
STATA SURVIVAL ANALYSIS
REFERENCE MANUAL

RELEASE 14

®

A Stata Press Publication
StataCorp LLC
College Station, Texas

® Copyright c© 1985–2015 StataCorp LLC
All rights reserved
Version 14

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TEX

ISBN-10: 1-59718-166-8
ISBN-13: 978-1-59718-166-2

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright c© 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, , Stata Press, Mata, , and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

NetCourseNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2015. Stata: Release 14 . Statistical Software. College Station, TX: StataCorp LLC.

Contents

intro . Introduction to survival analysis manual 1

survival analysis . Introduction to survival analysis 2

ct . Count-time data 9

ctset . Declare data to be count-time data 10

cttost . Convert count-time data to survival-time data 16

discrete . Discrete-time survival analysis 19

ltable . Life tables for survival data 21

snapspan . Convert snapshot data to time-span data 35

st . Survival-time data 39

st is . Survival analysis subroutines for programmers 41

stbase . Form baseline dataset 47

stci . Confidence intervals for means and percentiles of survival time 58

stcox . Cox proportional hazards model 68

stcox PH-assumption tests Tests of proportional-hazards assumption 101

stcox postestimation . Postestimation tools for stcox 117

stcrreg . Competing-risks regression 152

stcrreg postestimation . Postestimation tools for stcrreg 178

stcurve Plot survivor, hazard, cumulative hazard, or cumulative incidence function 189

stdescribe . Describe survival-time data 201

stfill . Fill in by carrying forward values of covariates 205

stgen . Generate variables reflecting entire histories 209

stir . Report incidence-rate comparison 216

stptime . Calculate person-time, incidence rates, and SMR 220

strate . Tabulate failure rates and rate ratios 228

streg . Parametric survival models 240

streg postestimation . Postestimation tools for streg 274

sts Generate, graph, list, and test the survivor and cumulative hazard functions 285

sts generate Create variables containing survivor and related functions 302

sts graph Graph the survivor, hazard, or cumulative hazard function 305

i

ii Contents

sts list . List the survivor or cumulative hazard function 324

sts test . Test equality of survivor functions 330

stset . Declare data to be survival-time data 345

stsplit . Split and join time-span records 389

stsum . Summarize survival-time data 408

sttocc . Convert survival-time data to case–control data 415

sttoct . Convert survival-time data to count-time data 420

stvary . Report variables that vary over time 422

Glossary . 425

Subject and author index . 435

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[D] reshape

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
[R] Stata Base Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual
[D] Stata Data Management Reference Manual
[FN] Stata Functions Reference Manual
[G] Stata Graphics Reference Manual
[IRT] Stata Item Response Theory Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[ME] Stata Multilevel Mixed-Effects Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[P] Stata Programming Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual
[ST] Stata Survival Analysis Reference Manual
[TS] Stata Time-Series Reference Manual
[TE] Stata Treatment-Effects Reference Manual:

Potential Outcomes/Counterfactual Outcomes
[I] Stata Glossary and Index

[M] Mata Reference Manual

iii

Title

intro — Introduction to survival analysis manual

Description Also see

Description
This manual documents commands for survival analysis and is referred to as [ST] in cross-references.

Following this entry, [ST] survival analysis provides an overview of the commands.

This manual is arranged alphabetically. If you are new to Stata’s survival analysis, we recommend
that you read the following sections first:

[ST] survival analysis Introduction to survival analysis
[ST] st Survival-time data
[ST] stset Set variables for survival data

Stata is continually being updated, and Stata users are always writing new commands. To find out
about the latest survival analysis features, type search survival after installing the latest official
updates; see [R] update.

Also see
[U] 1.3 What’s new
[R] intro — Introduction to base reference manual

1

Title

survival analysis — Introduction to survival analysis

Description Remarks and examples Reference Also see

Description
Stata’s survival analysis routines are used to compute sample size, power, and effect size and to

declare, convert, manipulate, summarize, and analyze survival data. Survival data are time-to-event
data, and survival analysis is full of jargon: truncation, censoring, hazard rates, etc. See the glossary
in this manual. For a good Stata-specific introduction to survival analysis, see Cleves, Gould, and
Marchenko (2016).

To learn how to effectively analyze survival analysis data using Stata, we recommend NetCourse 631,
Introduction to Survival Analysis Using Stata; see http://www.stata.com/netcourse/nc631.html.

All the commands documented in this manual are listed below, and they are described in detail in
their respective manual entries. While most commands for survival analysis are documented here, some
are documented in other manuals. The commands for computing sample size, power, and effect size
for survival analysis are documented in the Stata Power and Sample-Size Reference Manual with the
other power commands. The command for longitudinal or panel-data survival analysis is documented
with the other panel-data commands in the Stata Longitudinal-Data/Panel-Data Reference Manual.
The command for multilevel survival analysis is documented with the other multilevel commands
in the Stata Multilevel Mixed-Effects Reference Manual. The commands for estimating treatment
effects from observational survival-time data are documented in the Stata Treatment-Effects Reference
Manual.

Declaring and converting count data
ctset Declare data to be count-time data
cttost Convert count-time data to survival-time data

Converting snapshot data
snapspan Convert snapshot data to time-span data

Declaring and summarizing survival-time data
stset Declare data to be survival-time data
stdescribe Describe survival-time data
stsum Summarize survival-time data

Manipulating survival-time data
stvary Report variables that vary over time
stfill Fill in by carrying forward values of covariates
stgen Generate variables reflecting entire histories
stsplit Split time-span records
stjoin Join time-span records
stbase Form baseline dataset

2

http://www.stata.com/netcourse/nc631.html

survival analysis — Introduction to survival analysis 3

Obtaining summary statistics, confidence intervals, tables, etc.
sts Generate, graph, list, and test the survivor and cumulative hazard

functions
stir Report incidence-rate comparison
stci Confidence intervals for means and percentiles of survival time
strate Tabulate failure rate
stptime Calculate person-time, incidence rates, and SMR

stmh Calculate rate ratios with the Mantel–Haenszel method
stmc Calculate rate ratios with the Mantel–Cox method
ltable Display and graph life tables

Fitting regression models
stcox Cox proportional hazards model
estat concordance Compute the concordance probability
estat phtest Test Cox proportional-hazards assumption
stphplot Graphically assess the Cox proportional-hazards assumption
stcoxkm Graphically assess the Cox proportional-hazards assumption
streg Parametric survival models
stcurve Plot survivor, hazard, cumulative hazard, or cumulative incidence

function
stcrreg Competing-risks regression
xtstreg Random-effects parametric survival models
mestreg Multilevel mixed-effects parametric survival models
stteffects Treatment-effects estimation for observational survival-time data

Sample-size and power determination for survival analysis
power cox Sample size, power, and effect size for the Cox proportional hazards

model
power exponential Sample size and power for the exponential test
power logrank Sample size, power, and effect size for the log-rank test

Converting survival-time data
sttocc Convert survival-time data to case–control data
sttoct Convert survival-time data to count-time data

Programmer’s utilities
st * Survival analysis subroutines for programmers

4 survival analysis — Introduction to survival analysis

Remarks and examples
Remarks are presented under the following headings:

Introduction
Declaring and converting count data
Converting snapshot data
Declaring and summarizing survival-time data
Manipulating survival-time data
Obtaining summary statistics, confidence intervals, tables, etc.
Fitting regression models
Sample size and power determination for survival analysis
Converting survival-time data
Programmer’s utilities

Introduction

All but one entry in this manual deals with the analysis of survival data, which is used to measure
the time to an event of interest such as death or failure. Survival data can be organized in two
ways. The first way is as count data, which refers to observations on populations, whether people or
generators, with observations recording the number of units at a given time that failed or were lost
because of censoring. The second way is as survival-time, or time-span, data. In survival-time data,
the observations represent periods and contain three variables that record the start time of the period,
the end time, and an indicator of whether failure or right-censoring occurred at the end of the period.
The representation of the response of these three variables makes survival data unique in terms of
implementing the statistical methods in the software.

Survival data may also be organized as snapshot data (a small variation of the survival-time format),
in which observations depict an instance in time rather than an interval. When you have snapshot
data, you simply use the snapspan command to convert it to survival-time data before proceeding.

Stata commands that begin with ct are used to convert count data to survival-time data. Survival-
time data are analyzed using Stata commands that begin with st, known in our terminology as st
commands. You can express all the information contained in count data in an equivalent survival-time
dataset, but the converse is not true. Thus Stata commands are made to work with survival-time data
because it is the more general representation.

Declaring and converting count data

Count data must first be converted to survival-time data before Stata’s st commands can be used.
Count data can be thought of as aggregated survival-time data. Rather than having observations that
are specific to a subject and a period, you have data that, at each recorded time, record the number
lost because of failure and, optionally, the number lost because of right-censoring.

ctset is used to tell Stata the names of the variables in your count data that record the time, the
number failed, and the number censored. You ctset your data before typing cttost to convert it
to survival-time data. Because you ctset your data, you can type cttost without any arguments to
perform the conversion. Stata remembers how the data are ctset.

survival analysis — Introduction to survival analysis 5

Converting snapshot data

Snapshot data are data in which each observation records the status of a given subject at a certain
point in time. Usually you have multiple observations on each subject that chart the subject’s progress
through the study.

Before using Stata’s survival analysis commands with snapshot data, you must first convert the data
to survival-time data; that is, the observations in the data should represent intervals. When you convert
snapshot data, the existing time variable in your data is used to record the end of a time span, and a
new variable is created to record the beginning. Time spans are created using the recorded snapshot
times as breakpoints at which new intervals are to be created. Before converting snapshot data to
time-span data, you must understand the distinction between enduring variables and instantaneous
variables. Enduring variables record characteristics of the subject that endure throughout the time
span, such as sex or smoking status. Instantaneous variables describe events that occur at the end of a
time span, such as failure or censoring. When you convert snapshots to intervals, enduring variables
obtain their values from the previous recorded snapshot or are set to missing for the first interval.
Instantaneous variables obtain their values from the current recorded snapshot because the existing
time variable now records the end of the span.

Stata’s snapspan makes this whole process easy. You specify an ID variable identifying your
subjects, the snapshot time variable, the name of the new variable to hold the beginning times of the
spans, and any variables that you want to treat as instantaneous variables. Stata does the rest for you.

Declaring and summarizing survival-time data

Stata does not automatically recognize survival-time data, so you must declare your survival-time
data to Stata by using stset. Every st command relies on the information that is provided when
you stset your data. Survival-time data come in different forms. For example, your time variables
may be dates, time measured from a fixed date, or time measured from some other point unique to
each subject, such as enrollment in the study. You can also consider the following questions. What is
the onset of risk for the subjects in your data? Is it time zero? Is it enrollment in the study or some
other event, such as a heart transplant? Do you have censoring, and if so, which variable records
it? What values does this variable record for censoring/failure? Do you have delayed entry? That is,
were some subjects at risk of failure before you actually observed them? Do you have simple data
and wish to treat everyone as entering and at risk at time zero?

Whatever the form of your data, you must first stset it before analyzing it, and so if you are
new to Stata’s st commands, we highly recommend that you take the time to learn about stset.
It is really easy once you get the hang of it, and [ST] stset has many examples to help. For more
discussion of stset, see Cleves, Gould, and Marchenko (2016, chap. 6).

Once you stset the data, you can use stdescribe to describe the aspects of your survival data.
For example, you will see the number of subjects you were successful in declaring, the total number
of records associated with these subjects, the total time at risk for these subjects, time gaps for any
of these subjects, any delayed entry, etc. You can use stsum to summarize your survival data, for
example, to obtain the total time at risk and the quartiles of time-to-failure in analysis-time units.

Manipulating survival-time data

Once your data have been stset, you may want to clean them up a bit before beginning your
analysis. Suppose that you had an enduring variable and snapspan recorded it as missing for the
interval leading up to the first recorded snapshot time. You can use stfill to fill in missing values
of covariates, either by carrying forward the values from previous periods or by making the covariate

6 survival analysis — Introduction to survival analysis

equal to its earliest recorded (nonmissing) value for all time spans. You can use stvary to check
for time-varying covariates or to confirm that certain variables, such as sex, are not time varying.
You can use stgen to generate new covariates based on functions of the time spans for each given
subject. For example, you can create a new variable called eversmoked that equals one for all of a
subject’s observations, if the variable smoke in your data is equal to one for any of the subject’s time
spans. Think of stgen as just a convenient way to do things that could be done using by subject id:
with survival-time data.

stsplit is useful for creating data that have multiple records per subject from data that have
one record per subject. Suppose that you have already stset your data and wish to introduce a
time-varying covariate. You would first need to stsplit your data so that separate time spans could
be created for each subject, allowing the new covariate to assume different values over time within a
subject. stjoin is the opposite of stsplit. Suppose that you have data with multiple records per
subject but then realize that the data could be collapsed into single-subject records with no loss of
information. Using stjoin would speed up any subsequent analysis using the st commands without
changing the results.

stbase can be used to set every variable in your multiple-record st data to the value at baseline,
defined as the earliest time at which each subject was observed. It can also be used to convert st data
to cross-sectional data.

Obtaining summary statistics, confidence intervals, tables, etc.

Stata provides several commands for nonparametric analysis of survival data that can produce a
wide array of summary statistics, inference, tables, and graphs. sts is a truly powerful command,
used to obtain nonparametric estimates, inference, tests, and graphs of the survivor function, the
cumulative hazard function, and the hazard function. You can compare estimates across groups, such
as smoking versus nonsmoking, and you can adjust these estimates for the effects of other covariates
in your data. sts can present these estimates as tables and graphs. sts can also be used to test the
equality of survivor functions across groups.

stir is used to estimate incidence rates and to compare incidence rates across groups. stci is
the survival-time data analog of ci means and is used to obtain confidence intervals for means and
percentiles of time to failure. strate is used to tabulate failure rates. stptime is used to calculate
person-time and standardized mortality/morbidity ratios (SMRs). stmh calculates rate ratios by using
the Mantel–Haenszel method, and stmc calculates rate ratios by using the Mantel–Cox method.

ltable displays and graphs life tables for individual-level or aggregate data.

Fitting regression models

Stata has commands for fitting both semiparametric and parametric regression models to survival
data. stcox fits the Cox proportional hazards model and predict after stcox can be used to retrieve
estimates of the baseline survivor function, the baseline cumulative hazard function, and the baseline
hazard contributions. predict after stcox can also calculate a myriad of Cox regression diagnostic
quantities, such as martingale residuals, efficient score residuals, and Schoenfeld residuals. stcox
has four options for handling tied failures. stcox can be used to fit stratified Cox models, where
the baseline hazard is allowed to differ over the strata, and it can be used to model multivariate
survival data by using a shared-frailty model, which can be thought of as a Cox model with random
effects. After stcox, you can use estat phtest to test the proportional-hazards assumption or
estat concordance to compute the concordance probability. With stphplot and stcoxkm, you
can graphically assess the proportional-hazards assumption.

survival analysis — Introduction to survival analysis 7

Stata offers six parametric regression models for survival data: exponential, Weibull, lognormal,
loglogistic, Gompertz, and generalized gamma. All six models are fit using streg, and you can
specify the model you want with the distribution() option. All of these models, except for the
exponential, have ancillary parameters that are estimated (along with the linear predictor) from the
data. By default, these ancillary parameters are treated as constant, but you may optionally model the
ancillary parameters as functions of a linear predictor. Stratified models may also be fit using streg.
You can also fit frailty models with streg and specify whether you want the frailties to be treated
as spell-specific or shared across groups of observations.

stcrreg fits a semiparametric regression model for survival data in the presence of competing
risks. Competing risks impede the failure event under study from occurring. An analysis of such
competing-risks data focuses on the cumulative incidence function, the probability of failure in the
presence of competing events that prevent that failure. stcrreg provides an analogue to stcox for
such data. The baseline subhazard function—that which generates failures under competing risks—is
left unspecified, and covariates act multiplicatively on the baseline subhazard.

You can also fit parametric survival models to clustered and hierarchical or multilevel data by
using the xtstreg or mestreg command, respectively.

xtstreg fits random-intercept parametric survival models to clustered survival data. Random
intercepts are assumed to be normally distributed. A random-intercept model with Gaussian intercepts
can be viewed as a shared-frailty model with lognormal frailty. xtstreg supports five distributions:
exponential, loglogistic, Weibull, lognormal, and gamma, which you can specify using the distri-
bution() option. Several predictions, such as mean, median, or survivor or hazard functions, can
be obtained by using predict after fitting a model with xtstreg.

mestreg fits multilevel mixed-effects parametric survival models. It supports five distributions:
exponential, loglogistic, Weibull, lognormal, and gamma, which you can specify using the distri-
bution() option. mestreg allows for multiple levels of random effects and for random coefficients.
Marginal or conditional predictions for several statistics and functions of interest, such as mean,
median, or survival or hazard functions, can be obtained by using predict after fitting a model with
mestreg.

In addition, you can perform treatment-effects estimation for observational survival-time data by
using stteffects. stteffects estimates average treatment effects, average treatment effects on the
treated, and potential-outcome means using observational survival-time data. The available estimators
are regression adjustment, inverse-probability weighting, and double-robust methods that combine
regression adjustment and inverse-probability weighting; see [TE] stteffects intro for details.

stcurve plots the survivor, hazard, or cumulative hazard function after stcox, streg, stcrreg,
mestreg, or xtstreg. stcurve also plots the cumulative subhazard or cumulative incidence function
after stcrreg. Covariates, by default, are held fixed at their mean values, but you can specify other
values if you wish. stcurve is useful for comparing these functions across different levels of
covariates.

Sample size and power determination for survival analysis

Stata has commands for computing sample size, power, and effect size for survival analysis using
the log-rank test, the Cox proportional hazards model, and the exponential test comparing exponential
hazard rates.

power logrank computes sample size, power, or effect size for survival analysis comparing
survivor functions in two groups by using the log-rank test. The command supports unbalanced
designs and provides options to account for administrative censoring, uniform accrual, and withdrawal
of subjects from the study.

8 survival analysis — Introduction to survival analysis

power cox computes sample size, power, or effect size for survival analyses that use Cox
proportional hazards (PH) models. The results are obtained for the test of the effect of one covariate
(binary or continuous) on time to failure adjusted for other predictors in a PH model. The command
can account for the dependence between the covariate of interest and other model covariates, and it
can adjust computations for censoring and for withdrawal of subjects for the study.

power exponential computes sample size or power for survival analysis comparing two exponen-
tial survivor functions by using parametric tests for the difference between hazards or, optionally, for
the difference between log hazards. It accommodates unequal allocation between the two groups, flex-
ible accrual of subjects into the study, and group-specific losses to follow-up. The accrual distribution
may be chosen to be uniform or truncated exponential over a fixed accrual period.

The commands allow automated production of customizable tables and graphs; see [PSS] power
for details.

Converting survival-time data

Stata has commands for converting survival-time data to case–control and count data. These
commands are rarely used, because most of the analyses are performed using data in the survival-time
format. sttocc is useful for converting survival data to case–control data suitable for estimation with
clogit. sttoct is the opposite of cttost and will convert survival-time data to count data.

Programmer’s utilities

Stata also provides routines for programmers interested in writing their own st commands. These are
basically utilities for setting, accessing, and verifying the information saved by stset. For example,
st is verifies that the data have in fact been stset and gives the appropriate error if not. st show
is used to preface the output of a program with key information on the st variables used in the
analysis. Programmers interested in writing st code should see [ST] st is.

Reference
Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3

ed. College Station, TX: Stata Press.

