atet,0 based on survival-time model F ,

sipwral(ti,xi, 1, β̂ipwral,atet,1, F ) =
∂Lipwral(ti,xi,1,β̂ipwral,atet,1)

∂β̂ipwral,atet,1

is the vector of score equations

from the WML estimator for β̂ipwral,atet,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂ipwral,atet,0) is the predicted mean survival time assuming treatment level 0 for
observation i conditional on xi, and

Ê(ti|xi, τ = 1, β̂ipwral,atet,1) is the predicted mean survival time assuming treatment level 1 for
observation i conditional on xi.

The ATET is estimated by replacing (17e) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwral,atet,1)− P̂OMipwral,cot,0 − ÂTETipwral

}
= 0

Functional-form details
In this section, we specify the functional forms for the conditional distribution function used in

the survival-time outcome model F , the conditional distribution function used in the survival-time
censoring model Fc, and the conditional distribution used to model the treatment probabilities p.

You may choose among the same set of conditional distribution functions for either F or Fc:
exponential, weibull, lnormal, or gamma.

Name Cumulative Density Mean
exponential 1− exp(−λiti) λiexp(−λiti) 1/λi
Weibull 1− exp{−(λiti)

si} sit
si−1
i λsii exp{−(λiti)

si} (1/λi)Γ{(si + 1)/si}
log normal Φ{(ln(ti)− λi)/si} (1/(siti))φ{(ln(ti)− λi)/si} exp(λi + s2

i /2)
gamma gammap{si, (siti/λi)} (ssii t

si−1
i )/{λsii Γ(si)}exp(−siti/λi) λi

where the following table specifies how λi and si are parameterized in terms of the covariates xi
and the ancillary covariates x̃i, respectively.

Name λi si
exponential exp(−xiβ)

Weibull exp(−xiβ) exp(x̃iβ̃)

log normal xiβ exp(x̃iβ̃)

gamma exp(xiβ) exp(−2x̃iβ̃)
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For the treatment-assignment models, the probit model uses the standard normal distribution, the
logit uses the standard logistic distribution, the hetprobit model uses

Φ{z1α1/ exp(z2α2)}

and the multinomial logit uses

p(z, t) = exp(zαt)/{1 +

q∑
k=1

exp(zαk)}

where the notation is defined below.

In the hetprobit model, z1 are the covariates specified in the treatment-assignment specification,
z2 are the covariates specified in the hetprobit() option, and α1 and α2 are the corresponding
coefficients.

In the multinomial logit model, z are the covariates specified in the treatment-assignment
specification and αk are the coefficients; see [R] mlogit for further details.
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Postestimation commands
The following postestimation commands are of special interest after stteffects:

Command Description

teffects overlap overlap plots
tebalance check balance of covariates

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses
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predict

Description for predict

predict creates a new variable containing predictions such as treatment effects, conditional means,
propensity scores, linear predictions, and log square roots of latent variances.

Menu for predict

Statistics > Postestimation

Syntaxes for predict

Syntaxes are presented under the following headings:

Syntax for predict after stteffects ipw
Syntax for predict after stteffects ipwra
Syntax for predict after stteffects ra
Syntax for predict after stteffects wra

Syntax for predict after stteffects ipw

predict
[

type
] {

stub* | newvar | newvarlist
} [

if
] [

in
][

, statistic tlevel(treat level)
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

ps propensity score; the default
censurv censored survival probability
xb linear prediction for propensity score
cxb linear prediction for censoring model
lnsigma log square root of latent variance (for treatment model hetprobit())
clnshape log of conditional latent shape (for censoring distribution Weibull,

log normal, or gamma)

If you do not specify tlevel() and only specify one new variable, ps assumes tlevel() specifies the first treatment
level.

If you do not specify tlevel() and only specify one new variable, xb and lnsigma assume tlevel() specifies the
first noncontrol treatment level.

You specify one or t new variables with ps, where t is the number of treatment levels.

You specify one or t−1 new variables with xb and lnsigma.

You specify one new variable with censurv, cxb, and clnshape.
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Syntax for predict after stteffects ipwra

predict
[

type
] {

stub* | newvar | newvarlist
} [

if
] [

in
][

, statistic tlevel(treat level)
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

te treatment effect; the default
cmean conditional mean at treatment level
ps propensity score
censurv censored survival probability
xb linear prediction for outcome model
cxb linear prediction for censoring model
psxb linear prediction for propensity score
lnshape log of conditional latent shape (for outcome distribution Weibull,

log normal, or gamma) at treatment level
clnshape log of conditional latent shape (for censoring distribution Weibull,

log normal, or gamma)
pslnsigma log square root of latent variance (for treatment model hetprobit())

for propensity score

If you do not specify tlevel() and only specify one new variable, te and psxb assume tlevel() specifies the first
noncontrol treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, ps, xb, and pslnsigma assume tlevel()
specifies the first treatment level.

You specify one or t new variables with cmean, ps, xb, and lnshape, where t is the number of treatment levels.

You specify one or t−1 new variables with te, psxb, and pslnsigma.

You specify one new variable with censurv, cxb, and clnshape.
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Syntax for predict after stteffects ra

predict
[

type
] {

stub* | newvar | newvarlist
} [

if
] [

in
][

, statistic tlevel(treat level)
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

te treatment effect; the default
cmean conditional mean at treatment level
xb linear prediction for outcome model
lnshape log of conditional latent shape (for outcome distribution Weibull,

log normal, or gamma) at treatment level

If you do not specify tlevel() and only specify one new variable, te assumes tlevel() specifies the first noncontrol
treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, xb, and lnshape assume tlevel()
specifies the first treatment level.

You specify one or t new variables with cmean, xb, and lnshape, where t is the number of treatment levels.

You specify one or t−1 new variables with te.

Syntax for predict after stteffects wra

predict
[

type
] {

stub* | newvar | newvarlist
} [

if
] [

in
][

, statistic tlevel(treat level)
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

te treatment effect; the default
cmean conditional mean at treatment level
censurv censored survival probability
xb linear prediction for outcome model
cxb linear prediction for censoring model
lnshape log of conditional latent shape (for outcome distribution Weibull,

log normal, or gamma) at treatment level
clnshape log of conditional latent shape (for censoring distribution Weibull,

log normal, or gamma)

If you do not specify tlevel() and only specify one new variable, te assumes tlevel() specifies the first noncontrol
treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, xb, and lnshape assume tlevel()
specifies the first treatment level.

You specify one or t new variables with cmean, xb, and lnshape, where t is the number of treatment levels.

You specify one or t−1 new variables with te.

You specify one new variable with censurv, cxb, and clnshape.
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Options for predict

Options are presented under the following headings:

Options for predict after stteffects ipw
Options for predict after stteffects ipwra
Options for predict after stteffects ra
Options for predict after stteffects wra

Options for predict after stteffects ipw

� � �
Main �

ps, the default, calculates the propensity score of each treatment level or the treatment level specified
in tlevel(). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.

censurv calculates the survivor probability from the time-to-censoring model. (In other words, it
calculates the probability that an outcome is not censored.) This option is allowed only if a
censoring model is specified at estimation time. You need to specify only one new variable.

xb calculates the propensity score linear prediction at each noncontrol level of the treatment or the
treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify
only one new variable; otherwise, you must specify a new variable for each treatment level (except
the control level).

cxb calculates the linear prediction of the censoring model. This option is allowed only if a censoring
model is specified at estimation time. You need to specify only one new variable.

lnsigma calculates the log square root of the latent variance. This option is valid only when treatment
model hetprobit() is used. You need to specify only one new variable.

clnshape calculates the log of the conditional latent shape parameter of the censoring distribution.
This option is valid when censoring distribution Weibull, log normal, or gamma is used. You need
to specify only one new variable.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean
and average treatment-effect equations. Equation-level scores are computed for the censoring and
propensity-score equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if j ≤ t,
where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
j − t following the first t parameters in the coefficient table.

Options for predict after stteffects ipwra

� � �
Main �

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment
level specified in tlevel(). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level (except the
control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in
tlevel(). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.
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ps calculates the propensity score of each treatment level or the treatment level specified in tlevel().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you
must specify a new variable for each treatment level.

censurv calculates the survivor probability from the time-to-censoring model. (In other words, it
calculates the probability that an outcome is not censored.) This option is allowed only if a
censoring model is specified at estimation time. You need to specify only one new variable.

xb calculates the outcome model linear prediction at each treatment level or the treatment level
specified in tlevel(). If you specify the tlevel() option, you need to specify only one new
variable; otherwise, you must specify a new variable for each treatment level.

cxb calculates the linear prediction of the censoring model. This option is allowed only if a censoring
model is specified at estimation time. You need to specify only one new variable.

psxb calculates the propensity score linear prediction at each noncontrol level of the treatment or the
treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify
only one new variable; otherwise, you must specify a new variable for each treatment level (except
the control level).

lnshape calculates the log of the conditional latent shape parameter for each treatment level or the
treatment level specified in tlevel(). This option is valid when outcome distribution Weibull,
log normal, or gamma is used. If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level.

clnshape calculates the log of the conditional latent shape parameter for the censoring distribution.
This option is valid when censoring distribution Weibull, log normal, or gamma is used. You need
to specify only one new variable.

pslnsigma calculates the log square root of the latent variance for the propensity score. This option
is valid only when treatment model hetprobit() is used. You need to specify only one new
variable.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean and
average treatment-effect equations. Equation-level scores are computed for the outcome, censoring,
and propensity-score equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if j ≤ t,
where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
j − t following the first t parameters in the coefficient table.

Options for predict after stteffects ra

� � �
Main �

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment
level specified in tlevel(). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level (except the
control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in
tlevel(). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.

xb calculates the outcome model linear prediction at each treatment level or the treatment level
specified in tlevel(). If you specify the tlevel() option, you need to specify only one new
variable; otherwise, you must specify a new variable for each treatment level.
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lnshape calculates the log of the conditional latent shape parameter for each treatment level or the
treatment level specified in tlevel(). This option is valid when the outcome distribution Weibull,
log normal, or gamma is used. If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean and
average treatment-effect equations. Equation-level scores are computed for the outcome equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if j ≤ t,
where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
j − t following the first t parameters in the coefficient table.

Options for predict after stteffects wra

� � �
Main �

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment
level specified in tlevel(). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level (except the
control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in
tlevel(). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.

censurv calculates the survivor probability from the time-to-censoring model. (In other words, it
calculates the probability that an outcome is not censored.) This option is allowed only if a
censoring model is specified at estimation time. You need to specify only one new variable.

xb calculates the outcome model linear prediction at each treatment level or the treatment level
specified in tlevel(). If you specify the tlevel() option, you need to specify only one new
variable; otherwise, you must specify a new variable for each treatment level.

lnshape calculates the log of the conditional latent shape parameter for each treatment level or the
treatment level specified in tlevel(). This option is valid when the outcome distribution Weibull,
log normal, or gamma is used. If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level.

clnshape calculates the log of the conditional latent shape parameter of the censoring distribution.
This option is valid when the censoring distribution Weibull, log normal, or gamma is used. You
need to specify only one new variable.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean
and average treatment-effect equations. Equation-level scores are computed for the outcome and
censoring equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if j ≤ t,
where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
j − t following the first t parameters in the coefficient table.
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Remarks and examples
Checking model specification is the most frequent reason for postestimation computation after

stteffects. teffects overlap provides a graphical method for checking the overlap assumption;
see [TE] teffects overlap. Summarizing the estimated probabilities provides another check. Recall that
the reciprocals of these estimated probabilities are used as weights by some of the estimators. If the
estimated probabilities are too small, the weights get too large and the estimators become unstable.

We estimate the average treatment effect of smoking on the time to a second heart attack by
inverse-probability weighting; see example 1 of [TE] stteffects ipw for background.

. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))

. stteffects ipw (smoke age exercise education) (age exercise diet education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 5.191e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.22226 .6307573 -3.52 0.000 -3.458522 -.9859983

POmean
smoke

Nonsmoker 4.235569 .5210937 8.13 0.000 3.214244 5.256894

Below, we compute the estimated probabilities of being a Nonsmoker and store them in ps0.
Likewise, the estimated probabilities of being a Smoker are stored in ps1.

. predict ps0 ps1, ps

The overlap condition requires that each of these probabilities be sufficiently greater than 0 and
less than 1 for every individual; see Assumptions and trade-offs under Remarks and examples in
[TE] stteffects intro.

In practice, we know that weighting estimators perform poorly when the weights become too
large. This approach requires that the probability of being a Nonsmoker not be too small among
Nonsmokers and that the probability of being a Smoker not be too small among Smokers. Below,
we summarize these probabilities.
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. summarize ps0 if fail==1 & smoke==0

Variable Obs Mean Std. Dev. Min Max

ps0 716 .6712529 .138754 .3872543 .9840293

. summarize ps1 if fail==1 & smoke==1

Variable Obs Mean Std. Dev. Min Max

ps1 492 .4101277 .1101277 .0850604 .6125538

The minimum probability of being a Nonsmoker among Nonsmokers is 0.39. The minimum
probability of being a Smoker among Smokers is 0.09. Neither minimum seems too small.

Estimating survival-time treatment effects also uses weights to adjust for censored outcomes; see
[TE] stteffects intro. Thus we require that the probability of an uncensored failure also be sufficiently
greater than 0. Below, we compute the estimated probabilities of failure and summarize them among
those that fail.

. predict fprob2, censurv

. summarize fprob if fail==1

Variable Obs Mean Std. Dev. Min Max

fprob2 1,208 .7246067 .2143543 .0364246 .9999086

The minimum probability of 0.04 does not appear too small.

Technical note

The previous discussion builds on the intuition that the weights used in a weighting estimator
should not be too large.

This technical note goes a little further by explicitly computing the weights and using them to
replicate the inverse-probability-weighted point estimate for the Nonsmoker potential-outcome mean.

We now compute the weights using the predicted probabilities computed in the examples above
and then use mean to compute the weighted average that estimates the potential-outcome mean for
Nonsmokers.

. generate double ipw0 = 1/(ps0*fprob)

. mean _t [pw=ipw0] if smoke==0 & fail==1

Mean estimation Number of obs = 716

Mean Std. Err. [95% Conf. Interval]

_t 4.235569 .5820212 3.092894 5.378244

The weights account for data lost to the Smoker potential outcome or to censoring by increasing
the importance of observations that were observed to be Nonsmoker failure times even though they
were not likely to be observed.

The point estimate matches that reported by stteffects ipw; the standard errors differ because
mean takes the estimated weights as given. See Inverse-probability-weighted estimators under Methods
and formulas in [TE] stteffects ipwra.
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stteffects ra — Survival-time regression adjustment

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

stteffects ra estimates the average treatment effect (ATE), the average treatment effect on the
treated (ATET), and the potential-outcome means (POMs) from observational survival-time data by
regression adjustment (RA). RA uses averages of treatment-specific predicted mean survival times to
estimate mean survival times for each potential outcome. Contrasts of these predicted mean survival
times estimate the treatment effects. stteffects ra offers several choices for the model used to
predict mean survival time. Binary and multivalued treatments are accommodated.

See [TE] stteffects intro for an overview of estimating treatment effects from observational
survival-time data.

Quick start
Specify time as observed failure time and fail as failure indicator

stset time, failure(fail)

ATE from a Weibull model for time on x1 and x2 with binary treatment treat2
stteffects ra (x1 x2) (treat2)

As above, but estimate the ATET

stteffects ra (x1 x2) (treat2), atet

As above, but estimate the potential-outcome means
stteffects ra (x1 x2) (treat2), pomeans

ATE of treat2 using a gamma model for time
stteffects ra (x1 x2, gamma) (treat2)

ATE for each level of three-valued treatment treat3
stteffects ra (x1 x2) (treat3)

As above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3
stteffects ra (x1 x2) (treat3), control("MyControl")

Menu
Statistics > Treatment effects > Survival outcomes > Regression adjustment

137
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Syntax

stteffects ra (omvarlist
[
, omoptions

]
) (tvar)

[
if
] [

in
] [

, stat options
]

omvarlist specifies the variables that predict the survival-time variable in the outcome model.

tvar must contain integer values representing the treatment levels.

omoptions Description

Model

weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary(avarlist

[
, noconstant

]
) specify variables used to model ancillary parameter

noconstant suppress constant from outcome model

stat Description

Stat

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means

options Description

SE/Robust

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
noshow do not show st setting information
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
iterinit(#) specify starting-value iterations; seldom used

Advanced

control(# | label) specify the level of tvar that is the control
tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics
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You must stset your data before using stteffects; see [ST] stset.
omvarlist and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in

[ST] stset. However, weights may not be specified if you are using the bootstrap prefix.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ancillary(avarlist
[
, noconstant

]
) specifies the variables used to model the ancillary parameter.

By default, the ancillary parameter does not depend on covariates. Specifying ancillary(avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

noconstant; see [R] estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ra from showing the key st variables. This option is rarely used
because most people type stset, show or stset, noshow to permanently set whether they want
to see these variables mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[
, # . . .

]
, copy
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iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This
option is seldom used.

� � �
Advanced �

control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() may not be specified with the statistic pomeans. control() and
tlevel() may not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel() may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

If you are not familiar with the framework for treatment-effects estimation from observational
survival-time data, please see [TE] stteffects intro.

RA estimators use contrasts of the averages of treatment-specific predicted mean outcomes to
estimate treatment effects. RA estimators use a two-step approach to estimating treatment effects:

1. For each treatment level, fit a model of the survival-time outcome on the same set of covariates.

2. Compute the averages of the predicted outcomes for each subject within each treatment level.

These averages estimate the potential-outcome means (POMs). Contrasts of these averages estimate
the ATEs. By restricting the computations of the averages to the subset of treated subjects, we obtain
estimates of the ATETs.

Here we note only a few entry points to the vast literature on RA estimators. Imbens (2004),
Imbens and Wooldridge (2009), Cameron and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21),
and Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to estimating ATEs and
to RA estimators in particular.

Like streg and other survival-time commands, stteffects ra uses the outcome variable and
the failure indicator computed by, and optionally weights specified with, stset. stteffects ra is
not appropriate for data with time-varying covariates, also known as multiple-record survival-time
data, or for delayed-entry data.

Example 1: Estimating the ATE

Suppose we wish to study the effect of smoking on the time to a second heart attack among women
aged 45–55 years. In our fictional sheart dataset, atime is the observed time in years to a second
heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed.
(When fail is 1, atime records the time to the second heart attack; when fail is 0, atime records
a censored observation of the time to a second heart attack.) We previously stset these data; see A
quick tour of the estimators in [TE] stteffects intro.
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The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the
time of the first heart attack (age), and indices of the level of exercise (exercise), diet quality
(diet), and education (education) prior to the first heart attack.

We can use stteffects ra to estimate the ATE by RA. We model the mean survival time using
the default Weibull model, controlling for age, exercise, diet, and education, and we specify
that smoke is the treatment variable.

. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))

. stteffects ra (age exercise diet education) (smoke)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 1.525e-19
Iteration 1: EE criterion = 1.931e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.956657 .3331787 -5.87 0.000 -2.609676 -1.303639

POmean
smoke

Nonsmoker 4.243974 .2620538 16.20 0.000 3.730358 4.75759

When every woman smoked in the population of women aged 45–55 years who have had a heart
attack, the average time to a second heart attack is estimated to be 1.96 years less than when no
women in the population of interest smoked. The estimated average time to a second heart attack
when no women in the population of interest smoked is 4.24 years. In other words, if every woman
in the population of interest smoked, then the average time to a second heart attack would fall by an
estimated 46% relative to the case when no women smoked.

Example 2: Changing the outcome model

Instead of a Weibull model for the outcome model, we could have used an exponential, a gamma,
or a lognormal model. By way of comparison, we use a gamma model and the same covariates to
estimate the ATE.
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. stteffects ra (age exercise diet education, gamma) (smoke)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 6.212e-25
Iteration 1: EE criterion = 2.266e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : gamma
Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.801787 .2924388 -6.16 0.000 -2.374956 -1.228617

POmean
smoke

Nonsmoker 3.994327 .2258257 17.69 0.000 3.551717 4.436937

The estimated ATE of −1.80 and control-level POM of 3.99 are similar to those of −1.96 and 4.24
obtained from the Weibull model in example 1. The ratio of the estimated ATE to the control-level
POM indicates a 45% reduction instead of the 46% reduction obtained from the Weibull model.

Example 3: Estimating the ratio of the ATE to the control-level POM

The ratio of the ATE to the control-level POM measures the importance of the effect. In example 1,
we computed the point estimate of this ratio from the output, but we were left without a confidence
interval. In this example, we use nlcom to compute a point estimate and a confidence interval.

Below, we refit the model from example 1, specifying the coeflegend option to learn the parameter
names. We use the parameter names in nlcom to estimate the ratio of the ATE to the control-level
POM.
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. stteffects ra (age exercise diet education) (smoke), coeflegend

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 1.525e-19
Iteration 1: EE criterion = 1.931e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

_t Coef. Legend

ATE
smoke

(Smoker
vs

Nonsmoker) -1.956657 _b[ATE:r1vs0.smoke]

POmean
smoke

Nonsmoker 4.243974 _b[POmean:0.smoke]

. nlcom _b[ATE:r1vs0.smoke] / _b[POmean:0.smoke]

_nl_1: _b[ATE:r1vs0.smoke] / _b[POmean:0.smoke]

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.4610437 .0598709 -7.70 0.000 -.5783885 -.3436988

The output shows that when every woman smoked, the average time to a second heart attack falls
by an estimated 46% relative to the case when no women smoked, as we computed earlier. We also
obtain a 95% confidence interval of 34% to 58% for this estimate.

Example 4: Estimating the ATET

Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes
the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the
added benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and
trade-offs in [TE] stteffects intro.



144 stteffects ra — Survival-time regression adjustment

. stteffects ra (age exercise diet education) (smoke), atet

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 1.525e-19
Iteration 1: EE criterion = 2.002e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.527476 .2489203 -6.14 0.000 -2.015351 -1.039602

POmean
smoke

Nonsmoker 3.436937 .2217808 15.50 0.000 3.002255 3.87162

When every woman in the subpopulation smoked, the average time to a second heart attack is
estimated to be 1.53 years less than when no women in the subpopulation smoked. The estimated
average time to a second heart attack when no women in the subpopulation smoked is 3.44 years.

Example 5: Fixed or random censoring time

The time to censoring in survival-time data can be random or deterministic, although it must be
independent of treatment assignment and the potential outcomes; see Kalbfleisch and Prentice (2002,
chap. 3) for the standard case and see The correct adjustment for censoring assumption under
Assumptions and trade-offs in [TE] stteffects intro for the treatment-effects case.

The RA estimator and the likelihood-adjusted-censoring version of the inverse-probability-weighted
RA estimator can accommodate a fixed time to censoring; see The correct adjustment for censoring
assumption in [TE] stteffects intro. (The estimators that handle censoring by weighting cannot
accommodate a fixed time to censoring because the weights are not well defined with a fixed time
to censoring.)

We have fictional data on the time to rearrest among men aged 25–35 who were previously in
prison for a felony conviction (rtime). The time to censoring is fixed in these data because individuals
were followed for a maximum of five years.

Some of the young men chose to enter a vocational training program before release from prison;
train is 1 for participants and 0 for nonparticipants. The dataset also contains fail (which is 1 if
the observed time is a failure time and 0 if it is time to censoring), age at the time of the first arrest
(age), an index of the parents’ socioeconomic level (parental), and the number of years behind in
school at the time of the first arrest (edeficit).

We estimate the ATET because we wish to allow the gains from the training program to be related
to an unobservable characteristic that affects who self-selects into the program; see Average treatment
effect on the treated in [TE] stteffects intro.
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We model the outcome as a function of age, parental, and edeficit.

. use http://www.stata-press.com/data/r14/recid2, clear
(Time to rearrest (fictional))

. stteffects ra (age parental edeficit) (train), atet

failure _d: fail
analysis time _t: rtime

Iteration 0: EE criterion = 2.769e-19
Iteration 1: EE criterion = 9.441e-34

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
train

(Student
vs

Nonstudent) 2.440919 .4689057 5.21 0.000 1.52188 3.359957

POmean
train

Nonstudent 2.062029 .1231492 16.74 0.000 1.820661 2.303397

When everyone who selected the training got the training, the average time to rearrest is 2.44
years later than the average rearrest time if none of those who selected the training got the training.
The average rearrest time if none of those who selected the training got the training is 2.06 years. In
other words, the average time to rearrest increases from about 2.06 years to about 4.50 years for the
subpopulation of young men who self-selected into the prerelease vocational training program.

Stored results
stteffects ra stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) stteffects
e(cmdline) command as typed
e(dead) d
e(depvar) t
e(tvar) name of treatment variable
e(subcmd) ra
e(omodel) outcome model: weibull, exponential, gamma, or lognormal
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type
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e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
The methods and formulas for the RA estimators implemented in stteffects ra are given in

Methods and formulas of [TE] stteffects ipwra.
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Also see
[TE] stteffects postestimation — Postestimation tools for stteffects

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data

[ST] streg — Parametric survival models

[ST] stset — Declare data to be survival-time data

[U] 20 Estimation and postestimation commands
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stteffects wra — Survival-time weighted regression adjustment

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

stteffects wra estimates the average treatment effect (ATE), the average treatment effect on the
treated (ATET), and the potential-outcome means (POMs) from observational survival-time data with
random time to censoring. Estimation is by weighted regression adjustment (WRA). WRA estimators use
inverse-probability-of-censoring adjusted regression coefficients to compute averages of treatment-level
predicted outcomes. Contrasts of these averages estimate the treatment effects. WRA uses estimated
weights from a time-to-censoring model to account for censored survival times instead of including
a term in the likelihood function. stteffects wra offers several choices for the functional forms
of the outcome model and the time-to-censoring model. Binary and multivalued treatments are
accommodated.

See [TE] stteffects intro for an overview of estimating treatment effects from observational
survival-time data.

Quick start
Specify time as observed failure time and fail as failure indicator

stset time, failure(fail)

ATE from a Weibull model for time on x1 and x2 with binary treatment treat2 and a Weibull
model on x1 and x2 for censoring

stteffects wra (x1 x2) (treat2) (x1 x2)

As above, but estimate the ATET

stteffects wra (x1 x2) (treat2) (x1 x2), atet

ATE of treat2 using a gamma model for time and a gamma censoring model
stteffects wra (x1 x2, gamma) (treat2) (x1 x2, gamma)

ATE for each level of three-valued treatment treat3
stteffects wra (x1 x2) (treat3) (x1 x2)

As above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3
stteffects wra (x1 x2) (treat3) (x1 x2), control("MyControl")

Menu
Statistics > Treatment effects > Survival outcomes > Weighted regression adjustment

148
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Syntax
stteffects wra (omvarlist

[
, omoptions

]
) (tvar) (cmvarlist

[
, cmoptions

]
)[

if
] [

in
] [

, stat options
]

omvarlist specifies the variables that predict the survival-time variable in the outcome model.

tvar must contain integer values representing the treatment levels.

cmvarlist specifies the variables that predict censoring in the censoring model.

omoptions Description

Model

weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary(avarlist

[
, noconstant

]
) specify variables used to model ancillary parameter

noconstant suppress constant from outcome model

cmoptions Description

Model

weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary(avarlist

[
, noconstant

]
) specify variables used to model ancillary parameter

noconstant suppress constant from censoring model

stat Description

Stat

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means
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options Description

SE/Robust

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
noshow do not show st setting information
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
iterinit(#) specify starting-value iterations; seldom used

Advanced

pstolerance(#) set the tolerance for the overlap assumption
osample(newvar) identify observations that violate the overlap assumption
control(# | label) specify the level of tvar that is the control
tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.
omvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in

[ST] stset. However, weights may not be specified if you are using the bootstrap prefix.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ancillary(avarlist
[
, noconstant

]
) specifies the variables used to model the ancillary parameter.

By default, the ancillary parameter does not depend on covariates. Specifying ancillary(avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

ancillary() may be specified for the model for survival-time outcome, for the model for the
censoring variable, or for both. If ancillary() is specified for both, the varlist used for each
model may be different.

noconstant; see [R] estimation options.
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� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects wra from showing the key st variables. This option is rarely used
because most people type stset, show or stset, noshow to permanently set whether they want
to see these variables mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[
, # . . .

]
, copy

iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This
option is seldom used.

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(1e-5). stteffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() may not be specified with the statistic pomeans. control() and
tlevel() may not specify the same treatment level.
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tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel() may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
If you are not familiar with the framework for treatment-effects estimation from observational

survival-time data, please see [TE] stteffects intro.

Weighted regression-adjustment (WRA) estimators use estimated weights to account for censoring
when estimating outcome-regression parameters. The estimated outcome-regression parameters are
used to compute averages of treatment-level predicted outcomes. Contrasts of these averages estimate
the treatment effects.

WRA estimators use a three-step approach to estimating treatment effects:

1. They estimate the parameters of a time-to-censoring model and compute inverse-probability-
of-censoring weights.

2. Using the estimated inverse-probability-of-censoring weights, they use weighted maximum
likelihood estimators for the outcome for each treatment level and obtain the treatment-specific
predicted mean outcomes for each subject. The inverse-probability-of-censoring weights account
for right-censored survival times.

3. They compute the means of the treatment-specific predicted mean outcomes. Contrasts of these
averages provide the estimates of the ATEs. By restricting the computations of the means to the
subset of treated subjects, we can obtain the ATETs.

WRA estimators differ from RA estimators in that WRA estimators use weights to account for
observations lost to censoring while RA estimators use an additional term in the likelihood function.
A model for the time to censoring is used to estimate the weights.

WRA estimators require more assumptions than RA estimators. Specifically, they require that the
censoring time be random and that the time-to-censoring model be well specified. The implemented
WRA estimators also require that the time-to-censoring process not vary by treatment level. The
RA estimator and the likelihood-adjusted-censoring version of the inverse-probability-weighted RA
estimator do not require these extra assumptions, because they use a likelihood term instead of weights
to adjust for the data lost to censoring; see [TE] stteffects ra and [TE] stteffects ipwra.

Here we note only a few entry points to the vast literature on weighted estimators. Imbens (2004),
Imbens and Wooldridge (2009), Robins and Rotnitzky (2006), Wooldridge (2002, 2007), Cameron
and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21), and Vittinghoff et al. (2012, chap. 9)
provide excellent general introductions to estimating ATEs and to WRA estimators in particular.

Like streg and other survival-time commands, stteffects wra uses the outcome variable and
the failure indicator computed by, and optionally weights specified with, stset. stteffects wra
is not appropriate for data with time-varying covariates, also known as multiple-record survival-time
data, or for delayed-entry data.
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Example 1: Estimating the ATE

Suppose we wish to study the effect of smoking on the time to a second heart attack among women
aged 45–55 years. In our fictional sheart dataset, atime is the observed time in years to a second
heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed.
(When fail is 1, atime records the time to the second heart attack; when fail is 0, atime records
a censored observation of the time to a second heart attack.) We previously stset these data; see A
quick tour of the estimators in [TE] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the
time of the first heart attack (age), and indices of the level of exercise (exercise), diet quality
(diet), and education (education) prior to the first heart attack.

We can use stteffects wra to estimate the ATE by WRA. We model the mean survival time using
the default Weibull outcome model with age, exercise, diet, and education as covariates, and
we specify that smoke is the treatment variable. We also specify the default Weibull time-to-censoring
model and include age, square of age, exercise, and education.

. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))

. stteffects wra (age exercise diet education) ///
> (smoke) ///
> (age c.age#c.age exercise diet education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 4.096e-18
Iteration 1: EE criterion = 1.302e-29

Survival treatment-effects estimation Number of obs = 2,000
Estimator : weighted regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.374174 .6017498 -3.95 0.000 -3.553582 -1.194766

POmean
smoke

Nonsmoker 4.302131 .5528943 7.78 0.000 3.218478 5.385784

When every woman smoked in the population of women aged 45–55 years who have had a heart
attack, the average time to a second heart attack is estimated to be 2.37 years less than when no
women in the subpopulation of interest smoked. The estimated average time to a second heart attack
when no women in the subpopulation of interest smoked is 4.30 years.
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Stored results
stteffects wra stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) stteffects
e(cmdline) command as typed
e(dead) d
e(depvar) t
e(tvar) name of treatment variable
e(subcmd) wra
e(omodel) outcome model: weibull, exponential, gamma, or lognormal
e(cmodel) censoring model: weibull, exponential, gamma, or lognormal
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
The methods and formulas for the WRA estimators implemented in stteffects wra are given in

Methods and formulas of [TE] stteffects ipwra.
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tebalance — Check balance after teffects or stteffects estimation

Description Syntax Remarks and examples Methods and formulas
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Description

The tebalance postestimation commands produce diagnostic statistics, test statistics, and diagnostic
plots to assess whether a teffects or an stteffects command balanced the covariates over treatment
levels.

Syntax

tebalance subcommand . . .
[
, options

]
subcommand Description

summarize compare means and variances in raw and balanced data
overid overidentification test
density kernel density plots for raw and balanced data
box box plots for each treatment level for balanced data

Remarks and examples

This entry provides an overview of the commands in tebalance. We recommend that you read
this entry before proceeding to [TE] tebalance summarize, [TE] tebalance overid, [TE] tebalance
density, or [TE] tebalance box for command-specific syntax and details.

A covariate is said to be balanced when its distribution does not vary over treatment levels.

Covariates are balanced in experimental data because treatment assignment is independent of the
covariates because of the study design. In contrast, covariates must be balanced by weighting or
matching in observational data because treatment assignment is related to the covariates that also
affect the outcome of interest.

The estimators implemented in teffects and stteffects use a model or matching method to
make the outcome conditionally independent of the treatment by conditioning on covariates. If this
model or matching method is well specified, it should balance the covariates. Balance diagnostic
techniques and tests check the specification of the conditioning method used by a teffects or
an stteffects estimator; see [TE] teffects intro advanced for an introduction to teffects, and
[TE] stteffects intro for an introduction to stteffects.

tebalance implements four methods to check for balance after teffects and stteffects. Which
tebalance methods are available depends on the teffects estimation method, as summarized in
the table below.

156
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tebalance Works after teffects Works after
stteffects

method Description ipw aipw ipwra nnmatch psmatch ipw ipwra

summarize standardized differences and x x x x x x x
variance ratios

overid chi-squared test for balance x x x x x
density diagnostic kernel-density x x x x x x x

plots
box diagnostic box plots x x

tebalance overid implements a formal test, while the other three methods are exploratory
diagnostic techniques. There is no balance check after teffects ra, stteffects ra, or stteffects
wra, because they use neither a treatment model nor a matching method.

Austin (2009, 2011) and Guo and Fraser (2015, sec. 5.52) provide introductions to covariate
balance. Imai and Ratkovic (2014) derived a test for balance implemented in tebalance overid.

The remainder of this entry provides a quick introduction to using tebalance to check for balance
after teffects. See [TE] stteffects intro for examples after stteffects.

Example 1: Balance after estimators that use weighting

Inverse-probability-weighted (IPW) estimators use a model for the treatment to make the outcome
conditionally independent of the treatment. If this model is well specified, it will also balance the
covariates.

Using an extract from Cattaneo (2010), we use teffects ipw to estimate the effect of a mother’s
smoking behavior (mbsmoke) on the birthweight of her child (bweight), controlling for marital status
(mmarried), the mother’s age (mage), whether the mother had a prenatal doctor’s visit in the baby’s
first trimester (prenatal1), and whether this baby is the mother’s first child (fbaby).

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby)

Iteration 0: EE criterion = 1.873e-22
Iteration 1: EE criterion = 3.315e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -236.1038 23.86187 -9.89 0.000 -282.8722 -189.3354

POmean
mbsmoke

nonsmoker 3402.552 9.539555 356.68 0.000 3383.855 3421.249



158 tebalance — Check balance after teffects or stteffects estimation

Rubin (2008) recommends finding a model that balances the covariates before looking at results for
the estimated treatment effect. Thus we do not interpret the above results, and we note that we could
pay closer heed to Rubin’s recommendation by preceding the teffects command with quietly to
suppress the output.

Imai and Ratkovic (2014) derived a test for balance by viewing the restrictions imposed by balance
as overidentifying conditions. This test is implemented in tebalance overid, and we use it to test
whether the above treatment model balanced the covariates.

. tebalance overid

Iteration 0: criterion = .02146858
Iteration 1: criterion = .02159149 (backed up)
Iteration 2: criterion = .02177783
Iteration 3: criterion = .02260102
Iteration 4: criterion = .02267956
Iteration 5: criterion = .02292367
Iteration 6: criterion = .02431697
Iteration 7: criterion = .02457043
Iteration 8: criterion = .02488579
Iteration 9: criterion = .02529453
Iteration 10: criterion = .02545885
Iteration 11: criterion = .02550248
Iteration 12: criterion = .02552866
Iteration 13: criterion = .02554462
Iteration 14: criterion = .02554512
Iteration 15: criterion = .02554514

Overidentification test for covariate balance
H0: Covariates are balanced:

chi2(5) = 38.1464
Prob > chi2 = 0.0000

We reject the null hypothesis that the treatment model balanced the covariates.

Let’s use tebalance summarize to see where the problem lies. To get an idea of the extent to
which the covariates are unbalanced, we begin by summarizing the covariates by group in the raw
data by specifying the baseline option.

. tebalance summarize, baseline

Covariate balance summary
Raw Weighted

Number of obs = 4,642 4,642.0
Treated obs = 864 2,315.3
Control obs = 3,778 2,326.7

Means Variances
Control Treated Control Treated

mmarried .7514558 .4733796 .1868194 .2495802
mage 26.81048 25.16667 31.87141 28.10429

prenatal1 .8268925 .6898148 .1431792 .2142183
fbaby .4531498 .3715278 .2478707 .2337654

The output indicates that the covariates may not be balanced in the raw data. For example,
the distribution of the mother’s age may differ over the treatment groups. We can investigate the
differences further with standardized differences and variance ratios. A perfectly balanced covariate
has a standardized difference of zero and variance ratio of one. There are no standard errors on these
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statistics, so inference is informal. Austin (2009) provides a recent introduction to these diagnostics,
although they have been used at least since Rosenbaum and Rubin (1985).

By omitting the baseline option, we obtain these diagnostic statistics for the raw data and the
weighted data.

. tebalance summarize

Covariate balance summary
Raw Weighted

Number of obs = 4,642 4,642.0
Treated obs = 864 2,315.3
Control obs = 3,778 2,326.7

Standardized differences Variance ratio
Raw Weighted Raw Weighted

mmarried -.5953009 -.0105562 1.335944 1.009079
mage -.300179 -.0672115 .8818025 .8536401

prenatal1 -.3242695 -.0156339 1.496155 1.023424
fbaby -.1663271 .0257705 .9430944 1.005698

Reviewing the output, we see that for mmarried, prenatal1, and fbaby, our model improved
the level of balance. The weighted standardized differences are all close to zero and the variance
ratios are all close to one. However, output indicates that mage may not be balanced by our model.
The weighted standardized difference is close to zero, but the weighted variance ratio still appears to
be considerably less than one.

Now, let’s use tebalance density to look at how the densities of mage for treated and control
groups differ.

. tebalance density mage
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The plots also indicate a lack of balance in mage between the treatment groups.
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To try to achieve better balance, we specify a richer model with interactions between mage and
the other covariates and look at the resulting standardized differences.

. quietly teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby
> c.mage#(c.mage i.mmarried prenatal1))

. tebalance summarize

Covariate balance summary
Raw Weighted

Number of obs = 4,642 4,642.0
Treated obs = 864 2,329.1
Control obs = 3,778 2,312.9

Standardized differences Variance ratio
Raw Weighted Raw Weighted

mmarried -.5953009 .0053497 1.335944 .9953184
mage -.300179 .0410889 .8818025 1.076571

prenatal1 -.3242695 .0009807 1.496155 .9985165
fbaby -.1663271 -.0130638 .9430944 .9965406

mage#
mage -.3028275 .0477465 .8274389 1.109134

mmarried#
mage

married -.6329701 .0197209 1.157026 1.034108

prenatal1#
mage
Yes -.4053969 .0182109 1.226363 1.032561
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The standardized difference and variance ratio results for mage look closer to the expected values of
zero and one, so we proceed to the formal test.

. tebalance overid

Iteration 0: criterion = .0602349
Iteration 1: criterion = .06172749 (backed up)
Iteration 2: criterion = .06428588 (backed up)
Iteration 3: criterion = .06489623 (backed up)
Iteration 4: criterion = .06527284 (backed up)
Iteration 5: criterion = .06643426
Iteration 6: criterion = .07120383
Iteration 7: criterion = .07647097
Iteration 8: criterion = .07674915
Iteration 9: criterion = .07684127
Iteration 10: criterion = .07703321
Iteration 11: criterion = .0776508
Iteration 12: criterion = .07771863
Iteration 13: criterion = .07773156
Iteration 14: criterion = .07773561
Iteration 15: criterion = .07774891
Iteration 16: criterion = .07775314
Iteration 17: criterion = .07775324
Iteration 18: criterion = .07775325
Iteration 19: criterion = .07775325
Iteration 20: criterion = .07775325
Iteration 21: criterion = .07775325
Iteration 22: criterion = .07775325

Overidentification test for covariate balance
H0: Covariates are balanced:

chi2(8) = 11.8612
Prob > chi2 = 0.1575

We do not reject the null hypothesis that the specified treatment model balances the covariates.

Example 2: Balance after estimators that use matching

Instead of weighting, we might want to use a matching estimator. We can select teffects nnmatch
or teffects psmatch for balance and estimation; in this example, we use teffects nnmatch.

. teffects nnmatch (bweight mmarried mage prenatal1 fbaby)
> (mbsmoke), bias(mage) ematch(mmarried prenatal1 fbaby)

Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 1
Distance metric: Mahalanobis max = 139

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -240.4589 28.43008 -8.46 0.000 -296.1808 -184.7369

Again we ignore the estimated effect and first check for balance. We begin by reviewing whether
the summary statistics indicate good balance.
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. tebalance summarize
note: refitting the model using the generate() option

Covariate balance summary
Raw Matched

Number of obs = 4,642 9,284
Treated obs = 864 4,642
Control obs = 3,778 4,642

Standardized differences Variance ratio
Raw Matched Raw Matched

mmarried -.5953009 -2.42e-16 1.335944 1
mage -.300179 -.0040826 .8818025 .9815517

prenatal1 -.3242695 -2.78e-16 1.496155 1
fbaby -.1663271 2.24e-16 .9430944 1

We do not have standard errors on these statistics, so we cannot make any formal conclusions,
but the summary statistics appear to indicate much better balance than the IPW results. tebalance
summarize has to refit the model to recover the matched sample because the generate() option
was not specified on the teffects nnmatch command. The reestimation does not affect the results,
although the computation takes longer; see example 3 for details.

Because it is a matching estimator, and not an IPW estimator, we cannot use tebalance overid
after teffects nnmatch. The matching estimators, however, provide diagnostic box plots using
tebalance box that are not available after the IPW estimators.

. tebalance box mage
note: refitting the model using the generate() option
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The box plots of the matched data also indicate covariate balance.

Let’s look at the kernel density plots using the matched data.

. tebalance density mage
note: refitting the model using the generate() option

0
.0

2
.0

4
.0

6
.0

8

10 20 30 40 50 10 20 30 40 50

Raw Matched

 control  treated

D
e

n
s
it
y

mother’s age

 

Balance plot

The plots using the matched data appear to be balanced.

Technical note
teffects implements matching estimators, IPW estimators, regression-adjustment (RA) estimators,

and estimators that combine IPW and RA. Matching estimators define a matched sample, and IPW
estimators define a weighted sample, each of which can be used to compute covariate balance statistics.
RA estimators do not define an adjusted sample that can be used to compute covariate balance statistics,
and tebalance does not work after teffects ra. Only the IPW component of the estimators that
combine RA and IPW defines a weighted sample that can be used to compute balance statistics. So,
tebalance produces the same results after teffects aipw or teffects ipwra as it does after
teffects ipw.

Example 3: Faster results after a matching estimator

The tebalance commands run in example 2 executed more slowly than necessary. tebalance
issued the note

note: refitting the model using the generate() option

after the commands

. tebalance summarize

. tebalance box mage

and

. tebalance density mage
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After teffects nnmatch or teffects psmatch, tebalance computes the balance statistics on
the matched sample defined by the matching estimator. teffects nnmatch and teffects psmatch
leave behind only variables that identify the matched sample when the generate() option is specified.
Unless the generate() option is specified with teffects nnmatch or teffects psmatch, each
tebalance command must rerun the estimation command to recover the matched sample.

Typing

. teffects nnmatch (bweight mmarried mage fbaby prenatal1)
> (mbsmoke), bias(mage) ematch(mmarried fbaby prenatal1)
> generate(matchv)

would generate variables that identify the matched sample that the tebalance commands could
use. See Remarks and examples in [TE] tebalance box, [TE] tebalance density, and [TE] tebalance
summarize for examples using the option generate() on teffects psmatch to speed up the
postestimation computations.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Matched samples
IPW samples
Testing the propensity-score model specification

Introduction

For covariate z, we observe values {z1, z2, . . . , zN}. Define a treatment indicator variable for J
treatment levels as ti ∈ {1, 2, . . . , J}, for i = 1, . . . , N , and frequency weights as {w1, w2, . . . , wN}.
The sample mean and variance of z for level t are

µ̂z(t) =

N∑
i

I(ti = t)wizi

Nt
and

σ̂2
z(t) =

N∑
i

I(ti = t)wi {zi − µ̂z(t)}2

Nt − 1

where Nt =
∑N
i wiI(ti = t), and

I(ti = t) =
{

1 if ti = t
0 otherwise

As shown in Austin (2011), the standardized differences for covariate z between level t and the
control t0 are computed as

δz(t) =
µ̂z(t)− µ̂z(t0)√
σ̂2

z(t)+σ̂2

z(t0)
2

(1)

The variance ratio is ρz(t) = {σ̂2
z (t)}/{σ̂2

z (t0)}.
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Matched samples

We now turn our attention to the matched samples for the potential-outcome mean (POM), average
treatment effect (ATE), and average treatment effect on the treated (ATET) estimators. We estimate the
covariate for the counter-factual treatment by taking the mean of the matched observations

żi =

∑
j∈Ω(i) wjzj∑
j∈Ω(i) wj

where Ω(i) = (k1, k2, . . . , kmj
) is the set of observation indices that are matched to observation

i of the opposite treatment condition. The observed covariate and matched covariate pairs, (zi, żi),
i = 1, . . . , N , are used in the box plot (see [G-2] graph box) and the kernel density plot (see
[R] kdensity). The ATET sample is limited to those observations from the conditional treatment, t̃,
and their matched covariate means.

In Methods and formulas of [TE] teffects nnmatch, we define Km(i) as the number of times
observation i is used in a match with observation j of the opposite treatment condition, i ∈ Ω(j),
weighted by the total number of matches for observation j. Specifically,

Km(i) =

N∑
j=1

I {i ∈ Ω (j)} wj∑
wk

k∈Ω(j)

These weights are used in the estimation of the mean and variance for the matched dataset. For the
POM and ATE models, the estimated mean and variance are computed as

µ̂ż(t) =

∑N
i I(ti = t)wizi {1 +Km(i)}

Mt
and

σ̂2
ż(t) =

∑N
i I(ti = t)wi{1 +Km(i)}{zi − µ̂ż(t)}2

Mt − 1

where Mt =
∑N
i I(ti = t)wi{1 +Km(i)}.

The standardized differences between the control level and all other levels for the matched covariate
distribution are computed as in (1), but µ̂ż(t) is substituted for µ̂z(t) and σ̂2

ż(t) for σ̂2
z(t).

For the ATET model, there is no matched sample for the treatment levels other than the conditional
treatment t̃. The covariate mean and variance for the conditional treatment are the same as that of
the raw data, µz( t̃ ) and σz( t̃ ). However, the covariate mean and variance for the sample matched
to the conditional treatment, t 6= t̃, are computed as

µ̃ż(t) =

∑N
i I(ti = t)wiziKm(i)

Mt
and

σ̃2
ż(t) =

∑N
i I(ti = t)wiKm(i) {zi − µ̃ż(t)}2

Mt − 1

where Mt =
∑N
i I(ti = t)wiKm(i).
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IPW samples

Computation of the inverse-probability weights is discussed in Methods and formulas of [TE] teffects
aipw and in Methods and formulas of [TE] stteffects ipwra. For the POM and ATE estimators, we defined
the normalized IPW weights as di(t) = Ntdi(t)/

∑N
i di(t), where di(t) = I(ti = t)/p(zi, t, γ̂) for

treatment level t and individual i.

For the ATET estimator, we use the normalized weights f i = Nfi/
∑N
i fi, where fi =

p(zi, t̃, γ̂)/p(zi, ti, γ̂) are the treatment-adjusted inverse-probability weights, and t̃ is the condi-
tional treatment.

We will simplify notation by defining a single weight

wi(t) =

{
di(t) if model is ATE or POM
f i(t) if model is ATET

The covariate mean and variance for treatment level t are

µ̃ż(t) =

∑N
i I(ti = t)wiwixi

Mt
and

σ̃2
ż(t) =

I(ti = t)wiwi {zi − µ̃ż(t)}2

Mt − 1

where Mt =
∑N
i I(ti = t)wiwi.

The kernel density is computed by kdensity for each covariate conditioned on each treatment
level using the raw covariate with iweights equal to wiwi.

Testing the propensity-score model specification

We estimate the probability of treatment conditioned on a set of covariates with a propensity-
score model. Imai and Ratkovic (2014) derive a test for whether the estimated propensity score
balances the covariates. The score equations for parameters of the propensity-score model define an
exactly identified generalized method of moments (GMM) estimator. Imai and Ratkovic (2014) use
the conditions imposed by mean balance as overidentifying conditions. A standard GMM test for
the validity of the overidentifying conditions is then a test for covariate balance. See [R] gmm for
a discussion of this overidentifying test, which is known as Hansen’s J test in the econometrics
literature.

Here are the details about the score equations and the overidentifying balance conditions. Recall
from Methods and formulas of [TE] teffects aipw and Methods and formulas of [TE] stteffects ipwra,
we have the first-order condition of the treatment model

1

N

N∑
i=1

stm,i(zi, γ̂) = 0

For a two-level treatment-effects model with conditional treatment t̃ and control t0, the score is

stm,i(zi,γ) =
I
(
ti = t̃

)
p(zi, t̃,γ)

∂p(zi, t,γ)

∂γ′
−

{
I(ti = t0)

1− p
(
zi, t̃,γ

)} ∂p
(
zi, t̃,γ

)
∂γ′

∣∣∣∣∣
γ=γ̂
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The score reduces to

stm,i (zi, γ̂) =

[
I
(
ti = t̃

)
− p

(
zi, t̃,γ

)
p
(
zi, t̃,γ

) {
1− p

(
zi, t̃,γ

)}] ∂p (zi, t̃,γ)
∂γ′

∣∣∣∣∣
γ=γ̂

The corresponding covariate balancing moment conditions are

wtm,i(zi,γ) =

[
I
(
ti = t̃

)
− p

(
zi, t̃,γ

)
p
(
zi, t̃,γ

) {
1− p

(
zi, t̃,γ

)}] zi

for the POM and ATE models. For the ATET model with conditional treatment t̃, we multiply by
p(zi, t̃,γ) and scale by N/N

t̃
:

wtm,i(zi,γ) =
N

N
t̃

{
I
(
ti = t̃

)
− p

(
zi, t̃,γ

)
1− p(zi, t̃,γ)

}
zi

We stack the moment conditions

gtm(Z,γ) =
1

N

N∑
i=1

{
stm,i(zi,γ)

wtm,i(zi,γ)

}

=
1

N

N∑
i=1

gtm,i(zi,γ)

The overidentified GMM estimator is then

γ̃ = argminγ N gtm(Z,γ)′ Wtm(Z,γ)−1 gtm(Z,γ) (2)

where

Wtm(Z,γ) =
1

N

N∑
i=1

ET {gtm,i(z,γ) gtm,i(z,γ)′}

and the expectation is taken with respect to treatment distribution. The weight matrix Wtm(Z,γ) is
computed explicitly (Imai and Ratkovic 2014), and (2), written as a maximization problem, is solved
using ml.

Finally, Hansen’s J statistic is evaluated at its minimum,

J = Ngtm(Z, γ̃)′ Wtm(Z, γ̃)−1 gtm(Z, γ̃)

and is asymptotically distributed chi-squared with degrees of freedom d,

d = rank {Wtm (Z, γ̃)} − rank

[
1

N

N∑
i=1

ET
{
stm,i(zi, γ̃) stm,i (zi, γ̃)

′}]
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Title

tebalance box — Covariate balance box

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description
tebalance box produces box plots that are used to check for balance in matched samples after

teffects nnmatch and teffects psmatch.

Quick start
Box plot of the propensity score from the last teffects psmatch command

tebalance box

Box plot of values of x1 in the treatment and control groups from raw data and the matched sample
from the last teffects nnmatch or teffects psmatch command

tebalance box x1

Menu
Statistics > Treatment effects > Balance > Graphs

169
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Syntax
Box plots for the propensity score

tebalance box
[
, options

]
Box plots for a covariate

tebalance box varname
[
, options

]
options Description

Main

boxlook options graph box options controlling how the box looks
legending options graph box options controlling how the variables are labeled
axis options graph box options controlling how numerical y axis is labeled
title and other options graph box options controlling titles, added text, aspect ratio, etc.
by options suboptions inside by() controlling plots by raw and matched samples

Options

� � �
Main �

boxlook options are any of the options documented in boxlook options in [G-2] graph box.

legending options are any of the options documented in legending options in [G-2] graph box.

axis options are any of the options documented in axis options in [G-2] graph box.

title and other options are any of the options, except by(), documented in title and other options
in [G-2] graph box. tebalance box uses by() to differentiate between raw and matched samples,
and some twoway options will be repeated for by graph and might be better specified as byopts().

by options are any of the byopts documented in [G-3] by option. byopts() generally affects the entire
graph, and some by options may be better specified as twoway options; see [G-3] twoway options.

Remarks and examples
When the distribution of a covariate does not vary over the treatment levels, the covariate is said

to be balanced. tebalance box produces box plots of a covariate over treatment levels for the raw
data and for the matched sample produced by teffects. If the matched-sample box plots are the
same over the treatment levels, the covariate is balanced in the matched sample.

After teffects nnmatch and teffects psmatch,

. tebalance box varname
[
, options

]
produces box plots to check whether varname is balanced.
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After teffects psmatch,

. tebalance box
[
, options

]
produces box plots to check whether the propensity score estimated by teffects is balanced.

We recommend that you read [TE] tebalance before proceeding; it provides an introduction to
covariate balance and an overview of the implemented methods.

Example 1: Checking covariate balance after psmatch

Using an extract from the data used by Cattaneo (2010), we use teffects psmatch to estimate
the effect of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight),
controlling for marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal
doctor’s visit in the baby’s first trimester (prenatal1), and whether this baby is the mother’s first
child (fbaby).

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects psmatch (bweight) (mbsmoke mmarried mage prenatal1 fbaby),
> generate(matchv)

Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 139

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -235.1714 27.74409 -8.48 0.000 -289.5488 -180.794

We specified the option generate(matchv) to speed up the postestimation command that produces
density plots, as discussed in example 3 under Remarks and examples of [TE] tebalance. We do not
interpret the estimated effect produced by this preliminary model but rather check the specification.
Now we look at the box plots.
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. tebalance box mage
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The box plots for the matched sample are very similar. The medians, the 25th percentiles, and the
75th percentiles appear to be the same, although there may be some differences in the tails, the upper
adjacent values, the lower adjacent values, and the outliers. Matching on the estimated propensity
score appears to have balanced mage, except for the tails.

To get an idea of whether teffects psmatch balanced all the covariates, we look at the box
plots for the estimated propensity score.

. tebalance box
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The box plots indicate that teffects psmatch balanced the estimated propensity scores.



tebalance box — Covariate balance box 173

Reference
Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal

of Econometrics 155: 138–154.

Also see
[TE] tebalance — Check balance after teffects or stteffects estimation

[TE] teffects nnmatch — Nearest-neighbor matching

[TE] teffects psmatch — Propensity-score matching

[TE] teffects overlap — Overlap plots



Title

tebalance density — Covariate balance density

Description Quick start Menu Syntax
Options Remarks and examples Stored results Reference
Also see

Description

tebalance density produces kernel density plots that are used to check for covariate balance after
estimation by a teffects inverse-probability-weighted estimator, a teffects matching estimator,
or an stteffects inverse-probability-weighted estimator.

Quick start
Kernel density plot of the propensity score after teffects psmatch

tebalance density

Kernel density plot of x1 after a teffects command or an stteffects command
tebalance density x1

As above, but rescale the kernel bandwidth by a factor of 2
tebalance density x1, bwidth(*2)

Menu
Statistics > Treatment effects > Balance > Graphs
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Syntax
Density plots for the propensity score

tebalance density
[
, options

]
Density plots for a covariate

tebalance density varname
[
, options

]
Options Description

Main

kernel(kernel) specify the kernel function; default is kernel(epanechnikov)

bwidth(*#) rescale default bandwidth
line#opts(line options) twoway line options for density line number #
twoway options any options other than by() documented in [G-3] twoway options
byopts(byopts) how subgraphs are combined, labeled, etc.

kernel Description

triangle triangle kernel function; the default
epanechnikov Epanechnikov kernel function
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function
cosine cosine trace kernel function
gaussian Gaussian kernel function
parzen Parzen kernel function
rectangle rectangle kernel function

Options

� � �
Main �

kernel(kernel) specifies the kernel function for use in calculating the kernel density estimates. The
default kernel is the kernel(epanechnikov).

bwidth(*#) specifies the factor by which the default bandwidths are to be rescaled. A bandwidth
is the half-width of the kernel, the width of the density window around each point. Each kernel
density plot has its own bandwidth, and by default, each kernel density plot uses its own optimal
bandwidth; see [R] kdensity. bwidth() rescales each plot’s optimal bandwidth by the specified
amount.

line#opts(line options) specifies the line pattern, width, color, and overall style of density line
number #. The line numbers are in the same order as the treatment levels specified in e(tlevels).

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option). tebalance density uses by() to differentiate between raw and weighted
or matched samples, and some twoway options will be repeated for by graph and might be better
specified as byopts().
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byopts(by option) is as documented in [G-3] by option. byopts() affects how the subgraphs are
combined, labeled, etc. byopts() generally affects the entire graph, and some by option may be
better specified as twoway options; see [G-3] twoway options.

Remarks and examples
When the distribution of a covariate does not vary over the treatment levels, the covariate is said to

be balanced. tebalance density produces kernel density plots of a covariate over treatment levels
for the raw data and the weighted or matched sample produced by teffects or stteffects. If
the weighted-sample or matched-sample kernel density plots of the covariate are the same over the
treatment levels, the covariate is balanced in the weighted or matched sample.

After all teffects commands except teffects ra, stteffects ipw, and stteffects ipwra,

. tebalance density varname
[
, options

]
produces kernel density plots to check whether varname is balanced.

After all teffects commands except teffects ra, teffects nnmatch, stteffects ipw, and
stteffects ipwra,

. tebalance density
[
, options

]
produces kernel density plots to check whether the propensity score estimated by teffects or
teffects is balanced. Our discussion of the use of tebalance density and interpretation of its
results for a covariate below also apply to a propensity score.

We recommend that you read [TE] tebalance before proceeding; it provides an introduction to
covariate balance and an overview of the implemented methods. See [TE] stteffects intro for a
discussion of survival-time features.

Example 1: Checking covariate balance after psmatch

Using an extract from the data used by Cattaneo (2010), we use teffects psmatch to estimate
the effect of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight),
controlling for marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal
doctor’s visit in the baby’s first trimester (prenatal1), and whether this baby is the mother’s first
child (fbaby).

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects psmatch (bweight) (mbsmoke mmarried mage prenatal1 fbaby),
> generate(matchv)

Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 139

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -235.1714 27.74409 -8.48 0.000 -289.5488 -180.794
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We specified the option generate(matchv) to speed up the postestimation command that produces
density plots, as discussed in example 3 under Remarks and examples in [TE] tebalance entry. We do
not interpret the estimated effect produced by this preliminary model but rather check the specification.
We begin by looking at the default density plots.

. tebalance density mage
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The density plots for the matched sample are nearly indistinguishable, implying that matching on the
estimated propensity score balanced the covariates. The density plots are too jagged for presentation,
so we oversmooth them by scaling up the bandwidth used for each plot.

. tebalance density mage, bwidth(*1.5)
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Option bwidth() rescales the default optimal bandwidths by the specified scale factor. Each of
the four density plots has its own sample size and optimal bandwidth. Rescaling each of the four
bandwidths by 1.5 produces smoother plots.
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Stored results
After teffects or stteffects fits a binary treatment, tebalance density stores the following

in r():

Scalars
r(bwc adj) bandwidth for control in weighted or matched-adjusted sample
r(Nc adj) observations on control in weighted or matched-adjusted sample
r(bwt adj) bandwidth for treated in weighted or matched-adjusted sample
r(Nt adj) observations on treated in weighted or matched-adjusted sample
r(bwc raw) bandwidth for control in raw sample
r(Nc raw) observations on control in raw sample
r(bwt raw) bandwidth for treated in raw sample
r(Nt raw) observations on treated in raw sample

Macros
r(kernel) name of kernel

After teffects or stteffects fits a multivalued treatment, tebalance density stores the
following in r():

Scalars
r(bw# adj) bandwidth for treatment level # in weighted or matched-adjusted sample
r(N# adj) observations on treatment level # in weighted or matched-adjusted sample
r(bw# raw) bandwidth for treatment level # in raw sample
r(N# raw) observations on treatment level # in raw sample

Macros
r(kernel) name of kernel

Reference
Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal

of Econometrics 155: 138–154.

Also see
[TE] tebalance — Check balance after teffects or stteffects estimation

[TE] teffects aipw — Augmented inverse-probability weighting

[TE] teffects ipw — Inverse-probability weighting

[TE] teffects ipwra — Inverse-probability-weighted regression adjustment

[TE] teffects nnmatch — Nearest-neighbor matching

[TE] teffects psmatch — Propensity-score matching

[TE] teffects overlap — Overlap plots

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data



Title

tebalance overid — Test for covariate balance

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description

tebalance overid performs a test for covariate balance after estimation by a teffects inverse-
probability-weighted (IPW) estimator or an stteffects IPW estimator.

Quick start
Test for covariate balance after a teffects or an stteffects IPW estimator

tebalance overid

As above, but test for balance only in base covariates and exclude interaction terms
tebalance overid, bconly

Menu
Statistics > Treatment effects > Balance > Overidentification test
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Syntax

tebalance overid
[
, bconly nolog iterate(#)

]
Options

� � �
Main �

bconly specifies that only the base covariates be included in the test for balance. By default, the
powers and interactions specified by factor-variable notation in the teffects or stteffects
model are also included in the test for balance.

nolog suppresses the display of the optimization search log.

iterate(#) sets the maximum number of iterations to # in the generalized method of moments
estimator used to compute the test statistic.

Remarks and examples
When the distribution of a covariate is the same for all treatment levels, the covariate is said to

be balanced. tebalance overid performs a test to see whether the covariates are balanced after
teffects or stteffects. tebalance overid can be executed after teffects ipw, teffects
aipw, teffects ipwra, stteffects ipw, or stteffects ipwra, which use the inverse-probability
weights predicted by a treatment model to account for how treatment assignment depends on observed
covariates. If the treatment model is well specified, IPW functions of the covariates from the model
are balanced.

We recommend that you read [TE] tebalance before proceeding; it provides an introduction
to covariate balance and an overview of the implemented methods. See [TE] stteffects intro for
survival-time discussion and examples.

Example 1: Base covariates and interactions

This example illustrates the interpretation of the bconly option, which excludes powers and
interactions when factor variables are included in the propensity-score model.

We frequently use factor variables to include powers of, and interactions between, base covariates
in our specification of the propensity-score model. In example 1 under Remarks and examples in
[TE] tebalance, we rejected the null hypothesis of balance in a model using only base covariates but
not in the richer model that included power and interaction terms. By default, tebalance overid
tests whether the model balances the base covariates and the power-and-interaction covariates. When
option bconly is specified, tebalance overid tests whether the model balances the base covariates
only.

Using an extract from the data used by Cattaneo (2010), we use teffects ipw to estimate the effect
of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight), controlling for
marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal doctor’s visit
in the baby’s first trimester (prenatal1), and whether this baby is the mother’s first child (fbaby).
In addition to the base covariates, we include the square of mage, an interaction between mage and
mmarried, and an interaction between mage and prenatal1 in the model for the propensity score.
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. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby
> c.mage#(c.mage i.mmarried prenatal1)), aequations

Iteration 0: EE criterion = 9.365e-20
Iteration 1: EE criterion = 2.612e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -239.6875 26.43427 -9.07 0.000 -291.4977 -187.8773

POmean
mbsmoke

nonsmoker 3403.638 9.56792 355.73 0.000 3384.885 3422.39

TME1
mmarried .8522468 .462536 1.84 0.065 -.0543072 1.758801

mage .1742823 .0651039 2.68 0.007 .0466811 .3018836
prenatal1 .4018114 .4341762 0.93 0.355 -.4491584 1.252781

fbaby -.4824413 .0868982 -5.55 0.000 -.6527587 -.3121239

c.mage#
c.mage -.002515 .0012585 -2.00 0.046 -.0049817 -.0000483

mmarried#
c.mage

married -.0787984 .0175508 -4.49 0.000 -.1131973 -.0443996

prenatal1#
c.mage

Yes -.0286228 .0176391 -1.62 0.105 -.0631948 .0059492

_cons -2.928851 .8409119 -3.48 0.000 -4.577008 -1.280694

We specified option aequations to see the parameter estimates for the coefficients in the
propensity-score model. There are eight coefficients, five on the base covariates (mmarried, mage,
fbaby, prenatal1, and cons) and three on the power-and-interaction covariates (c.mage#c.mage,
c.mage#1.mmarried, and c.mage#1.prenatal1). Below we test whether the model balances all
eight covariates.
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. tebalance overid

Iteration 0: criterion = .0602349
Iteration 1: criterion = .06172749 (backed up)
Iteration 2: criterion = .06428588 (backed up)
Iteration 3: criterion = .06489623 (backed up)
Iteration 4: criterion = .06527284 (backed up)
Iteration 5: criterion = .06643426
Iteration 6: criterion = .07120383
Iteration 7: criterion = .07647097
Iteration 8: criterion = .07674915
Iteration 9: criterion = .07684127
Iteration 10: criterion = .07703321
Iteration 11: criterion = .0776508
Iteration 12: criterion = .07771863
Iteration 13: criterion = .07773156
Iteration 14: criterion = .07773561
Iteration 15: criterion = .07774891
Iteration 16: criterion = .07775314
Iteration 17: criterion = .07775324
Iteration 18: criterion = .07775325
Iteration 19: criterion = .07775325
Iteration 20: criterion = .07775325
Iteration 21: criterion = .07775325
Iteration 22: criterion = .07775325

Overidentification test for covariate balance
H0: Covariates are balanced:

chi2(8) = 11.8612
Prob > chi2 = 0.1575

We cannot reject the null hypothesis that the IPW model balanced all eight covariates.

Below we specify option bconly to test whether the IPW model balanced the five base covariates
only.

. tebalance overid, bconly

Iteration 0: criterion = .1079977
Iteration 1: criterion = .10800825 (backed up)
Iteration 2: criterion = .10844177 (backed up)
Iteration 3: criterion = .10851228 (backed up)
Iteration 4: criterion = .10860856 (backed up)
Iteration 5: criterion = .10907494
Iteration 6: criterion = .11009793
Iteration 7: criterion = .11164037
Iteration 8: criterion = .11260665
Iteration 9: criterion = .11286445
Iteration 10: criterion = .11331466
Iteration 11: criterion = .11333969
Iteration 12: criterion = .11335601
Iteration 13: criterion = .11335696
Iteration 14: criterion = .11335696
Iteration 15: criterion = .11335696

Overidentification test for covariate balance
H0: Covariates are balanced:

chi2(5) = 7.82169
Prob > chi2 = 0.1663

We cannot reject the null hypothesis that the IPW model balanced the five base covariates.

Each test has a justification.
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In a model-based approach, the Imai and Ratkovic (2014) test checks whether the propensity
score is correctly specified. We include all eight covariates because they must all be balanced, if the
propensity-score model is correctly specified.

A conditional-independence approach can be used to justify only including the base covariates in
the test. In this approach, the propensity-score model need only balance the base covariates. Powers
and interactions of the base covariates are included to get a propensity-score model that balances the
base covariates, but balance of these higher-order terms is more than what needs to be checked.

In large samples, both tests should have nominal coverage under the null hypothesis that the
propensity-score model is correctly specified. Under the alternative that the propensity-score model
is misspecified, including all the covariates should yield a test with higher power.

The test that includes all the covariates is the default.

Stored results
tebalance overid stores the following in r():

Scalars
r(p) p-value
r(df) overidentifying constraints, test degrees of freedom
r(chi2) chi-squared statistic

References
Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal

of Econometrics 155: 138–154.

Imai, K., and M. Ratkovic. 2014. Covariate balancing propensity score. Journal of the Royal Statistical Society, Series
B 76: 243–263.

Also see
[TE] tebalance — Check balance after teffects or stteffects estimation

[TE] teffects aipw — Augmented inverse-probability weighting

[TE] teffects ipw — Inverse-probability weighting

[TE] teffects ipwra — Inverse-probability-weighted regression adjustment

[TE] teffects overlap — Overlap plots

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data



Title

tebalance summarize — Covariate-balance summary statistics

Description Quick start Menu Syntax
Option Remarks and examples Stored results Reference
Also see

Description

tebalance summarize reports diagnostic statistics that are used to check for covariate balance
over treatment groups after estimation by a teffects inverse-probability-weighted (IPW) estimator,
a teffects matching estimator, or an stteffects IPW estimator.

Quick start
Raw and weighted standardized differences and variance ratios of all covariates from the most recently

estimated teffects model or stteffects model
tebalance summarize

As above, but report statistics only for covariates x1 and x2

tebalance summarize x1 x2

Baseline means and variances for treated and control groups
tebalance summarize, baseline

Menu
Statistics > Treatment effects > Balance > Summaries
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Syntax

tebalance summarize
[

varlist
] [

, baseline
]

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

Option

� � �
Main �

baseline specifies that tebalance summarize report means and variances by treatment level.