Also see
[ST] stset — Declare data to be survival-time data

[ST] intro — Introduction to survival analysis manual

Stata Power and Sample-Size Reference Manual

http://www.stata-press.com/books/survival-analysis-stata-introduction/

Title

ct — Count-time data

Description Also see

Description
The term ct refers to count-time data and the commands—all of which begin with the letters

“ct”—for analyzing them. If you have data on populations, whether people or generators, with
observations recording the number of units under test at time t (subjects alive) and the number of
subjects that failed or were lost because of censoring, you have what we call count-time data.

If, on the other hand, you have data on individual subjects with observations recording that this
subject came under observation at time t0 and that later, at t1, a failure or censoring was observed,
you have what we call survival-time data. If you have survival-time data, see [ST] st.

Do not confuse count-time data with counting-process data, which can be analyzed using the st
commands; see [ST] st.

There are two ct commands:

ctset [ST] ctset Declare data to be count-time data
cttost [ST] cttost Convert count-time data to survival-time data

The key is the cttost command. Once you have converted your count-time data to survival-time
data, you can use the st commands to analyze the data. The entire process is as follows:

1. ctset your data so that Stata knows that they are count-time data; see [ST] ctset.
2. Type cttost to convert your data to survival-time data; see [ST] cttost.
3. Use the st commands; see [ST] st.

Also see
[ST] ctset — Declare data to be count-time data

[ST] cttost — Convert count-time data to survival-time data

[ST] st — Survival-time data

[ST] survival analysis — Introduction to survival analysis

9

Title

ctset — Declare data to be count-time data

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
ct refers to count-time data and is described here and in [ST] ct. Do not confuse count-time data

with counting-process data, which can be analyzed using the st commands; see [ST] st.
When specified with a timevar and nfailvar, ctset declares the data in memory to be ct data.

When you ctset your data, ctset also checks that what you have declared makes sense.

ctset, noshow will suppress display of the identities of the key ct variables before the output
of other ct commands. By default, this information is shown. If you type ctset, noshow and then
wish to restore the default behavior, type ctset, show.

ctset, clear is used mostly by programmers and causes Stata to no longer consider the data to
be ct data. The dataset itself remains unchanged. It is not necessary to type ctset, clear before
doing another ctset.

ctset typed without arguments—which can be abbreviated ct—displays the identities of the key
ct variables and reruns the checks on your data. Thus ct can remind you of what you have ctset
(especially if you have ctset, noshow) and reverify your data if you make changes to the data.

Quick start
Declare count-time data with number of failures, fail, at each time in tvar

ctset tvar fail

As above, and specify the number censored, cens, at each time
ctset tvar fail cens

As above, and specify the number entering, enter, at each time
ctset tvar fail cens enter

Specify that the number of failures and the number censored are recorded for groups identified by v1

ctset tvar fail cens, by(v1)

Display previous ct settings and verify that any changes to data correspond to settings
ctset

Do not display information on variables specified in ctset when ct commands are run
ctset, noshow

Menu
Statistics > Survival analysis > Setup and utilities > Declare data to be count-time data

10

ctset — Declare data to be count-time data 11

Syntax

Declare data in memory to be count-time data and run checks on data

ctset timevar nfailvar
[

ncensvar
[

nentvar
]] [

, by(varlist) noshow
]

Specify whether to display identities of key ct variables

ctset,
{
show | noshow

}
Clear ct setting

ctset, clear

Display identity of key ct variables and rerun checks on data{
ctset | ct

}
where timevar refers to the time of failure, censoring, or entry. It should contain times ≥0.

nfailvar records the number failing at time timevar.

ncensvar records the number censored at time timevar.

nentvar records the number entering at time timevar.

Stata sequences events at the same time as

at timevar nfailvar failures occurred,
then at timevar + 0 ncensvar censorings occurred,

finally at timevar + 0 + 0 nentvar subjects entered the data.

Options
by(varlist) indicates that counts are provided by group. For instance, consider data containing records

such as

t fail cens sex agecat
5 10 2 0 1
5 6 1 1 1
5 12 0 0 2

These data indicate that, in the category sex = 0 and agecat = 1, 10 failed and 2 were censored
at time 5; for sex = 1, 1 was censored and 6 failed; and so on.

The above data would be declared

. ctset t fail cens, by(sex agecat)

The order of the records is not important, nor is it important that there be a record at every time
for every group or that there be only one record for a time and group. However, the data must
contain the full table of events.

show and noshow specify whether the identities of the key ct variables are to be displayed at the
start of every ct command. Some users find the report reassuring; others find it repetitive. In any
case, you can set and unset show, and you can always type ct to see the summary.

clear makes Stata no longer consider the data to be ct data.

12 ctset — Declare data to be count-time data

Remarks and examples
Remarks are presented under the following headings:

Examples
Data errors flagged by ctset

Examples

About all you can do with ct data in Stata is convert it to survival-time (st) data so that you can
use the survival analysis commands. To analyze count-time data with Stata,

. ctset . . .

. cttost

. (now use any of the st commands)

Example 1: Simple ct data

We have data on generators that are run until they fail:

. use http://www.stata-press.com/data/r14/ctset1

. list, sep(0)

failtime fail

1. 22 1
2. 30 1
3. 40 2
4. 52 1
5. 54 4
6. 55 2
7. 85 7
8. 97 1
9. 100 3

10. 122 2
11. 140 1

For instance, at time 54, four generators failed. To ctset these data, we could type

. ctset failtime fail

dataset name: http://www.stata-press.com/data/r14/ctset1.dta
time: failtime

no. fail: fail
no. lost: -- (meaning 0 lost)

no. enter: -- (meaning all enter at time 0)

It is not important that there be only 1 observation per failure time. For instance, according to our
data, at time 85 there were seven failures. We could remove that observation and substitute two in
its place—one stating that at time 85 there were five failures and another that at time 85 there were
two more failures. ctset would interpret that data just as it did the previous data.

ctset — Declare data to be count-time data 13

In more realistic examples, the generators might differ from one another. For instance, the following
data show the number failing with old-style and new-style bearings:

. use http://www.stata-press.com/data/r14/ctset2

. list, sepby(bearings)

bearings failtime fail

1. old-style 22 1
2. old-style 40 2
3. old-style 54 1
4. old-style 84 2
5. old-style 97 2
6. old-style 100 1

7. new-style 30 1
8. new-style 52 1
9. new-style 55 1

10. new-style 100 3
11. new-style 122 2
12. new-style 140 1

That the data are sorted on bearings is not important. The ctset command for these data is
. ctset failtime fail, by(bearings)

dataset name: http://www.stata-press.com/data/r14/ctset2.dta
time: failtime

no. fail: fail
no. lost: -- (meaning 0 lost)

no. enter: -- (meaning all enter at time 0)
by: bearings

Example 2: ct data with censoring

In real data, not all units fail in the time allotted. Say that the generator experiment was stopped
after 150 days. The data might be

. use http://www.stata-press.com/data/r14/ctset3

. list

bearings failtime fail censored

1. old-style 22 1 0
2. old-style 40 2 0
3. old-style 54 1 0
4. old-style 84 2 0
5. new-style 97 2 0

6. old-style 100 1 0
7. old-style 150 0 2
8. new-style 30 1 0
9. new-style 52 1 0

10. new-style 55 1 0

11. new-style 122 2 0
12. new-style 140 1 0
13. new-style 150 0 3

14 ctset — Declare data to be count-time data

The ctset command for these data is

. ctset failtime fail censored, by(bearings)

dataset name: http://www.stata-press.com/data/r14/ctset3.dta
time: failtime

no. fail: fail
no. lost: censored

no. enter: -- (meaning all enter at time 0)
by: bearings

In some other data, observations might also be censored along the way; that is, the value of
censored would not be 0 before time 150. For instance, a record might read

bearings failtime fail censored
0 84 2 1

This would mean that at time 84, two failed and one was lost because of censoring. The failure and
censoring occurred at the same time, and when we analyze these data, Stata will assume that the
censored observation could have failed, that is, that the censoring occurred after the two failures.

Example 3: ct data with delayed entry

Data on survival time of patients with a particular kind of cancer are collected. Time is measured
as time since diagnosis. After data collection started, the sample was enriched with some patients
from hospital records who had been previously diagnosed. Some of the data are

time die cens ent other variables
0 0 0 50
1 0 0 5 . . .
.
.
.

30 0 0 3 . . .
31 0 1 2 . . .
32 1 0 1 . . .
.
.
.

100 1 1 0 . . .
.
.
.

Fifty patients entered at time 0 (time of diagnosis); five patients entered 1 day after diagnosis; and
three, two, and one patients entered 30, 31, and 32 days after diagnosis, respectively. On the 32nd
day, one of the previously entered patients died.

If the other variables are named sex and agecat, the ctset command for these data is

. ctset time die cens ent, by(sex agecat)

time: time
no. fail: die
no. lost: cens

no. enter: ent
by: sex agecat

The count-time format is an inferior way to record data like these—data in which every subject
does not enter at time 0—because some information is already lost. When did the patient who died
on the 32nd day enter? There is no way of telling.

ctset — Declare data to be count-time data 15

For traditional survival analysis calculations, it does not matter. More modern methods of estimating
standard errors, however, seek to identify each patient, and these data do not support using such
methods.

This issue concerns the robust estimates of variance and the vce(robust) options on some of the
st analysis commands. After converting the data, you must not use the vce(robust) option, even
if an st command allows it, because the identities of the subjects—tying together when a subject
starts and ceases to be at risk—are assigned randomly by cttost when you convert your ct to st
data. When did the patient who died on the 32nd day enter? For conventional calculations, it does
not matter, and cttost chooses a time randomly from the available entry times.

Data errors flagged by ctset

ctset requires only two things of your data: that the counts all be positive or zero and, if you
specify an entry variable, that the entering and exiting subjects (failure + censored) balance.

If all subjects enter at time 0, we recommend that you do not specify a number-that-enter variable.
ctset can determine for itself the number who enter at time 0 by summing the failures and censorings.

Also see
[ST] ct — Count-time data

[ST] cttost — Convert count-time data to survival-time data

Title

cttost — Convert count-time data to survival-time data

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
cttost converts count-time data to their survival-time format so that they can be analyzed with

Stata. Do not confuse count-time data with counting-process data, which can also be analyzed with
the st commands; see [ST] ctset for a definition and examples of count data.

Quick start
Convert count-time data to survival-time data using ctset data

cttost

As above, but name the new weight variable mywvar instead of using the default name
cttost, wvar(mywvar)

Menu
Statistics > Survival analysis > Setup and utilities > Convert count-time data to survival-time data

16

cttost — Convert count-time data to survival-time data 17

Syntax
cttost

[
, options

]
options Description

t0(t0var) name of entry-time variable
wvar(wvar) name of frequency-weighted variable
clear overwrite current data in memory

nopreserve do not save the original data; programmer’s command

You must ctset your data before using cttost; see [ST] ctset.
nopreserve does not appear in the dialog box.

Options
t0(t0var) specifies the name of the new variable to create that records entry time. (For most ct data,

no entry-time variable is necessary because everyone enters at time 0.)

Even if an entry-time variable is necessary, you need not specify this option. cttost will, by
default, choose t0, time0, or etime according to which name does not already exist in the data.

wvar(wvar) specifies the name of the new variable to be created that records the frequency weights
for the new pseudo-observations. Count-time data are actually converted to frequency-weighted st
data, and a variable is needed to record the weights. This sounds more complicated than it is.
Understand that cttost needs a new variable name, which will become a permanent part of the
st data.

If you do not specify wvar(), cttost will, by default, choose w, pop, weight, or wgt according
to which name does not already exist in the data.

clear specifies that it is okay to proceed with the conversion, even though the current dataset has
not been saved on disk.

The following option is available with cttost but is not shown in the dialog box:

nopreserve speeds the conversion by not saving the original data that can be restored should things
go wrong or should you press Break. nopreserve is intended for use by programmers who use
cttost as a subroutine. Programmers can specify this option if they have already preserved the
original data. nopreserve does not affect the conversion.

Remarks and examples
Converting ct to st data is easy. We have some count-time data,

. use http://www.stata-press.com/data/r14/cttost

. ct
dataset name: http://www.stata-press.com/data/r14/cttost.dta

time: time
no. fail: ndead
no. lost: ncens

no. enter: -- (meaning all enter at time 0)
by: agecat treat

18 cttost — Convert count-time data to survival-time data

. list in 1/5

agecat treat time ndead ncens

1. 2 1 464 4 0
2. 3 0 268 3 1
3. 2 0 638 2 0
4. 1 0 803 1 4
5. 1 0 431 2 0

and to convert it, we type cttost:

. cttost

failure event: ndead != 0 & ndead < .
obs. time interval: (0, time]
exit on or before: failure

weight: [fweight=w]

33 total observations
0 exclusions

33 physical observations remaining, equal to
82 weighted observations, representing
39 failures in single-record/single-failure data

48726 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 1227

Now that it is converted, we can use any of the st commands:

. sts test treat, logrank

failure _d: ndead
analysis time _t: time

weight: [fweight=w]

Log-rank test for equality of survivor functions

Events Events
treat observed expected

0 22 17.05
1 17 21.95

Total 39 39.00

chi2(1) = 2.73
Pr>chi2 = 0.0986

Also see
[ST] ct — Count-time data

[ST] ctset — Declare data to be count-time data

Title

discrete — Discrete-time survival analysis

Description Acknowledgment References Also see

Description
As of the date that this manual was printed, Stata does not have a suite of built-in commands

for discrete-time survival models matching the st suite for continuous-time models, but a good case
could be made that it should. Instead, these models can be fit easily using other existing estimation
commands and data manipulation tools.

Discrete-time survival analysis concerns analysis of time-to-event data whenever survival times are
either a) intrinsically discrete (for example, numbers of machine cycles) or b) grouped into discrete
intervals of time (“interval censoring”). If intervals are of equal length, the same methods can be
applied to both a) and b); survival times will be positive integers.

You can fit discrete-time survival models with the maximum likelihood method. Data may contain
completed or right-censored spells, and late entry (left-truncation) can also be handled, as well
as unobserved heterogeneity (also termed “frailty”). Estimation makes use of the property that the
sample likelihood can be rewritten in a form identical to the likelihood for a binary dependent variable
multiple regression model and applied to a specially organized dataset (Allison 2014, Jenkins 1995).
For models without frailty, you can use, for example, logistic (or logit) to fit the discrete-time
logistic hazard model or cloglog to fit the discrete-time proportional hazards model (Prentice and
Gloeckler 1978). Models incorporating normal frailty may be fit using xtlogit and xtcloglog. A
model with gamma frailty (Meyer 1990) may be fit using pgmhaz (Jenkins 1997).

Estimation consists of three steps:

1. Data organization: The dataset must be organized so that there is 1 observation for each period
when a subject is at risk of experiencing the transition event. For example, if the original dataset
contains one row for each subject, i, with information about their spell length, Ti, the new dataset
requires Ti rows for each subject, one row for each period at risk. This may be accomplished
using expand or stsplit. (This step is episode splitting at each and every interval.) The result
is data of the same form as a discrete panel (xt) dataset with repeated observations on each panel
(subject).

2. Variable creation: You must create at least three types of variables. First, you will need an interval
identification variable, which is a sequence of positive integers t = 1, . . . , Ti. For example,

. sort subject_id

. by subject_id: generate t = _n

Second, you need a period-specific censoring indicator, di. If di = 1 if subject i’s spell is complete
and di = 0 if the spell is right-censored, the new indicator d∗it = 1 if di = 1 and t = Ti, and
d∗it = 0 otherwise.

Third, you must define variables (as functions of t) to summarize the pattern of duration dependence.
These variables are entered as covariates in the regression. For example, for a duration dependence
pattern analogous to that in the continuous-time Weibull model, you could define a new variable
x1 = logt. For a quadratic specification, you define variables x1 = t and x2 = t2. We can achieve
a piecewise constant specification by defining a set of dummy variables, with each group of periods
sharing the same hazard rate, or a semiparametric model (analogous to the Cox regression model
for continuous survival-time data) using separate dummy variables for each and every duration

19

20 discrete — Discrete-time survival analysis

interval. No duration variable need be defined if you want to fit a model with a constant hazard
rate.

In addition to these three essentials, you may define other time-varying covariates.

3. Estimation: You fit a binary dependent variable multiple regression model, with d∗it as the dependent
variable and covariates, including the duration variables and any other covariates.

For estimation using spell data with late entry, the stages are the same as those outlined above,
with one modification and one warning. To fit models without frailty, you must drop all intervals
prior to each subject’s entry to the study. For example, if entry is in period ei, you drop it if t < ei.
If you want to fit frailty models on the basis of discrete-time data with late entry, then be aware that
the estimation procedure outlined does not lead to correct estimates. (The sample likelihood in the
reorganized data does not account for conditioning for late entry here. You will need to write your
own likelihood function by using ml; see [R] maximize.)

To derive predicted hazard rates, use the predict command. For example, after logistic or
cloglog, use predict, pr. After xtlogit or xtcloglog, use predict, pu0 (which predicts the
hazard assuming the individual effect is equal to the mean value). Estimates of the survivor function, Sit,
can then be derived from the predicted hazard rates, pit, because Sit = (1−pi1)(1−pi2)(· · ·)(1−pit).

Acknowledgment
We thank Stephen Jenkins of the London School of Economics and Political Science for drafting

this initial entry.

References
Allison, P. D. 2014. Event History and Survival Analysis. 2nd ed. Newbury Park, CA: Sage.

Jenkins, S. P. 1995. Easy estimation methods for discrete-time duration models. Oxford Bulletin of Economics and
Statistics 57: 129–138.

. 1997. sbe17: Discrete time proportional hazards regression. Stata Technical Bulletin 39: 22–32. Reprinted in
Stata Technical Bulletin Reprints, vol. 7, pp. 109–121. College Station, TX: Stata Press.

Meyer, B. D. 1990. Unemployment insurance and unemployment spells. Econometrica 58: 757–782.

Prentice, R. L., and L. A. Gloeckler. 1978. Regression analysis of grouped survival data with application to breast
cancer data. Biometrics 34: 57–67.

Also see
[ST] stcox — Cox proportional hazards model

[ST] stcrreg — Competing-risks regression

[ST] streg — Parametric survival models

[D] expand — Duplicate observations

[R] cloglog — Complementary log-log regression

[R] logistic — Logistic regression, reporting odds ratios

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

http://www.stata.com/bookstore/event-history-and-survival-analysis/
http://www.stata.com/products/stb/journals/stb39.pdf

Title

ltable — Life tables for survival data

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Acknowledgments
References Also see

Description

ltable displays and graphs life tables for individual-level or aggregate data and optionally presents
the likelihood-ratio and log-rank tests for equivalence of groups. ltable also allows you to examine
the empirical hazard function through aggregation.

Quick start
Life table for time variable tvar and death indicator died

ltable tvar died

As above, but graph results with confidence intervals instead and suppress table
ltable tvar died, graph ci notable

Life tables for each group defined by catvar with results saved to mydata.dta

ltable tvar died, by(catvar) saving(mydata)

Aggregate time into thirty-day intervals and suppress actuarial adjustment
ltable tvar died, intervals(30) noadjust

Cumulative failure table for observations where catvar equals 1
ltable tvar died if catvar==1, failure

Hazard table with frequency weights wvar

ltable tvar died [fweight=wvar], hazard

Menu
Statistics > Survival analysis > Summary statistics, tests, and tables > Life tables for survival data

21

22 ltable — Life tables for survival data

Syntax

ltable timevar
[

deadvar
] [

if
] [

in
] [

weight
] [

, options
]

timevar specifies the time of failure or censoring. If deadvar is not specified, all values of timevar
are interpreted as failure times. Observations with timevar equal to missing are ignored.

deadvar specifies how the time recorded in timevar is to be interpreted. Observations with deadvar
equal to 0 are treated as censored and all other nonmissing values indicate that timevar should be
interpreted as a failure time. Observations with deadvar equal to missing are ignored.

deadvar does not specify the number of failures. Specify frequency weights for aggregated data
recording the number of failures.

options Description

Main

notable display graph only; suppress display of table
graph present the table graphically, as well as in tabular form
by(groupvar) produce separate tables (or graphs) for each value of groupvar
test report χ2 measure of differences between groups (2 tests)
overlay overlay plots on the same graph
survival display survival table; the default
failure display cumulative failure table
hazard display hazard table
ci graph confidence interval
level(#) set confidence level; default is level(95)

noadjust suppress actuarial adjustment to the number at risk
tvid(varname) subject ID variable to use with time-varying parameters
intervals(w | numlist) time intervals in which data are to be aggregated for tables
saving(filename

[
, replace

]
) save the life-table data to filename; use replace to overwrite

existing filename

Plot

plotopts(plot options) affect rendition of the plotted line and plotted points
plot#opts(plot options) affect rendition of the #th plotted line and plotted points;

available only with overlay

CI plot

ciopts(rspike options) affect rendition of the confidence intervals
ci#opts(rspike options) affect rendition of the #th confidence interval; available only

with overlay

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
byopts(byopts) how subgraphs are combined, labeled, etc.

ltable — Life tables for survival data 23

plot options Description

connect options change look of lines or connecting method
marker options change look of markers (color, size, etc.)

fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

notable suppresses displaying the table. This option is often used with graph.

graph requests that the table be presented graphically, as well as in tabular form; when notable
is also specified, only the graph is presented. When you specify graph, only one table can be
calculated and graphed at a time; see survival, failure, and hazard below.

graph may not be specified with hazard. Use sts graph to graph estimates of the hazard
function.

by(groupvar) creates separate tables (or graphs within the same image) for each value of groupvar.
groupvar may be string or numeric.

test presents two χ2 measures of the differences between groups, the likelihood-ratio test of
homogeneity and the log-rank test for equality of survivor functions. The two groups are identified
by the by() option, so by() must also be specified.

overlay causes the plot from each group identified in the by() option to be overlaid on the same
graph. The default is to generate a separate graph (within the same image) for each group. This
option requires the by() option.

survival, failure, and hazard indicate the table to be displayed. If none is specified, the default is
the survival table. Specifying failure displays the cumulative failure table. Specifying survival
failure would display both the survival and the cumulative failure table. If graph is specified,
multiple tables may not be requested.

ci graphs the confidence intervals around survival, failure, or hazard.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

noadjust suppresses the actuarial adjustment to the number at risk. The default is to consider the
adjusted number at risk for each interval as the total at the start minus (the number of censored)/2.
If noadjust is specified, the number at risk is simply the total at the start, corresponding to
the standard Kaplan–Meier assumption. noadjust should be specified when using ltable to list
results corresponding to those produced by sts list; see [ST] sts list.

tvid(varname) is for use with longitudinal data with time-varying parameters. Each subject appears
in the data more than once, and equal values of varname identify observations referring to the
same subject. When tvid() is specified, only the last observation on each subject is used in
making the table. The order of the data does not matter, and last here means the last observation
chronologically.

intervals(w | numlist) specifies the intervals into which the data are to be aggregated for tabular
presentation. A numeric argument is interpreted as the width of the interval. For instance, in-
terval(2) aggregates data into the intervals 0 ≤ t < 2, 2 ≤ t < 4, and so on. Not specifying
interval() is equivalent to specifying interval(1). Because in most data, failure times are

24 ltable — Life tables for survival data

recorded as integers, this amounts to no aggregation except that implied by the recording of the
time variable, and so it produces Kaplan–Meier product-limit estimates of the survival curve (with
an actuarial adjustment; see the noadjust option above). Also see [ST] sts list. Although it is
possible to examine survival and failure without aggregation, some form of aggregation is almost
always required to examine the hazard.

When more than one argument is specified, intervals are aggregated as specified. For instance,
interval(0,2,8,16) aggregates data into the intervals 0 ≤ t < 2, 2 ≤ t < 8, and 8 ≤ t < 16,
and (if necessary) the open-ended interval t ≥ 16.

interval(w) is equivalent to interval(0,7,15,30,60,90,180,360,540,720), corresponding
to 1 week, (roughly) 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 1.5 years, and 2
years when failure times are recorded in days. The w suggests widening intervals.

saving(filename
[
, replace

]
) creates a Stata data file (.dta file) containing the life table. This

option will not save the graph to disk; see [G-2] graph save to save the resulting graph to disk.

replace specifies that filename be overwritten if it exists. This option is not shown in the dialog
box.

� � �
Plot �

plotopts(plot options) affects the rendition of the plotted line and plotted points; see [G-3] con-
nect options and [G-3] marker options.

plot#opts(plot options) affects the rendition of the #th plotted line and plotted points; see [G-3] con-
nect options and [G-3] marker options. This option is valid only if overlay is specified.

� � �
CI plot �

ciopts(rspike options) affects the rendition of the confidence intervals for the graphed survival,
failure, or hazard; see [G-3] rspike options.

ci#opts(rspike options) affects the rendition of the #th confidence interval for the graphed survival,
failure, or hazard; see [G-3] rspike options. This option is valid only if overlay is specified.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, and Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

byopts(byopts) affects the appearance of the combined graph when by() is specified, including the
overall graph title and the organization of subgraphs. See [G-3] by option.

Remarks and examples
Life tables describe death rates in a given population over time. Such tables date back to the 17th

century; Edmund Halley (1693) is often credited with their development. ltable is for use with
“cohort” data, and although one often thinks of such tables as monitoring a population from the
“birth” of the first member to the “death” of the last, more generally, such tables can be thought of
as a reasonable way to list any kind of survival data. For an introductory discussion of life tables,
see Pagano and Gauvreau (2000, 489–495) and Oliveira (2013); for an intermediate discussion, see
Selvin (2004, 335–377); and for a more complete discussion, see Chiang (1984).

ltable — Life tables for survival data 25

Example 1

In Pike (1966), two groups of rats were exposed to a carcinogen, and the number of days to death
from vaginal cancer was recorded (reprinted in Kalbfleisch and Prentice 2002, 2):

Group 1 143 164 188 188 190 192 206 209 213 216
220 227 230 234 246 265 304 216* 244*

Group 2 142 156 163 198 205 232 232 233 233 233
233 239 240 261 280 280 296 296 323 204*
344*

The ‘*’ on a few of the entries indicates that the observation was censored—as of the recorded day,
the rat had still not died because of vaginal cancer but was withdrawn from the experiment for other
reasons.

Having entered these data into Stata, we see that the first few observations are

. use http://www.stata-press.com/data/r14/rat

. list in 1/5

group t died

1. 1 143 1
2. 1 164 1
3. 1 188 1
4. 1 188 1
5. 1 190 1

For example, the first observation records a rat from group 1 that died on the 143rd day. The died
variable records whether that rat died or was withdrawn (censored):

. list if died==0

group t died

18. 1 216 0
19. 1 244 0
39. 2 204 0
40. 2 344 0

Four rats, two from each group, did not die but were withdrawn.

26 ltable — Life tables for survival data

The life table for group 1 is

. ltable t died if group==1

Beg. Std.
Interval Total Deaths Lost Survival Error [95% Conf. Int.]

143 144 19 1 0 0.9474 0.0512 0.6812 0.9924
164 165 18 1 0 0.8947 0.0704 0.6408 0.9726
188 189 17 2 0 0.7895 0.0935 0.5319 0.9153
190 191 15 1 0 0.7368 0.1010 0.4789 0.8810
192 193 14 1 0 0.6842 0.1066 0.4279 0.8439
206 207 13 1 0 0.6316 0.1107 0.3790 0.8044
209 210 12 1 0 0.5789 0.1133 0.3321 0.7626
213 214 11 1 0 0.5263 0.1145 0.2872 0.7188
216 217 10 1 1 0.4709 0.1151 0.2410 0.6713
220 221 8 1 0 0.4120 0.1148 0.1937 0.6194
227 228 7 1 0 0.3532 0.1125 0.1502 0.5648
230 231 6 1 0 0.2943 0.1080 0.1105 0.5070
234 235 5 1 0 0.2355 0.1012 0.0751 0.4459
244 245 4 0 1 0.2355 0.1012 0.0751 0.4459
246 247 3 1 0 0.1570 0.0931 0.0312 0.3721
265 266 2 1 0 0.0785 0.0724 0.0056 0.2864
304 305 1 1 0 0.0000 . . .

The reported survival rates are the survival rates at the end of the interval. Thus, 94.7% of rats
survived 144 days or more.

Technical note
If you compare the table just printed with the corresponding table in Kalbfleisch and Prentice (2002,

16), you will notice that the survival estimates differ beginning with the interval 216–217, which is
the first interval containing a censored observation. ltable treats censored observations as if they
were withdrawn halfway through the interval. The table printed in Kalbfleisch and Prentice treated
censored observations as if they were withdrawn at the end of the interval, even though Kalbfleisch
and Prentice (2002, 19) mention how results could be adjusted for censoring.

Here the same results as those printed in Kalbfleisch and Prentice could be obtained by incrementing
the time of withdrawal by 1 for the four censored observations. We say “here” because there were
no deaths on the incremented dates. For instance, one of the rats was withdrawn on the 216th day, a
day on which there was also a real death. There were no deaths on day 217, however, so moving the
withdrawal forward 1 day is equivalent to assuming that the withdrawal occurred at the end of the
day 216–217 interval. If the adjustments are made and ltable is used to calculate survival in both
groups, the results are the same as those printed in Kalbfleisch and Prentice, except that for group 2
in the interval 240–241, they report the survival as 0.345 when they mean 0.354.

In any case, the one-half adjustment for withdrawals is generally accepted, but it is only a crude
adjustment that becomes cruder the wider the intervals.

Example 2: ltable with aggregated intervals

When you do not specify the intervals, ltable uses unit intervals. The only aggregation performed
on the data was aggregation due to deaths or withdrawals occurring on the same “day”. If we wanted
to see the table aggregated into 30-day intervals, we would type

ltable — Life tables for survival data 27

. ltable t died if group==1, interval(30)

Beg. Std.
Interval Total Deaths Lost Survival Error [95% Conf. Int.]

120 150 19 1 0 0.9474 0.0512 0.6812 0.9924
150 180 18 1 0 0.8947 0.0704 0.6408 0.9726
180 210 17 6 0 0.5789 0.1133 0.3321 0.7626
210 240 11 6 1 0.2481 0.1009 0.0847 0.4552
240 270 4 2 1 0.1063 0.0786 0.0139 0.3090
300 330 1 1 0 0.0000 . . .

The interval displayed as 120 150 indicates the interval including 120 and up to, but not including,
150. The reported survival rate is the survival rate just after the close of the interval.

When you specify more than one number as the argument to interval(), you specify the cutoff
points, not the widths.

. ltable t died if group==1, interval(120,180,210,240,330)

Beg. Std.
Interval Total Deaths Lost Survival Error [95% Conf. Int.]

120 180 19 2 0 0.8947 0.0704 0.6408 0.9726
180 210 17 6 0 0.5789 0.1133 0.3321 0.7626
210 240 11 6 1 0.2481 0.1009 0.0847 0.4552
240 330 4 3 1 0.0354 0.0486 0.0006 0.2245

If any of the underlying failure or censoring times are larger than the last cutoff specified, then they
are treated as being in the open-ended interval:

. ltable t died if group==1, interval(120,180,210,240)

Beg. Std.
Interval Total Deaths Lost Survival Error [95% Conf. Int.]

120 180 19 2 0 0.8947 0.0704 0.6408 0.9726
180 210 17 6 0 0.5789 0.1133 0.3321 0.7626
210 240 11 6 1 0.2481 0.1009 0.0847 0.4552
240 . 4 3 1 0.0354 0.0486 0.0006 0.2245

Whether the last interval is treated as open ended or not makes no difference for survival and failure
tables, but it does affect hazard tables. If the interval is open ended, the hazard is not calculated for
it.

28 ltable — Life tables for survival data

Example 3: ltable with separate tables for each group

The by(varname) option specifies that separate tables be presented for each value of varname.
Remember that our rat dataset contains two groups:

. ltable t died, by(group) interval(30)

Beg. Std.
Interval Total Deaths Lost Survival Error [95% Conf. Int.]

group = 1
120 150 19 1 0 0.9474 0.0512 0.6812 0.9924
150 180 18 1 0 0.8947 0.0704 0.6408 0.9726
180 210 17 6 0 0.5789 0.1133 0.3321 0.7626
210 240 11 6 1 0.2481 0.1009 0.0847 0.4552
240 270 4 2 1 0.1063 0.0786 0.0139 0.3090
300 330 1 1 0 0.0000 . . .

group = 2
120 150 21 1 0 0.9524 0.0465 0.7072 0.9932
150 180 20 2 0 0.8571 0.0764 0.6197 0.9516
180 210 18 2 1 0.7592 0.0939 0.5146 0.8920
210 240 15 7 0 0.4049 0.1099 0.1963 0.6053
240 270 8 2 0 0.3037 0.1031 0.1245 0.5057
270 300 6 4 0 0.1012 0.0678 0.0172 0.2749
300 330 2 1 0 0.0506 0.0493 0.0035 0.2073
330 360 1 0 1 0.0506 0.0493 0.0035 0.2073

Example 4: ltable for failure tables

A failure table is simply a different way of looking at a survival table; failure is 1− survival:

. ltable t died if group==1, interval(30) failure

Beg. Cum. Std.
Interval Total Deaths Lost Failure Error [95% Conf. Int.]

120 150 19 1 0 0.0526 0.0512 0.0076 0.3188
150 180 18 1 0 0.1053 0.0704 0.0274 0.3592
180 210 17 6 0 0.4211 0.1133 0.2374 0.6679
210 240 11 6 1 0.7519 0.1009 0.5448 0.9153
240 270 4 2 1 0.8937 0.0786 0.6910 0.9861
300 330 1 1 0 1.0000 . . .

ltable — Life tables for survival data 29

Example 5: Survival rate at start of interval versus end of interval

Selvin (2004, 357) presents follow-up data from Cutler and Ederer (1958) on six cohorts of kidney
cancer patients. The goal is to estimate the 5-year survival probability.

With- With-
Year Interval Alive Deaths Lost drawn Year Interval Alive Deaths Lost drawn
1946 0–1 9 4 1 1948 0–1 21 11 0

1–2 4 0 0 1–2 10 1 2
2–3 4 0 0 2–3 7 0 0
3–4 4 0 0 3–4 7 0 0 7
4–5 4 0 0 1949 0–1 34 12 0
5–6 4 0 0 4 1–2 22 3 3

1947 0–1 18 7 0 2–3 16 1 0 15
1–2 11 0 0 1950 0–1 19 5 1
2–3 11 1 0 1–2 13 1 1 11
3–4 10 2 2 1951 0–1 25 8 2 15
4–5 6 0 0 6

The following is the Stata dataset corresponding to the table:

. use http://www.stata-press.com/data/r14/selvin

. list

year t died pop

1. 1946 .5 1 4
2. 1946 .5 0 1
3. 1946 5.5 0 4
4. 1947 .5 1 7
5. 1947 2.5 1 1

(output omitted)

As summary data may often come in the form shown above, it is worth understanding exactly
how the data were translated for use with ltable. t records the time of death or censoring (lost to
follow-up or withdrawal). died contains 1 if the observation records a death and 0 if it instead records
lost or withdrawn patients. pop records the number of patients in the category. The first line of the
original table stated that, in the 1946 cohort, there were nine patients at the start of the interval 0–1,
and during the interval, four died and one was lost to follow-up. Thus we entered in observation 1
that at t = 0.5, four patients died and in observation 2 that at t = 0.5, one patient was censored.
We ignored the information on the total population because ltable will figure that out for itself.

The second line of the table indicated that in the interval 1–2, four patients were still alive at the
beginning of the interval, and during the interval, zero died or were lost to follow-up. Because no
patients died or were censored, we entered nothing into our data. Similarly, we entered nothing for
lines 3, 4, and 5 of the table. The last line for 1946 stated that, in the interval 5–6, four patients were
alive at the beginning of the interval and that those four patients were withdrawn. In observation 3,
we entered that there were four censorings at t = 5.5.

It does not matter that we chose to record the times of deaths or censoring as midpoints of intervals;
we could just as well have recorded the times as 0.8 and 5.8. By default, ltable will form intervals
0–1, 1–2, and so on, and place observations into the intervals to which they belong. We suggest
using 0.5 and 5.5 because those numbers correspond to the underlying assumptions made by ltable
in making its calculations. Using midpoints reminds you of these assumptions.

30 ltable — Life tables for survival data

To obtain the survival rates, we type

. ltable t died [freq=pop]

Beg. Std.
Interval Total Deaths Lost Survival Error [95% Conf. Int.]

0 1 126 47 19 0.5966 0.0455 0.5017 0.6792
1 2 60 5 17 0.5386 0.0479 0.4405 0.6269
2 3 38 2 15 0.5033 0.0508 0.4002 0.5977
3 4 21 2 9 0.4423 0.0602 0.3225 0.5554
4 5 10 0 6 0.4423 0.0602 0.3225 0.5554
5 6 4 0 4 0.4423 0.0602 0.3225 0.5554

We estimate the 5-year survival rate as 0.4423 and the 95% confidence interval as 0.3225 to 0.5554.

Selvin (2004, 361), in presenting these results, lists the survival in the interval 0–1 as 1, in 1–2
as 0.597, in 2–3 as 0.539, and so on. That is, relative to us, he shifted the rates down one row
and inserted a 1 in the first row. In his table, the survival rate is the survival rate at the start of the
interval. In our table, the survival rate is the survival rate at the end of the interval (or, equivalently,
at the start of the next interval). This is, of course, simply a difference in the way the numbers are
presented and not in the numbers themselves.

Example 6: ltable for hazard tables

The discrete hazard function is the rate of failure—the number of failures occurring within a
time interval divided by the width of the interval (assuming that there are no censored observations).
Although the survival and failure tables are meaningful at the “individual” level—with intervals so
narrow that each contains only one failure—that is not true for the discrete hazard. If all intervals
contained one death and if all intervals were of equal width, the hazard function would be 1/∆t and
so appear to be a constant!

The empirically determined discrete hazard function can be revealed only by aggregation. Gross
and Clark (1975, 37) print data on malignant melanoma at the University of Texas M. D. Anderson
Tumor Clinic between 1944 and 1960. The interval is the time from initial diagnosis:

Interval Number lost Number with- Number
(years) to follow-up drawn alive dying

0–1 19 77 312
1–2 3 71 96
2–3 4 58 45
3–4 3 27 29
4–5 5 35 7
5–6 1 36 9
6–7 0 17 3
7–8 2 10 1
8–9 0 8 3
9+ 0 0 32

For our statistical purposes, there is no difference between the number lost to follow-up (patients
who disappeared) and the number withdrawn alive (patients dropped by the researchers)—both are
censored. We have entered the data into Stata; here are a few of the data:

ltable — Life tables for survival data 31

. use http://www.stata-press.com/data/r14/tumor

. list in 1/6, separator(0)

t d pop

1. .5 1 312
2. .5 0 19
3. .5 0 77
4. 1.5 1 96
5. 1.5 0 3
6. 1.5 0 71

We entered each group’s time of death or censoring as the midpoint of the intervals and entered the
numbers of the table, recording d as 1 for deaths and 0 for censoring. The hazard table is

. ltable t d [freq=pop], hazard interval(0(1)9)

Beg. Cum. Std. Std.
Interval Total Failure Error Hazard Error [95% Conf. Int.]