Remarks and examples
When the distribution of a covariate is the same for all treatment levels, the covariate is said to

be balanced. tebalance summarize reports diagnostic statistics to check for covariate balance after
teffects or stteffects. tebalance summarize can be executed after all teffects estimators
with the exception of teffects ra and executed after stteffects ipw and stteffects ipwra.

We recommend that you read [TE] tebalance before proceeding; it provides an introduction
to covariate balance and an overview of the implemented methods. See [TE] stteffects intro for
survival-time discussion and examples.

Example 1: Checking covariate balance after psmatch

Using an extract from the data used by Cattaneo (2010), we use teffects psmatch to estimate
the effect of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight),
controlling for marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal
doctor’s visit in the baby’s first trimester (prenatal1), and whether this baby is the mother’s first
child (fbaby).

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects psmatch (bweight) (mbsmoke mmarried mage prenatal1 fbaby),
> generate(matchv)

Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 139

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -235.1714 27.74409 -8.48 0.000 -289.5488 -180.794
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We specified the option generate(matchv) to speed up the postestimation commands that compute
balance statistics, as discussed in example 3 under Remarks and examples in [TE] tebalance. We do
not interpret the estimated effect produced by this preliminary model but rather check the specification.

We begin by looking at the standardized differences and variance ratios for the raw data and the
matched sample.

. tebalance summarize

Covariate balance summary
Raw Matched

Number of obs = 4,642 9,284
Treated obs = 864 4,642
Control obs = 3,778 4,642

Standardized differences Variance ratio
Raw Matched Raw Matched

mmarried -.5953009 .0014107 1.335944 .9987659
mage -.300179 -.0120277 .8818025 .9952916

prenatal1 -.3242695 .0333609 1.496155 .9491524
fbaby -.1663271 -.0117326 .9430944 .9969095

The matched sample results indicate that matching on the estimated propensity score balanced the
covariates. The standardized differences are all close to zero, and the variance ratios are all close to
one. This inference is informal because we do not have standard errors for these statistics.

We may also wish to see the baseline summary statistics.
. tebalance summarize, baseline

Covariate balance summary
Raw Matched

Number of obs = 4,642 9,284
Treated obs = 864 4,642
Control obs = 3,778 4,642

Means Variances
Control Treated Control Treated

mmarried .7514558 .4733796 .1868194 .2495802
mage 26.81048 25.16667 31.87141 28.10429

prenatal1 .8268925 .6898148 .1431792 .2142183
fbaby .4531498 .3715278 .2478707 .2337654

While we rely on the standardized differences for conclusions about balance in the unmatched
sample from this output, the baseline means and variances give us some idea of the scale of the
differences.

Example 2: Multivalued treatments

In the multivalued-treatment case, tebalance summarize produces output grouped by treatment
level. In the Cattaneo (2010) extract, the variable msmoke is an ordered categorical variable specifying
the number of cigarettes smoked. We begin by tabulating msmoke.
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. tabulate msmoke

cigarettes
smoked
during

pregnancy Freq. Percent Cum.

0 daily 3,778 81.39 81.39
1-5 daily 200 4.31 85.70

6-10 daily 337 7.26 92.96
11+ daily 327 7.04 100.00

Total 4,642 100.00

All the treatment groups have significantly smaller numbers of observations than the control group
of not smoking. Still, each group has at least 200 observations. We continue by quietly fitting a
candidate IPW model and reporting the baseline summaries.

. quietly teffects ipw (bweight) (msmoke mmarried mage prenatal1 fbaby)

. tebalance summarize, baseline

Covariate balance summary
Observations

Treatment Raw Weighted

0 daily = 3,778 1,164.8
1-5 daily = 200 1,164.4
6-10 daily = 337 1,157.9
11+ daily = 327 1,154.9
Total = 4,642 4,642.0

Means Variances
Control Treated Control Treated

1-5 daily
mmarried .7514558 .455 .1868194 .2492211

mage 26.81048 24.64 31.87141 31.44764
prenatal1 .8268925 .695 .1431792 .2130402

fbaby .4531498 .48 .2478707 .2508543

6-10 daily
mmarried .7514558 .4480712 .1868194 .2480394

mage 26.81048 25.06231 31.87141 27.07051
prenatal1 .8268925 .6795252 .1431792 .2184188

fbaby .4531498 .3827893 .2478707 .2369648

11+ daily
mmarried .7514558 .5107034 .1868194 .250652

mage 26.81048 25.59633 31.87141 26.93471
prenatal1 .8268925 .6972477 .1431792 .2117409

fbaby .4531498 .293578 .2478707 .2080261

The results for the control level of 0 daily are repeated for the treatment group. These results give
a sense of the scale of imbalance in the raw data. Now we compute the balance statistics.
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. tebalance summarize

Covariate balance summary
Observations

Treatment Raw Weighted

0 daily = 3,778 1,164.8
1-5 daily = 200 1,164.4
6-10 daily = 337 1,157.9
11+ daily = 327 1,154.9
Total = 4,642 4,642.0

Standardized differences Variance ratio
Raw Weighted Raw Weighted

1-5 daily
mmarried -.634909 -.0016208 1.334021 1.001406

mage -.3857482 -.0219656 .9867038 .9905584
prenatal1 -.312519 -.0012611 1.487927 1.001898

fbaby .053769 .0422102 1.012037 1.008631

6-10 daily
mmarried -.6506304 -.0108454 1.327696 1.009331

mage -.3220222 -.0836571 .8493666 .7984901
prenatal1 -.3465797 -.0100232 1.525493 1.015051

fbaby -.1429048 .0268118 .9560018 1.005899

11+ daily
mmarried -.5147672 -.0212969 1.34168 1.018136

mage -.2239116 -.0636951 .8451058 .8468934
prenatal1 -.3077549 -.0380744 1.478852 1.056645

fbaby -.3342243 .0155427 .8392526 1.003598

These results indicate that the IPW estimator probably did not fully balance the covariates (the variance
ratios for mage at the daily levels of 6–10 cigarettes and 11-plus cigarettes are not close to 1). At
this point, we would use a richer model and see whether it balanced the covariates.

Note that we cannot use tebalance overid, because it has not been implemented for multivalued
treatments.

Stored results
tebalance summarize stores the following in r():

Matrices
r(size) number of observations in the raw and matched or weighted samples
r(table) table of covariate statistics

Reference
Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal

of Econometrics 155: 138–154.
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Also see
[TE] tebalance — Check balance after teffects or stteffects estimation

[TE] teffects aipw — Augmented inverse-probability weighting

[TE] teffects ipw — Inverse-probability weighting

[TE] teffects ipwra — Inverse-probability-weighted regression adjustment

[TE] teffects nnmatch — Nearest-neighbor matching

[TE] teffects psmatch — Propensity-score matching

[TE] teffects overlap — Overlap plots

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data

[TE] stteffects ipw — Survival-time inverse-probability weighting

[TE] stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment



Title

teffects — Treatment-effects estimation for observational data

Description Syntax Also see

Description
teffects estimates potential-outcome means (POMs), average treatment effects (ATEs), and average

treatment effects on the treated (ATETs) using observational data. Regression-adjustment, inverse-
probability-weighting, and matching estimators are provided, as are doubly robust methods that combine
regression adjustment and inverse-probability weighting. teffects overlap plots the estimated
densities of the probability of getting each treatment level.

The outcomes can be continuous, binary, count, fractional, or nonnegative. The treatment model
can be binary, or it can be multinomial, allowing for multivalued treatments.

For a brief description and example of each estimator, see Remarks and examples in [TE] teffects
intro.

Syntax

teffects subcommand . . .
[
, options

]
subcommand Description

aipw augmented inverse-probability weighting
ipw inverse-probability weighting
ipwra inverse-probability-weighted regression adjustment
nnmatch nearest-neighbor matching
overlap overlap plots
psmatch propensity-score matching
ra regression adjustment

Also see
[TE] teffects intro — Introduction to treatment effects for observational data

[TE] teffects intro advanced — Advanced introduction to treatment effects for observational data

[TE] teffects multivalued — Multivalued treatment effects
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Title

teffects intro — Introduction to treatment effects for observational data

Description Remarks and examples Reference Also see

Description
This entry provides a nontechnical introduction to treatment-effects estimators and the teffects

command in Stata. Advanced users may want to instead read [TE] teffects intro advanced or skip to
the individual commands’ entries.

The teffects command estimates average treatment effects (ATEs), average treatment effects
among treated subjects (ATETs), and potential-outcome means (POMs) using observational data.

Treatment effects can be estimated using regression adjustment (RA), inverse-probability weights
(IPW), and “doubly robust” methods, including inverse-probability-weighted regression adjustment
(IPWRA) and augmented inverse-probability weights (AIPW), and via matching on the propensity score
or nearest neighbors.

The outcome can be continuous, binary, count, fractional, or nonnegative. Treatments can be binary
or multivalued.

Remarks and examples

This entry presents a nontechnical overview of treatment-effects estimators for those who are new
to the subject of treatment-effects estimation or are at least new to Stata’s facilities for estimating
treatment effects. More advanced users may want to instead read [TE] teffects intro advanced or
skip to the individual commands’ entries.

Remarks are presented under the following headings:

Introduction
Defining treatment effects
Estimating treatment effects

Regression adjustment
Inverse-probability weighting
Doubly robust combinations of RA and IPW
Matching

Caveats and assumptions
A quick tour of the estimators

Regression adjustment
Inverse-probability weighting
Inverse-probability-weighted regression adjustment
Augmented inverse-probability weighting
Nearest-neighbor matching
Propensity-score matching

Video examples
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Introduction
Suppose we have observed a sample of subjects, some of whom received a treatment and the rest

of whom did not. As the name suggests, in most applications, the “subjects” are indeed people. A
“treatment” could indeed be a medical treatment such as a new drug regimen or surgical procedure. In
social science applications, a treatment could be participation in a job-training program or inclusion in
a classroom or school in which a new pedagogical method is being used. However, not all applications
use individuals as the subjects. For example, a policy analyst might be interested in examining the
impact of an experimental program in which a national agency held a lottery to award only some
local governments the resources needed to implement the program. Here the subjects are the local
governments, and treatment refers to whether a local government received the resources needed to
implement the program.

We would like to know if a treatment has an effect on an outcome Y . The outcome could be
the cholesterol level of a patient taking either an existing statin or a new experimental drug, or the
outcome could be the wage offered to a person who either did or did not participate in a job-training
program. In an ideal world, we would observe Y when a subject is treated (which we denote as
Y1), and we would observe Y when the same subject is not treated (which we denote as Y0). We
would be careful to make both observations under identical conditions so that the only difference is
the presence or absence of the treatment. We could then average the difference between Y1 and Y0

across all the subjects in our dataset to obtain a measure of the average impact of the treatment.

Unfortunately, this ideal experiment is almost never available in observational data because it is
not possible to observe a specific subject having received the treatment and having not received the
treatment. When the outcome is the birthweight of a specific baby and the treatment is the mother
smoking while pregnant, it is impossible to observe the baby’s birthweight under both treatments of
the mother smoking and the mother not smoking.

A classic solution to this problem is to randomize the treatment. High costs or ethical issues rule
out this solution in many observational datasets. For example, we could not ask a random selection
of pregnant women to smoke.

The defining characteristic of observational data is that treatment status is not randomized. Moreover,
that implies that the outcome and treatment are not necessarily independent. The goal of the estimators
implemented by teffects is to utilize covariates to make treatment and outcome independent once
we condition on those covariates.

The treatment-effect estimators implemented by teffects allow us to estimate the efficacy of
treatments using observational data. The rest of this entry discusses these treatment-effect estimators
at an introductory level. For a more technical introduction, see [TE] teffects intro advanced.

Defining treatment effects

We introduce treatment effects more formally by using the potential-outcomes framework, which
is also known as the counterfactual framework. What is a potential outcome? Consider a subject
that did not receive treatment so that we observe Y0. What would Y1 be for that same subject if it
were exposed to treatment? We call Y1 the potential outcome or counterfactual for that subject. For
a subject that did receive treatment, we observe Y1, so Y0 would be the counterfactual outcome for
that subject. We can view this as a missing-data problem, and treatment-effect methods can account
for that problem.

Treatment-effect estimators allow us to estimate three parameters. The potential-outcome means
(POMs) are the means of Y1 and Y0 in the population. The average treatment effect (ATE) is the mean
of the difference (Y1 − Y0). Finally, the average treatment effect on the treated (ATET) is the mean
of the difference (Y1 − Y0) among the subjects that actually receive the treatment.
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To develop our intuition, suppose we have observed a sample of patients, some of whom received a
medication to reduce their blood pressure. Figure 1 plots each of our patient’s systolic blood pressures
as a function of weight. We use the color green to indicate patients who did not receive the drug and
blue to indicate patients who did receive the drug.

1
0

0
1

5
0

2
0

0
B

lo
o

d
 p

re
s
s
u

re

200 250 300 350
Weight

Untreated patients Treated patients

Untreated mean = 160 Treated mean = 160

Effect of Drug on Blood Pressure

Figure 1

A remarkable feature of our data is that the average blood pressure of patients not taking the drug
is 160, and the average blood pressure of patients taking the drug is also 160. Can we therefore
conclude that taking the drug has no impact on blood pressure? The answer is no.

Because this is observational data, we could not randomly assign who would receive the drug
and who would not. As a result, treatment status could be related to covariates that also affect blood
pressure. Heavier patients were more likely to be prescribed the medication, and blood pressure is
correlated with weight. The difference in sample means does not estimate the true average treatment
effect, because blood pressure depends on weight and weight is correlated with the treatment.

Suppose that we did in fact observe both potential outcomes for all patients. In figure 2, we
continue to use solid dots for our observed data points, and we introduce hollow dots to represent
the counterfactual outcomes. That is, the green hollow dots represent the blood pressures we would
measure if only our treated patients had not taken the drug, and the blue hollow dots represent the
blood pressures we would measure if only our untreated patients had taken the drug. The green
and blue dashed lines represent the untreated and treated POMs, respectively. That is, the green line
represents the mean of all the green dots, and the blue line represents the mean of all the blue dots.
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Figure 2

If we did have the data represented by the hollow dots, then we could say that the average treatment
effect is the difference between the mean of all the green dots and the mean of all the blue dots. In
this ideal scenario, there are no missing data on the other potential outcome, and we have all the
data we need to use the difference in means to estimate the ATE.

Looking at figure 2, we can see why a difference in means using only the solid dots does not
estimate the ATE. Using only the solid green dots underestimates the average blood pressure for
untreated individuals, and using only the solid blue dots overestimates the average blood pressure for
treated individuals.

Estimating an ATE is essentially a missing-data problem. When covariates that affect the potential
outcomes are related to treatment, we cannot use a difference in sample means, because the missing
data are informative.

The treatment-effect estimators implemented in teffects allow for covariates like weight to
be related to the potential outcomes and the treatment. Essentially, the estimators implemented by
teffects utilize covariates to fill in the hollow circles or otherwise account for how the missing
data depend on covariates that affect the potential outcomes.

Estimating treatment effects

We cannot estimate the ATE by simply taking the difference between the sample means for the treated
and untreated subjects, because there are covariates that are related to the potential outcomes and the
treatment. The estimators implemented by teffects require us to specify enough of these covariates
so that after we condition on these covariates, any remaining influences on the treatment are not
related to the potential outcomes. teffects implements several different estimators to accomplish this,
including regression adjustment (RA), inverse-probability weighting (IPW), “doubly robust” methods
that combine elements of RA and IPW, and matching methods. Here we introduce the methods by
using intuition and simple examples.

See [TE] teffects intro advanced for a more technical introduction, and see the individual commands’
entries for estimator-specific details.
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Regression adjustment

The RA method extends the idea of using sample means to estimate treatment effects by using a
regression model to predict potential outcomes adjusted for covariates. In the examples here, we use
linear regression, but the teffects ra command provides you with the flexibility to use logistic,
probit, and heteroskedastic probit regression models for binary outcomes as well as Poisson regression
for nonnegative outcomes; see [TE] teffects ra for more information.

bweightex.dta is a hypothetical dataset based on Cattaneo (2010) that we have created to
illustrate treatment-effects estimators using graphs. The subjects in this dataset are women who were
pregnant, some of whom smoked during the pregnancy. The outcome variable is the birthweight of the
baby, and we want to know whether smoking during pregnancy affects the birthweight. The dataset
also contains other demographic variables that we will use later.

Figure 3 illustrates the relationship between birthweight and smoking status as a function of the
mother’s age:
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Figure 3

We see that smokers tend to be older than nonsmokers and that birthweight depends on smoking.
Therefore, the difference between the sample means of birthweights of babies born to smokers and
nonsmokers will not estimate the true average treatment effect.

We also still have the same problem as in the previous section: we do not observe the counterfactual
birthweights of babies. Suppose, however, that we did. In figure 4, we use solid points to represent
observed birthweights and the colors green to represent nonsmokers and blue to represent smokers.
The hollow points represent the counterfactual birthweights. The hollow blue points represent the
birthweights of babies that we would observe if only our young nonsmoking mothers had instead
smoked during their pregnancies. Similarly, the hollow green points represent the birthweights of
babies that we would observe if only our older smoking mothers had instead not smoked during their
pregnancies.
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Figure 4 suggests a way to estimate the potential outcomes for each mother:
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Figure 4

We could fit a linear regression of birthweight on mother’s age by using the observed birthweights
for nonsmokers, and we could do likewise for smokers. The following graph includes these two
regression lines:
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Figure 5

Figure 5 illustrates the principle behind the RA method. We use the green regression line to predict
each baby’s birthweight assuming the mother did not smoke, and we use the blue regression line to
predict each baby’s birthweight assuming the mother did smoke. The treatment effect of smoking for
a mother of a particular age is the vertical difference between the green and blue regression lines.

The three parameters we mentioned in the introduction are now easy to estimate. For each mother,
we obtain two values, say, bw0 and bw1, representing our predictions of her baby’s birthweight
assuming the mother did not or did smoke, respectively. The means of these variables represent the
untreated and treated POMs. The ATE is the sample mean of the difference (bw1− bw0), and the ATET
is the sample mean of that difference computed using only the mothers who in fact did smoke during
pregnancy.
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Adding the circles highlights the fact that the average age is higher for smokers than for nonsmokers.
Even though the blue and green lines have different slopes, if the average age was the same for
smokers and nonsmokers, a difference in the sample means of birthweights could still estimate the
true ATE.

Figure 5 lets us address one more issue. Users who are versed in regression analysis may be
inclined to estimate the effect of smoking using a regression model for birthweight as a function
of smoking and the mother’s age. We clearly see in figure 5 that regression lines for smokers and
nonsmokers have different slopes—the effect of age on birthweight is not the same for smokers and
nonsmokers. In regression analysis, we would therefore include an interaction term between smoking
and age. The RA method fits separate regression lines for smokers and nonsmokers, which also handles
these differential effects of age on smoking.

Inverse-probability weighting

As we remarked in our discussion of the RA method, we cannot simply use the sample mean
birthweights of babies born to smokers and nonsmokers to estimate the effect of smoking. If we did
that, we would conflate the negative effect of smoking with the positive effect of age and the positive
relationship between age and smoking. IPW is a treatment-effects estimator that uses weighted means
rather than simple unweighted means to disentangle the effects of treatment and other confounders
like age.

The concept underlying IPW can be gleaned from figure 2, where, as you will recall, the hollow
points represent counterfactual outcomes. As we demonstrated in Defining treatment effects, we could
estimate the average treatment effect if we knew the means of all the nonsmoking outcomes and the
means of all the smoking outcomes. In the context of figure 4, we need the mean of all the green
points, both solid and hollow, and the mean of all the blue.

If we could observe all of these points, then the ATE would be the difference between those two
means. However, the outcomes illustrated by the hollow circles are unobserved. IPW estimators view
the hollow circles as missing data and use weights to correct the estimates of the treated and untreated
sample means for the missing data. If we calculate the mean nonsmoking birthweight using just the
solid green points, that mean is biased downward because we are ignoring the hollow green points,
which correspond to higher birthweights.

In IPW, we apply more weight to the solid green points corresponding to older mothers and less
weight to those corresponding to younger mothers. Using this weighting scheme will pull up the
estimated mean birthweight of babies born to nonsmoking mothers to estimate the true mean of all
nonsmoking outcomes. The method for obtaining the mean smoking birthweight is virtually the same:
we need to apply more weight to the younger smoking mothers than to the older smoking mothers
to better approximate the true mean of all smoking outcomes.

Where do these weights for the weighted means come from? As the name implies, IPW uses the
inverse (reciprocal) of the probability of being in the observed treatment group. These probabilities
are obtained by modeling the observed treatment as a function of subject characteristics that determine
treatment group. In our exposition of the RA method, we focused solely on the mother’s age and
smoking status as determinants of each baby’s birthweight. To make the results comparable, we will
use the same model in this example.
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We first fit a logistic model of the mother’s smoking status, mbsmoke, as a function of the mother’s
age (mage):

. use http://www.stata-press.com/data/r14/bweightex
(Hypothetical birthweight data)

. logistic mbsmoke mage

Logistic regression Number of obs = 60
LR chi2(1) = 30.45
Prob > chi2 = 0.0000

Log likelihood = -26.362201 Pseudo R2 = 0.3661

mbsmoke Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

mage 1.631606 .21316 3.75 0.000 1.263022 2.107754
_cons 7.76e-06 .0000243 -3.76 0.000 1.69e-08 .0035718

Next, we compute the inverse-probability weights, which we will store in a variable called ps. In
the IPW method, for subjects who did receive treatment, the weight is equal to the reciprocal of the
predicted probability of treatment. For subjects who did not receive treatment, the weight is equal to
the reciprocal of the predicted probability of not receiving treatment; the probability of not receiving
treatment is just one minus the probability of receiving treatment:

. predict ps
(option pr assumed; Pr(mbsmoke))

. replace ps = 1/ps if mbsmoke==1
(30 real changes made)

. replace ps = 1/(1-ps) if mbsmoke==0
(30 real changes made)

Nonsmokers
Smokers

B
ir
th

w
e

ig
h

t

Mother’s Age

Inverse−Probability Weights

Figure 6

Figure 6 replicates figure 3 with one twist. Rather than making all the points the same size, we
have made the size of the points proportional to the IPW variable ps. Notice that the largest blue
points correspond to the youngest smoking mothers in our sample, so they will receive the most
weight when we compute the weighted mean birthweight of babies born to smoking mothers, just
as we explained we wanted to do. Similarly, the green points corresponding to older nonsmoking
mothers are larger, representing larger weights.
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There is a caveat to the IPW estimator. When we fit our logistic or probit model to obtain the
predicted probabilities, it is possible that some of the predictions will be close to zero. Because the
IPW is the reciprocal of that probability, the weight becomes arbitrarily large as the probability goes to
zero. In those cases, the IPW can become unstable. We can improve the estimated IPW by developing
a more accurate treatment model. For example, in our dataset, we have other variables such as marital
status and the education level of the baby’s father that may also help predict whether the mother
smoked during pregnancy. We excluded these variables for simplicity, but in a real analysis, we would
want to use all relevant data.

This phenomenon of unstable IPWs is related to the concept of overlap, which means that every
subject must have a strictly positive probability of obtaining treatment. We remarked that in our
sample, we had few young mothers who smoked. As should be clear from figure 6, the overlap
assumption is likely to be violated—young mothers do not appear to have a positive probability of
being smokers. We would want to check this assumption before proceeding with an IPW analysis.
See [TE] teffects overlap and [TE] teffects intro advanced for more information about overlap.

Another limitation of the IPW estimator is that we are using weighted means to estimate the POMs
and ATE. Thus, unlike the RA estimator, we cannot obtain subject-level predictions of the treatment
effects or potential outcomes, because we do not have the two regression lines that we can use to
predict outcomes for each subject.

Doubly robust combinations of RA and IPW

You may have noticed a clear distinction between the RA and IPW estimators. In the case of RA, we
built linear regression models to predict the outcomes (birthweights) of each subject but said nothing
about how treatment (smoking) arises. In the case of IPW, we built a logistic regression model to
predict treatment status but did not build a formal model of the outcome. Doubly robust estimators
combine the outcome modeling strategy of RA and the treatment modeling strategy of IPW. These
estimators have a remarkable property: although they require us to build two models, we only need to
specify one of the two models correctly. If we misspecify the treatment model but correctly specify
the outcome model, we still obtain correct estimates of the treatment effect. If we correctly specify
the treatment model but misspecify the outcome model, we again will obtain correct estimates of the
treatment effect.

Stata’s teffects command implements two doubly robust estimators, the augmented inverse-
probability-weighted (AIPW) estimator and the inverse-probability-weighted regression-adjustment
(IPWRA) estimator. These estimators combine elements of RA and IPW to be more robust to misspec-
ification.

The AIPW estimator is an IPW estimator that includes an augmentation term that corrects the
estimator when the treatment model is misspecified. When the treatment model is correctly specified,
the augmentation term vanishes as the sample size becomes large. Like the IPW, the AIPW does not
perform well when the predicted treatment probabilities are too close to zero or one.

The IPWRA estimator is an RA estimator that uses estimated inverse-probability weights to correct
the estimator when the regression function is misspecified. When the regression function is correctly
specified, the weights do not affect the consistency of the estimator.
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Matching

Matching estimators are based on the idea of comparing the outcomes of subjects that are as
similar as possible with the sole exception of their treatment status. In our birthweight and smoking
example, we could select a mother who smokes and select a mother of the same age who does not
smoke and compare the birthweights of their infants. The data of each mother serve as the potential
outcome for the other mother.

For a single covariate such as age, identifying a pair of comparable mothers is not difficult. If we
have a second covariate that is categorical, such as race, we might still be able to identify pairs of
mothers who are the same age and of the same race assuming our dataset is large enough. However,
once we consider covariates that are measured on continuous scales or allow for more than a few
discrete ones, then finding identical matches is a challenge. The solution is to use what is called a
similarity measure, which is a statistic that measures how “close” two observations are. teffects
offers two methods to find comparable observations based on similarity measures: nearest-neighbor
matching and propensity-score matching.

Nearest-neighbor matching (NNM) is accomplished by calculating the “distance” between pairs
of observations with regard to a set of covariates and then “matching” each subject to comparable
observations that are closest to it. For example, suppose we have a variable that records each subject’s
annual income to the penny. Say one subject who received treatment had an income of $69,234.21.
The likelihood that our dataset has an untreated subject who also earned $69,234.21 is nil. However,
we can determine the difference between each untreated subject’s income and our treated subject’s
income, then match our treated subject with the untreated subjects whose income differences are
smallest. Measuring the distance between subjects when we have multiple covariates is no challenge.
By default, teffects uses what is known as the Mahalanobis distance, which is really nothing
more than the Pythagorean theorem adapted to handle the fact that covariates may be correlated and
measured on different scales.

NNM does not use a formal model for either the outcome or the treatment status, but this flexibility
comes at a price. When matching on more than one continuous covariate, the NNM estimator must be
augmented with a bias-correction term. teffects nnmatch uses a linear function of the covariates
specified in the biasadj() option to remove the large-sample bias.

Propensity-score matching (PSM) is an alternative to NNM. PSM matches on the estimated predicted
probabilities of treatment, known as the propensity scores. PSM does not require bias correction,
because it uses a model for the treatment. If the treatment model is reasonably well specified, PSM
will perform at least as well as NNM; see [TE] teffects intro advanced.

Caveats and assumptions

To use the estimators implemented in teffects, we must make several assumptions about the
process that generated our data. Different estimators and statistics may require slightly more or slightly
less restrictive assumptions and may exhibit varying degrees of robustness to departures from these
assumptions, but in general, all the estimators require some form of the following three assumptions.

The independent and identically distributed (i.i.d.) sampling assumption ensures that the outcome
and treatment status of each individual are unrelated to the outcome and treatment status of all the
other individuals in the population. Correlated data arising from hierarchical or longitudinal study
designs do not meet this assumption.

The conditional-independence (CI) assumption means once we control for all observable variables,
the potential outcomes are independent of treatment assignment. The easiest way to understand the
CI assumption is to understand when it is violated. In our birthweight example, suppose mothers
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who did not smoke were more health conscious and consumed better prenatal diets than those who
did smoke. Unless we explicitly controlled for health awareness or diet, our model would violate
the CI assumption: the mother’s decision to smoke or not smoke would not be independent of the
baby’s birthweight. If we did not control for health awareness, we would overstate the negative
impact of smoking on birthweight. Babies born to mothers who smoke weigh less than babies born to
nonsmoking mothers not just because of the effects of cigarettes but also because of poorer prenatal
diets.

In a study examining the effect of a job-training program, the CI assumption requires that there
not be any unobserved factors such as ambition or work ethic that influence both whether a person
enrolls in the program and the wage received upon completion. To use the methods implemented by
the teffects estimators, we must have variables in our dataset that allow us to control for those
types of factors.

We mentioned the third assumption, overlap, in our discussions of IPW. More formally, the
overlap assumption states that each individual have a positive probability of receiving treatment. In
our birthweight example, we noted that there were no observations on young smokers and older
nonsmokers. Perhaps we just have an unlucky sample, but to accurately assess the impact of treatment
using these methods, we must have overlap to accurately estimate the counterfactual birthweights.
In the context of matching estimators, overlap essentially means that we can actually match treated
subjects with similar nontreated subjects.

A quick tour of the estimators

The teffects command implements six estimators of treatment effects. We introduce each one
by showing the basic syntax one would use to apply them to our birthweight example. See each
command’s entry for more information.

Regression adjustment

teffects ra implements the RA estimator. We estimate the effect of a mother’s smoking behavior
(mbsmoke) on the birthweight of her child (bweight), controlling for marital status (mmarried), the
mother’s age (mage), whether the mother had a prenatal doctor’s visit in the baby’s first trimester
(prenatal1), and whether this baby is the mother’s first child (fbaby). We use linear regression
(the default) to model bweight:

. use http://www.stata-press.com/data/r14/cattaneo2

. teffects ra (bweight mmarried mage prenatal1 fbaby) (mbsmoke)

Inverse-probability weighting

teffects ipw implements the IPW estimator. Here we estimate the effect of smoking by using a
probit model to predict the mother’s smoking behavior as a function of marital status, the mother’s
age, and indicators for first-trimester doctor’s visits and firstborn status:

. teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby, probit)
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Inverse-probability-weighted regression adjustment

teffects ipwra implements the IPWRA estimator. We model the outcome, birthweight, as a
linear function of marital status, the mother’s age, and indicators for first-trimester doctor’s visits and
firstborn status. We use a logistic model (the default) to predict the mother’s smoking behavior, using
the same covariates as explanatory variables:

. teffects ipwra (bweight mmarried mage prenatal1 fbaby) ///
(mbsmoke mmarried mage prenatal1 fbaby)

Augmented inverse-probability weighting

teffects aipw implements the AIPW estimator. Here we use the same outcome- and treatment-
model specifications as we did with the IPWRA estimator:

. teffects aipw (bweight mmarried mage prenatal1 fbaby) ///
(mbsmoke mmarried mage prenatal1 fbaby)

Nearest-neighbor matching

teffects nnmatch implements the NNM estimator. In this example, we match treated and untreated
subjects based on marital status, the mother’s age, the father’s age, and indicators for first-trimester
doctor’s visits and firstborn status. We use the Mahalanobis distance based on the mother’s and
father’s ages to find matches. We use exact matching on the other three variables to enforce the
requirement that treated subjects are matched with untreated subjects who have the same marital status
and indicators for first-trimester doctor’s visits and firstborn statuses. Because we are matching on
two continuous covariates, we request that teffects nnmatch include a bias-correction term based
on those two covariates:

. teffects nnmatch (bweight mage fage) (mbsmoke), ///
ematch(prenatal1 mmarried fbaby) biasadj(mage fage)

Propensity-score matching

teffects psmatch implements the PSM estimator. Here we model the propensity score using a
probit model, incorporating marital status, the mother’s age, and indicators for first-trimester doctor’s
visits and firstborn status as covariates:

. teffects psmatch (bweight) (mbsmoke mmarried mage prenatal1 fbaby, probit)

Video examples

Introduction to treatment effects in Stata, part 1

Introduction to treatment effects in Stata, part 2

Reference
Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal

of Econometrics 155: 138–154.

http://www.youtube.com/watch?v=p578jxAPJT4&feature=c4-overview&list=UUVk4G4nEtBS4tLOyHqustDA
https://www.youtube.com/watch?v=v4l3F3BrtlQ
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Description

This entry provides a technical overview of treatment-effects estimators and their implementation
in Stata. Those who are new to treatment-effects estimation may want to instead see [TE] teffects
intro.

The teffects command estimates average treatment effects (ATEs), average treatment effects
among treated subjects (ATETs), and potential-outcome means (POMs) using observational data.

Treatment effects can be estimated using regression adjustment (RA), inverse-probability weights
(IPW), and “doubly robust” methods, including inverse-probability-weighted regression adjustment
(IPWRA) and augmented inverse-probability weights (AIPW), and via matching on the propensity score
or nearest neighbors.

The outcome can be continuous, binary, count, fractional, or nonnegative. Treatments can be binary
or multivalued.

Remarks and examples

This entry presents a technical overview of treatment-effects estimators and their implementation
in Stata. Users who are new to treatment-effects estimators for observational data should instead read
[TE] teffects intro.

Remarks are presented under the following headings:

Introduction
Defining treatment effects
The potential-outcome model
Assumptions needed for estimation

The CI assumption
The overlap assumption
The i.i.d. assumption

Comparing the ATE and ATET
Overview of treatment-effect estimators
RA estimators
IPW estimators
AIPW estimators
IPWRA estimators
Nearest-neighbor matching estimators
Propensity-score matching estimators
Choosing among estimators
Model choice

204



teffects intro advanced — Advanced introduction to treatment effects for observational data 205

Introduction

The teffects commands estimate treatment effects from observed data. A treatment effect is the
change in an outcome caused by a subject, often an individual, getting one treatment instead of another.
We cannot estimate individual-level treatment effects, because we only observe each individual getting
one or another treatment.

Potential-outcome models provide a solution to this missing-data problem and allow us to estimate
the distribution of individual-level treatment effects. A potential-outcome model specifies the potential
outcomes that each individual would obtain under each treatment level, the treatment assignment
process, and the dependence of the potential outcomes on the treatment assignment process.

When the potential outcomes do not depend on the treatment levels, after conditioning on covariates,
regression estimators, inverse-probability-weighted estimators, and matching estimators are commonly
used.

What we call the potential-outcome model is also known as the Rubin causal model and the
counterfactual model. See Rubin (1974); Holland (1986); Robins (1986); Heckman (1997); Heckman
and Navarro-Lozano (2004); Imbens (2004); Cameron and Trivedi (2005, chap. 2.7); Imbens and
Wooldridge (2009); and Wooldridge (2010, chap. 21) for more detailed discussions.

Defining treatment effects

Three parameters are often used to measure treatment effects: the average treatment effect (ATE),
the average treatment effect on the treated (ATET), and the potential-outcome means (POMs). In this
section, we define each of these terms and introduce the notation and parameters used in the rest of
our discussion.

In the binary-treatment case, the two potential outcomes for each individual are y0i and y1i; y0i

is the outcome that would be obtained if i does not get the treatment, and y1i is the outcome that
would be obtained if i gets the treatment. y0i and y1i are realizations of the random variables y0

and y1. Throughout this entry, i subscripts denote realizations of the corresponding unsubscripted
random variables. We do not discuss multivalued treatments here, because doing so only increases the
number of parameters and notation required and detracts from the essential points; see [TE] teffects
multivalued for information about multivalued treatments.

The parameters of interest summarize the distribution of the unobservable individual-level treatment
effect y1 − y0. In defining the parameters, t denotes a random treatment, ti denotes the treatment
received by individual i, t = 1 is the treatment level, and t = 0 is the control level. Given this
notation, we can now define our parameters of interest.

ATE The ATE is the average effect of the treatment in the population:

ATE = E(y1 − y0)

POM The POM for treatment level t is the average potential outcome for that treatment level:

POMt = E(yt)

ATET The ATET is the average treatment effect among those that receive the treatment:

ATET = E(y1 − y0|t = 1)

For an illustration of these concepts, see Defining treatment effects in [TE] teffects intro.
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The potential-outcome model

Next we specify a potential-outcome model that serves as a touchstone for the rest of our discussion.
The model described here generates data in which yi is the observed outcome variable, ti is the
treatment variable, xi is a vector of covariates that affect the outcome, and wi is a vector of covariates
that affect the treatment assignment. xi and wi may have elements in common.

This potential-outcome model specifies that the observed outcome variable y is y0 when t = 0
and that y is y1 when t = 1. Algebraically, we say that

y = (1− t)y0 + ty1

The functional forms for y0 and y1 are

y0 = x′β0 + ε0 (1)

y1 = x′β1 + ε1 (2)

where β0 and β1 are coefficients to be estimated, and ε0 and ε1 are error terms that are not related to
x or w. This potential-outcome model separates each potential outcome into a predictable component,
xβt, and an unobservable error term, εt.

The treatment assignment process is

t =

{
1 if w′γ+ η > 0

0 otherwise
(3)

where γ is a coefficient vector, and η is an unobservable error term that is not related to either x or
w. The treatment assignment process is also separated into a predictable component, w′γ, and an
unobservable error term, η.

We emphasize six points about this model:

1. The observed data from this model contain yi, ti, wi, and xi. The data do not reveal both y0i

and y1i for any given i.

2. The model for t determines how the data on y0 and y1 are missing.

3. The model separates the potential outcomes and treatment assignment into observable and
unobservable components.

4. Whether η is independent of the vector (ε0, ε1) is essential in specifying the set of available
estimators.

5. The coefficient vectors β0, β1, and γ are auxiliary parameters. We use estimates of these
coefficient vectors to estimate the ATE, the POMs, and the ATET.

6. For notational simplicity, we represented y0 and y1 as linear functions. In practice, we can use
other functional forms.

In specifying this potential-outcome model, we explicitly showed the functional forms for the
potential outcomes and the treatment assignment process. To ease subsequent discussions, we refer
to the set of functional forms for the potential outcomes as the “outcome model”, and we refer to
the treatment assignment process as the “treatment model”.
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Assumptions needed for estimation

As with any type of estimator, we must make some assumptions to use treatment-effects estimators.
The particular assumptions we need for each estimator implemented by teffects and for each effect
parameter vary, but some version of each of the following is required.

CI The conditional-independence CI assumption restricts the dependence between the treatment
model and the potential outcomes.

Overlap The overlap assumption ensures that each individual could receive any treatment level.

i.i.d. The independent and identically distributed (i.i.d.) sampling assumption ensures that the
potential outcomes and the treatment status of each individual are unrelated to the potential
outcomes and treatment statuses of all other individuals in the population.

We now discuss each assumption in detail.

The CI assumption

After conditioning on covariates, when no unobservable variable affects both treatment assignment
and the potential outcomes, the potential outcomes are conditionally independent of the treatment.
In epidemiological jargon, there are no unmeasured confounders. In econometric jargon, we have
selection on observables. If we observe enough covariates, the potential outcomes may indeed be
conditionally independent of the treatment.

Intuitively, the CI assumption says that only the covariates x affect both the treatment and the
potential outcomes. Any other factors that affect the treatment must be independent of the potential
outcomes, and any other factors that affect the potential outcomes must be independent of the treatment.
Formally, the CI assumption states that, conditional on covariates x, the treatment t is independent of
the vector of potential outcomes (y0, y1)′.

The CI assumption allows us to estimate the effects by regression-adjustment (RA) methods, inverse-
probability-weighting (IPW) methods, methods that combine RA and IPW concepts, and matching
methods. The data only reveal information about E(y0|x,w, t = 0) and E(y1|x,w, t = 1), but we
are interested in an average of E(y0|x,w) and E(y1|x,w), where x represents the outcome covariates
and w the treatment-assignment covariates. The CI assumption allows us to estimate E(y0|x,w)
and E(y1|x,w) directly from the observations for which E(y0|x,w, t = 0) and E(y1|x,w, t = 1),
respectively.

For our potential-outcome model presented in (1) through (3), the CI assumption can be viewed as a
set of restrictions on the covariance matrix of the error terms. Suppose that the vector of unobservables
(ε0, ε1, η) is normally distributed ε0

ε1

η

 ∼ N

 0

0

0

 ,

 σ2
0 ρ01σ0σ1 ρη0σ0

ρ01σ0σ1 σ2
1 ρη1σ1

ρη0σ0 ρη1σ1 1


 (4)

where σ0 is the standard deviation of ε0, ρ01 is the correlation between ε0 and ε1, σ1 is the standard
deviation of ε1, ρη0 is the correlation between εη and ε0, and ρη1 is the correlation between εη
and ε1. As is standard in the normally distributed latent-variable specification of a binary-dependent
variable, we normalize the variance of εη to 1.
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CI specifies that ρη0 = ρη1 = 0 so that we can write (4) as ε0

ε1

η

 ∼ N

 0

0

0

 ,

 σ2
0 ρ01σ0σ1 0

ρ01σ0σ1 σ2
1 0

0 0 1




Writing the covariance matrix this way makes clear what we mean by conditional independence:
unobserved shocks that affect whether a subject is treated do not have any effect on the potential
outcomes, and unobserved shocks that affect a potential outcome do not affect treatment.

The command teffects implements estimators that require the CI assumption. See [TE] etregress
and [TE] etpoisson for commands that handle two cases in which the CI assumption is replaced by
precise specifications of the joint dependence among the unobservables. Brown and Mergoupis (2011)
discuss the itreatreg command that extends [TE] etregress.

The CI assumption is also known as unconfoundedness and selection-on-observables in the literature.
See Rosenbaum and Rubin (1983); Heckman (1997); Heckman and Navarro-Lozano (2004); Cameron
and Trivedi (2005, sec. 25.2.1); Tsiatis (2006, sec. 13.3); Angrist and Pischke (2009, chap. 3); Imbens
and Wooldridge (2009); and Wooldridge (2010, sec. 21.3). Some discussions with Stata commands can
be found in Becker and Caliendo (2007), Nichols (2007), and Daniel, De Stavola, and Cousens (2011).

Technical note

In fact, full CI is stronger than what we need to estimate the ATE, the ATET, or the POMs.
For the estimators implemented in teffects, we only need a conditional mean independence
(CMI) assumption. Intuitively, the CMI assumption says that after accounting for the covariates xi,
the treatment does not affect the conditional mean of each potential outcome. Formally, the CMI
requires that E(y0|x, t) = E(y0|x) and that E(y1|x, t) = E(y1|x). The CMI assumption allows the
conditional variance to depend on the treatment, while the CI assumption does not.

The CI assumption implies the CMI assumption, but not vice versa.

See Wooldridge (2010, sec. 21.2 and 21.3) for an excellent introduction to this topic, and see
Cattaneo, Drukker, and Holland (2013) for some discussion of the multiple treatment case.

The overlap assumption

The overlap assumption requires that each individual have a positive probability of receiving each
treatment level. Formally, the overlap assumption requires that for each possible x in the population
and each treatment level t̃, 0 < Pr(t = t̃|x) < 1. Rosenbaum and Rubin (1983) call the combination
of the CI and overlap assumptions strong ignorability; see also Abadie and Imbens (2006, 237–238)
and Imbens and Wooldridge (2009).

The i.i.d. assumption

The third of the three assumptions listed above is the i.i.d. assumption; it is the standard assumption
of having an i.i.d. sample from the population. In potential-outcome models, i.i.d. sampling implies
that the potential outcomes and treatment status of each individual are unrelated to the potential
outcomes and treatment statuses of all the other individuals in the population. I.i.d. sampling rules out
interactions among the individuals. For instance, models of vaccinations in epidemiology and general
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equilibrium effects in economics violate the independence assumption. This third assumption is a part
of what is known as the stable unit treatment value assumption (SUTVA); see Wooldridge (2010, 905)
and Imbens and Wooldridge (2009).

Comparing the ATE and ATET

When comparing the ATE and the ATET, two points should be mentioned.

First, the assumptions required to estimate the ATET are less restrictive than the assumptions
required to estimate the ATE. Estimating the ATET requires a weaker form of the CI assumption and
a weaker version of the overlap assumption.

To estimate the ATE under CI, we require that the unobservables in the treatment model be
conditionally independent of the unobservables in both potential outcomes. In contrast, we can estimate
the ATET under CI when the unobservables in the treatment model are conditionally independent of
just the control-level potential outcome; see Wooldridge (2010, 906–912).

Although the ATE version of overlap requires that all covariate patterns have a positive probability
of being allocated to each treatment state, we can estimate the ATET when only the covariate patterns
for which someone is treated have a positive probability of being allocated to each treatment state.
This weaker overlap assumption can be important in some studies. For example, Heckman (1997)
discusses how the ATET makes sense in job-training programs for which many types of individuals
have zero chance of signing up. See also Wooldridge (2010, 911–913).

Second, the ATET reduces to the ATE when the mean of the covariates among the treated is the
same as the mean of the covariates in the population and when the average contribution from the
unobservables for the participants is zero.

Overview of treatment-effect estimators
We can classify the estimators implemented by teffects into five categories: 1) estimators

based on a model for the outcome variable; 2) estimators based on a model for treatment assignment;
3) estimators based on models for both the outcome variable and the treatment assignment; 4) estimators
that match on covariates; and 5) estimators that match on predicted probabilities of treatment. Within
each category of estimator, there is a variety of choices about the functional forms for the models.

Because there are several categories of estimators, the user must decide whether to model the
outcomes, the probability of treatment, or both. Under correct model specification, using an outcome
model and a model for the probability of treatment will produce more efficient estimates. Surprisingly,
some of the estimators that use both models only require that one of the two be correctly specified
to consistently estimate the effects of interest, a property known as the double-robust property.

With the exception of using a matching estimator with a single continuous covariate, some choice
of functional forms is required. There are two aspects one must consider when choosing the functional
form for the outcome or treatment assignment. First, one must select the functional form for the
conditional mean or conditional probability; depending on the variable being modeled, a linear, a binary
choice, or an exponential model may be appropriate. Second, one must determine the appropriate
polynomials of the covariates to include in the model. teffects offers a wide variety of options
to specify different functional form choices for the conditional mean and conditional probability
models. The factor variable notation in Stata allows us to easily specify the desired polynomial in
the covariates.

We now provide some intuition behind each type of estimator.
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RA estimators
RA estimators use means of predicted outcomes for each treatment level to estimate each POM.

ATEs and ATETs are differences in estimated POMs.

The CI assumption implies that we can estimateE(y0|x) andE(y1|x) directly from the observations
for which t = 0 and t = 1, respectively. Regression adjustment fits separate regressions for each
treatment level and uses averages of the predicted outcomes over all the data to estimate the POMs.
The estimated ATEs are differences in the estimated POMs. The estimated ATETs are averages of the
predicted outcomes over the treated observations.

RA is a venerable estimator. See Lane and Nelder (1982); Cameron and Trivedi (2005, chap. 25);
Wooldridge (2010, chap. 21); and Vittinghoff, Glidden, Shiboski, and McCulloch (2012, chap. 9).
The usefulness of RA has been periodically questioned in the literature because it relies on specifying
functional forms for the conditional means and because it requires having sufficient observations of
each covariate pattern in each treatment level; see Rubin (1973) for an early salvo. Our experience
is that RA is an exceptionally useful base-case estimator. We describe its relative advantages and
disadvantages in the course of covering other estimators.

IPW estimators
IPW estimators use weighted averages of the observed outcome variable to estimate means of

the potential outcomes. The weights account for the missing data inherent in the potential-outcome
framework. Each weight is the inverse of the estimated probability that an individual receives a
treatment level. Outcomes of individuals who receive a likely treatment get a weight close to one.
Outcomes of individuals who receive an unlikely treatment get a weight larger than one, potentially
much larger.

IPW estimators model the probability of treatment without any assumptions about the functional
form for the outcome model. In contrast, RA estimators model the outcome without any assumptions
about the functional form for the probability of treatment model.

IPW estimators become extremely unstable as the overlap assumption gets close to being violated.
When the overlap assumption is nearly violated, some of the inverse-probability weights become very
large, IPW estimators produce erratic estimates, and the large-sample distribution provides a poor
approximation to the finite-sample distribution of IPW estimators. This instability occurs even though
the functional form for the treatment model is correctly specified.

In contrast, when the overlap assumption is nearly violated, there are very few observations in a
treatment level for some covariate patterns, so RA estimators use the model to predict in regions in
which there are very little data. If the model is well specified and there are “enough” observations,
an RA estimator will not become unstable as quickly as an IPW estimator, and the large-sample
distribution of the RA estimator still provides a good approximation to the finite-sample distribution.
However, in real situations in which “all models are approximate”, relying on a correctly specified
outcome model with little data is extremely risky.

IPW estimators are a general approach to missing-data problems that obey some CI assumptions.
While IPW is an old idea in statistics that dates back to Horvitz and Thompson (1952), biostatisticians
and econometricians have been actively working on extending it to handle modern problems and
estimation methods. See Robins and Rotnitzky (1995); Robins, Rotnitzky, and Zhao (1994, 1995); and
Wooldridge (2002, 2007). IPW has been used extensively in the modern treatment-effect estimation
literature. See Imbens (2000); Hirano, Imbens, and Ridder (2003); Tan (2010); Wooldridge (2010,
chap. 19); van der Laan and Robins (2003); and Tsiatis (2006, chap. 6).

To see the intuition behind IPW, consider a study with observed outcome variable y, treatment
variable t ∈ {0, 1}, and potential outcomes y0 and y1. As part of this process, we need to estimate
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the POM for treatment t = 1, E(y1). Using the observed data, yiti is y1i when t = 1, but y1i is
unobserved when t = 0. An IPW estimator for E(y1) is 1/N

∑N
i=1 yiti/p(xi), where p(xi) is the

probability that ti = 1 and is a function of the covariates xi. If y1i were always observed, the weights
would all equal 1. This IPW estimator places a larger weight on those observations for which y1i is
observed even though its observation was not likely.

AIPW estimators
Instead of modeling either the outcome, like RA, or the treatment probability, like IPW, augmented

inverse-probability-weighted (AIPW) estimators model both the outcome and the treatment probability.
A surprising fact is that only one of the two models must be correctly specified to consistently
estimate the treatment effects, a property of the AIPW estimators known as being “doubly robust”.
Given that two models instead of one are used, it is less surprising that the AIPW estimators can be
more efficient than either the RA or the IPW estimators, though deriving this result is rather technical
and relies on the theory of semiparametric estimators.

Intuitively, the AIPW estimator is an IPW that includes an augmentation term that corrects the
estimator when the treatment model is misspecified. When the treatment is correctly specified, the
augmentation term vanishes as the sample size becomes large. Like the IPW, the AIPW does not
perform well when the predicted treatment probabilities are too close to zero or one.

AIPW estimators emerge naturally from a technique of producing more efficient estimators from
estimators that have a few main parameters of interest and some auxiliary, or nuisance, parameters
used in estimating the few main parameters. This method constructs efficient estimating equations
for the main parameters that are orthogonal to the auxiliary parameters. The estimators produced by
this method are known as efficient-influence function (EIF) estimators.

To gain some intuition, consider finding an EIF estimator from an IPW estimator for two POMs.
Note that we only care about the two POM parameters and not about the many auxiliary parameters
used to estimate the treatment probabilities. EIF estimators project the equations that yield the POM
parameters onto the equations that yield the auxiliary treatment-model parameters and then use the
residuals from this projection to estimate the POM parameters.

We refer to these estimators as “AIPW estimators” instead of “EIF estimators” because the former is
commonly used in the biostatistical literature for some of the binary-treatment estimators and because
the term “augmented inverse-probability-weighted” tells more about how these estimators relate to
the other implemented estimators; see Tsiatis (2006) and Tan (2010). The estimators implemented in
teffects aipw with the wnls option are based on those of Rubin and van der Laan (2008), which
did well in simulations reported by Tan (2010), and denoted as α̃RV (π̂) in Tan (2010, 663).

When either the outcome model or the treatment model is well specified, the AIPW estimators
implemented in teffects aipw are more robust than either the RA or the IPW estimators because the
AIPW estimators are doubly robust but the RA and IPW estimators are not. When both the outcome
and the treatment model are misspecified, which estimator is more robust is a matter of debate in the
literature; see Kang and Schafer (2007) and Robins et al. (2007) for some debate, and see Tan (2010)
for a more recent discussion.

To the best of our knowledge, there is no general solution to the question of which estimator
performs best when both the outcome and the treatment models are misspecified. We suspect that
the answer depends on the true models, the implemented specifications, and the polynomials in the
covariates used. To help users through this process, the estimators implemented in teffects offer
many functional forms to approximate either the outcome process or the treatment process. In addition,
Stata’s factor-variable notation makes it easy to include polynomials in the covariates. Both of these
approximation methods rely on having enough data. teffects also makes it easy to compare the
results produced by different estimators.



212 teffects intro advanced — Advanced introduction to treatment effects for observational data

The literature on these methods is vast and growing. For double-robust results and explanations, see
Robins and Rotnitzky (1995); Robins, Rotnitzky, and Zhao (1995); van der Laan and Robins (2003,
chap. 6); Bang and Robins (2005); Tsiatis (2006, chap. 13); Wooldridge (2007; 2010, sec. 21.3.4);
and Tan (2010).

IPWRA estimators

Like AIPW estimators, inverse-probability-weighted regression-adjustment (IPWRA) estimators com-
bine models for the outcome and treatment status; also like AIPW estimators, IPWRA estimators are
doubly robust. IPWRA estimators emerge naturally from a robust approach to missing-data meth-
ods. IPWRA estimators use the inverse of the estimated treatment-probability weights to estimate
missing-data-corrected regression coefficients that are subsequently used to compute the POMs.

As far as we know, there is no literature that compares the relative efficiency of AIPW estimators,
which emerge from a general approach to creating efficient estimators, and the IPWRA estimators,
which emerge from a robust-correction approach to missing-data analysis.

The IPWRA estimators are also know as “Wooldridge’s double-robust” estimators because they
were derived in Wooldridge (2007) and discussed at length in Wooldridge (2010, section 21.3.4).

Nearest-neighbor matching estimators

Matching estimators use an average of the outcomes of the nearest individuals to impute the missing
potential outcome for each sampled individual. The difference between the observed outcome and
the imputed potential outcome is an estimate of the individual-level treatment effect. These estimated
individual-level treatment effects are averaged to estimate the ATE or the ATET.

teffects nnmatch determines the “nearest” by using a weighted function of the covariates for
each observation. This type of matching is known as nearest-neighbor matching (NNM). teffects
psmatch determines the “nearest” by using the estimated treatment probabilities, which are known
as the propensity scores. This second type of matching is known as propensity-score matching (PSM).

NNM is nonparametric in that no explicit functional form for either the outcome model or the
treatment model is specified. This flexibility comes at a price; the estimator needs more data to get
to the true value than an estimator that imposes a functional form. More formally, the NNM estimator
converges to the true value at a rate slower than the parametric rate, which is the square root of the
sample size, when matching on more than one continuous covariate. teffects nnmatch uses bias
correction to fix this problem. PSM provides an alternative to bias correction because it matches on
a single continuous covariate, the estimated treatment probabilities.

Abadie and Imbens (2006, 2011) derived the rate of convergence of the NNM estimator and the
bias-corrected NNM estimator and the large-sample distributions of the NNM and the bias-corrected
NNM estimators. These articles provided the formal results that built on methods suggested in Rubin
(1973, 1977).

teffects nnmatch is based on the results in Abadie and Imbens (2006, 2011) and a previous
implementation in Abadie et al. (2004).
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Propensity-score matching estimators

Instead of performing bias correction to handle the case of more than one continuous covariate, a
common solution is to combine all the covariate information into estimated treatment probabilities,
known as propensity scores, and use this single continuous covariate as the matching variable.

The term “propensity score” is widely used, but we continue to refer to it as the “treatment
probability” to be consistent with the other estimators. We call the estimator that matches on the
estimated treatment probabilities the “propensity-score matching (PSM) estimator” because the latter
term is ubiquitous.

In effect, the PSM estimator parameterizes the bias-correction term in the treatment probability
model. One advantage of matching on the estimated treatment probabilities over the bias-correction
method is that one can explore the fit of different treatment probability models using standard methods
before performing the nonparametric matching. For example, one can select the treatment model by
minimizing an information criterion under i.i.d. sampling. We know of no counterpart for selecting
the proper order of the bias-correction term for the NNM estimator.

Matching on estimated treatment probability models has been very popular since Rosenbaum
and Rubin (1983) showed that if adjusting for covariates xi is sufficient to estimate the effects,
then one can use the probability of treatment to perform the adjustment. Abadie and Imbens (2012)
derived a method to estimate the standard errors of the estimator that matches on estimated treatment
probabilities, and this method is implemented in teffects psmatch.

Choosing among estimators

There is no definitive way to select one of the estimators implemented in teffects over the
others. We offer three observations about the tradeoffs among the estimators.

First, if the outcome model is correctly specified, the RA estimator will break down more slowly
than the IPW, AIPW, IPWRA, or PSM estimators as the overlap assumption begins to fail. This result
depends critically on the ability of the RA estimator to predict into regions in which there are little
data.

Second, if the overlap assumption holds, the AIPW and IPWRA estimators have the double-robust
property for some functional form combinations. The double-robust property says that if either the
outcome model or the treatment model is correctly specified, we can consistently estimate the effects.
The properties of double-robust estimators when both models are misspecified are not known, although
there is some discussion in the literature about the properties of the AIPW estimators; see Kang and
Schafer (2007), Robins et al. (2007), and Tan (2010).

Third, all the estimators require the same assumptions, so if each is correctly specified, they should
all produce similar results. Of course, just because they produce similar results does not mean that
they are correctly specified; it is possible that they are just behaving similarly in response to some
underlying problem.

Model choice
teffects offers a broad selection of functional form combinations so that you can choose a

combination that fits your data. Picking a functional form that respects the values of the observed
outcomes is usually best. Select linear for continuous outcomes over the real line; logit, probit,
or hetprobit for binary outcomes; and poisson for counts or nonnegative outcomes.

For binary treatments, you can select among logit, probit, or hetprobitmodels. For multivalued
treatments, only the multinomial logit is available to model the treatment probabilities.
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Selecting a functional form of a given set of covariates is a famously difficult problem in statistics.
In the treatment-effects context, Cattaneo, Drukker, and Holland (2013) found that model selection
by minimizing an information criterion worked well. Cattaneo, Drukker, and Holland (2013) discuss
a method and a user-written command to facilitate the process.
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teffects aipw — Augmented inverse-probability weighting

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

teffects aipw estimates the average treatment effect (ATE) and the potential-outcome means
(POMs) from observational data by augmented inverse-probability weighting (AIPW). AIPW estimators
combine aspects of regression-adjustment and inverse-probability-weighted methods. AIPW estimators
have the double-robust property. teffects aipw accepts a continuous, binary, count, fractional, or
nonnegative outcome and allows a multivalued treatment.

See [TE] teffects intro or [TE] teffects intro advanced for more information about estimating
treatment effects from observational data.

Quick start
ATE of binary treatment treat2 by AIPW using a linear model for outcome y1 on x1 and x2 and a

logistic model for treat2 on x1 and w

teffects aipw (y1 x1 x2) (treat2 x1 w)

As above, but use a fractional logistic model for fractional outcome y2

teffects aipw (y2 x1 x2, flogit) (treat2 x1 w)

As above, but use a heteroskedastic probit model for binary outcome y3 and a probit model for
treat2

teffects aipw (y3 x1 x2, hetprobit(x1 x2)) (treat2 x1 w, probit)

ATE for each level of three-valued treatment treat3 on y1

teffects aipw (y1 x1 x2) (treat3 x1 w)

As above, and specify that treat3 = 3 is the control level
teffects aipw (y1 x1 x2) (treat3 x1 w), control(3)

Same as above, specified using the label “MyControl” corresponding to treat3 = 3
teffects aipw (y1 x1 x2) (treat3 x1 w), control(MyControl)

Menu
Statistics > Treatment effects > Continuous outcomes > Augmented inverse-probability weighting

Statistics > Treatment effects > Binary outcomes > Augmented inverse-probability weighting

Statistics > Treatment effects > Count outcomes > Augmented inverse-probability weighting

Statistics > Treatment effects > Fractional outcomes > Augmented inverse-probability weighting

Statistics > Treatment effects > Nonnegative outcomes > Augmented inverse-probability weighting

217
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Syntax
teffects aipw (ovar omvarlist

[
, omodel noconstant

]
)

(tvar tmvarlist
[
, tmodel noconstant

]
)
[

if
] [

in
] [

weight
][

, stat options
]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

omvarlist specifies the covariates in the outcome model.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the covariates in the treatment-assignment model.

omodel Description

Model

linear linear outcome model; the default
logit logistic outcome model
probit probit outcome model
hetprobit(varlist) heteroskedastic probit outcome model
poisson exponential outcome model
flogit fractional logistic outcome model
fprobit fractional probit outcome model
fhetprobit(varlist) fractional heteroskedastic probit outcome model

omodel specifies the model for the outcome variable.

tmodel Description

Model

logit logistic treatment model; the default
probit probit treatment model
hetprobit(varlist) heteroskedastic probit treatment model

tmodel specifies the model for the treatment variable.
For multivalued treatments, only logit is available and multinomial logit is used.

stat Description

Stat

ate estimate average treatment effect in population; the default
pomeans estimate potential-outcome means
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options Description

Model

nls estimate conditional means by nonlinear least squares
wnls estimate conditional means by weighted nonlinear least squares

SE/Robust

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

pstolerance(#) set tolerance for overlap assumption
osample(newvar) newvar identifies observations that violate the overlap assumption
control(# | label) specify the level of tvar that is the control

coeflegend display legend instead of statistics

omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

nls specifies that the parameters of the outcome model be estimated by nonlinear least squares instead
of the default maximum likelihood.

wnls specifies that the parameters of the outcome model be estimated by weighted nonlinear least
squares instead of the default maximum likelihood. The weights make the estimator of the effect
parameters more robust to a misspecified outcome model.

� � �
Stat �

stat is one of two statistics: ate or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[
, # . . .

]
, copy

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(1e-5). teffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() may not be specified with statistic pomeans.

The following option is available with teffects aipw but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview
AIPW estimators use inverse-probability weights to correct for the missing-data problem arising

from the fact that each subject is observed in only one of the potential outcomes; these estimators
also use an augmentation term in the outcome model to correct the estimator in case the treatment
model is misspecified. If the treatment model is correctly specified, the augmentation term goes to
zero in large samples.
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AIPW estimators compute averages of the augmented inverse-probability-weighted outcomes for
each treatment level. Contrasts of these averages provide estimates of the treatment effects.

AIPW estimators use a model to predict treatment status, and they use another model to predict
outcomes. Because of the double-robust property, only one of these two models must be correctly
specified for the AIPW estimator to be consistent.

AIPW estimators use a three-step approach to estimating treatment effects:

1. They estimate the parameters of the treatment model and compute inverse-probability weights.

2. They estimate separate regression models of the outcome for each treatment level and obtain
the treatment-specific predicted outcomes for each subject.

3. They compute the weighted means of the treatment-specific predicted outcomes, where the
weights are the inverse-probability weights computed in step 1. The contrasts of these weighted
averages provide the estimates of the ATEs.

These steps produce consistent estimates of the effect parameters because the treatment is assumed to
be independent of the potential outcomes after conditioning on the covariates. The overlap assumption
ensures that predicted inverse-probability weights do not get too large. The standard errors reported
by teffects aipw correct for the three-step process. See [TE] teffects intro or [TE] teffects intro
advanced for more information about this estimator.

We will illustrate the use of teffects aipw by using data from a study of the effect of a
mother’s smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by
Cattaneo (2010). This dataset also contains information about each mother’s age (mage), education
level (medu), marital status (mmarried), whether the first prenatal exam occurred in the first trimester
(prenatal1), and whether this baby was the mother’s first birth (fbaby).

Example 1: Estimating the ATE

We begin by using teffects aipw to estimate the average treatment effect of mbsmoke on
bweight. We use a probit model to predict treatment status as a function of mmarried, mage, and
fbaby; to maximize the predictive power of this model, we use factor-variable notation to incorporate
quadratic effects of the mother’s age, the only continuous covariate in our model. We use linear
regression to model birthweight, using prenatal1, mmarried, mage, and fbaby as explanatory
variables. We type
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. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects aipw (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)

Iteration 0: EE criterion = 4.629e-21
Iteration 1: EE criterion = 1.944e-25

Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -230.9892 26.21056 -8.81 0.000 -282.361 -179.6174

POmean
mbsmoke

nonsmoker 3403.355 9.568472 355.68 0.000 3384.601 3422.109

The average birthweight if all mothers were to smoke would be 231 grams less than the average
of 3,403 grams that would occur if none of the mothers had smoked.

By default, teffects aipw reports the ATE and the POM for the base (untreated) subjects. The
pomeans option allows us to view the treated subjects’ POM as well; the aequations option displays
the regression model coefficients used to predict the POMs as well as the coefficients from the model
used to predict treatment.

Example 2: Displaying the POMs and equations

Here we use the pomeans and aequations options to obtain estimates of both POMs and view
all the fitted equations underlying our estimates:
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. teffects aipw (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit), pomeans aequations

Iteration 0: EE criterion = 4.629e-21
Iteration 1: EE criterion = 6.856e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

POmeans
mbsmoke

nonsmoker 3403.355 9.568472 355.68 0.000 3384.601 3422.109
smoker 3172.366 24.42456 129.88 0.000 3124.495 3220.237

OME0
prenatal1 64.40859 27.52699 2.34 0.019 10.45669 118.3605
mmarried 160.9513 26.6162 6.05 0.000 108.7845 213.1181

mage 2.546828 2.084324 1.22 0.222 -1.538373 6.632028
fbaby -71.3286 19.64701 -3.63 0.000 -109.836 -32.82117
_cons 3202.746 54.01082 59.30 0.000 3096.886 3308.605

OME1
prenatal1 25.11133 40.37541 0.62 0.534 -54.02302 104.2457
mmarried 133.6617 40.86443 3.27 0.001 53.5689 213.7545

mage -7.370881 4.21817 -1.75 0.081 -15.63834 .8965804
fbaby 41.43991 39.70712 1.04 0.297 -36.38461 119.2644
_cons 3227.169 104.4059 30.91 0.000 3022.537 3431.801

TME1
mmarried -.6484821 .0554173 -11.70 0.000 -.757098 -.5398663

mage .1744327 .0363718 4.80 0.000 .1031452 .2457202

c.mage#
c.mage -.0032559 .0006678 -4.88 0.000 -.0045647 -.0019471

fbaby -.2175962 .0495604 -4.39 0.000 -.3147328 -.1204595
medu -.0863631 .0100148 -8.62 0.000 -.1059917 -.0667345

_cons -1.558255 .4639691 -3.36 0.001 -2.467618 -.6488926

The coefficient table indicates that the treated POM is 3,172 grams, 231 grams less than the untreated
POM. The sections of the table labeled OME0 and OME1 represent the linear regression coefficients
for the untreated and treated potential-outcome equations, respectively. The coefficients of the TME1
equation are used in the probit model to predict treatment status.

As is well known, the standard probit model assumes that the error terms in the latent-utility
framework are homoskedastic; the model is not robust to departures from this assumption. An
alternative is to use the heteroskedastic probit model, which explicitly models the error variance as a
function of a set of variables.

Example 3: Heteroskedastic probit treatment model

Here we refit our model as in the previous examples, but we instead use heteroskedastic probit to
model the treatment variable. We posit that the heteroskedasticity is a function of the mother’s age.
We type
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. teffects aipw (bweight prenatal1 mmarried fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, hetprobit(c.mage)), aequations

Iteration 0: EE criterion = 1.746e-19
Iteration 1: EE criterion = 1.746e-19 (backed up)

Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: heteroskedastic probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -230.2699 27.49461 -8.38 0.000 -284.1584 -176.3815

POmean
mbsmoke

nonsmoker 3403.657 9.540713 356.75 0.000 3384.957 3422.356

OME0
prenatal1 69.5048 27.04642 2.57 0.010 16.49479 122.5148
mmarried 173.74 24.63865 7.05 0.000 125.4491 222.0308

fbaby -79.19473 18.62584 -4.25 0.000 -115.7007 -42.68875
_cons 3260.768 28.29282 115.25 0.000 3205.315 3316.221

OME1
prenatal1 12.86437 39.83916 0.32 0.747 -65.21894 90.94768
mmarried 113.3491 39.47422 2.87 0.004 35.9811 190.7172

fbaby 64.22326 38.42042 1.67 0.095 -11.07939 139.5259
_cons 3051.268 37.30413 81.79 0.000 2978.153 3124.383

TME1
mmarried -.3551755 .1044199 -3.40 0.001 -.5598347 -.1505162

mage .0831898 .0349088 2.38 0.017 .0147699 .1516097

c.mage#
c.mage -.0013458 .0006659 -2.02 0.043 -.002651 -.0000406

fbaby -.1170697 .044998 -2.60 0.009 -.2052643 -.0288752
medu -.0435057 .0147852 -2.94 0.003 -.0724842 -.0145272

_cons -.8757021 .347814 -2.52 0.012 -1.557405 -.1939993

TME1_lnsigma
mage -.0236336 .0107134 -2.21 0.027 -.0446315 -.0026357

The equation labeled TME1 lnsigma represents the heteroskedasticity function used to model the
logarithm of the variance. Because the coefficient on the single variable we specified is significant
below the 5% level, we conclude that allowing for heteroskedasticity was indeed necessary.

Rather than using maximum likelihood to fit the outcome model, you can instruct teffects aipw
to use a weighted nonlinear least-squares (WNLS) estimator instead. The WNLS estimator may be more
robust to outcome model misspecification.
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Example 4: Using the WNLS estimator

Here we use WNLS to fit our outcome model:

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects aipw (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit), wnls

Iteration 0: EE criterion = 2.742e-20
Iteration 1: EE criterion = 3.436e-24

Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by WNLS
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -227.1956 27.34794 -8.31 0.000 -280.7966 -173.5946

POmean
mbsmoke

nonsmoker 3403.251 9.596622 354.63 0.000 3384.442 3422.06

The ATE of −227 is slightly greater than the ATE of −231 estimated in example 1. The estimated
POMs are nearly indistinguishable.