0 1 913 0.3607 0.0163 0.4401 0.0243 0.3924 0.4877
1 2 505 0.4918 0.0176 0.2286 0.0232 0.1831 0.2740
2 3 335 0.5671 0.0182 0.1599 0.0238 0.1133 0.2064
3 4 228 0.6260 0.0188 0.1461 0.0271 0.0931 0.1991
4 5 169 0.6436 0.0190 0.0481 0.0182 0.0125 0.0837
5 6 122 0.6746 0.0200 0.0909 0.0303 0.0316 0.1502
6 7 76 0.6890 0.0208 0.0455 0.0262 0.0000 0.0969
7 8 56 0.6952 0.0213 0.0202 0.0202 0.0000 0.0598
8 9 43 0.7187 0.0235 0.0800 0.0462 0.0000 0.1705
9 . 32 1.0000

We specified the interval() option as we did—and not as interval(1) or omitting the option
altogether—to force the last interval to be open ended. Had we not, and if we had recorded t as
9.5 for observations in that interval (as we did), ltable would have calculated a hazard rate for the
“interval”. Here the result of that calculation would have been 2, but no matter the result, it would
have been meaningless because we do not know the width of the interval.

When dealing with the survivor or failure function, you are not limited to merely examining a
column of numbers. With the graph option, you can see the result graphically:

32 ltable — Life tables for survival data

. ltable t d [freq=pop], i(0(1)9) graph notable ci xlab(0(2)10)

0
.2

.4
.6

.8
P

ro
p

o
rt

io
n

 S
u

rv
iv

in
g

0 2 4 6 8 10
t

The vertical lines in the graph represent the 95% confidence intervals for the survivor function. Among
the options we specified, although it is not required, is notable, which suppressed printing the table,
saving us some paper. xlab() was passed through to the graph command (see [G-3] twoway options)
and was unnecessary but made the graph look better.

Technical note
Because many intervals can exist during which no failures occur (in which case the hazard estimate

is zero), the estimated hazard is best graphically represented using a kernel smooth. Such an estimate
is available in sts graph; see [ST] sts graph.

Video example

How to construct life tables

Methods and formulas
Let τi be the individual failure or censoring times. The data are aggregated into intervals given by

tj , j = 1, . . . , J , and tJ+1 =∞ with each interval containing counts for tj ≤ τ < tj+1. Let dj be
the number of failures during the interval, mj be the censored observations during the interval, and
Nj be the number alive at the start of the interval. Define nj = Nj −mj/2 as the adjusted number
at risk at the start of the interval. If the noadjust option is specified, nj = Nj .

The product-limit estimate of the survivor function is

Sj =

j∏
k=1

nk − dk
nk

https://www.youtube.com/watch?v=f5cb-Us-GyI&list=UUVk4G4nEtBS4tLOyHqustDA

ltable — Life tables for survival data 33

(Kalbfleisch and Prentice 2002, 10, 15). Greenwood’s formula for the asymptotic standard error of
Sj is

sj = Sj

√√√√ j∑
k=1

dk
nk(nk − dk)

(Greenwood 1926; Kalbfleisch and Prentice 2002, 17). sj is reported as the standard deviation of
survival but is not used in generating the confidence intervals because it can produce intervals outside
0 and 1. The “natural” units for the survivor function are log(−logSj), and the asymptotic standard
error of that quantity is

ŝj =

√√√√ ∑
dk/
{
nk(nk − dk)

}[∑
log
{

(nk − dk)/nk
}]2

(Kalbfleisch and Prentice 2002, 18). The corresponding confidence intervals are S
exp(±z1−α/2 ŝj)
j .

The cumulative failure time is defined as Gj = 1− Sj , and thus the variance is the same as for

Sj and the confidence intervals are 1− S exp(±z1−α/2 ŝj)
j .

Both Sj and Gj are graphed against tj+1.

Define the within-interval failure rate as fj = dj/nj . The maximum likelihood estimate of the
(within-interval) hazard is then

λj =
fj

(1− fj/2)(tj+1 − tj)
The standard error of λj is

sλj = λj

√
1− {(tj+1 − tj)λj/2}2

dj

from which a confidence interval is calculated.

If the noadjust option is specified, the estimate of the hazard is

λj =
fj

tj+1 − tj
and its standard error is

sλj =
λj√
dj

The confidence interval is [
λj
2dj

χ2
2dj ,α/2

,
λj
2dj

χ2
2dj ,1−α/2

]

where χ2
2dj ,q

is the qth quantile of the χ2 distribution with 2dj degrees of freedom (Cox and
Oakes 1984, 53–54, 38–40).

34 ltable — Life tables for survival data

For the likelihood-ratio test for homogeneity, let dg be the total number of deaths in the gth group.
Define Tg =

∑
i∈g τi, where i indexes the individual failure or censoring times. The χ2 value with

G− 1 degrees of freedom (where G is the total number of groups) is

χ2 = 2

{(∑
dg

)
log

(∑
Tg∑
dg

)
−
∑

dg log

(
Tg
dg

)}
(Lawless 2003, 155).

The log-rank test for homogeneity is the test presented by sts test; see [ST] sts.

Acknowledgments
ltable is based on the lftbl command by Henry Krakauer and John Stewart (1991). We also

thank Michel Henry-Amar of the Centre Regional François Baclesse, Caen, France, for his comments.

References
Chiang, C. L. 1984. The Life Table and Its Applications. Malabar, FL: Krieger.

Cox, D. R., and D. Oakes. 1984. Analysis of Survival Data. London: Chapman & Hall/CRC.

Cutler, S. J., and F. Ederer. 1958. Maximum utilization of the life table method in analyzing survival. Journal of
Chronic Diseases 8: 699–712.

Greenwood, M. 1926. The natural duration of cancer. Reports on Public Health and Medical Subjects 33: 1–26.

Gross, A. J., and V. A. Clark. 1975. Survival Distribution: Reliability Applications in the Biomedical Sciences. New
York: Wiley.

Halley, E. 1693. An estimate of the degrees of the mortality of mankind, drawn from curious tables of the births
and funerals at the city of Breslaw; with an attempt to ascertain the price of annuities upon lives. Philosophical
Transactions 17: 596–610.

Kahn, H. A., and C. T. Sempos. 1989. Statistical Methods in Epidemiology. New York: Oxford University Press.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

Krakauer, H., and J. Stewart. 1991. ssa1: Actuarial or life-table analysis of time-to-event data. Stata Technical Bulletin
1: 23–25. Reprinted in Stata Technical Bulletin Reprints, vol. 1, pp. 200–202. College Station, TX: Stata Press.

Lawless, J. F. 2003. Statistical Models and Methods for Lifetime Data. 2nd ed. New York: Wiley.

Oliveira, A. G. 2013. Biostatistics Decoded. Chichester, UK: Wiley.

Pagano, M., and K. Gauvreau. 2000. Principles of Biostatistics. 2nd ed. Belmont, CA: Duxbury.

Pike, M. C. 1966. A method of analysis of a certain class of experiments in carcinogenesis. Biometrics 22: 142–161.

Ramalheira, C. 2001. ssa14: Global and multiple causes-of-death life tables. Stata Technical Bulletin 59: 29–45.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 333–355. College Station, TX: Stata Press.

Selvin, S. 2004. Statistical Analysis of Epidemiologic Data. 3rd ed. New York: Oxford University Press.

Also see
[ST] stcox — Cox proportional hazards model

http://www.stata.com/products/stb/journals/stb1.pdf
http://www.stata.com/bookstore/biostatistics-decoded/
http://www.stata.com/products/stb/journals/stb59.pdf

Title

snapspan — Convert snapshot data to time-span data

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
snapspan converts snapshot data for a given subject to time-span data required for use with

survival analysis commands, such as stcox, streg, and stset. snapspan replaces the data in the
specified variables. Transformed variables may be “events” that occur at the instant of the snapshot
or retrospective variables that are to apply to the time span ending at the time of the current snapshot.

Quick start
Create a time-span dataset from data containing subject identifier id, event variable evar occurring

at the time in tvar, and other variables measured at that time
snapspan id tvar evar

As above, and create new variable time0 containing the entry time for each record
snapspan id tvar evar, generate(time0)

Menu
Statistics > Survival analysis > Setup and utilities > Convert snapshot data to time-span data

35

36 snapspan — Convert snapshot data to time-span data

Syntax

snapspan idvar timevar varlist
[
, generate(newt0var) replace

]
idvar records the subject ID and may be string or numeric.

timevar records the time of the snapshot; it must be numeric and may be recorded on any scale: date,
hour, minute, second, etc.

varlist are the “event” variables, meaning that they occur at the instant of timevar. varlist can also
include retrospective variables that are to apply to the time span ending at the time of the current
snapshot. The other variables are assumed to be measured at the time of the snapshot and thus
apply from the time of the snapshot forward. See Specifying varlist below.

Options

generate(newt0var) adds newt0var to the dataset containing the entry time for each converted
time-span record.

replace specifies that it is okay to change the data in memory, even though the dataset has not been
saved on disk in its current form.

Remarks and examples

Remarks are presented under the following headings:

Snapshot and time-span datasets
Specifying varlist

Snapshot and time-span datasets

snapspan converts a snapshot dataset to a time-span dataset. A snapshot dataset records a subject
id, a time, and then other variables measured at the time:

Snapshot datasets:

idvar timevar x1 x2 ...

47 12 5 27 ...
47 42 5 18 ...
47 55 5 19 ...

idvar datevar x1 x2 ...

122 14jul1998 5 27 ...
122 12aug1998 5 18 ...
122 08sep1998 5 19 ...

idvar year x1 x2 ...

122 1994 5 27 ...
122 1995 5 18 ...
122 1997 5 19 ...

snapspan — Convert snapshot data to time-span data 37

A time-span dataset records a span of time (time0, time1]:

some variables assumed
to occur at time1

< other variables assumed constant over span >
> time

time0 time1

Time-span data are required, for instance, by stset and the st system. The variables assumed to
occur at time1 are the failure or event variables. All the other variables are assumed to be constant
over the span.

Time-span datasets:

idvar time0 time1 x1 x2 ... event

47 0 12 5 13 ... 0
47 12 42 5 27 ... 0
47 42 55 5 18 ... 1

idvar time0 time1 x1 x2 ... event

122 01jan1998 14jul1998 5 13 ... 0
122 14jul1998 12aug1998 5 27 ... 0
122 12aug1998 08sep1998 5 18 ... 1

idvar time0 time1 x1 x2 ... event

122 1993 1994 5 13 ... 0
122 1994 1995 5 27 ... 0
122 1995 1997 5 18 ... 1

To convert snapshot data to time-span data, you need to distinguish between event and nonevent
variables. Event variables happen at an instant.

Say that you have a snapshot dataset containing variable e recording an event (e = 1 might
record surgery, death, becoming unemployed, etc.) and the rest of the variables—call them x1, x2,
etc.—recording characteristics (such as sex, birth date, blood pressure, or weekly wage). The same
data, in snapshot and time-span form, would be

In snapshot form: In time-span form:
id time x1 x2 e id time0 time x1 x2 e

1 5 a1 b1 e1 1 . 5 . . e1
1 7 a2 b2 e2 1 5 7 a1 b1 e2
1 9 a3 b3 e3 1 7 9 a2 b2 e3
1 11 a4 b4 e4 1 9 11 a3 b3 e4

snapspan converts data from the form on the left to the form on the right:

. snapspan id time e, generate(time0) replace

The form on the right is suitable for use by stcox and stset and the other survival analysis
commands.

38 snapspan — Convert snapshot data to time-span data

Specifying varlist

The varlist—the third variable on—specifies the “event” variables.

In fact, the varlist specifies the variables that apply to the time span ending at the time of the
current snapshot. The other variables are assumed to be measured at the time of the snapshot and
thus apply from the time of the snapshot forward.

Thus varlist should include retrospective variables.

For instance, say that the snapshot recorded bp, blood pressure; smokes, whether the patient
smoked in the last 2 weeks; and event, a variable recording examination, surgery, etc. Then varlist
should include smokes and event. The remaining variables, bp and the rest, would be assumed to
apply from the time of the snapshot forward.

Suppose that the snapshot recorded ecs, employment change status (hired, fired, promoted, etc.);
wage, the current hourly wage; and ms, current marital status. Then varlist should include esc and
ms (assuming snapshot records are not generated for reason of ms change). The remaining variables,
wage and the rest, would be assumed to apply from the time of the snapshot forward.

Also see
[ST] stset — Declare data to be survival-time data

Title

st — Survival-time data

Description Reference Also see

Description
The term st refers to survival-time data and the commands—most of which begin with the letters

st—for analyzing these data. If you have data on individual subjects with observations recording
that this subject came under observation at time t0 and that later, at t1, a failure or censoring was
observed, you have what we call survival-time data.

If you have subject-specific data, with observations recording not a span of time, but measurements
taken on the subject at that point in time, you have what we call a snapshot dataset; see [ST] snapspan.

If you have data on populations, with observations recording the number of units under test at
time t (subjects alive) and the number of subjects that failed or were lost because of censoring, you
have what we call count-time data; see [ST] ct.

st commands Description

stset Declare data to be survival-time data
stdescribe Describe survival-time data
stsum Summarize survival-time data
stvary Report variables that vary over time
stfill Fill in by carrying forward values of covariates
stgen Generate variables reflecting entire histories
stsplit Split time-span records
stjoin Join time-span records
stbase Form baseline dataset
sts Generate, graph, list, and test the survivor and cumulative hazard

functions
stir Report incidence-rate comparison
stci Confidence intervals for means and percentiles of survival time
strate Tabulate failure rate
stptime Calculate person-time
stmh Calculate rate ratios with the Mantel–Haenszel method
stmc Calculate rate ratios with the Mantel–Cox method
stcox Fit Cox proportional hazards model
estat concordance Compute the concordance probability
estat phtest Test Cox proportional-hazards assumption
stphplot Graphically assess the Cox proportional-hazards assumption
stcoxkm Graphically assess the Cox proportional-hazards assumption

39

40 st — Survival-time data

streg Fit parametric survival models
xtstreg Random-effects parametric survival models
mestreg Multilevel mixed-effects parametric survival models
stteffects Treatment-effects estimation for observational survival-time data
stcurve Plot survivor, hazard, cumulative hazard, or cumulative incidence

function
stcrreg Fit competing-risks regression models
sttocc Convert survival-time data to case–control data
sttoct Convert survival-time data to count-time data
st * Survival analysis subroutines for programmers

The st commands are used for analyzing time-to-absorbing-event (single-failure) data and for
analyzing time-to-repeated-event (multiple-failure) data.

You begin an analysis by stsetting your data, which tells Stata the key survival-time variables;
see [ST] stset. Once you have stset your data, you can use the other st commands. If you save
your data after stsetting it, you will not have to stset it again in the future; Stata will remember.

The subsequent st entries are printed in this manual in alphabetical order. You can skip around,
but if you want to be an expert on all of Stata’s survival analysis capabilities, we suggest the reading
order listed above.

Reference
Cleves, M. A. 1999. ssa13: Analysis of multiple failure-time data with Stata. Stata Technical Bulletin 49: 30–39.

Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 338–349. College Station, TX: Stata Press.

Also see
[ST] stset — Declare data to be survival-time data

[ST] ct — Count-time data

[ST] snapspan — Convert snapshot data to time-span data

[ST] survival analysis — Introduction to survival analysis

[ST] Glossary

http://www.stata.com/products/stb/journals/stb49.pdf

Title

st is — Survival analysis subroutines for programmers

Description Syntax Remarks and examples Also see

Description
These commands are provided for programmers wishing to write new st commands.

st is verifies that the data in memory are survival-time (st) data. If not, it issues the error message
“data not st”, r(119).

st is currently “release 2”, meaning that this is the second design of the system. Programs written
for the previous release continue to work. (The previous release of st corresponds to Stata 5.)

Modern programs code st is 2 full or st is 2 analysis. st is 2 verifies that the dataset
in memory is in release 2 format; if it is in the earlier format, it is converted to release 2 format.
(Older programs simply code st is. This verifies that no new features are stset about the data
that would cause the old program to break.)

The full and analysis parts indicate whether the dataset may include past, future, or past and
future data. Code st is 2 full if the command is suitable for running on the analysis sample and
the past and future data (many data management commands fall into this category). Code st is 2
analysis if the command is suitable for use only with the analysis sample (most statistical commands
fall into this category). See [ST] stset for the definitions of past and future.

st show displays the summary of the survival-time variables or does nothing, depending on what
you specify when stsetting the data. noshow requests that st show display nothing.

st ct is a low-level utility that provides risk-group summaries from survival-time data.

Syntax

Verify that data in memory are survival-time data

st is 2 {full | analysis}

Display or do not display summary of survival-time variables

st show
[
noshow

]
Risk-group summaries

st ct "
[

byvars
]
" -> newtvar newpopvar newfailvar

[
newcensvar

[
newentvar

]]
You must have stset your data before using st is, st show, and st ct; see [ST] stset.

41

42 st is — Survival analysis subroutines for programmers

Remarks and examples
Remarks are presented under the following headings:

Definitions of characteristics and st variables
Outline of an st command
Using the st ct utility
Comparison of st ct with sttoct
Verifying data
Converting data

Definitions of characteristics and st variables

From a programmer’s perspective, st is a set of conventions that specify where certain pieces of
information are stored and how that information should be interpreted, together with a few subroutines
that make it easier to follow the conventions.

At the lowest level, st is nothing more than a set of Stata characteristics that programmers may
access:

char dta[dta] st (marks that the data are st)
char dta[st ver] 2 (version number)
char dta[st id] varname or nothing; id() variable
char dta[st bt0] varname or nothing; t0() variable
char dta[st bt] varname; t variable from stset t, . . .
char dta[st bd] varname or nothing; failure() variable
char dta[st ev] list of numbers or nothing; numlist from failure(varname[==numlist])
char dta[st enter] contents of enter() or nothing; numlist expanded
char dta[st exit] contents of exit() or nothing; numlist expanded
char dta[st orig] contents of origin() or nothing; numlist expanded
char dta[st bs] # or 1; scale() value
char dta[st o] origin or #
char dta[st s] scale or #
char dta[st ifexp] exp or nothing; from stset . . . if exp . . .
char dta[st if] exp or nothing; contents of if()

char dta[st ever] exp or nothing; contents of ever()

char dta[st never] exp or nothing; contents of never()

char dta[st after] exp or nothing; contents of after()

char dta[st befor] exp or nothing; contents of before()

char dta[st wt] weight type or nothing; user-specified weight
char dta[st wv] varname or nothing; user-specified weighting variable
char dta[st w] [weighttype=weightvar] or nothing
char dta[st show] noshow or nothing
char dta[st t] t (for compatibility with release 1)
char dta[st t0] t0 (for compatibility with release 1)
char dta[st d] d (for compatibility with release 1)
char dta[st n0] # or nothing; number of st notes
char dta[st n1] text of first note or nothing
char dta[st n2] text of second note or nothing
char dta[st set] text or nothing. If filled in, streset (see [ST] stset) will refuse

to execute and present this text as the reason

st is — Survival analysis subroutines for programmers 43

All st datasets also have the following four variables:

t0 time of entry (in t units) into risk pool
t time of exit (in t units) from risk pool
d contains 1 if failure, 0 if censoring
st contains 1 if observation is to be used and 0 otherwise

Thus, in a program, you might code
display "the failure/censoring base time variable is _t"
display "and its mean in the uncensored subsample is"
summarize _t if _d

No matter how simple or complicated the data, these four variables exist and are filled in. For
instance, in simple data, t0 might contain 0 for every observation, and d might always contain 1.

Some st datasets also contain the variables

origin evaluated value of origin()
scale evaluated value of scale()

The dta[st o] characteristic contains either the name origin or a number, often 0. It contains
a number when the origin does not vary across observations. dta[st s] works the same way with
the scale() value. Thus the origin and scale are dta[st o] and dta[st s]. In fact, these
characteristics are seldom used because variables t and t0 are already adjusted.