Video example

Treatment effects: Augmented inverse-probability weighting

http://www.youtube.com/watch?v=HqShQ1RcP5s&feature=c4-overview&list=UUVk4G4nEtBS4tLOyHqustDA
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Stored results
teffects aipw stores the following in e():
Scalars

e(N) number of observations
e(nj) number of observations for treatment level j
e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) teffects
e(cmdline) command as typed
e(depvar) name of outcome variable
e(tvar) name of treatment variable
e(subcmd) aipw
e(tmodel) logit, probit, or hetprobit
e(omodel) linear, logit, probit, hetprobit, poisson, flogit, fprobit, or

fhetprobit
e(stat) statistic estimated, ate or pomeans
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(cme) ml, nls, or wnls
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
The methods and formulas presented here provide the technical details underlying the estimators

implemented in teffects ra, teffects ipw, teffects aipw, and teffects ipwra. See Methods
and formulas of [TE] teffects nnmatch for the methods and formulas used by teffects nnmatch
and teffects psmatch.

Methods and formulas are presented under the following headings:
Parameters and notation
Overview of EE estimators
VCE for EE estimators
TM and OM estimating functions

TM estimating functions
OM estimating functions

Effect estimating functions
RA estimators
IPW estimators
AIPW estimators
IPWRA estimators
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Parameters and notation

We begin by reviewing the effect parameters estimated by teffects and some essential notation.

The potential outcome that an individual would obtain if given treatment level t ∈ {0, 1, . . . , q}
is yt. Each yt is a random variable, the realizations of which are yti. Throughout this document, i
subscripts denote realizations of the corresponding, unsubscripted random variables.

The three parameters of interest are

1. the potential-outcome mean (POM) αt = E(yt);

2. the average treatment effect (ATE) τt = E(yt − y0); and

3. the average treatment effect on the treated (ATET) δt = E(yt − y0|t = t̃).

The no-treatment level is 0.

The estimators implemented in teffects use three assumptions to justify the equations used for
estimation and inference about the effect parameters of interest:

1. Conditional mean independence (CMI) allows us to estimate potential-outcome means from the
observed outcomes in the sample.

2. Overlap ensures that we have data on each type of individual in each treatment level.

3. Independent observations ensure that the outcome and treatment for one individual has no effect
on the outcome or treatment for any other individual.

teffects ra implements some regression-adjustment (RA) estimators; teffects ipw implements
some inverse-probability-weighted (IPW) estimators; teffects ipwra implements some inverse-
probability-weighted regression-adjustment (IPWRA) estimators; and teffects aipw implements
some augmented inverse-probability-weighted (AIPW) estimators. All are implemented as estimating-
equation (EE) estimators. The estimators are consistent and asymptotically normally distributed under
the CMI, overlap, and independence assumptions.

Overview of EE estimators

EE estimators compute estimates by solving sample estimating equations. The sample estimating
equations are the sample equivalents of population expectation equations.

Each EE estimator specifies a set of estimating equations for the effect parameters of interest and a
set of estimating equations for the auxiliary parameters in the outcome model (OM) or the treatment
model (TM). The next few sections provide tremendous detail about the estimating equations that
define the RA, IPW, AIPW, and IPWRA estimators.

Ignoring the details for a moment, EE estimators solve systems of equations to compute estimates.
A standard robust estimator is consistent for the variance of the estimator (VCE). All the details involve
the equations specified by choices of estimator and functional forms for the OM or TM.

When used, the OM is a model for the conditional mean of the outcome variable. We let µ(x, t,βt)
denote a conditional-mean model for the outcome y conditional on covariates x and treatment level t.
Mathematically, E(y|x, t) = µ(x, t,βt), where βt are the parameters of the conditional-mean model
given treatment level t. The table below provides details about the available functional forms.
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Outcome model Functional form for µ(x, t,βt)

linear xβt
logit, flogit exp(xβt)/{1 + exp(xβt)}

probit, fprobit Φ(xβt)

poisson exp(xβt)

hetprobit, fhetprobit Φ{ẋβ̇t/ exp(ẍβ̈t)}

In the cases of hetprobit and fhetprobit, we use ẋ and β̇t to denote the variables and
parameters in the index function, and we use ẍ and β̈t to denote the variables and parameters in the
variance equation. We define x′ = (ẋ′, ẍ′) and β′t = (β̇

′
t, β̈
′
t).

We write the vector of parameters for the outcome model over all treatment levels as β′ =
(β′0,β1, . . . ,β

′
q).

Next we provide details about the estimating equations implied by each functional form choice.

When used, the TM is a model for the conditional probability of treatment. We let p(z, t,γ) denote
the conditional probability model for the probability that a person receives treatment t, conditional
on covariates z. The table below provides details about the functional form options allowed in the
case of a binary treatment.

Treatment model Functional form for p(z, t,γ)

logit exp(zγ)/{1 + exp(zγ)}
probit Φ(zγ)

hetprobit Φ{żγ̇/ exp(z̈γ̈)}

In the case of hetprobit, we use ż and γ̇ to denote the variables and parameters in the index
function, and we use z̈ and γ̈ to represent the variables and parameters in the variance equation. We
define z′ = (ż′, z̈′), and γ′ = (γ̇′, γ̈′).

In the multivalued-treatment case, p(z, t,γ) is specified as a multinomial logit with p(z, t,γ) =
exp(zγt)/{1 +

∑q
k=1 exp(zγk)} and γ′ = (γ′1,γ

′
2, . . . ,γ

′
q). (We present formulas for the case with

treatment level 0 as the base with γ′0 = 0′; see [R] mlogit for background.) In teffects, the
logit option in the treatment-model specification means binary logit for the binary-treatment case
and multinomial logit for the multivalued-treatment case: this simplifies the use of the command and
makes statistical sense.

Below we provide details about the estimating equations implied by each functional form choice.
The effect parameters of interest are

1. the POMs denoted by α′ = (α0, α1, . . . , αq);

2. the ATEs denoted by τ′ = (τ1, τ2, . . . , τq); and

3. the ATETs denoted by δ′ = (δ1, δ2, . . . , δq).

We denote the effect parameters by ϑ and all the parameters in any particular case by θ. More
formally, θ is the concatenation of the effect parameters, the OM parameters, and the TM parameters;
θ′ = (ϑ′,β′,γ′), where ϑ is α, τ, or δ, and β or γ may not be present, depending on the case at
hand.
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In the subsections below, we discuss estimators for the elements in θ in detail and note how these
elements change over the cases defined by effect parameters and estimators. The parameter vector θ
denotes all the parameters, no matter which particular case is under consideration.

The EE estimators described in this section are defined by a set of equations,

E{s(x, z, θ)} = 0

where s(x, z, θ) is a vector of estimating functions. Note the notation: estimating equations equate
the expected value of a vector of estimating functions to zero.

Because each of the estimating functions has mean zero, we can construct estimators that find the
estimates θ̂ by solving a system of equations,

1/N

N∑
i

si(xi, zi, θ̂) = 0

where si(xi, zi, θ̂) are the sample realizations of the estimating functions. In other words, the parameter
estimates set the average of the realizations of each estimating function to zero. Almost all the details
below involve specifying the sample realizations si(xi, zi, θ̂).

Estimators that set the expected value of estimating functions to zero are known as estimating-
equations (EE) estimators, M estimators, or Z estimators in the statistics literature and as generalized
method of moments (GMM) estimators in the econometrics literature. See van der Vaart (1998, 41),
Stefanski and Boos (2002), and Tsiatis (2006, sec. 3.2) for statistics; and see Wooldridge (2010,
chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994) for econometrics.

We refer to them as EE estimators because this name is closest to being independent of any
discipline. The estimators are implemented using gmm because they are exactly identified generalized
method-of-moments (GMM) estimators. When weights are specified by the user, they are applied to
the estimating equations just as gmm applies user-specified weights.

Each estimator has a set of estimating equations for the effect parameters and either an OM or a
TM, or both. The OM parameters or the TM parameters are auxiliary parameters used to estimate the
effect parameters of interest.

Each set of parameters has its own set of sample estimating equations:

1/N
∑
i se,i(xi, zi, θ̂) = 0 are the sample estimating equations for the effect parameters.

These equations determine the effect parameter estimates ϑ̂ as functions of the data and the
other estimated parameters.

1/N
∑
i som,i(xi, wi, β̂) = 0 are the sample estimating equations for OM parameters that

use the weights wi, which are functions of the TM parameters.

1/N
∑
i stm,i(zi, γ̂) = 0 are the sample estimating equations for TM parameters.

The whole set of sample estimating functions is si(xi, zi, θ̂) with

si(xi, zi, θ̂)′ = (se,i(xi, zi, θ̂)′, som,i(xi, wi(t), β̂)′, stm,i(zi, γ̂)′)

although not all the estimators have each of three components.
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VCE for EE estimators
The Huber/White/robust sandwich estimator is consistent for the variance–covariance of the

estimator (VCE). See van der Vaart (1998, 41), Stefanski and Boos (2002), and Tsiatis (2006, sec. 3.2)
for statistics; and see Wooldridge (2010, chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey
and McFadden (1994) for econometrics.

The formula is
V̂ = (1/N)G S G ′

where

G =

{
(1/N)

∑
i

∂si(xi, zi, θ̂)

∂θ̂

}−1

and
S = (1/N)

∑
i

si(xi, zi, θ̂)si(xi, zi, θ̂)′

The matrix G is not symmetric because our EE estimators come from stacking moment conditions
instead of optimizing a single objective function. The implication is that the robust formula should
always be used because, even under correct specification, the nonsymmetric G and the symmetric S
converge to different matrices.

TM and OM estimating functions

Although the sample estimating functions for the effect parameters, the se,i(xi, zi, θ̂), are estimator
specific, the sample estimating functions for the TM parameters, the stm,i(zi, γ̂), and the sample
estimating functions for the OM parameters, the som,i(xi, wi(t), β̂)′, are used in multiple estimators.
We provide details about the TM and the OM sample estimating functions here.

TM estimating functions

The sample estimating functions used to estimate the parameters of the TM p(z, t,γ) are the sample
score equations from the quasimaximum likelihood (QML) estimator.

In the binary-treatment case, p(z, t,γ) may be logit, probit, or heteroskedastic probit. In the
multivalued-treatment case, p(z, t,γ) is a multinomial logit. We now give formulas for the stm,i(zi, γ̂)
for each case.

logit and probit

In the logit and probit cases,

stm,i(zi, γ̂) =

[
g(ziγ̂

′)
{
ti −G(ziγ̂

′)
}

G(ziγ̂
′)
{

1−G(ziγ̂
′)
}] zi

where G(z) is the logistic cumulative distribution function for the logit, G(z) is the normal cumulative
distribution function for the probit, and g(·) = {∂G(z)}/(∂z) is the corresponding density function.
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hetprobit

In the hetprobit case, there are two sets of sample score equations, stm,1,i(zi, γ̂) and
stm,2,i(zi, γ̂):

stm,1,i(zi, γ̂) =

(
φ {q (zi, γ̂)} [ti − Φ {q (zi, γ̂)}]

Φ {q (zi, γ̂)} [1− Φ {q (zi, γ̂)}] exp(z̈î̈γ′)
)

ż′i

and

stm,2,i(zi, γ̂) =

(
φ {q (zi, γ̂)} żî̇γ′ [Φ {q (zi, γ̂)} − ti]

Φ {q (zi, γ̂)} [1− Φ {q (zi, γ̂)}] exp(z̈î̈γ′)
)

z̈′i

where φ(·) is the standard normal density function, and q (zi, γ̂) =
(
żî̇γ′/ exp(z̈î̈γ′)).

mlogit

In the mlogit case, p(z, t,γ) = exp(zγt)/ {1 +
∑q
k=1 exp(zγk)}. We present formulas for the

case with treatment level 0 as the base with γ′0 = 0′; see [R] mlogit for background.

There are q vectors of sample estimating functions for the mlogit case, stm,k,i(zi, γ̂) for each
k ∈ {1, . . . , q}, 1 for each vector γ̂k, k ∈ {1, . . . , q}. These sample estimating functions are

stm,k,i(zi, γ̂) =

{
{1− p(zi, k, γ̂)}z′i ti = k
−p(zi, k, γ̂)z′i otherwise

OM estimating functions

The parameters of the OM µ(x, t,βt) are estimated either by weighted QML or by weighted
nonlinear least squares. The estimating functions used to estimate the parameters of the OM are either
the score equations from the weighted QML estimator or the moment conditions for the weighted
nonlinear least-squares estimator.

The estimating functions for the OM parameters in µ(x, t,βt) vary over the models for the
conditional mean because µ(x, t,βt) may be linear, logit, probit, heteroskedastic probit, or poisson.

Let Nt be the number of observations in treatment level t, and let ti(t) = 1 if ti = t, with
ti(t) = 0 if ti 6= t.

There are two sets of sample estimating functions for the OM parameters with weights wi(t):

1. sml,om,i{xi, wi(t), β̂t)} are the sample estimating functions for the weighted QML estimator.

2. snls,om,i{xi, wi(t), β̂t)} are the sample estimating functions for the weighted nonlinear least-
squares estimator.

OM QML

Here are the formulas for the sml,om,i{xi, wi(t), β̂t} for each functional form choice.
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linear

In the linear case,

sml,om,i{xi, wi(t), β̂t} = wi(t)ti(t)(yi − xiβ̂
′
t)x
′
i

logit, flogit, probit, and fprobit

In the logit, flogit, probit, and fprobit cases,

sml,om,i{xi, wi(t), β̂t} = wi(t)ti(t)

g(xiβ̂
′
t)
{
yi −G(xiβ̂

′
t)
}

G(xiβ̂
′
t)
{

1−G(xiβ̂
′
t)
}
xi

where G(z) is the logistic cumulative distribution function for the logit and flogit, G(z) is the
normal cumulative distribution function for the probit and fprobit, and g(·) = {∂G(z)}/(∂z) is the
corresponding density function.

hetprobit and fhetprobit

In the hetprobit and fhetprobit cases, there are two sets of sample score equations,
sml,om,1,i{xi, wi(t), β̂t} and sml,om,2,i{xi, wi(t), β̂t}:

sml,om,1,i{xi, wi(t), β̂t} = wi(t)ti(t)

 φ
{
q
(
xi, β̂t

)} [
yi − Φ

{
q
(
xi, β̂t

)}]
Φ
{
q
(
xi, β̂t

)} [
1− Φ

{
q
(
xi, β̂t

)}]
exp(ẍi

̂̈β′t)
 ẋ′i

and

sml,om,2,i(xi, wi(t), β̂t) = wi(t)ti(t)

 φ
{
q
(
xi, β̂t

)}
ẋi
̂̇β′t [Φ{q (xi, β̂t

)}
− yi

]
Φ
{
q
(
xi, β̂t

)} [
1− Φ

{
q
(
xi, β̂t

)}]
exp(ẍi

̂̈β′t)
 ẍ′i

where φ(·) is the standard normal density function, sml,om,i{xi, wi(t), β̂t}′ =

[sml,om,1,i{xi, wi(t), β̂t}′, sml,om,2,i{xi, wi(t), β̂t}′], and q
(
xi, β̂t

)
=

(
ẋi
̂̇β′t/ exp(ẍi

̂̈β′t)).

poisson

In the poisson case,

sml,om,i{xi, wi(t), β̂t} = wi(t)ti(t){yi − exp(xiβ̂
′
t)}x′i

OM WNL

Here are the formulas for the snls,om,i{xi, wi(t), β̂t)} for each functional form choice.
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linear

In the linear case,

snls,om,i{xi, wi(t), β̂t} = wi(t)ti(t)(yi − xiβ̂
′
t)x
′
i

logit, flogit, probit, and fprobit

In the logit, flogit, probit, and fprobit cases,

snls,om,i{xi, wi(t), β̂t} = wi(t)ti(t)
[
g(xiβ̂

′
t)
{
yi −G(xiβ̂

′
t)
}]

xi

where G(z) is the logistic cumulative distribution function for the logit and flogit, G(z) is the
normal cumulative distribution function for the probit and fprobit, and g(·) = {∂G(z)}/(∂z) is the
corresponding density function.

hetprobit and fhetprobit

In the hetprobit and fhetprobit cases, there are two sets of sample score equations,
snls,om,1,i{xi, wi(t), β̂t} and snls,om,2,i{xi, wi(t), β̂t}:

snls,om,1,i{xi, wi(t), β̂t} = wi(t)ti(t)

φ
{
q
(
xi, β̂t

)}
exp(ẍi

̂̈β′t)
[
yi − Φ

{
q
(
xi, β̂t

)}] ẋ′i

and

snls,om,2,i{xi, wi(t), β̂t} = wi(t)ti(t)

φ
{
q
(
xi, β̂t

)}
exp(ẍi

̂̈β′t) ẋi
̂̇β′t [Φ{q (xi, β̂t

)}
− yi

] ẍ′i

where φ(·) is the standard normal density function, snls,om,i{xi, wi(t), β̂t}′ =

[snls,om,1,i{xi, wi(t), β̂t}′, snls,om,2,i{xi, wi(t), β̂t}′], and q
(
xi, β̂t

)
=

(
ẋi
̂̇β′t/ exp(ẍi

̂̈β′t)).

poisson

In the poisson case,

snls,om,i{xi, wi(t), β̂t} = wi(t)ti(t){yi − exp(xiβ̂
′
t)} exp(xiβ̂

′
t)x
′
i

Effect estimating functions

We now describe the sample estimating functions for the effect parameters, which vary over
estimator and effect parameter.
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RA estimators

RA estimators estimate the effect parameters using means of the observation-level predictions of
the conditional means of the outcomes. There is no model for the conditional probability of treatment.

The RA estimators use unweighted QML estimators to estimate the parameters of the conditional
mean model. In other words, the RA estimators use the sample estimating functions sml,om,i(xi, 1, β̂),
given above.

For the RA estimators, the vector of sample estimating functions is the concatenation of the
sample estimating functions for the effect parameters with the sample estimating functions for the
OM parameters. Algebraically,

sra,i(xi, θ̂)′ = sra,e,i(xi, θ̂, β̂)′, sml,om,i(xi, 1, β̂)′

The estimating functions sra,e,i(xi, θ̂, β̂)′ vary over the effect parameter.

RA for POM

The RA estimators for the POM parameters estimate θ′ = (α′,β′) using two types of estimating
equations: 1) those for the POM parameters α, and 2) those for the conditional-mean model parameters
βt in µ(x, t,βt).

The sample estimating functions for the β̂t are given in OM estimating functions above.

The elements of sra,e,i(xi, α̂, β̂) for the POM parameters α are given by

µ(xi, t, β̂t)− α̂t (RAPOM)

RA for ATE

The RA estimators for the ATE parameters estimate θ′ = (τ′,β′) using two types of estimating
equations: 1) those for the ATE parameters τ, and 2) those for the OM parameters βt in µ(x, t,βt).

The sample estimating functions that determine the β̂t are given in OM estimating functions with
wi(t) = 1.

The elements of sra,e,i(xi, τ̂, β̂) for the ATE parameters τ are given by

µ(xi, t, β̂t)− µ(xi, 0, β̂t)− τ̂t (RAATE)

RA for ATET

The RA estimators for the ATET parameters estimate θ′ = (δ′,β′) using two types of estimating
equations: 1) those for the ATET parameters δ, and 2) those for the OM parameters βt in µ(x, t,βt).

The sample estimating functions that determine the β̂t are given in OM estimating functions above
with wi(t) = 1.

The elements of sra,e,i(xi, δ̂, β̂) for the ATET parameters δ are given by

Nti(t̃)/Nt̃

{
µ(xi, t, β̂t)− µ(xi, 0, β̂t)− δ̂t

}
(RAATET)
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IPW estimators

IPW estimators estimate the effect parameters using means of the observed outcomes weighted
by the inverse probability of treatment. There is no outcome model. The IPW estimators use QML
estimators to estimate the parameters of the conditional probability model.

The vector of estimating functions is the concatenation of the estimating functions for the effect
parameters with the estimating functions for the conditional-probability parameters. The sample
estimating functions used by the IPW estimators are

sipw,i(xi, θ̂)′ = sipw,e,i(xi, θ̂, γ̂)′, stm,i(zi, 1, γ̂)′

The estimating functions sipw,e,i(zi, θ̂, γ̂)′ vary over the effect parameter.

All the IPW estimators use normalized inverse-probability weights. These weights are not related
to the weights wi(t) that were used in the OM equations. The functional form for the normalized
inverse-probability weights varies over the effect parameters POM, ATE, and ATET.

The POM and ATE estimators use normalized inverse-probability weights. The unnormalized weights
for individual i and treatment level t are di(t) = ti(t)/p(zi, t, γ̂), and the normalized weights are
di(t) = Ntdi(t)/

∑N
i di(t).

The ATET estimator uses normalized treatment-adjusted inverse-probability weights. The treatment-
adjusted inverse-probability weights adjust the inverse-probability weights for the probability of
getting the conditional treatment t̃. The unnormalized weights are fi = p(zi, t̃, γ̂)/p(zi, ti, γ̂), and
the normalized weights are f i = Nfi/

∑N
i fi.

The IPW effect estimators are weighted cell averages. The sample estimating functions used in
POM estimators are the sample estimating functions from weighted OLS regression on treatment-cell
indicators. The POM estimators use a full set of q + 1 of treatment indicator variables ai. (The
ith observation on the kth variable in ai is 1 if i received treatment k − 1 and 0 otherwise, for
k ∈ {1, 2, . . . , q + 1}.)

The sample estimating functions used in the ATE and the ATET estimators are the sample estimating
functions from weighted OLS regression on treatment-cell indicators, excluding the indicator for the
control level and including a constant term. The variables ãi used in the ATE and ATET sample
estimating functions include q of treatment indicator variables and a variable that is always 1. (The
first q variables in ãi are treatment indicators: the ith observation on the kth variable in ãi is 1 if
i received treatment k and 0 otherwise, for k ∈ {1, 2, . . . , q}. The (q + 1)th variable is always 1.)
This definition of ãi sets the last treatment level to be the control; renaming the treatments handles
the more general case allowed for by teffects.

Having defined ai and ãi, we can give the sample estimating functions that the IPW estimators
use for the effects parameters.

IPW for POM

We begin with the IPW estimators for the potential-outcome means. In this case, θ′ = (α′,γ′).

The sample estimating functions for the γ̂ are given in TM estimating functions above.

The sample estimating functions for α̂ are given by

sipw,e,i,t(zi, α̂, γ̂)′ = di(t)(yi − aiα̂)a′i (IPWPOM)
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IPW for ATE

The full parameter vector for the IPW estimators for the ATE is θ′ = (τ′,γ′).

The sample estimating functions for the γ̂ are given in TM estimating functions above.

The sample estimating functions for τ̂ are given by

sipw,e,i,t(zi, τ̂, γ̂)′ = di(t)(yi − ãiτ̂)ã
′
i (IPWATE)

IPW for ATET

The full parameter vector for the IPW estimators for the ATET is θ′ = (δ′,γ′).

The sample estimating functions for the γ̂ are given in TM estimating functions above.

The sample estimating functions for δ̂ are given by

sipw,e,i,t(zi, δ̂, γ̂)′ = f i(t)(yi − ãiδ̂)ã
′
i (IPWATET)

AIPW estimators

This section documents the sample estimating functions used by the augmented inverse-probability-
weighted (AIPW) estimators implemented in teffects. These AIPW estimators are efficient-influence-
function estimators as discussed in [TE] teffects intro and [TE] teffects intro advanced. The teffects
implementation was primarily inspired by Cattaneo, Drukker, and Holland (2013), which was based
on Cattaneo (2010). Tan (2010) was influential by identifying the implemented weighted nonlinear
least-squares estimator as having relatively good properties when both the conditional mean function
and the conditional probability function are misspecified.

The AIPW estimating functions for the treatment parameters include terms from a conditional
probability model and from a conditional mean model for the outcome.

The sample-estimation-equations vector has three parts for the AIPW estimators:

saipw,i(xi, zi, θ̂)′ = [saipw,e,i(xi, zi, θ̂)′, saipw,tm,i(zi, γ̂)′, saipw,om,i{xi, wi(t), β̂}′]

The sample estimating functions for the parameters of the TM are the stm,i(zi, γ̂) given in TM
estimating functions above.

teffects aipw implements three AIPW estimators: the standard AIPW estimator, the NLS AIPW
estimator, and the WNLS AIPW estimator.

The three AIPW estimators differ in how they estimate the parameters of the OM.

By default, teffects aipw uses the standard AIPW estimator that estimates the parameters of
the OM by the unweighted ML estimator, whose sample estimating functions, sml,om,i(xi, 1, β̂), are
given in OM estimating functions above.

When the nls option is specified, teffects aipw uses the NLS AIPW estimator that estimates
the parameters of the OM by the unweighted NLS estimator, whose sample estimating functions,
snls,om,i(xi, 1, β̂), are given in OM estimating functions above.
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When the wnls option is specified, teffects aipw uses the WNLS AIPW estimator that es-
timates the parameters of the OM by the WNLS estimator, whose sample estimating functions,
snls,om,i{xi, w̃i(t), β̂}, are given in OM estimating functions above. The weights for person i in
treatment level t are

w̃i(t) =
ti(t)

p(zi, t, γ̂)

{
ti(t)

p(zi, t, γ̂)
− 1

}
(WNLSW)

Now we discuss the sample estimating functions for the effect parameters, the se,i(xi, zi, θ̂).

AIPW for POM

We begin with the AIPW estimators for the potential-outcome means. In this case, θ′ = (α′,γ′,β′),
and the elements of saipw,e,i(xi, zi, θ̂) are given by

ti(t)

p(zi, t, γ̂)
yi − µ(xi, β̂t)

{
ti(t)

p(zi, t, γ̂)
− 1

}
− αt

AIPW for ATE

The AIPW estimators for the ATE estimate θ′ = (τ′,γ′,β′), and the elements of saipw,e,i(xi, zi, θ̂)
are given by

ti(t)

p(zi, t, γ̂)
yi − µ(xi, β̂t)

{
ti(t)

p(zi, t, γ̂)
− 1

}
− τ0 if t = 0

ti(t)

p(zi, t, γ̂)
yi − µ(xi, β̂t)

{
ti(t)

p(zi, t, γ̂)
− 1

}
− τt − τ0 if t > 0

IPWRA estimators

The IPWRA estimators combine inverse-probability weighting (IPW) with regression-adjustment
(RA) methods. The sample estimating functions for IPWRA include sample estimating functions from
both RA and IPW. The vector of sample estimating functions is

sipwra,i(xi, θ̂)′ = sra,e,i(xi, ϑ̂, β̂)′, sml,om,i{xi, wi(j), β̂}′, stm,i(zi, γ̂)′

where θ̂
′

= (ϑ̂′, β̂
′
, γ̂′), ϑ̂ = α̂ for POM, ϑ̂ = τ̂t for ATE, and ϑ̂ = δ̂t for ATET. The sample estimating

functions, sra,e,i(xi, ϑ̂, β̂), for POM, ATE, and ATET are given in equations (RAPOM), (RAATE), and
(RAATET). For the OM sample estimating functions, sml,om,i(·), we replace the RA unity weights,
wi(t) = 1, with di(j) for POM or ATE and f i for ATET, the normalized inverse-probability weights
described in IPW estimators above. The specific form of the OM sample estimating functions are given
in OM estimating functions above. The TM sample estimating functions are given in TM estimating
functions above.
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Title

teffects ipw — Inverse-probability weighting

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

teffects ipw estimates the average treatment effect (ATE), the average treatment effect on the
treated (ATET), and the potential-outcome means (POMs) from observational data by inverse-probability
weighting (IPW). IPW estimators use estimated probability weights to correct for missing data on the
potential outcomes. teffects ipw accepts a continuous, binary, count, fractional, or nonnegative
outcome and allows a multivalued treatment.

See [TE] teffects intro or [TE] teffects intro advanced for more information about estimating
treatment effects from observational data.

Quick start
ATE of binary treat2 on y by IPW using a logistic model of treat2 on x and w

teffects ipw (y) (treat2 x w)

As above, but estimate ATET

teffects ipw (y) (treat2 x w), atet

As above, but estimate potential-outcome means
teffects ipw (y) (treat2 x w), pomeans

ATE of treat2 on y using heteroskedastic probit for treat2 as a function of x and w

teffects ipw (y) (treat2 x w, hetprobit(x w))

ATE for treatment levels 2 and 3 of three-valued treatment treat3
teffects ipw (y) (treat3 x w)

As above, and specify that treat3 = 3 is the control level
teffects ipw (y) (treat3 x w), control(3)

Same as above, specified using the label “MyControl” corresponding to treat3 = 3
teffects ipw (y) (treat3 x w), control(MyControl)

Menu
Statistics > Treatment effects > Continuous outcomes > Inverse-probability weighting (IPW)

Statistics > Treatment effects > Binary outcomes > Inverse-probability weighting (IPW)

Statistics > Treatment effects > Count outcomes > Inverse-probability weighting (IPW)

Statistics > Treatment effects > Fractional outcomes > Inverse-probability weighting (IPW)

Statistics > Treatment effects > Nonnegative outcomes > Inverse-probability weighting (IPW)

239
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Syntax
teffects ipw (ovar) (tvar tmvarlist

[
, tmodel noconstant

]
)
[

if
] [

in
] [

weight
][

, stat options
]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the variables that predict treatment assignment in the treatment model.

tmodel Description

Model

logit logistic treatment model; the default
probit probit treatment model
hetprobit(varlist) heteroskedastic probit treatment model

tmodel specifies the model for the treatment variable.
For multivalued treatments, only logit is available and multinomial logit is used.

stat Description

Stat

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means

options Description

SE/Robust

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

pstolerance(#) set tolerance for overlap assumption
osample(newvar) newvar identifies observations that violate the overlap assumption
control(# | label) specify the level of tvar that is the control
tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics
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tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[
, # . . .

]
, copy

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(1e-5). teffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.
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control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with the
numeric level. control() may not be specified with statistic pomeans. control() and tlevel()
may not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel() may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with teffects ipw but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview

IPW estimators use estimated probability weights to correct for the missing-data problem arising
from the fact that each subject is observed in only one of the potential outcomes. IPW estimators use
a two-step approach to estimating treatment effects:

1. They estimate the parameters of the treatment model and compute the estimated inverse-
probability weights.

2. They use the estimated inverse-probability weights to compute weighted averages of the outcomes
for each treatment level. The contrasts of these weighted averages provide the estimates of the
ATEs. Using this weighting scheme corrects for the missing potential outcomes.

These steps produce consistent estimates of the effect parameters because the treatment is assumed to
be independent of the potential outcomes after conditioning on the covariates. The overlap assumption
ensures that predicted inverse-probability weights do not get too large. In fact, teffects ipw uses
an estimation technique that implements both steps at once so that we do not need to correct the
standard errors in the second step to reflect the uncertainty associated with the predicted treatment
probabilities.

We will illustrate the use of teffects ipw by using data from a study of the effect of a
mother’s smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by
Cattaneo (2010). This dataset also contains information about each mother’s age (mage), education
level (medu), marital status (mmarried), whether the first prenatal exam occurred in the first trimester
(prenatal1), and whether this baby was the mother’s first birth (fbaby).

Example 1: Estimating the ATE

We begin by using teffects ipw to estimate the average treatment effect of smoking on birthweight.
We will use a probit model to predict treatment status, using prenatal1, mmarried, mage, the
square of mage, and fbaby as explanatory variables:
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. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)

Iteration 0: EE criterion = 4.621e-21
Iteration 1: EE criterion = 7.358e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -230.6886 25.81524 -8.94 0.000 -281.2856 -180.0917

POmean
mbsmoke

nonsmoker 3403.463 9.571369 355.59 0.000 3384.703 3422.222

The average birthweight if all mothers were to smoke would be 231 grams less than the average
of 3,403 grams that would occur if none of the mothers had smoked.

Sometimes, we are mainly concerned about those subjects that did in fact receive treatment, and
we want to know how much the outcome changes as a result of treatment for that subpopulation. The
ATET provides us with the answer. Moreover, the ATET can be estimated using weaker assumptions
than are required to estimate the ATE; see [TE] teffects intro advanced.

Example 2: Estimating the ATET

. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit),
> atet

Iteration 0: EE criterion = 4.636e-21
Iteration 1: EE criterion = 6.467e-27

Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
mbsmoke

(smoker
vs

nonsmoker) -225.1773 23.66458 -9.52 0.000 -271.559 -178.7955

POmean
mbsmoke

nonsmoker 3362.837 14.20149 236.79 0.000 3335.003 3390.671
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The average birthweight is 225 grams less when all the mothers who smoke do so than the average
of 3,363 grams that would have occurred if none of these mothers had smoked.

We often express statistics as percentages to alleviate scaling issues and aid interpretation. In the
present context, we may wish to express an ATE as a percentage of the untreated POM to gain a more
intuitive measure of the effect of treatment.

Example 3: Reporting the ATE as a percentage

Here we use the same model as in example 1, but we report the ATE as a percentage of the mean
birthweight that would occur if no mothers smoke. First, we use teffects ipw to fit the model. We
use the coeflegend option so that teffects ipw reports the names of the parameters. Then we
use nlcom to obtain the statistic we want along with its delta-method-based standard error. We type

. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit),
> coeflegend

Iteration 0: EE criterion = 4.621e-21
Iteration 1: EE criterion = 7.358e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit

bweight Coef. Legend

ATE
mbsmoke

(smoker
vs

nonsmoker) -230.6886 _b[ATE:r1vs0.mbsmoke]

POmean
mbsmoke

nonsmoker 3403.463 _b[POmean:0.mbsmoke]

. nlcom _b[ATE:r1vs0.mbsmoke] / _b[POmean:0.mbsmoke]

_nl_1: _b[ATE:r1vs0.mbsmoke] / _b[POmean:0.mbsmoke]

bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.0677806 .0075169 -9.02 0.000 -.0825133 -.0530478

The average birthweight falls by an estimated 6.8% when every mother smokes relative to the case
when no mothers smoke. We also obtain a 95% confidence interval of a 5.3% to 8.3% reduction.

Video example

Treatment effects: Inverse-probability weighting

http://www.youtube.com/watch?v=fmnkEmlJPOU&feature=c4-overview&list=UUVk4G4nEtBS4tLOyHqustDA
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Stored results
teffects ipw stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) teffects
e(cmdline) command as typed
e(depvar) name of outcome variable
e(tvar) name of treatment variable
e(subcmd) ipw
e(tmodel) logit, probit, or hetprobit
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
teffects ipw implements a smooth treatment-effects estimator. All smooth treatment-effects

estimators are documented in Methods and formulas of [TE] teffects aipw.
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Also see
[TE] teffects postestimation — Postestimation tools for teffects

[TE] teffects — Treatment-effects estimation for observational data

[U] 20 Estimation and postestimation commands
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teffects ipwra — Inverse-probability-weighted regression adjustment

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

teffects ipwra estimates the average treatment effect (ATE), the average treatment effect on the
treated (ATET), and the potential-outcome means (POMs) from observational data by inverse-probability-
weighted regression adjustment (IPWRA). IPWRA estimators use weighted regression coefficients to
compute averages of treatment-level predicted outcomes, where the weights are the estimated inverse
probabilities of treatment. The contrasts of these averages estimate the treatment effects. IPWRA
estimators have the double-robust property. teffects ipwra accepts a continuous, binary, count,
fractional, or nonnegative outcome and allows a multivalued treatment.

See [TE] teffects intro or [TE] teffects intro advanced for more information about estimating
treatment effects from observational data.