Some st datasets have an id() variable that clusters together records on the same subject. The
name of the variable varies, and the name can be obtained from the dta[st id] characteristic. If
there is no id() variable, the characteristic contains nothing.

Outline of an st command
If you are writing a new st command, place st is near the top of your code to ensure that your

command does not execute on inappropriate data. Also place st show following the parsing of your
command’s syntax to display the key st variables. The minimal outline for an st command is

program st name
version 14.2
st_is 2 . . .
. . . syntax command . . .
. . . determined there are no syntax errors . . .
st_show

. . . guts of program . . .
end

st is 2 appears even before the input is parsed. This is to avoid irritating users when they type a
command, get a syntax error, work hard to eliminate the error, and then learn that “data not st”.

A fuller outline for an st command, particularly one that performs analysis on the data, is
program st name

version 14.2
st_is 2 . . .
syntax . . . [, . . . noSHow . . .]

st_show ‘show’

marksample touse
quietly replace ‘touse’ = 0 if _st==0

. . . guts of program . . .
end

44 st is — Survival analysis subroutines for programmers

All calculations and actions are to be restricted, at the least, to observations for which st 6= 0.
Observations with st = 0 are to be ignored.

Using the st ct utility

st ct converts the data in memory to observations containing summaries of risk groups. Consider
the code

st_is 2 analysis
preserve
st_ct "" -> t pop die

Typing this would change the data in memory to contain something akin to count-time data. The
transformed data would have observations containing

t time
pop population at risk at time t
die number who fail at time t

There would be one record per time t, and the data would be sorted by t. The original data are
discarded, which is why you should code preserve; see [P] preserve.

The above three lines of code could be used as the basis for calculating the Kaplan–Meier
product-limit survivor-function estimate. The rest of the code is

keep if die
generate double hazard = die/pop
generate double km = 1-hazard if _n==1
replace km = (1-hazard)*km[_n-1] if _n>1

st ct can be used to obtain risk groups separately for subgroups of the population. The code
st_is 2 analysis
preserve
st_ct "race sex" -> t pop die

would change the data in memory to contain
race
sex
t time
pop population at risk at time t
die number who fail at time t

There would be one observation for each race–sex–t combination, and the data would be sorted
by race sex t.

With this dataset, you could calculate the Kaplan–Meier product-limit survivor-function estimate
for each race–sex group by coding

keep if die
generate double hazard = die/pop
by race sex: generate double km = 1-hazard if _n==1
by race sex: replace km = (1-hazard)*km[_n-1] if _n>1

st ct is a convenient subroutine. The above code fragment works regardless of the complexity of
the underlying survival-time data. It does not matter whether there is one record per subject, no
censoring, and one failure per subject, or multiple records per subject, gaps, and recurring failures
for the same subject. st ct forms risk groups that summarize the events recorded by the data.

st ct can provide the number of censored records and the number who enter the risk group. The
code

st_ct "" -> t pop die cens ent

st is — Survival analysis subroutines for programmers 45

creates records containing

t time
pop population at risk at time t
die number who fail at time t
cens number who are censored at t (after the failures)
ent number who enter at t (after the censorings)

As before,

st_ct "race sex" -> t pop die cens ent

would create a similar dataset with records for each race–sex group.

Comparison of st ct with sttoct

sttoct—see [ST] sttoct—is related to st ct, and in fact, sttoct is implemented in terms of
st ct. The differences between them are that

• sttoct creates ct data, meaning that the dataset is marked as being ct. st ct merely creates a
useful dataset; it does not ctset the data.

• st ct creates a total population at-risk variable—which is useful in programming—but sttoct
creates no such variable.

• sttoct eliminates thrashings—censorings and reentries of the same subject as covariates
change—if there are no gaps, strata shifting, etc. st ct does not do this. Thus, at a par-
ticular time, sttoct might show that there are two lost to censoring and none entered, whereas
st ct might show 12 censorings and 10 entries. This makes no difference in calculating the
number at risk and the number who fail, which are the major ingredients in survival calculations.

• st ct is faster.

Verifying data

As long as you code st is at the top of your program, you need not verify the consistency of
the data. That is, you need not verify that subjects do not fail before they enter, etc.

The dataset is verified when you stset it. If you make a substantive change to the data, you must
rerun stset (which can be done by typing stset or streset without arguments) to reverify that
all is well.

Converting data

If you write a program that converts the data from one form of st data to another, or from st data to
something else, be sure to issue the appropriate stset command. For instance, a command we have
written, stbase, converts the data from st to a simple cross-section in one instance. In our program,
we coded stset, clear so that all other st commands would know that these are no longer st data
and that making st calculations on them would be inappropriate.

Even if we had forgotten, other st programs would have found many of the key st variables missing
and would have ended with a “[such-and-such] not found” error.

46 st is — Survival analysis subroutines for programmers

Also see
[ST] stset — Declare data to be survival-time data

[ST] sttoct — Convert survival-time data to count-time data

[ST] survival analysis — Introduction to survival analysis

Title

stbase — Form baseline dataset

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
stbase without the at() option converts multiple-record st data to st data with every variable

set to its value at baseline, defined as the earliest time at which each subject was observed. stbase
without at() does nothing to single-record st data.

stbase, at() converts single- or multiple-record st data to a cross-sectional dataset (not st
data), recording the number of failures at the specified time. All variables are given their values at
baseline—the earliest time at which each subject was observed. In this form, single-failure data could
be analyzed by logistic regression and multiple-failure data by Poisson regression, for instance.

stbase can be used with single- or multiple-record or single- or multiple-failure st data.

Quick start
Set all variables to their values at the earliest time the subject was observed using stset data

stbase

Create a dataset with one observation per subject, recording number of failures at time 10, with all
variables set to the value at the earliest time the subject was observed

stbase, at(10)

Menu
Statistics > Survival analysis > Setup and utilities > Form baseline dataset

47

48 stbase — Form baseline dataset

Syntax
stbase

[
if
] [

in
] [

, options
]

options Description

Main

at(#) convert single/multiple-record st data to cross-sectional dataset at time #
gap(newvar) name of variable containing gap time; default is gap or gaptime
replace overwrite current data in memory
noshow do not show st setting information

nopreserve programmer’s option; see Options below

You must stset your data before using stbase; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.
nopreserve does not appear in the dialog box.

Options

� � �
Main �

at(#) changes what stbase does. Without the at() option, stbase produces another related st
dataset. With the at() option, stbase produces a related cross-sectional dataset.

gap(newvar) is allowed only with at(); it specifies the name of a new variable to be added to
the data containing the amount of time the subject was not at risk after entering and before # as
specified in at(). If gap() is not specified, the new variable will be named gap or gaptime,
depending on which name does not already exist in the data.

replace specifies that it is okay to change the data in memory, even though the dataset has not been
saved to disk in its current form.

noshow prevents stbase from showing the key st variables. This option is rarely used because most
people type stset, show or stset, noshow to set once and for all whether they want to see
these variables mentioned at the top of the output of every st command; see [ST] stset.

The following option is available with stbase but is not shown in the dialog box:

nopreserve is for use by programmers using stbase as a subroutine. It specifies that stbase not
preserve the original dataset so that it can be restored should an error be detected or should the
user press Break. Programmers would specify this option if, in their program, they had already
preserved the original data.

Remarks and examples
Remarks are presented under the following headings:

stbase without the at() option
stbase with the at() option
Single-failure st data where all subjects enter at time 0
Single-failure st data where some subjects enter after time 0
Single-failure st data with gaps and perhaps delayed entry
Multiple-failure st data

stbase — Form baseline dataset 49

stbase without the at() option

Once you type stbase, you may not streset your data, even though the data are st. streset
will refuse to run because the data have changed, and if the original rules were reapplied, they might
produce different, incorrect results. The st commands use four key variables:

t0 the time at which the record came under observation
t the time at which the record left observation
d 1 if the record left under failure, 0 otherwise
st whether the observation is to be used (contains 1 or 0)

These variables are adjusted by stbase. The t0 and t variables, in particular, are derived from
your variables according to options you specified at the time you stset the data, which might include
an origin() rule, an entry() rule, and the like. Once intervening observations are eliminated, those
rules will not necessarily produce the same results that they did previously.

To illustrate how stbase works, consider multiple-record, time-varying st data, on which you
have performed some analysis. You now wish to compare your results with a simpler, non-time-
varying analysis. For instance, suppose that variables x1 and x2 measure blood pressure and weight,
respectively, and that readings were taken at various times. Perhaps you fit the model

. use http://www.stata-press.com/data/r14/mfail

. stset
-> stset t, id(id) failure(d) exit(time .) noshow

id: id
failure event: d != 0 & d < .

obs. time interval: (t[_n-1], t]
exit on or before: time .

1734 total observations
0 exclusions

1734 observations remaining, representing
926 subjects
808 failures in multiple-failure-per-subject data

435855 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 960

50 stbase — Form baseline dataset

. stcox x1 x2

Iteration 0: log likelihood = -5034.9569
Iteration 1: log likelihood = -4978.4198
Iteration 2: log likelihood = -4978.1915
Iteration 3: log likelihood = -4978.1914
Refining estimates:
Iteration 0: log likelihood = -4978.1914

Cox regression -- Breslow method for ties

No. of subjects = 926 Number of obs = 1,734
No. of failures = 808
Time at risk = 435855

LR chi2(2) = 113.53
Log likelihood = -4978.1914 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

x1 2.273456 .216537 8.62 0.000 1.886311 2.740059
x2 .329011 .0685638 -5.33 0.000 .2186883 .4949888

with these data. You now wish to fit that same model but this time use the values of x1 and x2 at
baseline. You do this by typing

. stbase, replace
notes:

1. no gaps
2. there were multiple failures or reentries after failures
3. baseline data has multiple records per id(id)
4. all records have covariate values at baseline

. stcox x1 x2

Iteration 0: log likelihood = -7886.9779
Iteration 1: log likelihood = -7863.9974
Iteration 2: log likelihood = -7863.9295
Iteration 3: log likelihood = -7863.9295
Refining estimates:
Iteration 0: log likelihood = -7863.9295

Cox regression -- Breslow method for ties

No. of subjects = 926 Number of obs = 1,734
No. of failures = 1,337
Time at risk = 435855

LR chi2(2) = 46.10
Log likelihood = -7863.9295 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

x1 1.413195 .1107945 4.41 0.000 1.211903 1.647921
x2 .4566673 .0765272 -4.68 0.000 .3288196 .6342233

Another way you could perform the analysis is to type

. generate x1_0 = x1

. generate x2_0 = x2

. stfill x1_0 x2_0, baseline

. stcox x1 x2

See [ST] stfill. The method you use makes no difference, but if there were many explanatory variables,
stbase would be easier.

stbase — Form baseline dataset 51

stbase changes the data to record the same events but changes the values of all other variables
to their values at the earliest time the subject was observed.

stbase also simplifies the st data where possible. Say that one of your subjects has three records
in the original data and ends in a failure:

> time
X

After running stbase, this subject would have one record in the data:

> time
X
X < becomes one record

Here are some other examples of how stbase would process records with gaps and multiple failure
events:

> time
X 3 records, gap
X becomes 2 records

X 2 records, gap
X does not change

X X 3 records, 2 failures
X X becomes 2 records

X X 4 records
X X becomes 3 records, 2 failures

The following example shows numerically what is shown in the diagram above.

. use http://www.stata-press.com/data/r14/stbasexmpl, clear

. list, sepby(id)

id time0 time wgt death

1. 1 0 2 114 0
2. 1 3 5 110 0
3. 1 5 11 118 1

4. 2 0 2 120 0
5. 2 3 11 111 1

6. 3 0 2 108 1
7. 3 2 4 105 0
8. 3 4 7 113 1

9. 4 0 2 98 0
10. 4 3 4 101 1
11. 4 5 6 106 0
12. 4 6 11 104 1

52 stbase — Form baseline dataset

. stset time, id(id) fail(death) time0(time0) exit(time .)

id: id
failure event: death != 0 & death < .

obs. time interval: (time0, time]
exit on or before: time .

12 total observations
0 exclusions

12 observations remaining, representing
4 subjects
6 failures in multiple-failure-per-subject data

36 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 11

. list, sepby(id)

id time0 time wgt death _st _d _t _t0

1. 1 0 2 114 0 1 0 2 0
2. 1 3 5 110 0 1 0 5 3
3. 1 5 11 118 1 1 1 11 5

4. 2 0 2 120 0 1 0 2 0
5. 2 3 11 111 1 1 1 11 3

6. 3 0 2 108 1 1 1 2 0
7. 3 2 4 105 0 1 0 4 2
8. 3 4 7 113 1 1 1 7 4

9. 4 0 2 98 0 1 0 2 0
10. 4 3 4 101 1 1 1 4 3
11. 4 5 6 106 0 1 0 6 5
12. 4 6 11 104 1 1 1 11 6

. stbase, replace

failure _d: death
analysis time _t: time

exit on or before: time .
id: id

notes:
1. there were gaps
2. there were multiple failures or reentries after failures
3. baseline data has multiple records per id(id)
4. all records have covariate values at baseline

stbase — Form baseline dataset 53

. list, sepby(id)

id time0 time wgt death _st _d _t _t0

1. 1 0 2 114 0 1 0 2 0
2. 1 3 11 114 1 1 1 11 3

3. 2 0 2 120 0 1 0 2 0
4. 2 3 11 120 1 1 1 11 3

5. 3 0 2 108 1 1 1 2 0
6. 3 2 7 108 1 1 1 7 2

7. 4 0 2 98 0 1 0 2 0
8. 4 3 4 98 1 1 1 4 3
9. 4 5 11 98 1 1 1 11 5

stbase with the at() option

stbase, at() produces a cross-sectional dataset recording the status of each subject at the
specified time. This new dataset is not st. Four “new” variables are created:

• the first entry time for the subject,
• the time on gap,
• the time at risk, and
• the number of failures during the time at risk.

The names given to those variables depend on how your data are stset. Pretend that your stset
command was

. stset var1, failure(var2) time0(var3) ...

Then
the first entry time will be named var3 or time0 or t0
the time on gap will be named gap() or gap or gaptime
the time at risk will be named var1
the number of (or whether) failures will be named var2 or failure or d

The names may vary because, for instance, if you did not specify a var2 variable when you stset
your data, stbase, at() looks around for a name.

You need not memorize this; the names are obvious from the output produced by stbase, at().

54 stbase — Form baseline dataset

Consider the actions of stbase, at() with some particular st datasets. Pretend that the command
given is

. use http://www.stata-press.com/data/r14/stbasexmpl2, clear

. list, sepby(id)

id time0 time wgt death

1. 1 0 2 114 0
2. 1 2 8 110 0
3. 1 8 11 118 1

4. 2 0 1 120 0
5. 2 1 3 111 0
6. 2 3 8 108 0
7. 2 8 10 98 1

. stset time, id(id) fail(death) time0(time0)

id: id
failure event: death != 0 & death < .

obs. time interval: (time0, time]
exit on or before: failure

7 total observations
0 exclusions

7 observations remaining, representing
2 subjects
2 failures in single-failure-per-subject data

21 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 11

. list, sepby(id)

id time0 time wgt death _st _d _t _t0

1. 1 0 2 114 0 1 0 2 0
2. 1 2 8 110 0 1 0 8 2
3. 1 8 11 118 1 1 1 11 8

4. 2 0 1 120 0 1 0 1 0
5. 2 1 3 111 0 1 0 3 1
6. 2 3 8 108 0 1 0 8 3
7. 2 8 10 98 1 1 1 10 8

stbase — Form baseline dataset 55

. stbase, at(5) replace

failure _d: death
analysis time _t: time

id: id

data now cross-section at time 5

Variable description

id subject identifier
time0 first entry time

gap time on gap
time time at risk

death number of failures during interval time

Variable Obs Mean Std. Dev. Min Max

time0 2 0 0 0 0
gap 2 0 0 0 0

time 2 5 0 5 5
death 2 0 0 0 0

. list

id wgt death time time0 gap

1. 1 114 0 5 0 0
2. 2 120 0 5 0 0

thus producing a cross-section at analysis time 5.

Note that the value of time specified with the at() option must correspond to time in the analysis
scale, that is, t. See [ST] stset for a definition of analysis time.

Single-failure st data where all subjects enter at time 0

The result of stbase, at(5) would be one record per subject. Any subject who was censored
before time 5 would not appear in the data; the rest would. Those that failed after time 5 will be
recorded as having been censored at time 5 (failvar = 0); those that failed at time 5 or earlier will
have failvar = 1.

timevar will contain
for the failures:

time of failure if failed on or before time 5 or
5 if the subject has not failed yet

for the censored:
5 if the subject has not failed yet

With such data, you could perform

• logistic regression of failvar on any of the characteristics or

• incidence-rate analysis, summing the failures (perhaps within strata) and the time at risk, timevar.

With these data, you could examine 5-year survival probabilities.

56 stbase — Form baseline dataset

Single-failure st data where some subjects enter after time 0

The data produced by stbase, at(5) would be similar to the above, except

• persons who enter on or after time 5 would not be included in the data (because they have not
entered yet) and

• the time at risk, timevar, would properly account for the time at which each patient entered.

timevar (the time at risk) will contain

for the failures:
time of failure if failed on or before time 5 (or less because
or less the subject may not have entered at time 0); or
5 or less if the subject has not failed yet (or less

because the subject may not have entered at time 0)

for the censored:
5 or less if the subject has not failed yet (or less

because the subject may not have entered at time 0)

Depending on the analysis you are performing, you may have to discard those that enter late. This
is easy to do because t0 contains the first time of entry.

With these data, you could perform the following:

• Logistic regression of failvar on any of the characteristics, but only if you restricted the sample
to if t0 == 0 because those who entered after time 0 have a lesser risk of failing over the fixed
interval.

• Incidence-rate analysis, summing the failures (perhaps within stratum) and the time at risk,
timevar. Here you would have to do nothing differently from what you did in the previous
example. The time-at-risk variable already includes the time of entry for each patient.

Single-failure st data with gaps and perhaps delayed entry

These data will be similar to the delayed-entry, no-gap data, but gap will contain 0 only for those
observations that have no gap.

If analyzing these data, you could perform

• logistic regression, but the sample must be restricted to if t0 == 0 & gap == 0, or

• incidence-rate analysis, and nothing would need to be done differently; the time at risk, timevar,
accounts for late entry and gaps.

Multiple-failure st data

The multiple-failure case parallels the single-failure case, except that fail will not solely contain
0 and 1; it will contain 0, 1, 2, . . . , depending on the number of failures observed. Regardless of
late entry, gaps, etc., you could perform

• Poisson regression of fail, the number of events, but remember to specify exposure(timevar),
and

• incidence-rate analysis.

stbase — Form baseline dataset 57

Also see
[ST] stfill — Fill in by carrying forward values of covariates

[ST] stset — Declare data to be survival-time data

Title

stci — Confidence intervals for means and percentiles of survival time

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

stci computes means and percentiles of survival time, standard errors, and confidence intervals.
For multiple-event data, survival time is the time until a failure.

stci can be used with single- or multiple-record or single- or multiple-failure st data.

Quick start
Median survival time with standard error and 95% confidence interval using stset data

stci

Also report medians with standard errors and confidence intervals for each level of v1
stci, by(v1)

As above, but report 99% confidence intervals
stci, by(v1) level(99)

Report the 75th percentile of survival times instead of the medians
stci, by(v1) p(75)

Mean survival time, computed by exponentially extending curve to zero if last follow-up time is
censored

stci, emean

As above, and plot the extended survivor function
stci, emean graph

Menu
Statistics > Survival analysis > Summary statistics, tests, and tables > CIs for means and percentiles of survival
time

58

stci — Confidence intervals for means and percentiles of survival time 59

Syntax

stci
[

if
] [

in
] [

, options
]

options Description

Main

by(varlist) perform separate calculations for each group of varlist
median calculate median survival times; the default
rmean calculate mean survival time restricted to longest follow-up time
emean calculate the mean survival time by exponentially extending the survival

curve to zero
p(#) compute the # percentile of survival times
ccorr calculate the standard error for rmean using a continuity correction
noshow do not show st setting information
dd(#) set maximum number of decimal digits to report
level(#) set confidence level; default is level(95)

graph plot exponentially extended survivor function
tmax(#) set maximum analysis time of # to be plotted

Plot

cline options affect rendition of the plotted lines

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

You must stset your data before using stci; see [ST] stset.
by is allowed; see [D] by.

Options

� � �
Main �

by(varlist) specifies that separate calculations be made for each group identified by equal values of
the variables in varlist, resulting in separate summaries and an overall total. varlist may contain
any number of variables, each of which may be string or numeric.

median specifies median survival times. This is the default.

rmean and emean specify mean survival times. If the longest follow-up time is censored, emean
(extended mean) computes the mean survival by exponentially extending the survival curve to zero,
and rmean (restricted mean) computes the mean survival time restricted to the longest follow-up
time. If the longest follow-up time is a failure, the restricted mean survival time and the extended
mean survival time are equal.

p(#) specifies the percentile of survival time to be computed. For example, p(25) will compute the
25th percentile of survival times, and p(75) will compute the 75th percentile of survival times.
Specifying p(50) is the same as specifying the median option.

ccorr specifies that the standard error for the restricted mean survival time be computed using a
continuity correction. ccorr is valid only with the rmean option.

60 stci — Confidence intervals for means and percentiles of survival time

noshow prevents stci from showing the key st variables. This option is seldom used because most
people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

dd(#) specifies the maximum number of decimal digits to be reported for standard errors and
confidence intervals. This option affects only how values are reported and not how they are
calculated.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

graph specifies that the exponentially extended survivor function be plotted. This option is valid only
when the emean option is also specified and is not valid in conjunction with the by() option.

tmax(#) is for use with the graph option. It specifies the maximum analysis time to be plotted.

� � �
Plot �

cline options affect the rendition of the plotted lines; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Single-failure data
Multiple-failure data

stci — Confidence intervals for means and percentiles of survival time 61

Single-failure data

Here is an example of stci with single-record survival data:

. use http://www.stata-press.com/data/r14/page2

. stset, noshow

. stci

no. of
subjects 50% Std. Err. [95% Conf. Interval]

total 40 232 2.562933 213 239

. stci, by(group)

no. of
group subjects 50% Std. Err. [95% Conf. Interval]

1 19 216 7.661029 190 234
2 21 233 3.081611 232 280

total 40 232 2.562933 213 239

In the example above, we obtained the median survival time, by default.

To obtain the 25th or any other percentile of survival time, specify the p(#) option.

. stci, p(25)

no. of
subjects 25% Std. Err. [95% Conf. Interval]

total 40 198 10.76878 164 220

. stci, p(25) by(group)

no. of
group subjects 25% Std. Err. [95% Conf. Interval]

1 19 190 13.43601 143 213
2 21 232 19.42378 142 233

total 40 198 10.76878 164 220

The p-percentile of survival time is the analysis time at which p% of subjects have failed and 1− p%
have not. In the table above, 25% of subjects in group 1 failed by time 190, whereas 25% of subjects
in group 2 failed by time 232, indicating a better survival experience for this group.

62 stci — Confidence intervals for means and percentiles of survival time

We can verify the quantities reported by stci by plotting and examining the Kaplan–Meier survival
curves.

. sts graph, by(group)

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 100 200 300 400
analysis time

group = 1 group = 2

Kaplan−Meier survival estimates

The mean survival time reported by rmean is calculated as the area under the Kaplan–Meier
survivor function. If the observation with the largest analysis time is censored, the survivor function
does not go to zero. Consequently, the area under the curve underestimates the mean survival time.

In the graph above, the survival probability for group = 1 goes to 0 at analysis time 344, but
the survivor function for group = 2 never goes to 0. For these data, the mean survival time for
group = 1 will be properly estimated, but it will be underestimated for group = 2. When we specify
the rmean option, Stata informs us if any of the mean survival times is underestimated.

. stci, rmean by(group)

no. of restricted
group subjects mean Std. Err. [95% Conf. Interval]

1 19 218.7566 9.122424 200.877 236.636
2 21 241.8571(*) 11.34728 219.617 264.097

total 40 231.3522(*) 7.700819 216.259 246.446

(*) largest observed analysis time is censored, mean is underestimated

Stata flagged the mean for group = 2 and the overall mean as being underestimated.

If the largest observed analysis time is censored, stci’s emean option extends the survivor function
from the last observed time to zero by using an exponential function and computes the area under
the entire curve.

. stci, emean

no. of extended
subjects mean

total 40 234.2557

The resulting area must be evaluated with care because it is an ad hoc approximation that can at
times be misleading. We recommend that you plot and examine the extended survivor function. This
is facilitated by the use of stci’s graph option.

stci — Confidence intervals for means and percentiles of survival time 63

. stci, emean graph

0
.2

.4
.6

.8
1

S
u

rv
iv

a
l
p

ro
b

a
b

ili
ty

0 200 400 600 800
analysis time

Exponentially extended survivor function

stci also works with multiple-record survival data. Here is a summary of the multiple-record
Stanford heart transplant data introduced in [ST] stset:

. use http://www.stata-press.com/data/r14/stan3
(Heart transplant data)

. stset, noshow

. stci

no. of
subjects 50% Std. Err. [95% Conf. Interval]

total 103 100 38.64425 69 219

stci with the by() option may produce results with multiple-record data that you might think
are in error:

. stci, by(posttran)

no. of
posttran subjects 50% Std. Err. [95% Conf. Interval]

0 103 149 43.81077 69 340
1 69 96 58.71712 45 285

total 103 100 38.64425 69 219

For the number of subjects, 103 + 69 6= 103. The posttran variable is not constant for the subjects
in this dataset:

. stvary posttran

subjects for whom the variable is
never always sometimes

variable constant varying missing missing missing

posttran 34 69 103 0 0

64 stci — Confidence intervals for means and percentiles of survival time

In this dataset, subjects have one or two records. All subjects were eligible for heart transplantation.
They have one record if they die or are lost because of censoring before transplantation, and they
have two records if the operation was performed. Then the first record records their survival up to
transplantation, and the second records their subsequent survival. posttran is 0 in the first record
and 1 in the second.

Therefore, all 103 subjects have records with posttran = 0, and when stci reported results for
this group, it summarized the pretransplantation survival. The median survival time was 149 days.

The posttran = 1 line of stci’s output summarizes the posttransplantation survival: 69 patients
underwent transplantation, and the median survival time was 96 days. For these data, this is not 96
more days, but 96 days in total. That is, the clock was not reset on transplantation. Thus, without
attributing cause, we can describe the differences between the groups as an increased hazard of death
at early times followed by a decreased hazard later.

Multiple-failure data

If you simply type stci with multiple-failure data, the reported survival time is the survival time
to the first failure, assuming that the hazard function is not indexed by number of failures.

Here we have some multiple-failure data:

. use http://www.stata-press.com/data/r14/mfail2

. st
-> stset t, id(id) failure(d) time0(t0) exit(time .) noshow

id: id
failure event: d != 0 & d < .

obs. time interval: (t0, t]
exit on or before: time .

. stci

no. of
subjects 50% Std. Err. [95% Conf. Interval]

total 926 420 13.42537 394 451

To understand this output, let’s also obtain output for each failure separately:

. stgen nf = nfailures()

. stci, by(nf)

no. of
nf subjects 50% Std. Err. [95% Conf. Interval]

0 926 399 13.91796 381 430
1 529 503 28.53425 425 543
2 221 687 69.38412 549 817
3 58

total 926 420 13.42537 394 451

The stgen command added, for each subject, a variable containing the number of previous failures.
nf is 0 for a subject, up to and including the first failure. Then nf is 1 up to and including the
second failure, and then it is 2, and so on; see [ST] stgen.

The first line, corresponding to nf = 0, states that among those who had experienced no failures
yet, the median time to first failure is 399.

Similarly, the second line, corresponding to nf = 1, is for those who have already experienced
one failure. The median time of second failures is 503.

stci — Confidence intervals for means and percentiles of survival time 65

When we simply typed stci, we obtained the same information shown as the total line of the
more detailed output. The total survival time distribution is an estimate of the distribution of the time
to first failure, assuming that the hazard function, h(t), is the same across failures—that the second
failure is no different from the first failure. This is an odd definition of same because the clock, t,
is not reset in h(t) upon failure. The hazard of a failure—any failure—at time t is h(t).

Another definition of same would have it that the hazard of a failure is given by h(τ), where τ
is the time since the last failure—that the process resets itself. These definitions are different unless
h() is a constant function of t.

Let’s examine this multiple-failure data, assuming that the process repeats itself. The key variables
in this st data are id, t0, t, and d:

. st
-> stset t, id(id) failure(d) time0(t0) exit(time .) noshow

id: id
failure event: d != 0 & d < .

obs. time interval: (t0, t]
exit on or before: time .

Our goal, for each subject, is to reset t0 and t to 0 after every failure event. We must trick Stata, or
at least trick stset because it will not let us set data where the same subject has multiple records
summarizing the overlapping periods. The trick is create a new id variable that is different for every
id–nf combination (remember, nf is the variable we previously created that records the number of
prior failures). Then each of the “new” subjects can have their clock start at time 0:

. egen newid = group(id nf)

. sort newid t

. by newid: replace t = t - t0[1]
(808 real changes made)

. by newid: gen newt0 = t0 - t0[1]

. stset t, failure(d) id(newid) time0(newt0)

id: newid
failure event: d != 0 & d < .

obs. time interval: (newt0, t]
exit on or before: failure

1734 total observations
0 exclusions

1734 observations remaining, representing
1734 subjects
808 failures in single-failure-per-subject data

435444 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 797

stset no longer thinks that we have multiple-failure data. Whereas with id, subjects had multiple
failures, newid gives a unique identity to each id–nf combination. Each “new” subject has at most
one failure.

66 stci — Confidence intervals for means and percentiles of survival time

. stci, by(nf)

failure _d: d
analysis time _t: t

id: newid

no. of
nf subjects 50% Std. Err. [95% Conf. Interval]

0 926 399 13.91796 381 430
1 529 384 18.22987 359 431
2 221 444 29.80391 325 515
3 58

total 1734 404 10.29992 386 430

Compare this table with the one we previously obtained. The number of subjects is the same, but
the survival times differ because now we measure the times from one failure to the next, whereas
previously we measured the time from a fixed point. The time between events in these data appears
to be independent of event number.

Similarly, we can obtain the mean survival time for these data restricted to the longest follow-up
time:

. stci, rmean by(nf)

failure _d: d
analysis time _t: t

id: newid

no. of restricted
nf subjects mean Std. Err. [95% Conf. Interval]

0 926 399.1802 8.872794 381.79 416.571
1 529 397.0077(*) 13.36058 370.821 423.194
2 221 397.8051(*) 25.78559 347.266 448.344
3 58 471(*) 0 471 471

total 1734 404.7006 7.021657 390.938 418.463

(*) largest observed analysis time is censored, mean is underestimated

Stored results
stci stores the following in r():

Scalars
r(N sub) number of subjects r(se) standard error
r(p#) #th percentile r(lb) lower bound of CI
r(rmean) restricted mean r(ub) upper bound of CI
r(emean) extended mean

Methods and formulas
The percentiles of survival times are obtained from S(t), the Kaplan–Meier product-limit estimate

of the survivor function. The 25th percentile, for instance, is obtained as the minimum value of t such
that S(t) ≤ 0.75. The restricted mean is obtained as the area under the Kaplan–Meier product-limit
survivor curve. The extended mean is obtained by extending the Kaplan–Meier product-limit survivor
curve to zero by using an exponentially fitted curve and then computing the area under the entire
curve. If the longest follow-up time ends in failure, the Kaplan–Meier product-limit survivor curve
goes to zero, and the restricted mean and extended mean are identical.

stci — Confidence intervals for means and percentiles of survival time 67

The large-sample standard error for the pth percentile of the distribution is given by Collett (2003,
35) and Klein and Moeschberger (2003, 122) as√

V̂ar{Ŝ(tp)}

f̂(tp)

where V̂ar{Ŝ(tp)} is the Greenwood pointwise variance estimate for Ŝ(tp) and f̂(tp) is the estimated
density function at the pth percentile.

Confidence intervals, however, are not calculated based on this standard error. For a given confidence
level, the upper confidence limit for the pth percentile is defined as the first time at which the upper
confidence limit for S(t) (based on a ln{− lnS(t)} transformation) is less than or equal to 1−p/100,
and, similarly, the lower confidence limit is defined as the first time at which the lower confidence
limit of S(t) is less than or equal to 1− p/100.

The restricted mean is obtained as the area under the Kaplan–Meier product-limit survivor curve.
The extended mean is obtained by extending the Kaplan–Meier product-limit survivor curve to zero
by using an exponentially fitted curve and then computing the area under the entire curve. If the
longest follow-up time ends in failure, the Kaplan–Meier product-limit survivor curve goes to zero,
and the restricted mean and the extended mean are identical.

The standard error for the estimated restricted mean is computed as given by Klein and
Moeschberger (2003, 118) and Collett (2003, 340):

ŜE =

D∑
i=1

Âi

√
di

Ri(Ri − di)

where the sum is over all distinct failure times, Âi is the estimated area under the curve from time i
to the maximum follow-up time, Ri is the number of subjects at risk at time i, and di is the number
of failures at time i.

The 100(1− α)% confidence interval for the estimated restricted mean is computed as

Âi ± Z1−α/2ŜE

References
Collett, D. 2003. Modelling Survival Data in Medical Research. 2nd ed. London: Chapman & Hall/CRC.

Klein, J. P., and M. L. Moeschberger. 2003. Survival Analysis: Techniques for Censored and Truncated Data. 2nd
ed. New York: Springer.

Also see
[ST] stdescribe — Describe survival-time data

[ST] stir — Report incidence-rate comparison

[ST] stptime — Calculate person-time, incidence rates, and SMR

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[ST] stvary — Report variables that vary over time

Title

stcox — Cox proportional hazards model

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
stcox fits, via maximum likelihood, proportional hazards models on st data. stcox can be used

with single- or multiple-record or single- or multiple-failure st data.

Quick start
Cox proportional hazards model with covariates x1 and x2 using stset data

stcox x1 x2

As above, but using Efron method for tied failures
stcox x1 x2, efron

Different baseline hazards for strata defined by levels of svar
stcox x1 x2, strata(svar)

Adjust for complex survey design using svyset and stset data
svy: stcox x1 x2

Menu
Statistics > Survival analysis > Regression models > Cox proportional hazards model

68

stcox — Cox proportional hazards model 69

Syntax
stcox

[
varlist

] [
if
] [

in
] [

, options
]

options Description

Model

estimate fit model without covariates
strata(varnames) strata ID variables
shared(varname) shared-frailty ID variable
offset(varname) include varname in model with coefficient constrained to 1
breslow use Breslow method to handle tied failures; the default
efron use Efron method to handle tied failures
exactm use exact marginal-likelihood method to handle tied failures
exactp use exact partial-likelihood method to handle tied failures

Time varying

tvc(varlist) time-varying covariates
texp(exp) multiplier for time-varying covariates; default is texp(t)

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap,
or jackknife

noadjust do not use standard degree-of-freedom adjustment

Reporting

level(#) set confidence level; default is level(95)

nohr report coefficients, not hazard ratios
noshow do not show st setting information
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

You must stset your data before using stcox; see [ST] stset.
varlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, fp, jackknife, mfp, mi estimate, nestreg, statsby, stepwise, and svy are allowed; see

[U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
estimate, shared(), efron, exactm, exactp, tvc(), texp(), vce(), and noadjust are not allowed with the svy

prefix; see [SVY] svy.
fweights, iweights, and pweights may be specified using stset; see [ST] stset. Weights are not supported with

efron and exactp. Also weights may not be specified if you are using the bootstrap prefix with the stcox
command.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

70 stcox — Cox proportional hazards model

Options

� � �
Model �

estimate forces fitting of the null model. All Stata estimation commands redisplay results when
the command name is typed without arguments. So does stcox. What if you wish to fit a Cox
model on xjβ, where xjβ is defined as 0? Logic says that you would type stcox. There are no
explanatory variables, so there is nothing to type after the command. Unfortunately, this looks the
same as stcox typed without arguments, which is a request to redisplay results.

To fit the null model, type stcox, estimate.

strata(varnames) specifies up to five strata variables. Observations with equal values of the strata
variables are assumed to be in the same stratum. Stratified estimates (equal coefficients across
strata but with a baseline hazard unique to each stratum) are then obtained.

shared(varname) specifies that a Cox model with shared frailty be fit. Observations with equal
value of varname are assumed to have shared (the same) frailty. Across groups, the frailties are
assumed to be gamma-distributed latent random effects that affect the hazard multiplicatively, or,
equivalently, the logarithm of the frailty enters the linear predictor as a random offset. Think of a
shared-frailty model as a Cox model for panel data. varname is a variable in the data that identifies
the groups. shared() is not allowed in the presence of delayed entries or gaps.

Shared-frailty models are discussed more in Cox regression with shared frailty .

offset(varname); see [R] estimation options.

breslow, efron, exactm, and exactp specify the method for handling tied failures in the calculation
of the log partial likelihood (and residuals). breslow is the default. Each method is described in
Treatment of tied failure times. efron and the exact methods require substantially more computer
time than the default breslow option. exactm and exactp may not be specified with tvc(),
vce(robust), or vce(cluster clustvar).

� � �
Time varying �

tvc(varlist) specifies those variables that vary continuously with respect to time, that is, time-varying
covariates. This is a convenience option used to speed up calculations and to avoid having to
stsplit (see [ST] stsplit) the data over many failure times.

Most predictions are not available after estimation with tvc(). These predictions require that the
data be stsplit to generate the requested information; see help tvc note.

texp(exp) is used in conjunction with tvc(varlist) to specify the function of analysis time that should
be multiplied by the time-varying covariates. For example, specifying texp(ln(t)) would cause
the time-varying covariates to be multiplied by the logarithm of analysis time. If tvc(varlist)
is used without texp(exp), Stata understands that you mean texp(t) and thus multiplies the
time-varying covariates by the analysis time.

Both tvc(varlist) and texp(exp) are explained more in the section on Cox regression with
continuous time-varying covariates below.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

stcox — Cox proportional hazards model 71

noadjust is for use with vce(robust) or vce(cluster clustvar). noadjust prevents the estimated
variance matrix from being multiplied by N/(N − 1) or g/(g − 1), where g is the number of
clusters. The default adjustment is somewhat arbitrary because it is not always clear how to count
observations or clusters. In such cases, however, the adjustment is likely to be biased toward 1,
so we would still recommend making it.

� � �
Reporting �

level(#); see [R] estimation options.

nohr specifies that coefficients be displayed rather than exponentiated coefficients or hazard ratios.
This option affects only how results are displayed and not how they are estimated. nohr may be
specified at estimation time or when redisplaying previously estimated results (which you do by
typing stcox without a variable list).

noshow prevents stcox from showing the key st variables. This option is seldom used because most
people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, trace, tolerance(#), ltolerance(#),

nrtolerance(#), and nonrtolerance; see [R] maximize. These options are seldom used.