Quick start
ATE of binary treatment treat2 estimated by IPWRA using a linear model for outcome y1 on x1 and

x2 and a logistic model for treat2 on x1 and w

teffects ipwra (y1 x1 x2) (treat2 x1 w)

As above, but estimate the ATET
teffects ipwra (y1 x1 x2) (treat2 x1 w), atet

Probit model for binary outcome y3

teffects ipwra (y3 x1 x2, probit) (treat2 x1 w)

As above, but use a heteroskedastic probit model for y3 and a probit model for treat2
teffects ipwra (y3 x1 x2, hetprobit(x1 x2)) (treat2 x1 w, probit)

As above, but use a fractional heteroskedastic probit model for y4 and a probit model for treat2
teffects ipwra (y4 x1 x2, fhetprobit(x1 x2)) (treat2 x1 w, probit)

ATE for each level of a three-valued treatment treat3
teffects ipwra (y1 x1 x2) (treat3 x1 w)

As above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3
teffects ipwra (y1 x1 x2) (treat3 x1 w), control(MyControl)

Menu
Statistics > Treatment effects > Continuous outcomes > Regression adjustment with IPW

Statistics > Treatment effects > Binary outcomes > Regression adjustment with IPW

Statistics > Treatment effects > Count outcomes > Regression adjustment with IPW

Statistics > Treatment effects > Fractional outcomes > Regression adjustment with IPW

Statistics > Treatment effects > Nonnegative outcomes > Regression adjustment with IPW

247
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Syntax
teffects ipwra (ovar omvarlist

[
, omodel noconstant

]
)

(tvar tmvarlist
[
, tmodel noconstant

]
)
[

if
] [

in
] [

weight
][

, stat options
]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

omvarlist specifies the covariates in the outcome model.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the covariates in the treatment-assignment model.

omodel Description

Model

linear linear outcome model; the default
logit logistic outcome model
probit probit outcome model
hetprobit(varlist) heteroskedastic probit outcome model
poisson exponential outcome model
flogit fractional logistic outcome model
fprobit fractional probit outcome model
fhetprobit(varlist) fractional heteroskedastic probit outcome model

omodel specifies the model for the outcome variable.

tmodel Description

Model

logit logistic treatment model; the default
probit probit treatment model
hetprobit(varlist) heteroskedastic probit treatment model

tmodel specifies the model for the treatment variable.
For multivalued treatments, only logit is available and multinomial logit is used.

stat Description

Stat

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means
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options Description

SE/Robust

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

pstolerance(#) set tolerance for overlap assumption
osample(newvar) newvar identifies observations that violate the overlap assumption
control(# | label) specify the level of tvar that is the control
tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.
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� � �
Reporting �

level(#); see [R] estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[
, # . . .

]
, copy

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(1e-5). teffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with the
numeric level. control() may not be specified with statistic pomeans. control() and tlevel()
may not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel() may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with teffects ipwra but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview
IPWRA estimators use probability weights to obtain outcome-regression parameters that account

for the missing-data problem arising from the fact that each subject is observed in only one of the
potential outcomes. The adjusted outcome-regression parameters are used to compute averages of
treatment-level predicted outcomes. The contrasts of these averages provide estimates of the treatment
effects.
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IPWRA estimators use a model to predict treatment status, and they use another model to predict
outcomes. Because IPWRA estimators have the double-robust property, only one of the two models
must be correctly specified for the IPWRA estimator to be consistent.

IPWRA estimators use a three-step approach to estimating treatment effects:

1. They estimate the parameters of the treatment model and compute inverse-probability weights.

2. Using the estimated inverse-probability weights, they fit weighted regression models of the
outcome for each treatment level and obtain the treatment-specific predicted outcomes for each
subject.

3. They compute the means of the treatment-specific predicted outcomes. The contrasts of these
averages provide the estimates of the ATEs. By restricting the computations of the means to the
subset of treated subjects, we can obtain the ATETs.

These steps produce consistent estimates of the effect parameters because the treatment is assumed to
be independent of the potential outcomes after conditioning on the covariates. The overlap assumption
ensures that predicted inverse-probability weights do not get too large. The standard errors reported
by teffects ipwra correct for the three-step process. See [TE] teffects intro or [TE] teffects intro
advanced for more information about this estimator.

We will illustrate the use of teffects ipwra by using data from a study of the effect of a
mother’s smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by
Cattaneo (2010). This dataset also contains information about each mother’s age (mage), education
level (medu), marital status (mmarried), whether the first prenatal exam occurred in the first trimester
(prenatal1), and whether this baby was the mother’s first birth (fbaby).

Example 1: Estimating the ATE

We begin by using teffects ipwra to estimate the average treatment effect of smoking on
birthweight. We will use a probit model to predict treatment status as a function of mmarried,
mage, and fbaby; to maximize the predictive power of this model, we use factor-variable notation
to incorporate quadratic effects of the mother’s age, the only continuous covariate in our model. We
will use linear regression (the default) to model birthweight, using prenatal1, mmarried, mage,
and fbaby as explanatory variables. We type
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. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ipwra (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)

Iteration 0: EE criterion = 9.885e-21
Iteration 1: EE criterion = 7.847e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -229.9671 26.62668 -8.64 0.000 -282.1544 -177.7798

POmean
mbsmoke

nonsmoker 3403.336 9.57126 355.58 0.000 3384.576 3422.095

The average birthweight if all mothers were to smoke would be 230 grams less than the average
of 3,403 grams that would occur if none of the mothers had smoked.

By default, teffects ipwra displays the ATE and untreated POM. We can specify the pomeans
option to display both the treated and untreated POMs, and we can use the aequations option to
display the regression model coefficients used to predict the POMs as well as the coefficients from
the model used to predict treatment.
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Example 2: Displaying the POMs and equations

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ipwra (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit), pomeans aequations

Iteration 0: EE criterion = 9.885e-21
Iteration 1: EE criterion = 6.922e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

POmeans
mbsmoke

nonsmoker 3403.336 9.57126 355.58 0.000 3384.576 3422.095
smoker 3173.369 24.86997 127.60 0.000 3124.624 3222.113

OME0
prenatal1 67.98549 28.78428 2.36 0.018 11.56933 124.4017
mmarried 155.5893 26.46903 5.88 0.000 103.711 207.4677

mage 2.893051 2.134788 1.36 0.175 -1.291056 7.077158
fbaby -71.9215 20.39317 -3.53 0.000 -111.8914 -31.95162
_cons 3194.808 55.04911 58.04 0.000 3086.913 3302.702

OME1
prenatal1 34.76923 43.18534 0.81 0.421 -49.87248 119.4109
mmarried 124.0941 40.29775 3.08 0.002 45.11193 203.0762

mage -5.068833 5.954425 -0.85 0.395 -16.73929 6.601626
fbaby 39.89692 56.82072 0.70 0.483 -71.46966 151.2635
_cons 3175.551 153.8312 20.64 0.000 2874.047 3477.054

TME1
mmarried -.6484821 .0554173 -11.70 0.000 -.757098 -.5398663

mage .1744327 .0363718 4.80 0.000 .1031452 .2457202

c.mage#
c.mage -.0032559 .0006678 -4.88 0.000 -.0045647 -.0019471

fbaby -.2175962 .0495604 -4.39 0.000 -.3147328 -.1204595
medu -.0863631 .0100148 -8.62 0.000 -.1059917 -.0667345

_cons -1.558255 .4639691 -3.36 0.001 -2.467618 -.6488926

As is well known, the standard probit model assumes that the error terms in the latent-utility
framework are homoskedastic; the model is not robust to departures from this assumption. An
alternative is to use the heteroskedastic probit model, which explicitly models the error variance as a
function of a set of variables.

Example 3: Heteroskedastic probit treatment model

Here we use the variables as before, but we use a heteroskedastic probit model to predict treatment
status, modeling the heteroskedasticity as a quadratic function of the mother’s age:
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. teffects ipwra (bweight prenatal1 mmarried fbaby c.mage)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, hetprobit(c.mage##c.mage)),
> aequations

Iteration 0: EE criterion = 4.443e-09
Iteration 1: EE criterion = 4.325e-18

Treatment-effects estimation Number of obs = 4,642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: heteroskedastic probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -229.6322 26.33452 -8.72 0.000 -281.2469 -178.0175

POmean
mbsmoke

nonsmoker 3403.74 9.545798 356.57 0.000 3385.03 3422.449

OME0
prenatal1 64.95125 28.62159 2.27 0.023 8.853958 121.0485
mmarried 154.2297 26.45867 5.83 0.000 102.3717 206.0878

fbaby -71.61131 20.33774 -3.52 0.000 -111.4725 -31.75006
mage 3.010148 2.133812 1.41 0.158 -1.172047 7.192343

_cons 3195.355 55.05451 58.04 0.000 3087.45 3303.26

OME1
prenatal1 38.55274 43.57024 0.88 0.376 -46.84336 123.9488
mmarried 126.3377 40.7398 3.10 0.002 46.48921 206.1863

fbaby 45.43547 56.4483 0.80 0.421 -65.20116 156.0721
mage -6.069913 5.95251 -1.02 0.308 -17.73662 5.596792

_cons 3195.795 152.3979 20.97 0.000 2897.101 3494.49

TME1
mmarried -.0295523 .0238951 -1.24 0.216 -.0763857 .0172812

mage .0157893 .0105486 1.50 0.134 -.0048857 .0364643

c.mage#
c.mage -.0002837 .0001901 -1.49 0.136 -.0006563 .0000888

fbaby -.0093306 .0080003 -1.17 0.244 -.025011 .0063497
medu -.0036773 .0030317 -1.21 0.225 -.0096193 .0022647

_cons -.1822201 .1180587 -1.54 0.123 -.4136109 .0491707

TME1_lnsigma
mage -.2211492 .0631504 -3.50 0.000 -.3449217 -.0973767

c.mage#
c.mage .0037613 .0012437 3.02 0.002 .0013236 .006199

The estimated ATE and base-level POM are essentially the same as those produced by the model
that used a homoskedastic probit.
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Video example

Treatment effects: Inverse-probability-weighted regression adjustment

Stored results
teffects ipwra stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) teffects
e(cmdline) command as typed
e(depvar) name of outcome variable
e(tvar) name of treatment variable
e(subcmd) ipwra
e(tmodel) logit, probit, or hetprobit
e(omodel) linear, logit, probit, hetprobit, poisson, flogit, fprobit, or

fhetprobit
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
teffects ipwra implements a smooth treatment-effects estimator. All smooth treatment-effects

estimators are documented in Methods and formulas of [TE] teffects aipw.

Reference
Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal

of Econometrics 155: 138–154.

http://www.youtube.com/watch?v=dmZCSbpL-W4
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Also see
[TE] teffects postestimation — Postestimation tools for teffects

[TE] teffects — Treatment-effects estimation for observational data

[TE] teffects aipw — Augmented inverse-probability weighting

[U] 20 Estimation and postestimation commands
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Description
This entry discusses the use of teffects when the treatment is multivalued. This entry presumes

you are already familiar with the potential-outcome framework and the use of the teffects commands
with binary treatments. See [TE] teffects intro or [TE] teffects intro advanced for more information.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Parameters and notation
Illustrating multivalued treatments
Examples

Introduction

When the treatment is binary, each subject could either receive the treatment or not receive the
treatment. In contrast, multivalued treatments refer to cases in which each subject could receive one
of several different treatments or else not receive treatment at all. For example, in testing the efficacy
of a drug, a patient could receive a 10 milligram (mg) dose, a 20 mg dose, a 30 mg dose, or no dose
at all. We first want to be able to compare a patient receiving the 10 mg dose with a patient receiving
no dose, a patient receiving the 20 mg dose with a patient receiving no dose, and a patient receiving
the 30 mg dose with a patient receiving no dose. Once we can make those comparisons, we can then,
for example, compare the efficacy of a 30 mg dose with that of a 20 mg dose or a 10 mg dose.

To highlight an example in economics, we consider an unemployed person who could participate
in a comprehensive skills training program, attend a one-day workshop that helps job seekers write
their resumés, or choose not to participate in either. We want to know how effective each of those
programs is relative to not participating; once we know that, we can then compare the effectiveness
of the comprehensive program with that of the one-day program.

Multivalued treatments increase the number of parameters that must be estimated and complicate
the notation. Fortunately, however, using the teffects commands is not much more difficult with
multivalued treatments than with binary treatments.

You can use teffects ra, teffects ipw, teffects ipwra, and teffects aipw to estimate
multivalued treatment effects. However, the theory developed in Abadie and Imbens (2006, 2012)
has not been extended to handle multivalued treatments, so you cannot use teffects nnmatch or
teffects psmatch in these cases.

Cattaneo (2010), Imbens (2000), and Wooldridge (2010, sec. 21.6.3) discuss aspects of treatment-
effect estimation with multivalued treatments.

257
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Parameters and notation

We denote the potential outcome that subject i would obtain if given treatment-level t as yti, where
yti is the realization of the random variable yt. Throughout this entry, i subscripts denote realizations
of the corresponding unsubscripted random variables. We again let y0 denote the potential outcome of
a subject who did not receive any treatment. To handle the case of multivalued treatments, we extend
the definition of the unobservable, individual-level treatment effects to be yt− y0 for t ∈ {1, . . . , q}.

As in the binary-valued case, we again focus on three parameters of interest: the average treatment
effect (ATE), the potential-outcome mean (POM), and the average treatment effect on the treated (ATET).

ATE The ATE is the average effect of giving each individual treatment t instead of treatment 0:

ATEt = E(yt − y0)

POM The POM for each treatment level is an average of each potential outcome:

POMt = E(yt)

ATET The ATET is the average effect among those subjects that receive treatment level t̆ of giving
each subject treatment t̃ instead of treatment 0:

ATET
t̃,t̆

= E
{

(y
t̃
− y0)|t = t̆

}
The extra notation required to define the ATET in this case indicates the difficulties surrounding
this parameter.

Defining the ATET in the multivalued treatment case requires three different treatment levels:
t̃ defines the treatment level of the treated potential outcome; 0 is the treatment level of
the control potential outcome; and t = t̆ restricts the expectation to include only those
individuals who actually receive treatment level t̆.

Illustrating multivalued treatments

To illustrate the concept of a potential outcome and the parameters we would like to estimate, we
consider the following table:

y t y0 y1 y2

−0.50 0 −0.50 1.06 1.93
2.42 1 2.13 2.42 2.43
3.15 2 1.26 2.57 3.15
−0.39 0 −0.39 −0.18 0.52

2.22 2 −0.24 −0.01 2.22

We observe the outcome y as well as the treatment indicator t. There are three levels of treatment:
0, 1, or 2. Ideally, we would observe y0, y1, and y2, but in fact all we have is y. In the first row, the
subject received treatment level 0, so y = y0 for that subject. In the last row, the subject received
treatment 2, so y = y2. We reiterate that we do not actually observe y0, y1, or y2.
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If we did have data on y0, y1, and y2, then we could define subject-level treatment variables
te1 = y1 − y0 and te2 = y2 − y0. Here we would be following the convention of taking treatment
level 0 to be the control level. The following table adds these two variables:

y t y0 y1 y2 te1 te2

−0.50 0 −0.50 1.06 1.93 1.56 2.43
2.42 1 2.13 2.42 2.43 0.29 0.30
3.15 2 1.26 2.57 3.15 1.31 1.89
−0.39 0 −0.39 −0.18 0.52 0.21 0.91

2.22 2 −0.24 −0.01 2.22 0.23 2.46

Once we have te1 and te2, obtaining the ATEs is straightforward. The ATE of going from treatment
0 to treatment 1 is simply the mean of the five entries in the column labeled te1, which here works
out to 0.72. Going from treatment level 0 to treatment level 1 causes the outcome to increase an
average of 0.72. Similarly, the ATE of going from treatment 0 to treatment 2 is the mean of the entries
in the column labeled te2, which is 1.60. Exposing all subjects to treatment level 2 would cause the
outcome to rise by an average of 1.60 relative to the outcome obtained by exposing them to treatment
level 0.

The ATET is the average difference in the potential outcomes among those that get a particular
treatment level. To compute this, we must specify two treatment levels: the actual treatment level the
subjects we are interested in received as well as the treatment level we want to compare them with.
For example, suppose we are interested in the ATET of going from treatment 0 to treatment 1 for
those who received treatment 0. This ATET is the average of te1 for those subjects for which t = 0.
Here that ATET is just (1.56 + 0.21)/2 ≈ 0.89. If we exposed the subjects who received treatment 0
to treatment 1 instead, the outcome would increase an average of 0.89.

The ATET of going from treatment 0 to treatment 2 for those subjects who received treatment 2
is the mean of te2 for those subjects for which t = 2, which is (1.89 + 2.46)/2 ≈ 2.18. Receiving
treatment 2 increased the outcome of those who received treatment 2 by an average of 2.18 relative
to receiving the control.

Examples

In the remainder of this entry, we provide several examples demonstrating how to estimate
multivalued treatments using teffects.

Example 1: Potential outcomes with four treatment levels

bdsianesi5.dta contains an extract of data from Blundell, Dearden, and Sianesi (2005). In this
dataset on individuals in the United Kingdom, wages records hourly wages in pounds; ed records
the highest educational degree obtained; paed records the highest educational level obtained by each
individual’s father; math7 records a score obtained on a standardized math test when the individual
was seven; read7 records a score obtained on a standardized reading test when the individual was
seven; and london and eastern are indicators for whether an individual lives in the expensive area
of London or the east. We want to know how the level of education obtained affects a person’s wage.

We begin by using mean to report the estimated means of wages over the four education levels.
The value labels on mean are coded as none for no degree, O for an O-level degree, A for an A-level
degree, or H for a higher-education degree.
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. use http://www.stata-press.com/data/r14/bdsianesi5
(Excerpt from Blundell, Dearden, & Sianesi (2005) JRSSA 168: 473)

. mean wage, over(ed)

Mean estimation Number of obs = 1,693

none: ed = none
O: ed = O
A: ed = A
H: ed = H

Over Mean Std. Err. [95% Conf. Interval]

wage
none 6.057816 .154332 5.755114 6.360518

O 7.501648 .1807359 7.147158 7.856137
A 8.220637 .1540359 7.918516 8.522758
H 10.87703 .2257888 10.43417 11.31988

The output reveals that the estimated mean wage increases as the education level goes from no
degree to an O-level degree, to an A-level degree, and to a higher-education degree, as we would
expect. Once we control for other characteristics of each individual, do we still observe a positive
effect of education on wage?

We use teffects ra (see [TE] teffects ra) to estimate the ATEs of the different education levels by
regression adjustment (RA), controlling for each person’s location, math score, and father’s education
level:

. teffects ra (wage london eastern paed math7, poisson) (ed)

Iteration 0: EE criterion = 1.865e-18
Iteration 1: EE criterion = 4.077e-30

Treatment-effects estimation Number of obs = 1,693
Estimator : regression adjustment
Outcome model : Poisson
Treatment model: none

Robust
wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
ed

(O vs none) 1.181543 .3520371 3.36 0.001 .4915626 1.871523
(A vs none) 1.743079 .3282152 5.31 0.000 1.099789 2.386369
(H vs none) 3.972829 .3840024 10.35 0.000 3.220199 4.72546

POmean
ed

none 6.525873 .2931933 22.26 0.000 5.951224 7.100521

Because wages are necessarily positive, we used the poisson option inside the outcome-model
specification. The estimated POM of the control level of no degree is 6.53 pounds per hour. The
estimated ATE of going from no degree to an O-level degree is 1.18 pounds per hour; the estimated
ATE of going from no degree to an A-level degree is 1.74 pounds per hour; and the estimated ATE of
going from no degree to a higher-education degree is 3.97 pounds per hour. All of these effects are
highly significant.

For comparison purposes, we also use teffects aipw (see [TE] teffects aipw). We use the same
outcome model as before. We use a multinomial logit model to predict education level, using math
and reading scores and both the father’s and the mother’s educational attainment levels as predictors:
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. teffects aipw (wage london eastern paed math7, poisson)
> (ed math7 read7 maed paed)

Iteration 0: EE criterion = 1.877e-18
Iteration 1: EE criterion = 1.029e-30

Treatment-effects estimation Number of obs = 1,693
Estimator : augmented IPW
Outcome model : Poisson by ML
Treatment model: (multinomial) logit

Robust
wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
ed

(O vs none) 1.748197 .3911167 4.47 0.000 .9816221 2.514771
(A vs none) 2.363228 .3741584 6.32 0.000 1.629891 3.096565
(H vs none) 4.359777 .4133059 10.55 0.000 3.549712 5.169842

POmean
ed

none 5.946184 .3391531 17.53 0.000 5.281456 6.610912

The results indicate slightly higher treatment effects relative to those indicated by teffects ra. That
is largely because the AIPW estimator predicts a lower no-higher-education POM than the RA estimator.

Example 2: Expressing ATEs as percentages

As in the binary-treatment case, expressing the ATEs as percentages of the POM for the control
level often aids interpretation. Here we first use the replay facility of teffects aipw along with the
coeflegend option to see how the parameters are named.

. teffects, coeflegend

Treatment-effects estimation Number of obs = 1,693
Estimator : augmented IPW
Outcome model : Poisson by ML
Treatment model: (multinomial) logit

wage Coef. Legend

ATE
ed

(O vs none) 1.748197 _b[ATE:r1vs0.ed]
(A vs none) 2.363228 _b[ATE:r2vs0.ed]
(H vs none) 4.359777 _b[ATE:r3vs0.ed]

POmean
ed

none 5.946184 _b[POmean:0.ed]
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Now that we know the names, we can use nlcom to obtain the ATEs relative to the base-level POM:

. nlcom (_b[ATE:r1vs0.ed] / _b[POmean:0.ed])
> (_b[ATE:r2vs0.ed] / _b[POmean:0.ed])
> (_b[ATE:r3vs0.ed] / _b[POmean:0.ed])

_nl_1: _b[ATE:r1vs0.ed] / _b[POmean:0.ed]
_nl_2: _b[ATE:r2vs0.ed] / _b[POmean:0.ed]
_nl_3: _b[ATE:r3vs0.ed] / _b[POmean:0.ed]

wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .2940031 .0808156 3.64 0.000 .1356075 .4523988
_nl_2 .3974361 .0840545 4.73 0.000 .2326923 .5621799
_nl_3 .7332059 .1068848 6.86 0.000 .5237156 .9426962

Wages are 29% higher when everyone receives an O-level degree than if no one receives a degree.
Wages are 40% higher when everyone receives an A-level degree than if no one receives a degree.
Wages are 73% higher when everyone receives an H-level degree than if no one receives a degree.

Although impressive, these changes are not presented in the way that is most commonly discussed.
(There is a large amount of literature on the treatment effect of getting a higher-education degree.)
In particular, we might rather want to know the percentage changes in wages relative to a person
with an A-level degree. Next we estimate the ATEs treating an A-level degree as the control level;
to do that, we use the control() option. We also specify coeflegend again because we are more
interested in how the parameters are named rather than in their standard errors at this point:

. teffects aipw (wage london eastern paed math7, poisson)
> (ed math7 read7 maed paed), control(A) coeflegend

Iteration 0: EE criterion = 1.870e-18
Iteration 1: EE criterion = 2.882e-30

Treatment-effects estimation Number of obs = 1,693
Estimator : augmented IPW
Outcome model : Poisson by ML
Treatment model: (multinomial) logit

wage Coef. Legend

ATE
ed

(none vs A) -2.363228 _b[ATE:r0vs2.ed]
(O vs A) -.6150312 _b[ATE:r1vs2.ed]
(H vs A) 1.996549 _b[ATE:r3vs2.ed]

POmean
ed
A 8.309412 _b[POmean:2.ed]

Now we use nlcom to obtain the ATE of obtaining a higher-education degree as a percentage of
the expected A-level wage:

. nlcom _b[ATE:r3vs2.ed] / _b[POmean:2.ed], noheader

wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .2402756 .0355404 6.76 0.000 .1706177 .3099335
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The average wage increases by 24% when everyone receives an H-level degree relative to when
everyone receives an A-level degree.

Example 3: Obtaining ATETs

In the previous example, we showed that on average, a higher-education degree increases a person’s
wage by 24% relative to someone with only an A-level degree. Sometimes, though, we would rather
know how much the higher-education degree increases wages among the people who actually have a
higher-education degree. To answer that question, we want to examine the ATET rather than the ATE.

Here we use the IPWRA estimator to obtain our answer. We specify the control(A) option so that
an A-level education is treated as the basis for comparisons. We specify the atet option to obtain
ATETs rather than ATEs, and we specify the tlevel(H) option to indicate that we want the ATETs to
be calculated for the subset of people who actually receive higher-education degrees.

. teffects ipwra (wage london eastern paed math7, poisson)
> (ed math7 read7 maed paed), atet control(A) tlevel(H)

Iteration 0: EE criterion = 2.731e-18
Iteration 1: EE criterion = 5.636e-31

Treatment-effects estimation Number of obs = 1,693
Estimator : IPW regression adjustment
Outcome model : Poisson
Treatment model: (multinomial) logit

Robust
wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
ed

(none vs A) -2.87423 .361093 -7.96 0.000 -3.58196 -2.166501
(O vs A) -.8246604 .3609131 -2.28 0.022 -1.532037 -.1172837
(H vs A) 1.866757 .3277701 5.70 0.000 1.224339 2.509174

POmean
ed
A 9.010271 .2503971 35.98 0.000 8.519501 9.50104

The point estimates are similar to the ATEs we obtained above, suggesting that the means of the
covariates among those with a higher-education degree are similar to the means for the entire population.

In output not shown to save space, we replayed the previous results with the coeflegend option
to determine how the parameters are named. Armed with that information, we call nlcom:

. nlcom _b[ATET:r3vs2.ed] / _b[POmean:2.ed], noheader

wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .207181 .0407528 5.08 0.000 .127307 .287055

Our estimate of the percentage increase is now noticeably smaller once we restrict ourselves to only
those people who actually received a higher-education degree. However, because of the width of
the confidence intervals, there is no evidence to suggest that the difference between the estimates is
statistically significant.
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Example 4: ATEs comparing adjacent treatments

In the first example, we obtained the three ATEs, and they were all expressed relative to the base
level of no degree. Now we show how we can express the gains to an O-level degree relative to no
degree, the gains to an A-level degree relative to an O-level degree, and the gains to a higher-education
degree relative to an A-level degree.

First, we use an AIPW estimator to obtain all the POMs for our example dataset:

. teffects aipw (wage london eastern paed math7, poisson)
> (ed math7 read7 maed paed), pom

Iteration 0: EE criterion = 1.877e-18
Iteration 1: EE criterion = 1.542e-30

Treatment-effects estimation Number of obs = 1,693
Estimator : augmented IPW
Outcome model : Poisson by ML
Treatment model: (multinomial) logit

Robust
wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

POmeans
ed

none 5.946184 .3391531 17.53 0.000 5.281456 6.610912
O 7.694381 .1915192 40.18 0.000 7.31901 8.069752
A 8.309412 .1563348 53.15 0.000 8.003001 8.615823
H 10.30596 .2285837 45.09 0.000 9.857945 10.75398

ATEs are contrasts of POMs, and here we show how to use contrast to obtain the estimated ATEs:

. contrast r.ed, nowald
Warning: cannot perform check for estimable functions.

Contrasts of marginal linear predictions

Margins : asbalanced

Contrast Std. Err. [95% Conf. Interval]

POmeans
ed

(O vs none) 1.748197 .3911167 .9816221 2.514771
(A vs none) 2.363228 .3741584 1.629891 3.096565
(H vs none) 4.359777 .4133059 3.549712 5.169842

These estimated ATEs match those we obtained in example 2.

Now that we know how to use contrast to obtain the ATEs based on the POMs, we can take
advantage of contrast’s ability to obtain “reverse adjacent” contrasts, which compare each level
with the previous level. We use the ar. operator with contrast to accomplish this:
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. contrast ar.ed, nowald
Warning: cannot perform check for estimable functions.

Contrasts of marginal linear predictions

Margins : asbalanced

Contrast Std. Err. [95% Conf. Interval]

POmeans
ed

(O vs none) 1.748197 .3911167 .9816221 2.514771
(A vs O) .6150312 .2432806 .13821 1.091852
(H vs A) 1.996549 .2730712 1.461339 2.531759

These ATEs are for incremental increases. In contrast, the ATEs considered above had a common
base.

Technical note
The multivalued treatment AIPW estimators implemented in teffects aipw are EIF estimators

based on the results of Cattaneo (2010). The results in Cattaneo (2010) are for semiparametric
estimators, and we implement parametric versions. Of more practical importance, Cattaneo (2010)
contains results for quantile treatment effects that are not implemented in teffects but implemented
in the user-written poparms command discussed in Cattaneo, Drukker, and Holland (2013). See
Emsley, Lunt, Pickles, and Dunn (2008) for another implementation of the AIPW estimator, and see
Frölich and Melly (2010) for other commands that estimate quantile treatment effects.
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Description

teffects nnmatch estimates the average treatment effect (ATE) and average treatment effect
on the treated (ATET) from observational data by nearest-neighbor matching (NNM). NNM estimators
impute the missing potential outcome for each subject by using an average of the outcomes of similar
subjects that receive the other treatment level. Similarity between subjects is based on a weighted
function of the covariates for each observation. The treatment effect is computed by taking the average
of the difference between the observed and imputed potential outcomes for each subject. teffects
nnmatch accepts a continuous, binary, count, fractional, or nonnegative outcome.

See [TE] teffects intro or [TE] teffects intro advanced for more information about estimating
treatment effects from observational data.

Quick start
ATE of treat on y estimated by NNM on x1 and indicators for levels of categorical variable a

teffects nnmatch (y x1 i.a) (treat)

As above, but estimate the ATET

teffects nnmatch (y x1 i.a) (treat), atet

Add continuous covariate x2 and perform bias correction
teffects nnmatch (y x1 x2 i.a) (treat), biasadj(x1 x2)

As above, and match exactly on values of a
teffects nnmatch (y x1 x2 i.a) (treat), biasadj(x1 x2) ematch(i.a)

With robust standard errors
teffects nnmatch (y x1 x2 i.a) (treat), vce(robust)

With four matches per observation
teffects nnmatch (y x1 x2 i.a) (treat), nneighbor(4)

Menu
Statistics > Treatment effects > Continuous outcomes > Nearest-neighbor matching

Statistics > Treatment effects > Binary outcomes > Nearest-neighbor matching

Statistics > Treatment effects > Count outcomes > Nearest-neighbor matching

Statistics > Treatment effects > Fractional outcomes > Nearest-neighbor matching

Statistics > Treatment effects > Nonnegative outcomes > Nearest-neighbor matching

266
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Syntax

teffects nnmatch (ovar omvarlist) (tvar)
[

if
] [

in
] [

weight
][

, stat options
]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

omvarlist specifies the covariates in the outcome model.

tvar must contain integer values representing the treatment levels. Only two treatment levels are
allowed.

stat Description

Stat

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated

options Description

Model

nneighbor(#) specify number of matches per observation; default is nneighbor(1)

biasadj(varlist) correct for large-sample bias using specified variables
ematch(varlist) match exactly on specified variables

SE/Robust

vce(vcetype) vcetype may be

vce(robust
[
, nn(#)

]
); use robust Abadie–Imbens standard

errors with # matches
vce(iid); use default Abadie–Imbens standard errors

Reporting

level(#) set confidence level; default is level(95)

dmvariables display names of matching variables
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Advanced

caliper(#) specify the maximum distance for which two observations are
potential neighbors

dtolerance(#) set maximum distance between individuals considered equal
osample(newvar) newvar identifies observations that violate the overlap assumption
control(# | label) specify the level of tvar that is the control
tlevel(# | label) specify the level of tvar that is the treatment
generate(stub) generate variables containing the observation numbers of the nearest neighbors
metric(metric) select distance metric for covariates

coeflegend display legend instead of statistics
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metric Description

mahalanobis inverse sample covariate covariance; the default
ivariance inverse diagonal sample covariate covariance
euclidean identity
matrix matname user-supplied scaling matrix

omvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

nneighbor(#) specifies the number of matches per observation. The default is nneighbor(1). Each
observation is matched with at least the specified number of observations from the other treatment
level. nneighbor() must specify an integer greater than or equal to 1 but no larger than the
number of observations in the smallest treatment group.

biasadj(varlist) specifies that a linear function of the specified covariates be used to correct for a
large-sample bias that exists when matching on more than one continuous covariate. By default,
no correction is performed.

Abadie and Imbens (2006, 2011) show that nearest-neighbor matching estimators are not consistent
when matching on two or more continuous covariates and propose a bias-corrected estimator that
is consistent. The correction term uses a linear function of variables specified in biasadj(); see
example 3.

ematch(varlist) specifies that the variables in varlist match exactly. All variables in varlist must be
numeric and may be specified as factors. teffects nnmatch exits with an error if any observations
do not have the requested exact match.

� � �
Stat �

stat is one of two statistics: ate or atet. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the standard errors that are reported. By default, teffects nnmatch uses
two matches in estimating the robust standard errors.

vce(robust
[
, nn(#)

]
) specifies that robust standard errors be reported and that the requested

number of matches be used optionally.

vce(iid) specifies that standard errors for independently and identically distributed data be
reported.

The standard derivative-based standard-error estimators cannot be used by teffects nnmatch,
because these matching estimators are not differentiable. The implemented methods were derived
by Abadie and Imbens (2006, 2011, 2012); see Methods and formulas.
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As discussed in Abadie and Imbens (2008), bootstrap estimators do not provide reliable standard
errors for the estimator implemented by teffects nnmatch.

� � �
Reporting �

level(#); see [R] estimation options.

dmvariables specifies that the matching variables be displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Advanced �

caliper(#) specifies the maximum distance at which two observations are a potential match. By
default, all observations are potential matches regardless of how dissimilar they are.

The distance is based on omvarlist. If an observation does not have at least nneighbor(#) matches,
teffects nnmatch exits with an error message. Use option osample(newvar) to identify all
observations that are deficient in matches.

dtolerance(#) specifies the tolerance used to determine exact matches. The default value is
dtolerance(sqrt(c(epsdouble))).

Integer-valued variables are usually used for exact matching. The dtolerance() option is useful
when continuous variables are used for exact matching.

osample(newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption. This variable will identify all observations that do not have at
least nneighbor(#) matches in the opposite treatment group within caliper(#) (for metric()
distance matching) or dtolerance(#) (for ematch(varlist) exact matches).

The vce(robust, nn(#)) option also requires at least # matches in the same treatment group within
the distance specified by caliper(#) or within the exact matches specified by dtolerance(#).

The average treatment effect on the treated, option atet, using vce(iid) requires only nneigh-
bor(#) control group matches for the treated group.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() and tlevel() may not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel() may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

generate(stub) specifies that the observation numbers of the nearest neighbors be stored in the new
variables stub1, stub2, . . . . This option is required if you wish to perform postestimation based
on the matching results. The number of variables generated may be more than nneighbors(#)
because of tied distances. These variables may not already exist.

metric(metric) specifies the distance matrix used as the weight matrix in a quadratic form that
transforms the multiple distances into a single distance measure; see Nearest-neighbor matching
estimator in Methods and formulas for details.