The following option is available with stcox but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Remarks are presented under the following headings:

Cox regression with uncensored data
Cox regression with censored data
Treatment of tied failure times
Cox regression with discrete time-varying covariates
Cox regression with continuous time-varying covariates
Robust estimate of variance
Cox regression with multiple-failure data
Stratified estimation
Cox regression as Poisson regression
Cox regression with shared frailty

What follows is a summary of what can be done with stcox. For a complete tutorial, see Cleves,
Gould, and Marchenko (2016), which devotes three chapters to this topic.

In the Cox proportional hazards model (Cox 1972), the hazard is assumed to be

h(t) = h0(t) exp(β1x1 + · · ·+ βkxk)

The Cox model provides estimates of β1, . . . , βk but provides no direct estimate of h0(t)—the
baseline hazard. Formally, the function h0(t) is not directly estimated, but it is possible to recover an
estimate of the cumulative hazard H0(t) and, from that, an estimate of the baseline survivor function
S0(t).

72 stcox — Cox proportional hazards model

stcox fits the Cox proportional hazards model; that is, it provides estimates of β and its variance–
covariance matrix. Estimates of H0(t), S0(t), and other predictions and diagnostics are obtained
with predict after stcox; see [ST] stcox postestimation. For information on fitting a Cox model
to survey data, see Cleves, Gould, and Marchenko (2016, sec. 9.5), and for information on handling
missing data, see Cleves, Gould, and Marchenko (2016, sec. 9.6).

stcox with the strata() option will produce stratified Cox regression estimates. In the stratified
estimator, the hazard at time t for a subject in group i is assumed to be

hi(t) = h0i(t) exp(β1x1 + · · ·+ βkxk)

That is, the coefficients are assumed to be the same, regardless of group, but the baseline hazard can
be group specific.

Regardless of whether you specify strata(), the default variance estimate is to calculate the
conventional, inverse matrix of negative second derivatives. The theoretical justification for this
estimator is based on likelihood theory. The vce(robust) option instead switches to the robust
measure developed by Lin and Wei (1989). This variance estimator is a variant of the estimator
discussed in [U] 20.21 Obtaining robust variance estimates.

stcox with the shared() option fits a Cox model with shared frailty. A frailty is a group-specific
latent random effect that multiplies into the hazard function. The distribution of the frailties is gamma
with mean 1 and variance to be estimated from the data. Shared-frailty models are used to model
within-group correlation. Observations within a group are correlated because they share the same
frailty.

We give examples below with uncensored, censored, time-varying, and recurring failure data, but
it does not matter in terms of what you type. Once you have stset your data, to fit a model you
type stcox followed by the names of the explanatory variables. You do this whether your dataset
has single or multiple records, includes censored observations or delayed entry, or even has single or
multiple failures. You use stset to describe the properties of the data, and then that information is
available to stcox—and all the other st commands—so that you do not have to specify it again.

Cox regression with uncensored data

Example 1

We wish to analyze an experiment testing the ability of emergency generators with a new-style
bearing to withstand overloads. For this experiment, the overload protection circuit was disabled, and
the generators were run overloaded until they burned up. Here are our data:

stcox — Cox proportional hazards model 73

. use http://www.stata-press.com/data/r14/kva
(Generator experiment)

. list

failtime load bearings

1. 100 15 0
2. 140 15 1
3. 97 20 0
4. 122 20 1
5. 84 25 0

6. 100 25 1
7. 54 30 0
8. 52 30 1
9. 40 35 0

10. 55 35 1

11. 22 40 0
12. 30 40 1

Twelve generators, half with the new-style bearings and half with the old, were allocated to this
destructive test. The first observation reflects an old-style generator (bearings = 0) under a 15-
kVA overload. It stopped functioning after 100 hours. The second generator had new-style bearings
(bearings = 1) and, under the same overload condition, lasted 140 hours. Paired experiments were
also performed under overloads of 20, 25, 30, 35, and 40 kVA.

We wish to fit a Cox proportional hazards model in which the failure rate depends on the amount
of overload and the style of the bearings. That is, we assume that bearings and load do not affect
the shape of the overall hazard function, but they do affect the relative risk of failure. To fit this
model, we type

. stset failtime
(output omitted)

. stcox load bearings

failure _d: 1 (meaning all fail)
analysis time _t: failtime

Iteration 0: log likelihood = -20.274897
Iteration 1: log likelihood = -10.515114
Iteration 2: log likelihood = -8.8700259
Iteration 3: log likelihood = -8.5915211
Iteration 4: log likelihood = -8.5778991
Iteration 5: log likelihood = -8.577853
Refining estimates:
Iteration 0: log likelihood = -8.577853

74 stcox — Cox proportional hazards model

Cox regression -- Breslow method for ties

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 23.39
Log likelihood = -8.577853 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

load 1.52647 .2188172 2.95 0.003 1.152576 2.021653
bearings .0636433 .0746609 -2.35 0.019 .0063855 .6343223

We find that after controlling for overload, the new-style bearings result in a lower hazard and therefore
a longer survivor time.

Once an stcox model has been fit, typing stcox without arguments redisplays the previous results.
Options that affect the display, such as nohr—which requests that coefficients rather than hazard
ratios be displayed—can be specified upon estimation or when results are redisplayed:

. stcox, nohr

Cox regression -- Breslow method for ties

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 23.39
Log likelihood = -8.577853 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

load .4229578 .1433485 2.95 0.003 .1419999 .7039157
bearings -2.754461 1.173115 -2.35 0.019 -5.053723 -.4551981

Technical note
stcox’s iteration log looks like a standard Stata iteration log up to where it says “Refining

estimates”. The Cox proportional-hazards likelihood function is indeed a difficult function, both
conceptually and numerically. Until Stata says “Refining estimates”, it maximizes the Cox likelihood
in the standard way by using double-precision arithmetic. Then just to be sure that the answers
are accurate, Stata switches to quad-precision routines (double double precision) and completes the
maximization procedure from its current location on the likelihood.

Cox regression with censored data

Example 2
We have data on 48 participants in a cancer drug trial. Of these 48, 28 receive treatment (drug = 1)

and 20 receive a placebo (drug = 0). The participants range in age from 47 to 67 years. We wish to
analyze time until death, measured in months. Our data include 1 observation for each patient. The
variable studytime records either the month of their death or the last month that they were known
to be alive. Some of the patients still live, so together with studytime is died, indicating their
health status. Persons known to have died—“noncensored” in the jargon—have died = 1, whereas
the patients who are still alive—“right-censored” in the jargon—have died = 0.

stcox — Cox proportional hazards model 75

Here is an overview of our data:

. use http://www.stata-press.com/data/r14/drugtr
(Patient Survival in Drug Trial)

. st
-> stset studytime, failure(died)

failure event: died != 0 & died < .
obs. time interval: (0, studytime]
exit on or before: failure

. summarize

Variable Obs Mean Std. Dev. Min Max

studytime 48 15.5 10.25629 1 39
died 48 .6458333 .4833211 0 1
drug 48 .5833333 .4982238 0 1
age 48 55.875 5.659205 47 67
_st 48 1 0 1 1

_d 48 .6458333 .4833211 0 1
_t 48 15.5 10.25629 1 39

_t0 48 0 0 0 0

We typed stset studytime, failure(died) previously; that is how st knew about this dataset.
To fit the Cox model, we type

. stcox drug age

failure _d: died
analysis time _t: studytime

Iteration 0: log likelihood = -99.911448
Iteration 1: log likelihood = -83.551879
Iteration 2: log likelihood = -83.324009
Iteration 3: log likelihood = -83.323546
Refining estimates:
Iteration 0: log likelihood = -83.323546

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

We find that the drug results in a lower hazard—and therefore a longer survivor time—controlling
for age. Older patients are more likely to die. The model as a whole is statistically significant.

The hazard ratios reported correspond to a one-unit change in the corresponding variable. It is
more typical to report relative risk for 5-year changes in age. To obtain such a hazard ratio, we create
a new age variable such that a one-unit change indicates a 5-year change:

76 stcox — Cox proportional hazards model

. replace age = age/5
variable age was byte now float
(48 real changes made)

. stcox drug age, nolog

failure _d: died
analysis time _t: studytime

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323544 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.764898 .3290196 3.05 0.002 1.224715 2.543338

Treatment of tied failure times
The proportional hazards model assumes that the hazard function is continuous and, thus, that there

are no tied survival times. Because of the way that time is recorded, however, tied events do occur
in survival data. In such cases, the partial likelihood must be modified. See Methods and formulas
for more details on the methods described below.

Stata provides four methods for handling tied failures in calculating the Cox partial likelihood
through the breslow, efron, exactm, and exactp options. If there are no ties in the data, the
results are identical, regardless of the method selected.

Cox regression is a series of comparisons of those subjects who fail to those subjects at risk of
failing; we refer to the latter set informally as a risk pool. When there are tied failure times, we must
decide how to calculate the risk pools for these tied observations. Assume that there are 2 observations
that fail in succession. In the calculation involving the second observation, the first observation is not
in the risk pool because failure has already occurred. If the two observations have the same failure
time, we must decide how to calculate the risk pool for the second observation and in which order
to calculate the two observations.

There are two views of time. In the first, time is continuous, so ties should not occur. If they have
occurred, the likelihood reflects the marginal probability that the tied-failure events occurred before
the nonfailure events in the risk pool (the order that they occurred is not important). This is called
the exact marginal likelihood (option exactm).

In the second view, time is discrete, so ties are expected. The likelihood is changed to reflect this
discreteness and calculates the conditional probability that the observed failures are those that fail in
the risk pool given the observed number of failures. This is called the exact partial likelihood (option
exactp).

Let’s assume that there are five subjects—e1, e2, e3, e4, and e5—in the risk pool and that subjects
e1 and e2 fail. Had we been able to observe the events at a better resolution, we might have seen that
e1 failed from risk pool e1 + e2 + e3 + e4 + e5 and then e2 failed from risk pool e2 + e3 + e4 + e5.
Alternatively, e2 might have failed first from risk pool e1 + e2 + e3 + e4 + e5, and then e1 failed
from risk pool e1 + e3 + e4 + e5.

stcox — Cox proportional hazards model 77

The Breslow method (option breslow) for handling tied values simply says that because we do
not know the order, we will use the largest risk pool for each tied failure event. This method assumes
that both e1 and e2 failed from risk pool e1 + e2 + e3 + e4 + e5. This approximation is fast and
is the default method for handling ties. If there are many ties in the dataset, this approximation will
not be accurate because the risk pools include too many observations. The Breslow method is an
approximation of the exact marginal likelihood.

The Efron method (option efron) for handling tied values assumes that the first risk pool is
e1 + e2 + e3 + e4 + e5 and the second risk pool is either e2 + e3 + e4 + e5 or e1 + e3 + e4 + e5.
From this, Efron noted that the e1 and e2 terms were in the second risk pool with probability 1/2
and so used for the second risk pool .5(e1 + e2) + e3 + e4 + e5. Efron’s approximation is a more
accurate approximation of the exact marginal likelihood than Breslow’s but takes longer to calculate.

The exact marginal method (option exactm) is a misnomer in that the calculation performed is
also an approximation of the exact marginal likelihood. It is an approximation because it evaluates
the likelihood (and derivatives) by using 15-point Gauss–Laguerre quadrature. For small-to-moderate
samples, this is slower than the Efron approximation, but the difference in execution time diminishes
when samples become larger. You may want to consider the quadrature when deciding to use this
method. If the number of tied deaths is large (on average), the quadrature approximation of the
function is not well behaved. A little empirical checking suggests that if the number of tied deaths
is larger (on average) than 30, the quadrature does not approximate the function well.

When we view time as discrete, the exact partial method (option exactp) is the final method
available. This approach is equivalent to computing conditional logistic regression where the groups
are defined by the risk sets and the outcome is given by the death variable. This is the slowest method
to use and can take a significant amount of time if the number of tied failures and the risk sets are
large.

Cox regression with discrete time-varying covariates

Example 3

In [ST] stset, we introduce the Stanford heart transplant data in which there are one or two records
per patient depending on whether they received a new heart.

This dataset (Crowley and Hu 1977) consists of 103 patients admitted to the Stanford Heart
Transplantation Program. Patients were admitted to the program after review by a committee and then
waited for an available donor heart. While waiting, some patients died or were transferred out of the
program, but 67% received a transplant. The dataset includes the year the patient was accepted into
the program along with the patient’s age, whether the patient had other heart surgery previously, and
whether the patient received a transplant.

In the data, posttran becomes 1 when a patient receives a new heart, so it is a time-varying
covariate. That does not, however, affect what we type to fit the model:

. use http://www.stata-press.com/data/r14/stan3, clear
(Heart transplant data)

. stset t1, failure(died) id(id)
(output omitted)

78 stcox — Cox proportional hazards model

. stcox age posttran surg year

failure _d: died
analysis time _t: t1

id: id

Iteration 0: log likelihood = -298.31514
Iteration 1: log likelihood = -289.7344
Iteration 2: log likelihood = -289.53498
Iteration 3: log likelihood = -289.53378
Iteration 4: log likelihood = -289.53378
Refining estimates:
Iteration 0: log likelihood = -289.53378

Cox regression -- Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31938.1

LR chi2(4) = 17.56
Log likelihood = -289.53378 Prob > chi2 = 0.0015

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.030224 .0143201 2.14 0.032 1.002536 1.058677
posttran .9787243 .3032597 -0.07 0.945 .5332291 1.796416
surgery .3738278 .163204 -2.25 0.024 .1588759 .8796

year .8873107 .059808 -1.77 0.076 .7775022 1.012628

We find that older patients have higher hazards, that patients tend to do better over time, and that
patients with prior surgery do better. Whether a patient ultimately receives a transplant does not seem
to make much difference.

Cox regression with continuous time-varying covariates

The basic proportional hazards regression assumes the relationship

h(t) = h0(t) exp(β1x1 + · · ·+ βkxk)

where h0(t) is the baseline hazard function. For most purposes, this model is sufficient, but sometimes
we may wish to introduce variables of the form zi(t) = zig(t), which vary continuously with time
so that

h(t) = h0(t) exp {β1x1 + · · ·+ βkxk + g(t)(γ1z1 + · · ·+ γmzm)} (1)

where z1, . . . , zm are the time-varying covariates and where estimation has the net effect of estimating,
say, a regression coefficient, γi, for a covariate, g(t)zi, which is a function of the current time.

Variables z1, . . . , zm are specified by using the tvc(varlist) option, and g(t) is specified by using
the texp(exp) option, where t in g(t) is analysis time. For example, if we want g(t) = log(t), we
would use texp(log(t)) because t stores the analysis time once the data are stset.

Because the calculations in Cox regression are based on evaluations of the partial log likelihood
at the times when failures occur, the above results could also be achieved by using stsplit to split
the data at the observed failure times and manually generating the time-varying covariates. tvc()
merely represents a more convenient way to accomplish this. However, for large datasets with many
distinct failure times, using stsplit may produce datasets that are too large to fit in memory, and
even if this were not so, the estimation would take far longer to complete. For these reasons, the
tvc() and texp() options described above were introduced.

stcox — Cox proportional hazards model 79

Example 4

Consider a dataset consisting of 45 observations on recovery time from walking pneumonia.
Recovery time (in days) is recorded in the variable time, and there are measurements on the
covariates age, drug1, and drug2, where drug1 and drug2 interact a choice of treatment with initial
dosage level. The study was terminated after 30 days, so those who had not recovered by that time
were censored (cured = 0).

. use http://www.stata-press.com/data/r14/drugtr2

. list age drug1 drug2 time cured in 1/12, separator(0)

age drug1 drug2 time cured

1. 36 0 50 20.6 1
2. 14 0 50 6.8 1
3. 43 0 125 8.6 1
4. 25 100 0 10 1
5. 50 100 0 30 0
6. 26 0 100 13.6 1
7. 21 150 0 5.4 1
8. 25 0 100 15.4 1
9. 32 125 0 8.6 1

10. 28 150 0 8.5 1
11. 34 0 100 30 0
12. 40 0 50 30 0

Patient 1 took 50 mg of drug number 2 and was cured after 20.6 days, whereas patient 5 took 100
mg of drug number 1 and had yet to recover when the study ended and so was censored at 30 days.

We run a standard Cox regression after stsetting the data:

. stset time, failure(cured)

failure event: cured != 0 & cured < .
obs. time interval: (0, time]
exit on or before: failure

45 total observations
0 exclusions

45 observations remaining, representing
36 failures in single-record/single-failure data

677.9 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 30

80 stcox — Cox proportional hazards model

. stcox age drug1 drug2

failure _d: cured
analysis time _t: time

Iteration 0: log likelihood = -116.54385
Iteration 1: log likelihood = -102.77311
Iteration 2: log likelihood = -101.92794
Iteration 3: log likelihood = -101.92504
Iteration 4: log likelihood = -101.92504
Refining estimates:
Iteration 0: log likelihood = -101.92504

Cox regression -- Breslow method for ties

No. of subjects = 45 Number of obs = 45
No. of failures = 36
Time at risk = 677.9000034

LR chi2(3) = 29.24
Log likelihood = -101.92504 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .8759449 .0253259 -4.58 0.000 .8276873 .9270162
drug1 1.008482 .0043249 1.97 0.049 1.000041 1.016994
drug2 1.00189 .0047971 0.39 0.693 .9925323 1.011337

The output includes p-values for the tests of the null hypotheses that each regression coefficient
is 0 or, equivalently, that each hazard ratio is 1. That all hazard ratios are apparently close to 1 is
a matter of scale; however, we can see that drug number 1 significantly increases the risk of being
cured and so is an effective drug, whereas drug number 2 is ineffective (given the presence of age
and drug number 1 in the model).

Suppose now that we wish to fit a model in which we account for the effect that as time goes
by, the actual level of the drug remaining in the body diminishes, say, at an exponential rate. If it is
known that the half-life of both drugs is close to 2 days, we can say that the actual concentration
level of the drug in the patient’s blood is proportional to the initial dosage times, exp(−0.35t), where
t is analysis time. We now fit a model that reflects this change.

. stcox age, tvc(drug1 drug2) texp(exp(-0.35*_t)) nolog

failure _d: cured
analysis time _t: time

Cox regression -- Breslow method for ties

No. of subjects = 45 Number of obs = 45
No. of failures = 36
Time at risk = 677.9000034

LR chi2(3) = 36.98
Log likelihood = -98.052763 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

main
age .8614636 .028558 -4.50 0.000 .8072706 .9192948

tvc
drug1 1.304744 .1135967 3.06 0.002 1.100059 1.547514
drug2 1.200613 .1113218 1.97 0.049 1.001103 1.439882

Note: Variables in tvc equation interacted with exp(-0.35*_t).

The first equation, rh, reports the results (hazard ratios) for the covariates that do not vary over
time; the second equation, t, reports the results for the time-varying covariates.

stcox — Cox proportional hazards model 81

As the level of drug in the blood system decreases, the drug’s effectiveness diminishes. Accounting
for this serves to unmask the effects of both drugs in that we now see increased effects on both. In
fact, the effect on recovery time of drug number 2 now becomes significant.

Technical note
The interpretation of hazard ratios requires careful consideration here. For the first model, the

hazard ratio for, say, drug1 is interpreted as the proportional change in hazard when the dosage level
of drug1 is increased by one unit. For the second model, the hazard ratio for drug1 is the proportional
change in hazard when the blood concentration level—that is, drug1*exp(−0.35t)—increases by 1.

Because the number of observations in our data is relatively small, for illustrative purposes we
can stsplit the data at each recovery time, manually generate the blood concentration levels, and
refit the second model.