The following option is available with teffects nnmatch but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks and examples

The NNM method of treatment-effect estimation imputes the missing potential outcome for each
individual by using an average of the outcomes of similar subjects that receive the other treatment level.
Similarity between subjects is based on a weighted function of the covariates for each observation.
The average treatment effect (ATE) is computed by taking the average of the difference between the
observed and potential outcomes for each subject.

teffects nnmatch determines the “nearest” by using a weighted function of the covariates for
each observation. By default, the Mahalanobis distance is used, in which the weights are based on
the inverse of the covariates’ variance–covariance matrix. teffects nnmatch also allows you to
request exact matching for categorical covariates. For example, you may want to force all matches
to be of the same gender or race.

NNM is nonparametric in that no explicit functional form for either the outcome model or the
treatment model is specified. This flexibility comes at a price; the estimator needs more data to get
to the true value than an estimator that imposes a functional form. More formally, the NNM estimator
converges to the true value at a rate slower than the parametric rate, which is the square root of
the sample size, when matching on more than one continuous covariate. teffects nnmatch uses
bias correction to fix this problem. teffects psmatch implements an alternative to bias correction;
the method matches on a single continuous covariate, the estimated treatment probabilities. See
[TE] teffects intro or [TE] teffects intro advanced for more information about this estimator.

We will illustrate the use of teffects nnmatch by using data from a study of the effect of a
mother’s smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by
Cattaneo (2010). This dataset also contains information about each mother’s age (mage), education
level (medu), marital status (mmarried), whether the first prenatal exam occurred in the first trimester
(prenatal1), whether this baby was the mother’s first birth (fbaby), and the father’s age (fage).

Example 1: Estimating the ATE

We begin by using teffects nnmatch to estimate the average treatment effect of mbsmoke
on bweight. Subjects are matched using the Mahalanobis distance defined by covariates mage,
prenatal1, mmarried, and fbaby.

. use http://www.stata-press.com/data/r14/cattaneo3
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects nnmatch (bweight mage prenatal1 mmarried fbaby) (mbsmoke)

Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 1
Distance metric: Mahalanobis max = 139

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -240.3306 28.43006 -8.45 0.000 -296.0525 -184.6087

The average birthweight if all mothers were to smoke would be 240 grams less than the average
that would occur if none of the mothers had smoked.
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When the model includes indicator and categorical variables, you may want to restrict matches
to only those subjects who are in the same category. The ematch() option of teffects nnmatch
allows you to specify such variables that must match exactly.

Example 2: Exact matching

Here we use the ematch() option to require exact matches on the binary variables prenatal1,
mmarried, and fbaby. We also use Euclidean distance, rather than the default Mahalanobis distance,
to match on the continuous variable mage, which uses Euclidean distance.

. teffects nnmatch (bweight mage) (mbsmoke),
> ematch(prenatal1 mmarried fbaby) metric(euclidean)

Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 1
Distance metric: Euclidean max = 139

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -240.3306 28.43006 -8.45 0.000 -296.0525 -184.6087

Abadie and Imbens (2006, 2011) have shown that nearest-neighbor matching estimators are not
consistent when matching on two or more continuous covariates. A bias-corrected estimator that uses
a linear function of variables can be specified with biasadj().

Example 3: Bias adjustment

Here we match on two continuous variables, mage and fage, and we use the bias-adjusted estimator:

. teffects nnmatch (bweight mage fage) (mbsmoke),
> ematch(prenatal1 mmarried fbaby) biasadj(mage fage)

Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 1
Distance metric: Mahalanobis max = 25

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -223.8389 26.19973 -8.54 0.000 -275.1894 -172.4883

These results are similar to those reported in example 1.
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Example 4: NNM can reduce to RA

NNM reduces to RA when matching exactly and all the covariates are discrete. We begin our
illustration of this point by estimating the ATE by NNM using exact matching on mmarried and the
mother’s age-categories magecat.

. teffects nnmatch (bweight) (mbsmoke), ematch(i.mmarried i.magecat)

Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 11
Distance metric: Mahalanobis max = 1310

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -241.5264 24.39661 -9.90 0.000 -289.3429 -193.71

The RA estimator that includes the interactions among the discrete covariates produces the same
point estimate.

. teffects ra (bweight i.mmarried##i.magecat) (mbsmoke)

Iteration 0: EE criterion = 1.523e-23
Iteration 1: EE criterion = 7.899e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -241.5264 24.26233 -9.95 0.000 -289.0797 -193.9732

POmean
mbsmoke

nonsmoker 3403.651 9.492683 358.56 0.000 3385.046 3422.256

The two estimates of the ATE are the same. The standard errors differ in finite samples because
the RA and NNM estimators use different robust estimators of the variance of the estimator.

With exact matching on discrete covariates, the NNM estimator reduces to an average of differences
in cell means. With fully interacted discrete covariates, the RA estimator reduces to the same average
of difference in cell means.
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Video example
Treatment effects in Stata: Nearest-neighbor matching

Stored results
teffects nnmatch stores the following in e():
Scalars

e(N) number of observations
e(nj) number of observations for treatment level j
e(k levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(k nneighbor) requested number of matches
e(k nnmin) minimum number of matches
e(k nnmax) maximum number of matches
e(k robust) matches for robust VCE

Macros
e(cmd) teffects
e(cmdline) command as typed
e(depvar) name of outcome variable
e(tvar) name of treatment variable
e(emvarlist) exact match variables
e(bavarlist) variables used in bias adjustment
e(mvarlist) match variables
e(subcmd) nnmatch
e(metric) mahalanobis, ivariance, euclidean, or matrix matname
e(stat) statistic estimated, ate or atet
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
The methods and formulas presented here provide the technical details underlying the estimators

implemented in teffects nnmatch and teffects psmatch. See Methods and formulas of [TE] tef-
fects aipw for the methods and formulas used by teffects aipw, teffects ipw, teffects ipwra,
and teffects ra.

Methods and formulas are presented under the following headings:
Nearest-neighbor matching estimator
Bias-corrected matching estimator
Propensity-score matching estimator
PSM, ATE, and ATET variance adjustment

https://www.youtube.com/watch?v=mEqwQ0FI2Vg
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Nearest-neighbor matching estimator

teffects nnmatch implements the nearest-neighbor matching (NNM) estimator for the average
treatment effect (ATE) and the average treatment effect on the treated (ATET). This estimator was
derived by Abadie and Imbens (2006, 2011) and was previously implemented in Stata as discussed
in Abadie et al. (2004).

teffects psmatch implements nearest-neighbor matching on an estimated propensity score.
A propensity score is a conditional probability of treatment. The standard errors implemented in
teffects psmatch were derived by Abadie and Imbens (2012).

teffects nnmatch and teffects psmatch permit two treatment levels: the treatment group
with t = 1 and a control group with t = 0.

Matching estimators are based on the potential-outcome model, in which each individual has
a well-defined outcome for each treatment level; see [TE] teffects intro. In the binary-treatment
potential-outcome model, y1 is the potential outcome obtained by an individual if given treatment-
level 1 and y0 is the potential outcome obtained by each individual i if given treatment-level 0. The
problem posed by the potential-outcome model is that only y1i or y0i is observed, never both. y0i

and y1i are realizations of the random variables y0 and y1. Throughout this document, i subscripts
denote realizations of the corresponding, unsubscripted random variables.

Formally, the ATE is
τ1 = E(y1 − y0)

and the ATET is
δ1 = E(y1 − y0|t = 1)

These expressions imply that we must have some solution to the missing-data problem that arises
because we only observe either y1i or y0i, not both.

For each individual, NNM uses an average of the individuals that are most similar, but get the other
treatment level, to predict the unobserved potential outcome. NNM uses the covariates {x1, x2, . . . , xp}
to find the most similar individuals that get the other treatment level.

More formally, consider the vector of covariates xi = {xi,1, xi,2, . . . , xi,p} and frequency weight
wi for observation i. The distance between xi and xj is parameterized by the vector norm

‖xi − xj‖S = {(xi − xj)
′S−1(xi − xj)}1/2

where S is a given symmetric, positive-definite matrix.

Using this distance definition, we find that the set of nearest-neighbor indices for observation i is

Ωx
m(i) = {j1, j2, . . . , jmi | tjk = 1− ti, ‖xi − xjk‖S < ‖xi − xl‖S , tl = 1− ti, l 6= jk}

Here mi is the smallest number such that the number of elements in each set, mi = |Ωx
m(i)| =∑

j∈Ωx
m(i) wj , is at least m, the desired number of matches. You set the size of m using the

nneighbors(#) option. The number of matches for the ith observation may not equal m because
of ties or if there are not enough observations with a distance from observation i within the caliper
limit, c, ‖xi − xj‖S ≤ c. You may set the caliper limit by using the caliper(#) option. For ease
of notation, we will use the abbreviation Ω(i) = Ωx

m(i).

With the metric(string) option, you have three choices for the scaling matrix S: Mahalanobis,
inverse variance, or Euclidean.
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S =



(X− x′1n)′W(X− x′1n)∑n

i
wi − 1 if metric = mahalanobis

diag
{

(X− x′1n)′W(X− x′1n)∑n

i
wi − 1

}
if metric = ivariance

Ip if metric = euclidean

where 1n is an n× 1 vector of ones, Ip is the identity matrix of order p, x = (
∑n
i wixi)/(

∑n
i wi),

and W is an n× n diagonal matrix containing frequency weights.

The NNM method predicting the potential outcome for the ith observation as a function of the
observed yi is

ŷti =


yi if ti = t∑
wjyj

j∈Ω(i)∑
wj

j∈Ω(i)

otherwise

for t ∈ {0, 1}.

We are now set to provide formulas for estimates τ̂1, the ATE, and δ̂1, the ATET,

τ̂1 =

∑n
i=1 wi(ŷ1i − ŷ0i)∑n

i=1 wi
=

∑n
i=1 wi(2ti − 1){1 +Km(i)}yi∑n

i=1 wi

δ̂1 =

∑n
i=1 tiwi(ŷ1i − ŷ0i)∑n

i=1 tiwi
=

∑n
i=1{ti − (1− ti)Km(i)}yi∑n

i=1 tiwi

where

Km(i) =

n∑
j=1

I{i ∈ Ω(j)} wj∑
wk

k∈Ω(j)

The estimated variance of τ̂1 and δ̂1 are computed as

σ̂2
τ =

∑n

i=1
wi

[
(ŷ1i − ŷ0i − τ̂1)2 + ξ̂2

i {K2
m(i) + 2Km(i)−K ′m(i)}

]
(
∑n
i=1 wi)

2

σ̂2
δ =

∑n

i=1
tiwi

[
(ŷ1i − ŷ0i − δ̂1)2 + ξ̂2

i {K2
m(i)−K ′m(i)}

]
(
∑n
i=1 tiwi)

2

where

K ′m(i) =

n∑
j=1

I{i ∈ Ω(j)} wj( ∑
wk

k∈Ω(j)

)2

and ξ2
i = var(yti|xi) is the conditional outcome variance. If we can assume that ξ2

i does not vary
with the covariates or treatment (homoskedastic), then we can compute an ATE estimate of ξ2

τ as
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ξ̂2
τ =

1

2
∑n
i wi

n∑
i=1

wi


∑

wj{yi − yj(1− ti)− τ̂1}2
j∈Ω(i) ∑

wj
j∈Ω(i)


and an ATET estimate of ξ2

δ as

ξ̂2
δ =

1

2
∑n
i tiwi

n∑
i=1

tiwi


∑

tjwj{yi − yj(1− ti)− δ̂1}2
j∈Ω(i) ∑

tjwj
j∈Ω(i)


If the conditional outcome variance is dependent on the covariates or treatment, we require an

estimate for ξ2
i at each observation. In this case, we require a second matching procedure, where we

match on observations within the same treatment group.

Define the within-treatment matching set

Ψx
h(i) = {j1, j2, . . . , jhi

| tjk = ti, ‖xi − xjk‖S < ‖xi − xl‖S , tl = ti, l 6= jk}

where h is the desired set size. As before, the number of elements in each set, hi = |Ψx
h(i)|, may

vary depending on ties and the value of the caliper. You set h using the vce(robust, nn(#)) option.
As before, we will use the abbreviation Ψ(i) = Ψx

h(i) where convenient.

We estimate ξ2
i by

ξ̂2
ti(xi) =

∑
wj(yj − yΨi)

2

j∈Ψ(i) ∑
wj − 1

j∈Ψ(i)

where yΨi =

∑
wjyj

j∈Ψ(i)∑
wj − 1

j∈Ψ(i)

Bias-corrected matching estimator

When matching on more than one continuous covariate, the matching estimator described above
is biased, even in infinitely large samples; in other words, it is not

√
n-consistent; see Abadie and

Imbens (2006, 2011). Following Abadie and Imbens (2011) and Abadie et al. (2004), teffects
nnmatch makes an adjustment based on the regression functions µt(x̃i) = E(yt | x̃ = x̃i), for
t = 0, 1 and the set of covariates x̃i = (x̃i,1, . . . , x̃i,q). The bias-correction covariates may be the

same as the NNM covariates xi. We denote the least-squares estimates as µ̂t(x̃i) = ν̂t + β̂
′
tx̃i, where

we regress {yi | ti = t} onto {x̃i | ti = t} with weights wiKm(i), for t = 0, 1.

Given the estimated regression functions, the bias-corrected predictions for the potential outcomes
are computed as

ŷti =


yi if ti = t∑

wj{yj + µ̂t(x̃i)− µ̂t(x̃j)}
j∈Ωx

m(i) ∑
wj − 1

j∈Ωx
m(i)

otherwise

The biasadj(varlist) option specifies the bias-adjustment covariates x̃i.
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Propensity-score matching estimator

The propensity-score matching (PSM) estimator uses a treatment model (TM), p(zi, t,γ), to model
the conditional probability that observation i receives treatment t given covariates zi. The literature
calls p(zi, t,γ) a propensity score, and PSM matches on the estimated propensity scores.

When matching on the estimated propensity score, the set of nearest-neighbor indices for obser-
vation i, i = 1, . . . , n, is

Ωp

m(i) = {j1, j2, . . . , jmi | tjk = 1− ti, |p̂i(t)− p̂jk(t)| < |p̂i(t)− p̂l(t)|, tl = 1− ti, l 6= jk}
where p̂i(t) = p(zi, t, γ̂). As was the case with the NNM estimator, mi is the smallest number such
that the number of elements in each set, mi = |Ωp

m(i)| =
∑
j∈Ωp

m(i) wj , is at least m, the desired
number of matches, set by the nneighbors(#) option.

We define the within-treatment matching set analogously,

Ψp

h(i) = {j1, j2, . . . , jhi
| tjk = ti, |p̂i(t)− p̂jk(t)| < |p̂i(t)− p̂l(t)|, tl = ti, l 6= jk}

where h is the desired number of within-treatment matches, and hi = |Ψp

h(i)|, for i = 1, . . . , n, may
vary depending on ties and the value of the caliper. The sets Ψp

h(i) are required to compute standard
errors for τ̂1 and δ̂1.

Once a matching set is computed for each observation, the potential-outcome mean, ATE, and ATET
computations are identical to those of NNM. The ATE and ATET standard errors, however, must be
adjusted because the TM parameters were estimated; see Abadie and Imbens (2012).

PSM, ATE, and ATET variance adjustment

The variances for τ̂1 and δ̂1 must be adjusted because we use γ̂ instead of γ. The adjusted variances
for τ̂1 and δ̂1 have the following forms, respectively:

σ̂2
τ,adj = σ̂2

τ + ĉ′τ V̂γ ĉτ

σ̂2
δ,adj = σ̂2

δ − ĉ′δV̂γ ĉδ +
∂̂δ1
∂γ′

V̂γ
∂̂δ1
∂γ

In both equations, the matrix V̂γ is the TM coefficient variance–covariance matrix.

The adjustment term for ATE can be expressed as

ĉτ =
1∑n
i=1 wi

n∑
i=1

wif(z′iγ̂)

(
ĉov (zi, ŷi1)

p̂i(1)
+

ĉov (zi, ŷi0)

p̂i(0)

)
where

f(z′iγ̂) =
d p(zi, 1, γ̂)

d(z′iγ̂)

is the derivative of p(zi, 1, γ̂) with respect to z′iγ̂, and

ĉov (zi, ŷti) =



∑
wj(zj − zΨi)(yj − yΨi)

j∈Ψh(i) ∑
wj − 1

j∈Ψh(i)

if ti = t

∑
wj(zj − zΩi)(yj − yΩi)

j∈Ωh(i) ∑
wj − 1

j∈Ωh(i)

otherwise
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is a p× 1 vector with

zΨi =

∑
wjzj

j∈Ψh(i)∑
wj

j∈Ψh(i)

zΩi =

∑
wjzj

j∈Ωh(i)∑
wj

j∈Ωh(i)

and yΩi =

∑
wjyj

j∈Ωh(i)∑
wj

j∈Ωh(i)

Here we have used the notation Ψh(i) = Ψp

h(i) and Ωh(i) = Ωp

h(i) to stress that the within-treatment
and opposite-treatment clusters used in computing σ̂2

τ,adj and δ̂2
τ,adj are based on h instead of the

cluster Ωp
m(i) based on m used to compute τ̂1 and δ̂1, although you may desire to have h = m.

The adjustment term cδ for the ATET estimate has two components, cδ = cδ,1 + cδ,2, defined as

cδ,1 =
1∑n

i=1 tiwi

n∑
i=1

wizif(z′iγ̂)
(
ỹ1i − ỹ0i − δ̂1

)
cδ,2 =

1∑n
i=1 tiwi

n∑
i=1

wif(z′iγ̂)

{
ĉov (zi, ŷ1i) +

p̂i(1)

p̂i(0)
ĉov (zi, ŷ0i)

}
where

ỹti =



∑
wjyj

j∈Ψh(−i)∑
wj

j∈Ψh(−i)

if t = ti

∑
wjyj

j∈Ωh∑
wj

j∈Ωh

otherwise

and the within-treatment matching sets Ψh(−i) = Ψp

h(−i) are similar to Ψp

h(i) but exclude obser-
vation i:

Ψp

h(−i) = {j1, j2, . . . , jhi | jk 6= i, tjk = ti, |p̂i − p̂jk | < |p̂i − p̂l|, tl = ti, l 6∈ {i, jk}}

Finally, we cover the computation of ∂̂δ1
∂γ′ in the third term on the right-hand side of σ̂2

δ,adj. Here
we require yet another clustering, but we match on the opposite treatment by using the covariates
zi = (zi,1, . . . , zi,p)

′. We will denote these cluster sets as Ωz
m(i), for i = 1, . . . , n.

The estimator of the p× 1 vector (∂δ1)/(∂γ′) is computed as

∂̂δ1
∂γ′

=
1∑n
i tiwi

n∑
i=1

zif(z′γ̂)
{

(2ti − 1)(yi − yΩz
mi)− δ̂1

}
where

yΩz
mi =

∑
wjyj

j∈Ωz
m(i)∑
wj

j∈Ωz
m(i)
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teffects overlap — Overlap plots

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description

One of the assumptions required to use the teffects and stteffects estimators is the overlap
assumption, which states that each individual has a positive probability of receiving each treatment
level. teffects overlap, a postestimation command, plots the estimated densities of the probability
of getting each treatment level. These plots can be used to check whether the overlap assumption is
violated.

Quick start
Visually check whether the overlap assumption is violated

teffects overlap

As above, but use the Epanechnikov kernel function
teffects overlap, kernel(epanechnikov)

Plot probability of getting treatment 3 for subjects receiving treatments 2 or 3 of a multivalued
treatment

teffects overlap, ptlevel(3) tlevels(2 3)

As above, and change legend labels to “Treated 2” and “Treated 3”
teffects overlap, ptlevel(3) tlevels(2 3) ///

legend(label(1 "Treated 2") label(2 "Treated 3"))

Menu
Statistics > Treatment effects > Overlap plots

280
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Syntax

teffects overlap
[
, treat options kden options

]
treat options Description

Main

ptlevel(treat level) calculate predicted probabilities for treatment level treat level; by
default, ptlevel() corresponds to the first treatment level

tlevels(treatments) specify conditioning treatment levels; default is all treatment levels
nolabel use treatment level values and not value labels in legend and axis

titles

kden options Description

Main

kernel(kernel) specify kernel function; default is kernel(triangle)

n(#) estimate densities using # points; default is e(N), the number of
observations in the estimation sample

bwidth(#) half-width of kernel
at(var x) estimate densities using the values specified by var x

Kernel plots

line#opts(cline options) affect rendition of density for conditioning treatment #

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

kernel Description

triangle triangle kernel function; the default
epanechnikov Epanechnikov kernel function
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function
cosine cosine trace kernel function
gaussian Gaussian kernel function
parzen Parzen kernel function
rectangle rectangle kernel function

Options

� � �
Main �

ptlevel(treat level) specifies that predicted probabilities be calculated for treatment level treat level.
The default is ptlevel(first), where first is the first treatment level.
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tlevels(treatments) specifies the observations for which to obtain predicted probabilities. By default,
all treatment levels are used. Specify treatments as a space-delimited list.

For instance,

. teffects overlap, ptlevel(1) tlevels(1 2)

says to predict the probability of getting treatment level 1 for those subjects who actually obtained
treatment levels 1 or 2.

nolabel specifies that treatment level values and not value labels be used in legend and axis titles.

kernel(kernel) specifies the kernel function for use in calculating the kernel density estimates. The
default kernel is the triangle kernel (triangle).

n(#) specifies the number of points at which the density estimate is to be evaluated. The default is
e(N), the estimation sample size.

bwidth(#) specifies the half-width of the kernel, the width of the density window around each point.
If bwidth() is not specified, the “optimal” width is calculated and used; see [R] kdensity. The
optimal width is the width that would minimize the mean integrated squared error if the data
were Gaussian and a Gaussian kernel were used, so it is not optimal in any global sense. In fact,
for multimodal and highly skewed densities, this width is usually too wide and oversmooths the
density (Silverman 1986).

at(var x) specifies a variable that contains the values at which the density should be estimated.
This option allows you to more easily obtain density estimates for different variables or different
subsamples of a variable and then overlay the estimated densities for comparison.

� � �
Kernel plots �

line#opts(cline options) affect the rendition of the plotted kernel density estimates. See
[G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples

teffects overlap plots the estimated densities of the probability of getting each treatment level
after teffects.

These plots can be used to check whether the overlap assumption is violated. The overlap assumption
is satisfied when there is a chance of seeing observations in both the control and the treatment groups
at each combination of covariate values; see [TE] teffects intro or [TE] teffects intro advanced.

The overlap assumption is required by the estimators implemented in teffects. Intuitively, when
the overlap assumption is violated, we cannot predict, or otherwise account for, the unobserved
outcomes for some individuals.



teffects overlap — Overlap plots 283

There is evidence that the overlap assumption is violated when an estimated density has too much
mass around 0 or 1; see Busso, DiNardo, and McCrary (2014). An implication of this point is that
when the overlap assumption is violated, the estimated densities will have relatively little mass in the
regions in which they overlap.

Example 1: Assumption not violated

Continuing with example 1 of [TE] teffects ipw, we estimate the average treatment effect of
smoking on birthweight and then draw the overlap plot:

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)

Iteration 0: EE criterion = 4.621e-21
Iteration 1: EE criterion = 7.358e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -230.6886 25.81524 -8.94 0.000 -281.2856 -180.0917

POmean
mbsmoke

nonsmoker 3403.463 9.571369 355.59 0.000 3384.703 3422.222
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. teffects overlap
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The graph displays the estimated density of the predicted probabilities that a nonsmoking mother
is a nonsmoker and the estimated density of the predicted probabilities that a smoking mother is a
nonsmoker.

Neither plot indicates too much probability mass near 0 or 1, and the two estimated densities
have most of their respective masses in regions in which they overlap each other. Thus there is no
evidence that the overlap assumption is violated.

Example 2: Assumption violated

This example produces an overlap plot that indicates a failure of the overlap assumption. We will
use simulated data, so we know that the assumption is not true.

In our simulated dataset, some of the 1,000 adult males were given drug XY1 for high blood pressure
and others were not. A scatterplot of systolic blood pressure (systolic) and weight (weight) reveals
that heavier men were given the treatment. (The scatterplots corresponding to the treatment group are
colored red, while the scatterplots corresponding to the control group are colored blue.)
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. use http://www.stata-press.com/data/r14/systolic2
(Systolic blood pressure)

. twoway (scatter systolic weight if xy1==1, mcolor(red))
> (scatter systolic weight if xy1==0, mcolor(blue)),
> legend(label(1 "Treated") label(2 "Untreated"))
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There are no observations in the treated group for small weights, and there are no observations in
the control group for large weights. There is clear evidence that the overlap assumption is violated.

Drawing an overlaid scatterplot is a straightforward way to check the overlap assumption in this
example because there is only one covariate. This method is not available when there is more than
one covariate. The predicted probability is a one-dimensional measure that captures the relevant
multivariate information.

Below we estimate the parameters needed to calculate the predicted probabilities. The
pstolerance(1e-8) option is specified to ensure that estimation is performed as long as the
predicted probabilities are at least as large as 1e–8.

. teffects ipw (systolic) (xy1 weight), pstolerance(1e-8)

Iteration 0: EE criterion = 9.523e-18
Iteration 1: EE criterion = 3.489e-28

Treatment-effects estimation Number of obs = 1,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
systolic Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
xy1

(Treated
vs

Untreated) -16.23679 2.191703 -7.41 0.000 -20.53245 -11.94114

POmean
xy1

Untreated 127.9094 .7004533 182.61 0.000 126.5365 129.2822
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Now we can obtain the overlap plot.

. teffects overlap
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The estimated density of the predicted probabilities that a treated individual is not assigned to XY1
treatment has most of its mass near 0. The estimated density of the predicted probabilities that an
untreated individual is not assigned to XY1 treatment has most of its mass near 1. Note that the two
have very little mass in the region in which they overlap. There is clear evidence that the overlap
assumption is violated.

Stored results
teffects overlap stores the following in r():

Scalars
r(bwidthj) kernel bandwidth for treatment level j
r(nj) number of points at which the estimate was evaluated for treatment level j
r(scalej) density bin width for treatment level j

Macros
r(kernel) name of kernel

References
Busso, M., J. DiNardo, and J. McCrary. 2014. New evidence on the finite sample properties of propensity score

reweighting and matching estimators. Review of Economics and Statistics 96: 885–897.

Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. London: Chapman & Hall.
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Also see
[TE] stteffects — Treatment-effects estimation for observational survival-time data

[TE] stteffects ipw — Survival-time inverse-probability weighting

[TE] stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment

[TE] teffects — Treatment-effects estimation for observational data

[TE] teffects aipw — Augmented inverse-probability weighting

[TE] teffects ipw — Inverse-probability weighting

[TE] teffects ipwra — Inverse-probability-weighted regression adjustment

[TE] teffects nnmatch — Nearest-neighbor matching

[TE] teffects psmatch — Propensity-score matching

[TE] teffects ra — Regression adjustment
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Postestimation commands
The following postestimation command is of special interest after teffects:

Command Description

teffects overlap overlap plots
tebalance check balance of covariates

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

288
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predict

Description for predict

predict creates a new variable containing predictions such as treatment effects, potential outcomes,
conditional means, propensity scores, linear predictions, nearest-neighbor distances, and log square
root of latent variances.

Menu for predict

Statistics > Postestimation

Syntaxes for predict

Syntaxes are presented under the following headings:

Syntax for predict after aipw and ipwra
Syntax for predict after ipw
Syntax for predict after nnmatch and psmatch
Syntax for predict after ra

Syntax for predict after aipw and ipwra

predict
[

type
] {

stub* | newvar | newvarlist
} [

if
] [

in
][

, statistic tlevel(treat level)
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

te treatment effect; the default
cmean conditional mean at treatment level
ps propensity score
xb linear prediction
psxb linear prediction for propensity score
lnsigma log square root of conditional latent variance (for outcome model

hetprobit()) at treatment level
pslnsigma log square root of latent variance (for treatment model hetprobit())

for propensity score

If you do not specify tlevel() and only specify one new variable, te and psxb assume tlevel() specifies the first
noncontrol treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, ps, xb, and lnsigma assume tlevel()
specifies the first treatment level.

You specify one or t new variables with cmean, ps, xb, and lnsigma, where t is the number of treatment levels.

You specify one or t−1 new variables with te, psxb, and pslnsigma.
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Syntax for predict after ipw

predict
[

type
] {

stub* | newvar | newvarlist
} [

if
] [

in
][

, statistic tlevel(treat level)
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

ps propensity score; the default
xb linear prediction for the propensity score
lnsigma log square root of latent variance (for treatment model hetprobit())

If you do not specify tlevel() and only specify one new variable, ps assumes tlevel() specifies the first treatment
level.

If you do not specify tlevel() and only specify one new variable, xb assumes tlevel() specifies the first noncontrol
treatment level.

You specify one or t new variables with ps, where t is the number of treatment levels.

You specify one or t−1 new variables with xb and lnsigma.

Syntax for predict after nnmatch and psmatch

predict
[

type
] {

stub* | newvarlist
} [

, statistic tlevel(treat level)
]

statistic Description

Main

te treatment effect; the default
po potential outcome
distance nearest-neighbor distance
ps propensity score (psmatch only)
lnsigma log square root of latent variance (for treatment model hetprobit())

These statistics are available for the estimation sample only and require the estimation option generate(stub). This
is because of the nonparametric nature of the matching estimator.

If you do not specify tlevel() and only specify one new variable, po and ps assume tlevel() specifies the first
treatment level.

You specify one new variable with te and lnsigma.

You specify one or two new variables with po and ps.
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Syntax for predict after ra

predict
[

type
] {

stub* | newvar | newvarlist
} [

if
] [

in
][

, statistic tlevel(treat level)
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, scores
]

statistic Description

Main

te treatment effect; the default
cmean conditional mean at treatment level
xb linear prediction
lnsigma log square root of conditional latent variance (for outcome model

hetprobit()) at treatment level

If you do not specify tlevel() and only specify one new variable, te assumes tlevel() specifies the first noncontrol
treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, xb, and lnsigma assume tlevel()
specifies the first treatment level.

You specify one or t new variables with cmean, xb, and lnsigma, where t is the number of treatment levels.

You specify one or t−1 new variables with te.

Options for predict

Options are presented under the following headings:

Options for predict after aipw and ipwra
Options for predict after ipw
Options for predict after nnmatch and psmatch
Options for predict after ra

Options for predict after aipw and ipwra

� � �
Main �

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment
level specified in tlevel(). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level (except the
control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in
tlevel(). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.

ps calculates the propensity score of each treatment level or the treatment level specified in tlevel().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you
must specify a new variable for each treatment level.

xb calculates the linear prediction at each treatment level or the treatment level specified in tlevel().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you
must specify a new variable for each treatment level.
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psxb calculates the linear prediction for the propensity score at each noncontrol level of the treatment
or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to
specify only one new variable; otherwise, you must specify a new variable for each treatment level
(except the control level).

lnsigma calculates the log square root of the conditional latent variance for each treatment level or the
treatment level specified in tlevel(). This option is valid when outcome model hetprobit() was
used. If you specify the tlevel() option, you need to specify only one new variable; otherwise,
you must specify a new variable for each treatment level.

pslnsigma calculates the log square root of the latent variance for the propensity score. This option
is only valid when treatment model hetprobit() was used. Specify only one new variable.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean
and average treatment-effect equations. Equation-level scores are computed for the propensity-score
equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if j ≤ t,
where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
j − t following the first t parameters in the coefficient table.

Options for predict after ipw

� � �
Main �

ps, the default, calculates the propensity score of each treatment level or the treatment level specified
in tlevel(). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.

xb calculates the linear prediction for the propensity score at each noncontrol level of the treatment
or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to
specify only one new variable; otherwise, you must specify a new variable for each treatment level
(except the control level).

lnsigma calculates the log square root of the latent variance. This option is only valid when treatment
model hetprobit() was used. Specify only one new variable.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean
and average treatment-effect equations. Equation-level scores are computed for the propensity-score
equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if j ≤ t,
where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
j − t following the first t parameters in the coefficient table.

Options for predict after nnmatch and psmatch

� � �
Main �

te, the default, calculates the treatment effect.

po calculates the predicted potential outcomes for each observation and treatment level or the treatment
level specified in tlevel(). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify new variables for the control and treated groups.
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distance calculates the distances of the nearest neighbors for each observation. The number of
variables generated is equal to the maximum number of nearest-neighbor matches. This is equal
to the number of index variables generated by the estimation option generate(stub). You may
use the stub* syntax to set the distance variable prefix: stub1, stub2, . . . .

ps calculates the propensity score of each treatment level or the propensity score of the treatment
level specified in tlevel(). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify new variables for the control and treated groups.

lnsigma calculates the log square root of the latent variance. This option is only valid when treatment
model hetprobit() was used. Specify only one new variable.

tlevel(treat level) restricts potential-outcome estimation to either the treated group or the control
group. This option may only be specified with options po and ps.

Options for predict after ra

� � �
Main �

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment
level specified in tlevel(). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level (except the
control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in
tlevel(). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.

xb calculates the linear prediction at each treatment level or the treatment level specified in tlevel().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you
must specify a new variable for each treatment level.

lnsigma calculates the log square root of the conditional latent variance for each treatment level or the
treatment level specified in tlevel(). This option is valid when outcome model hetprobit() was
used. If you specify the tlevel() option, you need to specify only one new variable; otherwise,
you must specify a new variable for each treatment level.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean and
average treatment-effect equations. Equation-level scores are computed for the regression equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if j ≤ t,
where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
j − t following the first t parameters in the coefficient table.

Remarks and examples
Checking model specification is the most frequent reason for postestimation computation after

teffects. teffects overlap provides a graphical method for checking the overlap assumption;
see [TE] teffects overlap. Summarizing the estimated probabilities provides another check. Recall
that the reciprocals of these estimated probabilities are used as weights by some of the estimators. If
the estimated probabilities are too small, the weights blow up.
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We estimate the ATE of maternal smoking on infant birthweight by inverse-probability weighting;
see example 1 of [TE] teffects ipw for background.

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)

Iteration 0: EE criterion = 4.621e-21
Iteration 1: EE criterion = 7.358e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -230.6886 25.81524 -8.94 0.000 -281.2856 -180.0917

POmean
mbsmoke

nonsmoker 3403.463 9.571369 355.59 0.000 3384.703 3422.222

Below we compute and summarize the estimated treatment probabilities.

. predict pr1
(option ps assumed; propensity score)

. summarize pr1 if mbsmoke==1, detail

propensity score, mbsmoke=nonsmoker

Percentiles Smallest
1% .2991634 .2196947
5% .544155 .2258079

10% .5973879 .2258079 Obs 864
25% .63777 .2409025 Sum of Wgt. 864

50% .7601717 Mean .7456264
Largest Std. Dev. .1276102

75% .8453946 .9533503
90% .8943686 .9596144 Variance .0162844
95% .9096801 .961022 Skewness -.7701643
99% .9367017 .9665684 Kurtosis 3.858214

The smallest values do not imply very large weights.
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Below we compute and summarize the estimated probabilities of not getting the treatment.

. generate pr0 = 1 -pr1

. summarize pr0 if mbsmoke==0, detail

pr0

Percentiles Smallest
1% .0351884 .0074551
5% .0578012 .0079309

10% .0674359 .0106305 Obs 3,778
25% .0950869 .0106305 Sum of Wgt. 3,778

50% .1372589 Mean .1698913
Largest Std. Dev. .1059434

75% .2211142 .7547572
90% .3242757 .774192 Variance .011224
95% .3883457 .7803053 Skewness 1.514456
99% .501537 .7816764 Kurtosis 6.151114

Although there are two small probabilities, overall the small values do not imply large weights.

Also see
[TE] teffects overlap — Overlap plots

[TE] teffects aipw — Augmented inverse-probability weighting

[TE] teffects ipw — Inverse-probability weighting

[TE] teffects ipwra — Inverse-probability-weighted regression adjustment

[TE] teffects nnmatch — Nearest-neighbor matching

[TE] teffects psmatch — Propensity-score matching

[TE] teffects ra — Regression adjustment

[U] 20 Estimation and postestimation commands



Title

teffects psmatch — Propensity-score matching

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

teffects psmatch estimates the average treatment effect (ATE) and average treatment effect on
the treated (ATET) from observational data by propensity-score matching (PSM). PSM estimators impute
the missing potential outcome for each subject by using an average of the outcomes of similar subjects
that receive the other treatment level. Similarity between subjects is based on estimated treatment
probabilities, known as propensity scores. The treatment effect is computed by taking the average of
the difference between the observed and potential outcomes for each subject. teffects psmatch
accepts a continuous, binary, count, fractional, or nonnegative outcome.

See [TE] teffects intro or [TE] teffects intro advanced for more information about estimating
treatment effects from observational data.

Quick start
ATE of treat on y estimated by PSM using a logistic model for treat on x and indicators for levels

of categorical variable a

teffects psmatch (y) (treat x i.a)

As above, but estimate the ATET

teffects psmatch (y) (treat x i.a), atet

ATE of treat using a heteroskedastic probit model for treatment
teffects psmatch (y) (treat x i.a, hetprobit(x i.a))

With 4 matches per observation
teffects psmatch (y) (treat x i.a), nneighbor(4)

Menu
Statistics > Treatment effects > Continuous outcomes > Propensity-score matching

Statistics > Treatment effects > Binary outcomes > Propensity-score matching

Statistics > Treatment effects > Count outcomes > Propensity-score matching

Statistics > Treatment effects > Fractional outcomes > Propensity-score matching

Statistics > Treatment effects > Nonnegative outcomes > Propensity-score matching

296



teffects psmatch — Propensity-score matching 297

Syntax
teffects psmatch (ovar) (tvar tmvarlist

[
, tmodel

]
)
[

if
] [

in
] [

weight
][

, stat options
]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the variables that predict treatment assignment in the treatment model. Only two
treatment levels are allowed.

tmodel Description

Model

logit logistic treatment model; the default
probit probit treatment model
hetprobit(varlist) heteroskedastic probit treatment model

tmodel specifies the model for the treatment variable.

stat Description

Stat

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
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options Description

Model

nneighbor(#) specify number of matches per observation; default is nneighbor(1)

SE/Robust

vce(vcetype) vcetype may be

vce(robust
[
, nn(#)

]
); use robust Abadie–Imbens standard

errors with # matches
vce(iid); use independent and identically distributed Abadie–Imbens

standard errors

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Advanced

caliper(#) specify the maximum distance for which two observations are
potential neighbors

pstolerance(#) set tolerance for in overlap assumption
osample(newvar) newvar identifies observations that violate the overlap assumption
control(# | label) specify the level of tvar that is the control
tlevel(# | label) specify the level of tvar that is the treatment
generate(stub) generate variables containing the observation numbers of the nearest neighbors

coeflegend display legend instead of statistics

tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

nneighbor(#) specifies the number of matches per observation. The default is nneighbor(1). Each
individual is matched with at least the specified number of individuals from the other treatment
level. nneighbor() must specify an integer greater than or equal to 1 but no larger than the
number of observations in the smallest group.

� � �
Stat �

stat is one of two statistics: ate or atet. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.
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� � �
SE/Robust �

vce(vcetype) specifies the standard errors that are reported. By default, teffects psmatch uses
two matches in estimating the robust standard errors.

vce(robust
[
, nn(#)

]
) specifies that robust standard errors be reported and that the requested

number of matches be used optionally.

vce(iid) specifies that standard errors for independent and identically distributed data be reported.

The standard derivative-based standard-error estimators cannot be used by teffects psmatch,
because these matching estimators are not differentiable. The implemented method were derived
by Abadie and Imbens (2006, 2011, 2012); see Methods and formulas.

As discussed in Abadie and Imbens (2008), bootstrap estimators do not provide reliable standard
errors for the estimator implemented by teffects psmatch.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Advanced �

caliper(#) specifies the maximum distance at which two observations are a potential match. By
default, all observations are potential matches regardless of how dissimilar they are.

In teffects psmatch, the distance is measured by the estimated propensity score. If an observation
has no matches, teffects psmatch exits with an error.

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(1e-5). teffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption. Two checks are made to verify the assumption. The first ensures
that the propensity scores are greater than pstolerance(#) and less than 1− pstolerance(#).
The second ensures that each observation has at least nneighbor(#) matches in the opposite
treatment group within the distance specified by caliper(#).

The vce(robust, nn(#)) option also requires at least # matches in the same treatment group
within the distance specified by caliper(#).

The average treatment effect on the treated, option atet, using vce(iid) requires only nneigh-
bor(#) control group matches for the treated group.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() and tlevel() may not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel() may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

generate(stub) specifies that the observation numbers of the nearest neighbors be stored in the new
variables stub1, stub2, . . . . This option is required if you wish to perform postestimation based
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on the matching results. The number of variables generated may be more than nneighbors(#)
because of tied distances. These variables may not already exist.

The following option is available with teffects psmatch but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Propensity-score matching uses an average of the outcomes of similar subjects who get the other

treatment level to impute the missing potential outcome for each subject. The ATE is computed by
taking the average of the difference between the observed and potential outcomes for each subject.
teffects psmatch determines how near subjects are to each other by using estimated treatment
probabilities, known as propensity scores. This type of matching is known as propensity-score matching
(PSM).

PSM does not need bias correction, because PSM matches on a single continuous covariate. In
contrast, the nearest-neighbor matching estimator implemented in teffects nnmatch uses a bias-
correction term when matching on more than one continuous covariate. In effect, the PSM estimator
parameterizes the bias-correction term in the treatment probability model. See [TE] teffects intro or
[TE] teffects intro advanced for more information about this estimator.

We will illustrate the use of teffects psmatch by using data from a study of the effect of a
mother’s smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by
Cattaneo (2010). This dataset also contains information about each mother’s age (mage), education
level (medu), marital status (mmarried), whether the first prenatal exam occurred in the first trimester
(prenatal1), whether this baby was the mother’s first birth (fbaby), and the father’s age (fage).

Example 1: Estimating the ATE

We begin by using teffects psmatch to estimate the ATE of mbsmoke on bweight. We use a
logistic model (the default) to predict each subject’s propensity score, using covariates mage, medu,
mmarried, and fbaby. Because the performance of PSM hinges upon how well we can predict the
propensity scores, we will use factor-variable notation to include both linear and quadratic terms for
mage, the only continuous variable in our model:

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu)

Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 74

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -210.9683 32.021 -6.59 0.000 -273.7284 -148.2083

The average birthweight if all mothers were to smoke would be 211 grams less than the average
that would occur if none of the mothers had smoked.



teffects psmatch — Propensity-score matching 301

By default, teffects psmatch estimates the ATE by matching each subject to a single subject
with the opposite treatment whose propensity score is closest. Sometimes, however, we may want to
ensure that matching occurs only when the propensity scores of a subject and a match differ by less
than a specified amount. To do that, we use the caliper() option. If a match within the distance
specified in the caliper() option cannot be found, teffects psmatch exits.

Example 2: Specifying the caliper

Here we reconsider the previous example, first specifying that we only want to consider a pair of
observations a match if the absolute difference in the propensity scores is less than 0.03:

. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu),
> caliper(0.03)
no propensity-score matches for observation 4504 within caliper 0.03; use option
osample() to identify all observations with deficient matches
r(459);

The error arose because there is not a smoking mother whose propensity score is within 0.03 of
the propensity score of the nonsmoking mother in observation 2209. If we instead raise the caliper
to 0.10, we have matches for all subjects and therefore obtain the same results as in example 1:

. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu),
> caliper(0.1)

Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 74

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -210.9683 32.021 -6.59 0.000 -273.7284 -148.2083

Technical note
Example 2 highlights that estimating the ATE requires finding matches for both the treated and

control subjects. In contrast, estimating the ATET only requires finding matches for the treated subjects.
Because subject 2209 is a control subject, we can estimate the ATET using caliper(0.03). We
must also specify vce(iid) because the default robust standard errors for the estimated ATET require
viable matches for both treated subjects and control subjects. (This requirement comes from the
nonparametric method derived by Abadie and Imbens [2012].)
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. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu),
> atet vce(iid) caliper(0.03)

Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 74

bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
mbsmoke

(smoker
vs

nonsmoker) -236.7848 26.11698 -9.07 0.000 -287.9731 -185.5964

In the previous examples, each subject was matched to at least one other subject, which is the
default behavior for teffects psmatch. However, we can request that teffects psmatch match
each subject to multiple subjects with the opposite treatment level by specifying the nneighbor()
option. Matching on more distant neighbors can reduce the variance of the estimator at a cost of an
increase in bias.

Example 3

Now we request that teffects psmatch match a mother to four mothers in the opposite treatment
group:

. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu),
> nneighbor(4)

Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 4
Outcome model : matching min = 4
Treatment model: logit max = 74

AI Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -224.006 29.88627 -7.50 0.000 -282.582 -165.43

These results are similar to those reported in example 1.

Video example

Treatment effects in Stata: Propensity-score matching

https://www.youtube.com/watch?v=hnyh1cUFiOE
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Stored results
teffects psmatch stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k levels) number of levels in treatment variable
e(caliper) maximum distance between matches
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(k nneighbor) requested number of matches
e(k nnmin) minimum number of matches
e(k nnmax) maximum number of matches
e(k robust) matches for robust VCE

Macros
e(cmd) teffects
e(cmdline) command as typed
e(depvar) name of outcome variable
e(tvar) name of treatment variable
e(subcmd) psmatch
e(tmodel) logit, probit, or hetprobit
e(stat) statistic estimated, ate or atet
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(psvarlist) variables in propensity-score model
e(hvarlist) variables for variance, only if hetprobit
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(bps) coefficient vector from propensity-score model
e(Vps) variance–covariance matrix of the estimators from propensity-score model

Functions
e(sample) marks estimation sample

Methods and formulas
The methods and formulas used by teffects psmatch are documented in the Methods and

formulas of [TE] teffects nnmatch.
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Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal
of Econometrics 155: 138–154.

Also see
[TE] teffects postestimation — Postestimation tools for teffects

[TE] teffects — Treatment-effects estimation for observational data

[TE] teffects nnmatch — Nearest-neighbor matching

[U] 20 Estimation and postestimation commands

http://www.hks.harvard.edu/fs/aabadie/pscore.pdf


Title

teffects ra — Regression adjustment

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

teffects ra estimates the average treatment effect (ATE), the average treatment effect on the treated
(ATET), and the potential-outcome means (POMs) from observational data by regression adjustment
(RA). RA estimators use contrasts of averages of treatment-specific predicted outcomes to estimate
treatment effects. teffects ra accepts a continuous, binary, count, fractional, or nonnegative outcome
and allows a multivalued treatment.

See [TE] teffects intro or [TE] teffects intro advanced for more information about estimating
treatment effects from observational data.

Quick start
ATE from a linear model of y1 on x1 and x2 with binary treatment treat2

teffects ra (y1 x1 x2) (treat2)

As above, but estimate the ATET
teffects ra (y1 x1 x2) (treat2), atet

As above, but estimate the potential-outcome means
teffects ra (y1 x1 x2) (treat2), pomeans

ATE of treat2 using a heteroskedastic probit model for binary outcome y2

teffects ra (y2 x1 x2, hetprobit(x1 x2)) (treat2)

ATE of treat2 using a Poisson model for count outcome y3

teffects ra (y3 x1 x2, poisson) (treat2)

ATE for each level of three-valued treatment treat3
teffects ra (y1 x1 x2) (treat3)

As above, and specify that treat3 = 3 is the control level
teffects ra (y1 x1 x2) (treat3), control(3)

Same as above, specified using the label “MyControl” corresponding to treat3 = 3
teffects ra (y1 x1 x2) (treat3), control("MyControl")

Menu
Statistics > Treatment effects > Continuous outcomes > Regression adjustment

Statistics > Treatment effects > Binary outcomes > Regression adjustment

Statistics > Treatment effects > Count outcomes > Regression adjustment

Statistics > Treatment effects > Fractional outcomes > Regression adjustment

Statistics > Treatment effects > Nonnegative outcomes > Regression adjustment

305



306 teffects ra — Regression adjustment

Syntax
teffects ra (ovar omvarlist

[
, omodel noconstant

]
) (tvar)

[
if
] [

in
] [

weight
][

, stat options
]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

omvarlist specifies the covariates in the outcome model.

tvar must contain integer values representing the treatment levels.

omodel Description

Model

linear linear outcome model; the default
logit logistic outcome model
probit probit outcome model
hetprobit(varlist) heteroskedastic probit outcome model
poisson exponential outcome model
flogit fractional logistic outcome model
fprobit fractional probit outcome model
fhetprobit(varlist) fractional heteroskedastic probit outcome model

omodel specifies the model for the outcome variable.

stat Description

Stat

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means
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options Description

SE/Robust

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

control(# | label) specify the level of tvar that is the control
tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

omvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[
, # . . .

]
, copy

� � �
Advanced �

control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with the
numeric level. control() may not be specified with statistic pomeans. control() and tlevel()
may not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel() may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with teffects ra but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview
Regression adjustment (RA) estimators use the contrasts of the averages of treatment-specific

predicted outcomes to estimate treatment effects. RA estimators use a two-step approach to estimating
treatment effects:

1. They fit separate regression models of the outcome on a set of covariates for each treatment
level.

2. They compute the averages of the predicted outcomes for each subject and treatment level.
These averages reflect the POMs. The contrasts of these averages provide estimates of the ATEs.
By restricting the computations of the means to the subset of treated subjects, we obtain the
ATETs.

RA estimators are consistent as long as the treatment is independent of the potential outcomes after
conditioning on the covariates. In fact, teffects ra uses an estimation technique that implements
both steps at once so that we do not need to correct the standard errors in the second step to reflect
the uncertainty surrounding the predicted outcomes.
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We will illustrate the use of teffects ra by using data from a study of the effect of a
mother’s smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by
Cattaneo (2010). This dataset also contains information about each mother’s age (mage), education
level (medu), marital status (mmarried), whether the first prenatal exam occurred in the first trimester
(prenatal1), and whether this baby was the mother’s first birth (fbaby).

Example 1: Estimating the ATE

We begin by using teffects ra to estimate the average treatment effect of smoking, controlling
for first-trimester exam status, marital status, mother’s age, and first-birth status. In Stata, we type

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke)

Iteration 0: EE criterion = 7.734e-24
Iteration 1: EE criterion = 1.196e-25

Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -239.6392 23.82402 -10.06 0.000 -286.3334 -192.945

POmean
mbsmoke

nonsmoker 3403.242 9.525207 357.29 0.000 3384.573 3421.911

The average birthweight if all mothers were to smoke would be 240 grams less than the average
of 3,403 grams that would occur if none of the mothers had smoked.

The previous results showed us the average amount by which infants’ weights are affected by
their mothers’ decision to smoke. We may instead be interested in knowing the average amount by
which the weight of babies born to smoking mothers was decreased as a result of smoking. The ATET
provides us with the answer.
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Example 2: Estimating the ATET

To obtain the ATET rather than the ATE, we use the atet option:

. teffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke), atet

Iteration 0: EE criterion = 7.629e-24
Iteration 1: EE criterion = 2.697e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
mbsmoke

(smoker
vs

nonsmoker) -223.3017 22.7422 -9.82 0.000 -267.8755 -178.7278

POmean
mbsmoke

nonsmoker 3360.961 12.75749 263.45 0.000 3335.957 3385.966

The average birthweight is 223 grams less when all the mothers who smoke do so than the average
of 3,361 grams that would have occurred if none of these mothers had smoked.

The ATET differs from the ATE because the distribution of the covariates among mothers who
smoke differs from the distribution for nonsmoking mothers. For example, in [TE] teffects intro, we
remarked that in our sample, mothers who smoked tended to be older than those who did not. The
differing distributions of covariates also affect the estimated POMs.

By default, teffects ra reports the ATE, which is the difference between the two POMs in the
case of a binary treatment variable. Sometimes, we want to know the estimated POMs themselves.
We might also want to see the actual regression equations used to estimate the POMs. Obtaining this
information is easy, as the next example illustrates.
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Example 3: Estimating the POMs

Here we use the pomeans option to display the POMs and the aequations option to display the
estimated regression coefficients for the treated and untreated subjects.

. teffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke),
> pomeans aequations

Iteration 0: EE criterion = 7.734e-24
Iteration 1: EE criterion = 2.850e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

POmeans
mbsmoke

nonsmoker 3403.242 9.525207 357.29 0.000 3384.573 3421.911
smoker 3163.603 21.86351 144.70 0.000 3120.751 3206.455

OME0
prenatal1 64.40859 27.52699 2.34 0.019 10.45669 118.3605
mmarried 160.9513 26.6162 6.05 0.000 108.7845 213.1181

mage 2.546828 2.084324 1.22 0.222 -1.538373 6.632028
fbaby -71.3286 19.64701 -3.63 0.000 -109.836 -32.82117
_cons 3202.746 54.01082 59.30 0.000 3096.886 3308.605

OME1
prenatal1 25.11133 40.37541 0.62 0.534 -54.02302 104.2457
mmarried 133.6617 40.86443 3.27 0.001 53.5689 213.7545

mage -7.370881 4.21817 -1.75 0.081 -15.63834 .8965804
fbaby 41.43991 39.70712 1.04 0.297 -36.38461 119.2644
_cons 3227.169 104.4059 30.91 0.000 3022.537 3431.801

The nonsmoker POM for infant birthweight is 3,403 grams; that means that if none of the women
in our sample smoked during pregnancy, the expected average birthweight would be 3,403 grams.
The POM if all mothers did smoke during pregnancy is 3,164 grams, a difference of 240 grams, as we
established in example 1. The coefficients for the equation labeled OME0 represent the linear equation
used to estimate the nontreated POM, and the coefficients for the equation labeled OME1 represent the
linear equation used to estimate the treated POM. The coefficients are identical to those we would
obtain using regress, but the standard errors differ slightly because teffects ra does not make
the small-sample adjustment that regress does.

We often express statistics as percentages to alleviate scaling issues and aid interpretation. In the
present context, we may wish to express an ATE as a percentage of the untreated POM to gain a more
intuitive measure of efficacy.
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Example 4: Reporting the ATE as a percentage

Sometimes, we are interested in reporting the estimated treatment effect as a percentage of the
untreated POM. We continue to use the same model as in the previous examples, but we specify the
coeflegend option so that teffects ra reports the names of the parameters. Knowing the correct
names to use, we can then use nlcom to obtain the percentage change along with its delta-method-based
standard error. We type

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke), coeflegend

Iteration 0: EE criterion = 7.734e-24
Iteration 1: EE criterion = 1.196e-25

Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

bweight Coef. Legend

ATE
mbsmoke

(smoker
vs

nonsmoker) -239.6392 _b[ATE:r1vs0.mbsmoke]

POmean
mbsmoke

nonsmoker 3403.242 _b[POmean:0.mbsmoke]

. nlcom _b[ATE:r1vs0.mbsmoke] / _b[POmean:0.mbsmoke]

_nl_1: _b[ATE:r1vs0.mbsmoke] / _b[POmean:0.mbsmoke]

bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.070415 .0069245 -10.17 0.000 -.0839867 -.0568433

The average birthweight falls by an estimated 7.0% when every mother smokes relative to the case
when no mothers smoke. We also obtain a 95% confidence interval of a 5.7% to 8.4% reduction.

Birthweights cannot be negative, though it is possible for a linear regression model to make negative
predictions. A common way to enforce nonnegative predictions is to use an exponential conditional-
mean model, which is commonly fitted using the Poisson quasimaximum-likelihood estimator, as
discussed in Cameron and Trivedi (2005, sec. 5.7), Wooldridge (2010, sec. 18.2), and Pawitan (2001,
chap. 14). teffects ra provides an option to use this model rather than linear regression for the
outcomes.
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Example 5: Modeling nonnegative outcomes

Now we refit our model of smoking behavior on birthweight, but we specify the poisson option
in the outcome-model equation so that teffects ra uses the Poisson exponential model rather than
linear regression:

. teffects ra (bweight prenatal1 mmarried mage fbaby, poisson) (mbsmoke)

Iteration 0: EE criterion = 3.950e-17
Iteration 1: EE criterion = 1.244e-23

Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : Poisson
Treatment model: none

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke

(smoker
vs

nonsmoker) -239.6669 23.83757 -10.05 0.000 -286.3877 -192.9462

POmean
mbsmoke

nonsmoker 3403.178 9.526006 357.25 0.000 3384.508 3421.849

In this case, using a model that forces outcomes to be nonnegative did not make any substantive
difference. In this dataset, nearly 90% of babies weigh at least 2,700 grams, and even the smallest
baby weighs 340 grams. When the dependent variable is so large, the predictions from Poisson and
linear regression models are remarkably similar.

We now consider models for fractional outcomes. Fractional responses concern outcomes between
0 and 1. For instance, averaged 0/1 outcomes such as participation rates, but can also include variables
that are naturally on a 0 to 1 scale such as pollution levels, patient oxygen saturation, and Gini
coefficients (income inequality measures).

Example 6: Modeling fractional outcomes

We will illustrate the use of teffects ra with the outcome-model option fprobit by using
simulated data. The observations are 543 cities at least 200 miles apart. The data contain information
about each city’s level of industrialization (industrial), average annual rainfall in millimeters
(rainfall), whether or not the city has a metro or train (train), and traffic congestion measured
by an index (traffic).

Our outcome is the level of pollution (pollution) measured on a 0 to 1 scale. Values of pollution
between 0 and 0.3 have no public health implications, but values greater than 0.7 imply that people
with breathing or health problems should remain indoors. We study the effect of a tax on gas-guzzler
cars on air pollution (guzzler). A tax that is effective in reducing pollution improves public health.

We estimate the ATE of a gas-guzzler tax on pollution, controlling for average yearly rainfall,
traffic congestion, the level of industrialization, and whether the city has a train or a metro by using
a fractional probit model.
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. use http://www.stata-press.com/data/r14/pollution
(Simulated Urban Pollution Data)

. teffects ra (pollution rainfall i.traffic industrial i.train, fprobit) (guzzler)

Iteration 0: EE criterion = 3.023e-16
Iteration 1: EE criterion = 1.043e-31

Treatment-effects estimation Number of obs = 534
Estimator : regression adjustment
Outcome model : fractional probit
Treatment model: none

Robust
pollution Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
guzzler

(tax
vs

no tax) -.0960214 .0113896 -8.43 0.000 -.1183447 -.0736981

POmean
guzzler
no tax .3879346 .0101733 38.13 0.000 .3679952 .407874

The POM if no city were to implement a gas-guzzler tax is an air pollution index of 0.39. If all
cities implement a gas-guzzler tax, the air pollution index would decrease by 0.096 relative to a
scenario where no city implements the tax.

Video example

Treatment effects: Regression adjustment

http://www.youtube.com/watch?v=TYFbOjWZ7lE
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Stored results
teffects ra stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) teffects
e(cmdline) command as typed
e(depvar) name of outcome variable
e(tvar) name of treatment variable
e(subcmd) ra
e(omodel) linear, logit, probit, hetprobit, poisson, flogit, fprobit, or

fhetprobit
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
teffects ra implements a smooth treatment-effects estimator. All smooth treatment-effects es-

timators are documented in [TE] teffects aipw.

References
Cameron, A. C., and P. K. Trivedi. 2005. Microeconometrics: Methods and Applications. New York: Cambridge

University Press.

Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal
of Econometrics 155: 138–154.

Pawitan, Y. 2001. In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford: Oxford University
Press.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.
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Also see
[TE] teffects postestimation — Postestimation tools for teffects

[TE] teffects — Treatment-effects estimation for observational data

[U] 20 Estimation and postestimation commands



Glossary

AIPW estimator. See augmented inverse-probability-weighted estimator.

analysis time. Analysis time is like time, except that 0 has a special meaning: t = 0 is the time of
onset of risk, the time when failure first became possible.

Analysis time is usually not what is recorded in a dataset. A dataset of patients might record
calendar time. Calendar time must then be mapped to analysis time.

The letter t is reserved for time in analysis-time units. The term time is used for time measured
in other units.

The origin is the time corresponding to t = 0, which can vary subject to subject. Thus t =
time− origin.

ATE. See average treatment effect.

ATET. See average treatment effect on the treated.

augmented inverse-probability-weighted estimator. An augmented inverse-probability-weighted
(AIPW) estimator is an inverse-probability-weighted estimator that includes an augmentation term
that corrects the estimator when the treatment model is misspecified. When the treatment is correctly
specified, the augmentation term vanishes as the sample size becomes large. An AIPW estimator
uses both an outcome model and a treatment model and is a doubly robust estimator.

average treatment effect. The average treatment effect is the average effect of the treatment among
all individuals in a population.

average treatment effect on the treated. The average treatment effect on the treated is the average
effect of the treatment among those individuals who actually get the treatment.

censored, censoring, left-censoring, and right-censoring. An observation is left-censored when the
exact time of failure is not known; it is merely known that the failure occurred before tl. Suppose
that the event of interest is becoming employed. If a subject is already employed when first
interviewed, his outcome is left-censored.

An observation is right-censored when the time of failure is not known; it is merely known that
the failure occurred after tr. If a patient survives until the end of a study, the patient’s time of
death is right-censored.

In common usage, censored without a modifier means right-censoring.

Also see truncation, left-truncation, and right-truncation.

CI assumption. See conditional-independence assumption.

conditional mean. The conditional mean expresses the average of one variable as a function of some
other variables. More formally, the mean of y conditional on x is the mean of y for given values
of x; in other words, it is E(y|x).

A conditional mean is also known as a regression or as a conditional expectation.

conditional-independence assumption. The conditional-independence assumption requires that the
common variables that affect treatment assignment and treatment-specific outcomes be observable.
The dependence between treatment assignment and treatment-specific outcomes can be removed
by conditioning on these observable variables.
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This assumption is also known as a selection-on-observables assumption because its central tenet
is the observability of the common variables that generate the dependence.

counterfactual. A counterfactual is an outcome a subject would have obtained had that subject
received a different level of treatment. In the binary-treatment case, the counterfactual outcome
for a person who received treatment is the outcome that person would have obtained had the
person instead not received treatment; similarly, the counterfactual outcome for a person who did
not receive treatment is the outcome that person would have obtained had the person received
treatment.

Also see potential outcome.

doubly robust estimator. A doubly robust estimator only needs one of two auxiliary models to be
correctly specified to estimate a parameter of interest.

Doubly robust estimators for treatment effects are consistent when either the outcome model or
the treatment model is correctly specified.

EE estimator. See estimating-equation estimator.

estimating-equation estimator. An estimating-equation (EE) estimator calculates parameters estimates
by solving a system of equations. Each equation in this system is the sample average of a function
that has mean zero.

These estimators are also known as M estimators or Z estimators in the statistics literature and
as generalized method of moments (GMM) estimators in the econometrics literature.

failure event. Survival analysis is really time-to-failure analysis, and the failure event is the event
under analysis. The failure event can be death, heart attack, myopia, or finding employment. Many
authors—including Stata—write as if the failure event can occur only once per subject, but when
we do, we are being sloppy. Survival analysis encompasses repeated failures, and all of Stata’s
survival analysis features can be used with repeated-failure data.

hazard, cumulative hazard, and hazard ratio. The hazard or hazard rate at time t, h(t), is the
instantaneous rate of failure at time t conditional on survival until time t. Hazard rates can exceed
1. Say that the hazard rate were 3. If an individual faced a constant hazard of 3 over a unit interval
and if the failure event could be repeated, the individual would be expected to experience three
failures during the time span.

The cumulative hazard, H(t), is the integral of the hazard function h(t), from 0 (the onset of
risk) to t. It is the total number of failures that would be expected to occur up until time t, if the
failure event could be repeated. The relationship between the cumulative hazard function, H(t),
and the survivor function, S(t), is

S(t) = exp{−H(t)}

H(t) = −ln{S(t)}

The hazard ratio is the ratio of the hazard function evaluated at two different values of the covariates:
h(t |x)/h(t |x0). The hazard ratio is often called the relative hazard, especially when h(t |x0)
is the baseline hazard function.

i.i.d. sampling assumption. See independent and identically distributed sampling assumption.

independent and identically distributed sampling assumption. The independent and identically
distributed (i.i.d.) sampling assumption specifies that each observation is unrelated to (independent
of) all the other observations and that each observation is a draw from the same (identical)
distribution.
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individual-level treatment effect. An individual-level treatment effect is the difference in an individ-
ual’s outcome that would occur because this individual is given one treatment instead of another. In
other words, an individual-level treatment effect is the difference between two potential outcomes
for an individual.

For example, the blood pressure an individual would obtain after taking a pill minus the blood
pressure an individual would obtain had that person not taken the pill is the individual-level
treatment effect of the pill on blood pressure.

inverse-probability-weighted estimators. Inverse-probability-weighted (IPW) estimators use weighted
averages of the observed outcome variable to estimate the potential-outcome means. The weights
are the reciprocals of the treatment probabilities estimated by a treatment model.

inverse-probability-weighted regression-adjustment estimators.
Inverse-probability-weighted regression-adjustment (IPWRA) estimators use the reciprocals of the
estimated treatment probability as weights to estimate missing-data-corrected regression coefficients
that are subsequently used to compute the potential-outcome means.

IPW estimators. See inverse-probability-weighted estimators.

IPWRA estimators. See inverse-probability-weighted regression-adjustment estimators.

left-censoring. See censored, censoring, left-censoring, and right-censoring.

left-truncation. See truncation, left-truncation, and right-truncation.

matching estimator. An estimator that compares differences between the outcomes of similar—that is,
matched—individuals. Each individual that receives a treatment is matched to a similar individual
that does not get the treatment, and the difference in their outcomes is used to estimate the
individual-level treatment effect. Likewise, each individual that does not receive a treatment is
matched to a similar individual that does get the treatment, and the difference in their outcomes
is used to estimate the individual-level treatment effect.

multiple-record st data. See st data.

multivalued treatment effect. A multivalued treatment refers to a treatment that has more than two
values. For example, a person could have taken a 20 mg dose of a drug, a 40 mg dose of the
drug, or not taken the drug at all.

nearest-neighbor matching. Nearest-neighbor matching uses the distance between observed variables
to find similar individuals.

observational data. In observational data, treatment assignment is not controlled by those who
collected the data; thus some common variables affect treatment assignment and treatment-specific
outcomes.

outcome model. An outcome model is a model used to predict the outcome as a function of covariates
and parameters.

overlap assumption. The overlap assumption requires that each individual have a positive probability
of each possible treatment level.

POMs. See potential-outcome means.

potential outcome. The potential outcome is the outcome an individual would obtain if given a
specific treatment.

For example, an individual has one potential blood pressure after taking a pill and another potential
blood pressure had that person not taken the pill.

potential-outcome means. The potential-outcome means refers to the means of the potential outcomes
for a specific treatment level.



320 Glossary

The mean blood pressure if everyone takes a pill and the mean blood pressure if no one takes a
pill are two examples.

The average treatment effect is the difference between potential-outcome mean for the treated and
the potential-outcome mean for the not treated.

propensity score. The propensity score is the probability that an individual receives a treatment.

propensity-score matching. Propensity-score matching uses the distance between estimated propensity
scores to find similar individuals.

regression-adjustment estimators. Regression-adjustment estimators use means of predicted outcomes
for each treatment level to estimate each potential-outcome mean.

right-censoring. See censored, censoring, left-censoring, and right-censoring.

right-truncation. See truncation, left-truncation, and right-truncation.

selection-on-observables. See conditional-independence assumption.

shape parameter. A shape parameter governs the shape of a probability distribution. One example
is the parameter p of the Weibull model.

single-record st data. See st data.

smooth treatment-effects estimator. A smooth treatment-effects estimator is a smooth function of
the data so that standard methods approximate the distribution of the estimator. The RA, IPW,
AIPW, and IPWRA estimators are all smooth treatment-effects estimators while the nearest-neighbor
matching estimator and the propensity-score matching estimator are not.

st data. st stands for survival time. In survival-time data, each observation represents a span of
survival, recorded in variables t0 and t. For instance, if in an observation t0 were 3 and t were
5, the span would be (t0, t ], meaning from just after t0 up to and including t.

Sometimes variable t0 is not recorded; t0 is then assumed to be 0. In such a dataset, an observation
that had t = 5 would record the span (0, 5 ].

Each observation also includes a variable d, called the failure variable, which contains 0 or nonzero
(typically, 1). The failure variable records what happened at the end of the span: 0, the subject
was still alive (had not yet failed) or 1, the subject died (failed).

Sometimes variable d is not recorded; d is then assumed to be 1. In such a dataset, all time-span
observations would be assumed to end in failure.

Finally, each observation in an st dataset can record the entire history of a subject or each can
record a part of the history. In the latter case, groups of observations record the full history. One
observation might record the period (0, 5 ] and the next, (5, 8 ]. In such cases, there is a variable
ID that records the subject for which the observation records a time span. Such data are called
multiple-record st data. When each observation records the entire history of a subject, the data are
called single-record st data. In the single-record case, the ID variable is optional.

See [ST] stset.

survival-time data. See st data.

survivor function. Also known as the survivorship function and the survival function, the survivor
function, S(t), is 1) the probability of surviving beyond time t, or equivalently, 2) the probability
that there is no failure event prior to t, 3) the proportion of the population surviving to time t,
or equivalently, 4) the reverse cumulative distribution function of T , the time to the failure event:
S(t) = Pr(T > t). Also see hazard, cumulative hazard, and hazard ratio.
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treatment model. A treatment model is a model used to predict treatment-assignment probabilities
as a function of covariates and parameters.

truncation, left-truncation, and right-truncation. In survival analysis, truncation occurs when subjects
are observed only if their failure times fall within a certain observational period of a study. Censoring,
on the other hand, occurs when subjects are observed for the whole duration of a study, but the
exact times of their failures are not known; it is known only that their failures occurred within a
certain time span.

Left-truncation occurs when subjects come under observation only if their failure times exceed
some time tl. It is only because they did not fail before tl that we even knew about their existence.
Left-truncation differs from left-censoring in that, in the censored case, we know that the subject
failed before time tl, but we just do not know exactly when.

Imagine a study of patient survival after surgery, where patients cannot enter the sample until they
have had a post-surgical test. The patients’ survival times will be left-truncated. This is a “delayed
entry” problem, one common type of left-truncation.

Right-truncation occurs when subjects come under observation only if their failure times do not
exceed some time tr. Right-truncated data typically occur in registries. For example, a cancer
registry includes only subjects who developed a cancer by a certain time, and thus survival data
from this registry will be right-truncated.

unconfoundedness. See conditional-independence assumption.

weighted-regression-adjustment estimator. Weighted-regression-adjustment estimators use means of
predicted outcomes for each treatment level to estimate each potential-outcome mean. The weights
are used to estimate censoring-adjusted regression coefficients.





Subject and author index

See the combined subject index and the combined author index in the Glossary and Index.
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