. generate id=_n

. streset, id(id)
(output omitted)

. stsplit, at(failures)
(31 failure times)
(812 observations (episodes) created)

. generate drug1emt = drug1*exp(-0.35*_t)

. generate drug2emt = drug2*exp(-0.35*_t)

. stcox age drug1emt drug2emt

failure _d: cured
analysis time _t: time

id: id

Iteration 0: log likelihood = -116.54385
Iteration 1: log likelihood = -99.321912
Iteration 2: log likelihood = -98.07369
Iteration 3: log likelihood = -98.05277
Iteration 4: log likelihood = -98.052763
Refining estimates:
Iteration 0: log likelihood = -98.052763

Cox regression -- Breslow method for ties

No. of subjects = 45 Number of obs = 857
No. of failures = 36
Time at risk = 677.9000034

LR chi2(3) = 36.98
Log likelihood = -98.052763 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .8614636 .028558 -4.50 0.000 .8072706 .9192948
drug1emt 1.304744 .1135967 3.06 0.002 1.100059 1.547514
drug2emt 1.200613 .1113218 1.97 0.049 1.001103 1.439882

We get the same answer. However, this required more work both for Stata and for you.

Above we used tvc() and texp() to demonstrate fitting models with time-varying covariates, but
these options can also be used to fit models with time-varying coefficients. For simplicity, consider
a version of (1) that contains only one fixed covariate, x1, and sets z1 = x1:

h(t) = h0(t) exp {β1x1 + g(t)γ1x1}

82 stcox — Cox proportional hazards model

Rearranging terms results in

h(t) = h0(t) exp [{β1 + γ1g(t)}x1]

Given this new arrangement, we consider that β1 + γ1g(t) is a (possibly) time-varying coefficient
on the covariate x1, for some specified function of time g(t). The coefficient has a time-invariant
component, β1, with γ1 determining the magnitude of the time-dependent deviations from β1. As
such, a test of γ1 = 0 is a test of time invariance for the coefficient on x1.

Confirming that a coefficient is time invariant is one way of testing the proportional-hazards
assumption. Proportional hazards implies that the relative hazard (that is, β) is fixed over time, and
this assumption would be violated if a time interaction proved significant.

Example 5

Returning to our cancer drug trial, we now include a time interaction on age as a way of testing
the proportional-hazards assumption for that covariate:

. use http://www.stata-press.com/data/r14/drugtr, clear
(Patient Survival in Drug Trial)

. stcox drug age, tvc(age)

(output omitted)
Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(3) = 33.63
Log likelihood = -83.095036 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

main
drug .1059862 .0478178 -4.97 0.000 .0437737 .2566171
age 1.156977 .07018 2.40 0.016 1.027288 1.303037

tvc
age .9970966 .0042415 -0.68 0.494 .988818 1.005445

Note: Variables in tvc equation interacted with _t.

We used the default function of time, g(t) = t, although we could have specified otherwise with
the texp() option. The estimation results are presented in terms of hazard ratios, and so 0.9971 is
an estimate of exp(γage). Tests of hypotheses, however, are in terms of the original metric, and so
0.494 is the significance for the test of H0 : γage = 0 versus the two-sided alternative. With respect
to this specific form of misspecification, there is not much evidence to dispute the proportionality of
hazards when it comes to age.

stcox — Cox proportional hazards model 83

Robust estimate of variance
By default, stcox produces the conventional estimate for the variance–covariance matrix of the

coefficients (and hence the reported standard errors). If, however, you specify the vce(robust)
option, stcox switches to the robust variance estimator (Lin and Wei 1989).

The key to the robust calculation is using the efficient score residual for each subject in the data for
the variance calculation. Even in simple single-record, single-failure survival data, the same subjects
appear repeatedly in the risk pools, and the robust calculation needs to account for that.

Example 6

Refitting the Stanford heart transplant data model with robust standard errors, we obtain

. use http://www.stata-press.com/data/r14/stan3
(Heart transplant data)

. stset t1, failure(died) id(id)

id: id
failure event: died != 0 & died < .

obs. time interval: (t1[_n-1], t1]
exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

31938.1 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 1799

. stcox age posttran surg year, vce(robust)

failure _d: died
analysis time _t: t1

id: id

Iteration 0: log pseudolikelihood = -298.31514
Iteration 1: log pseudolikelihood = -289.7344
Iteration 2: log pseudolikelihood = -289.53498
Iteration 3: log pseudolikelihood = -289.53378
Iteration 4: log pseudolikelihood = -289.53378
Refining estimates:
Iteration 0: log pseudolikelihood = -289.53378

Cox regression -- Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31938.1

Wald chi2(4) = 19.68
Log pseudolikelihood = -289.53378 Prob > chi2 = 0.0006

(Std. Err. adjusted for 103 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.030224 .0148771 2.06 0.039 1.001474 1.059799
posttran .9787243 .2961736 -0.07 0.943 .5408498 1.771104
surgery .3738278 .1304912 -2.82 0.005 .1886013 .7409665

year .8873107 .0613176 -1.73 0.084 .7749139 1.01601

84 stcox — Cox proportional hazards model

Note the word Robust above Std. Err. in the table and the phrase “Std. Err. adjusted for 103
clusters in id” above the table.

The hazard ratio estimates are the same as before, but the standard errors are slightly different.

Technical note
In the previous example, stcox knew to specify vce(cluster id) for us when we specified

vce(robust).

To see the importance of vce(cluster id), consider simple single-record, single-failure survival
data, a piece of which is

t0 t died x
0 5 1 1
0 9 0 1
0 8 0 0

and then consider the absolutely equivalent multiple-record survival data:

id t0 t died x
1 0 3 0 1
1 3 5 1 1
2 0 6 0 1
2 6 9 0 1
3 0 3 0 0
3 3 8 0 0

Both datasets record the same underlying data, and so both should produce the same numerical results.
This should be true regardless of whether vce(robust) is specified.

In the second dataset, were we to ignore id, it would appear that there are 6 observations on 6
subjects. The key ingredients in the robust calculation are the efficient score residuals, and viewing
the data as 6 observations on 6 subjects produces different score residuals. Let’s call the 6 score
residuals s1, s2, . . . , s6 and the 3 score residuals that would be generated by the first dataset S1,
S2, and S3. S1 = s1 + s2, S2 = s3 + s4, and S3 = s5 + s6.

That residuals sum is the key to understanding the vce(cluster clustvar) option. When you
specify vce(cluster id), Stata makes the robust calculation based not on the overly detailed s1,
s2, . . . , s6 but on S1 + S2, S3 + S4, and S5 + S6. That is, Stata sums residuals within clusters
before entering them into subsequent calculations (where they are squared), so results estimated from
the second dataset are equal to those estimated from the first. In more complicated datasets with
time-varying regressors, delayed entry, and gaps, this action of summing within cluster, in effect,
treats the cluster (which is typically a subject) as a unified whole.

Because we had stset an id() variable, stcox knew to specify vce(cluster id) for us
when we specified vce(robust). You may, however, override the default clustering by specifying
vce(cluster clustvar) with a different variable from the one you used in stset, id(). This is
useful in analyzing multiple-failure data, where you need to stset a pseudo-ID establishing the time
from the last failure as the onset of risk.

stcox — Cox proportional hazards model 85

Cox regression with multiple-failure data

Example 7

In [ST] stsum, we introduce a multiple-failure dataset:

. use http://www.stata-press.com/data/r14/mfail

. stdescribe

per subject
Category total mean min median max

no. of subjects 926
no. of records 1734 1.87257 1 2 4

(first) entry time 0 0 0 0
(final) exit time 470.6857 1 477 960

subjects with gap 0
time on gap if gap 0
time at risk 435855 470.6857 1 477 960

failures 808 .8725702 0 1 3

This dataset contains two variables—x1 and x2—which we believe affect the hazard of failure.

If we simply want to analyze these multiple-failure data as if the baseline hazard remains unchanged
as events occur (that is, the hazard may change with time, but time is measured from 0 and is independent
of when the last failure occurred), we can type

. stcox x1 x2, vce(robust)

Iteration 0: log pseudolikelihood = -5034.9569
Iteration 1: log pseudolikelihood = -4978.4198
Iteration 2: log pseudolikelihood = -4978.1915
Iteration 3: log pseudolikelihood = -4978.1914
Refining estimates:
Iteration 0: log pseudolikelihood = -4978.1914

Cox regression -- Breslow method for ties

No. of subjects = 926 Number of obs = 1,734
No. of failures = 808
Time at risk = 435855

Wald chi2(2) = 152.13
Log pseudolikelihood = -4978.1914 Prob > chi2 = 0.0000

(Std. Err. adjusted for 926 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

x1 2.273456 .1868211 9.99 0.000 1.935259 2.670755
x2 .329011 .0523425 -6.99 0.000 .2408754 .4493951

We chose to fit this model with robust standard errors—we specified vce(robust)—but you can
estimate conventional standard errors if you wish.

In [ST] stsum, we discuss analyzing this dataset as the time since last failure. We wished to assume
that the hazard function remained unchanged with failure, except that one restarted the same hazard
function. To that end, we made the following changes to our data:

86 stcox — Cox proportional hazards model

. stgen nf = nfailures()

. egen newid = group(id nf)

. sort newid t

. by newid: replace t = t - t0[1]
(808 real changes made)

. by newid: gen newt0 = t0 - t0[1]

. stset t, id(newid) failure(d) time0(newt0) noshow

id: newid
failure event: d != 0 & d < .

obs. time interval: (newt0, t]
exit on or before: failure

1734 total observations
0 exclusions

1734 observations remaining, representing
1734 subjects
808 failures in single-failure-per-subject data

435444 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 797

That is, we took each subject and made many newid subjects out of each, with each subject entering
at time 0 (now meaning the time of the last failure). id still identifies a real subject, but Stata thinks
the identifier variable is newid because we stset, id(newid). If we were to fit a model with
vce(robust), we would get

. stcox x1 x2, vce(robust) nolog

Cox regression -- Breslow method for ties

No. of subjects = 1,734 Number of obs = 1,734
No. of failures = 808
Time at risk = 435444

Wald chi2(2) = 88.51
Log pseudolikelihood = -5062.5815 Prob > chi2 = 0.0000

(Std. Err. adjusted for 1,734 clusters in newid)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

x1 2.002547 .1936906 7.18 0.000 1.656733 2.420542
x2 .2946263 .0569167 -6.33 0.000 .2017595 .4302382

Note carefully the message concerning the clustering: standard errors have been adjusted for clustering
on newid. We, however, want the standard errors adjusted for clustering on id, so we must specify
the vce(cluster clustvar) option:

stcox — Cox proportional hazards model 87

. stcox x1 x2, vce(cluster id) nolog

Cox regression -- Breslow method for ties

No. of subjects = 1,734 Number of obs = 1,734
No. of failures = 808
Time at risk = 435444

Wald chi2(2) = 93.66
Log pseudolikelihood = -5062.5815 Prob > chi2 = 0.0000

(Std. Err. adjusted for 926 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

x1 2.002547 .1920151 7.24 0.000 1.659452 2.416576
x2 .2946263 .0544625 -6.61 0.000 .2050806 .4232709

That is, if you are using vce(robust), you must remember to specify vce(cluster clustvar) for
yourself when

1. you are analyzing multiple-failure data and

2. you have reset time to time since last failure, so what Stata considers the subjects are really
subsubjects.

Stratified estimation
When you type

. stcox xvars, strata(svars)

you are allowing the baseline hazard functions to differ for the groups identified by svars. This is
equivalent to fitting separate Cox proportional hazards models under the constraint that the coefficients
are equal but the baseline hazard functions are not.

Example 8

Say that in the Stanford heart experiment data, there was a change in treatment for all patients,
before and after transplant, in 1970 and then again in 1973. Further assume that the proportional-
hazards assumption is not reasonable for these changes in treatment—perhaps the changes result in
short-run benefit but little expected long-run benefit. Our interest in the data is not in the effect of these
treatment changes but in the effect of transplantation, for which we still find the proportional-hazards
assumption reasonable. We might fit our model to account for these fictional changes by typing

. use http://www.stata-press.com/data/r14/stan3, clear
(Heart transplant data)

. generate pgroup = year

. recode pgroup min/69=1 70/72=2 73/max=3
(pgroup: 172 changes made)

88 stcox — Cox proportional hazards model

. stcox age posttran surg year, strata(pgroup) nolog

failure _d: died
analysis time _t: t1

id: id

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31938.1

LR chi2(4) = 20.67
Log likelihood = -213.35033 Prob > chi2 = 0.0004

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.027406 .0150188 1.85 0.064 .9983874 1.057268
posttran 1.075476 .3354669 0.23 0.816 .583567 1.982034
surgery .2222415 .1218386 -2.74 0.006 .0758882 .6508429

year .5523966 .1132688 -2.89 0.004 .3695832 .825638

Stratified by pgroup

Of course, we could obtain the robust estimate of variance by also including the vce(robust) option.

Cox regression as Poisson regression

Example 9

In example 2, we fit the following Cox model to data from a cancer drug trial with 48 participants:

. use http://www.stata-press.com/data/r14/drugtr, clear
(Patient Survival in Drug Trial)

. summarize

Variable Obs Mean Std. Dev. Min Max

studytime 48 15.5 10.25629 1 39
died 48 .6458333 .4833211 0 1
drug 48 .5833333 .4982238 0 1
age 48 55.875 5.659205 47 67
_st 48 1 0 1 1

_d 48 .6458333 .4833211 0 1
_t 48 15.5 10.25629 1 39

_t0 48 0 0 0 0

. stcox drug age

(output omitted)
Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

stcox — Cox proportional hazards model 89

In what follows, we discuss baseline hazard functions. Thus for clarity, we first fit the same model
with an alternate age variable so that “baseline” reflects someone in the control group who is 50
years old and not a newborn; see Making baseline reasonable in [ST] stcox postestimation for more
details.

. generate age50 = age - 50

. stcox drug age50

(output omitted)
Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age50 1.120325 .0417711 3.05 0.002 1.041375 1.20526

Because stcox does not estimate a baseline hazard function, our model and hazard ratios remain
unchanged.

Among others, Royston and Lambert (2011, sec. 4.5) show that you can obtain identical hazard
ratios by fitting a Poisson model on the above data after splitting on all observed failure times.

Because these data have already been stset, variable t0 contains the beginning of the time
span (which, for these simple data, is time zero for everyone), variable t contains the end of the
time span, and variable d indicates failure (d == 1) or censoring (d == 0).

As we did in example 4, we can split these single-record observations at each observed failure
time, thus creating a dataset with multiple records per subject. To do so, we must first create an ID
variable that identifies each observation as a unique patient:

. generate id = _n

. streset, id(id)
-> stset studytime, id(id) failure(died)

id: id
failure event: died != 0 & died < .

obs. time interval: (studytime[_n-1], studytime]
exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
48 subjects
31 failures in single-failure-per-subject data

744 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 39

. stsplit, at(failures) riskset(interval)
(21 failure times)
(534 observations (episodes) created)

90 stcox — Cox proportional hazards model

The output shows that we have 21 unique failure times and that we created 534 new observations
for a total of 48 + 534 = 582 observations. Also created is the interval variable, which contains
a value of 1 for those records that span from time zero to the first failure time, 2 for those records
that span from the first failure time to the second failure time, all the way up to a value of 21 for
those records that span from the 20th failure time to the 21st failure time. To see this requires a little
bit of sorting and data manipulation:

. gsort _t -_d

. by _t: generate tolist = (_n==1) & _d

. list _t0 _t interval if tolist

_t0 _t interval

1. 0 1 1
49. 1 2 2
95. 2 3 3

140. 3 4 4
184. 4 5 5

226. 5 6 6
266. 6 7 7
303. 7 8 8
340. 8 10 9
371. 10 11 10

400. 11 12 11
426. 12 13 12
450. 13 15 13
473. 15 16 14
494. 16 17 15

517. 17 22 16
532. 22 23 17
545. 23 24 18
556. 24 25 19
566. 25 28 20

576. 28 33 21

Thus for example, interval 16 ranges from time 17 to time 22.

For this newly created multiple-record dataset, our Cox model fit will be identical because we have
not added any information to the data. If you do not believe us, feel free to now try the following
command:

. stcox drug age50

At this point, it would seem that making the dataset bigger is a needless waste of space, but what
it grants us is the ability to directly estimate the baseline hazard function in addition to the hazard
ratios we previously obtained. We accomplish this by using Poisson regression.

Poisson regression models event counts, and so we use our event counter for these data, the failure
indicator d, as the response variable. That d is only valued as zero or one should not bother
you—it is still a count variable. We need to treat time spanned as the amount of exposure a subject
had toward failing; the longer the interval, the greater the exposure. As such, we create a variable that
records the length of each time span and include it as an exposure() variable in our Poisson model.
We also include indicator variables for each of the 21 time intervals, with no base level assumed; we
use the ibn. factor-variable specification and the noconstant option:

stcox — Cox proportional hazards model 91

. generate time_exposed = _t - _t0

. poisson _d ibn.interval drug age50, exposure(time_exposed) noconstant irr

Iteration 0: log likelihood = -1239.0595
Iteration 1: log likelihood = -114.23986
Iteration 2: log likelihood = -100.13556
Iteration 3: log likelihood = -99.938857
Iteration 4: log likelihood = -99.937354
Iteration 5: log likelihood = -99.937354

Poisson regression Number of obs = 573
Wald chi2(23) = 224.18

Log likelihood = -99.937354 Prob > chi2 = 0.0000

_d IRR Std. Err. z P>|z| [95% Conf. Interval]

interval
1 .0360771 .0284092 -4.22 0.000 .0077081 .1688562
2 .0215286 .0225926 -3.66 0.000 .0027526 .1683778
3 .0228993 .0240269 -3.60 0.000 .0029289 .1790349
4 .0471539 .0366942 -3.92 0.000 .0102596 .2167234
5 .0596354 .045201 -3.72 0.000 .0134999 .2634375
6 .0749754 .0561057 -3.46 0.001 .017296 .3250055
7 .0396981 .0406826 -3.15 0.002 .0053267 .2958558
8 .1203377 .0744625 -3.42 0.001 .0357845 .4046762
9 .0276002 .0283969 -3.49 0.000 .003674 .207341

10 .1120012 .083727 -2.93 0.003 .0258763 .4847777
11 .1358135 .1024475 -2.65 0.008 .0309642 .5956972
12 .1007666 .1040271 -2.22 0.026 .0133221 .7621858
13 .0525547 .0540884 -2.86 0.004 .0069915 .395051
14 .1206462 .1250492 -2.04 0.041 .0158215 .919984
15 .1321868 .1357583 -1.97 0.049 .0176599 .9894363
16 .0670895 .0503478 -3.60 0.000 .0154122 .2920415
17 .5736017 .4415411 -0.72 0.470 .1268766 2.59322
18 .4636009 .5113227 -0.70 0.486 .0533731 4.026856
19 .5272168 .5810138 -0.58 0.561 .0608039 4.571377
20 .2074545 .2292209 -1.42 0.155 .023791 1.80898
21 .2101074 .2344194 -1.40 0.162 .0235909 1.871275

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age50 1.120325 .0417711 3.05 0.002 1.041375 1.20526

ln(time_e~d) 1 (exposure)

The incidence-rate ratios from poisson (obtained with the irr option) are identical to the hazard
ratios we previously obtained. Additionally, the incidence-rate ratio for each of the 21 intervals is an
estimate of the baseline hazard function for that time interval.

poisson gives us an estimated baseline hazard function (the hazard for someone aged 50 in the
control group) as a piecewise-constant function. If we had continued to use stcox, estimating the
baseline hazard function would have required that we apply a kernel smoother to the estimated baseline
contributions; see example 3 of [ST] stcox postestimation for details. In other words, estimating a
baseline hazard after stcox is not easy, and it requires choosing a kernel function and bandwidth.
As such, the title of this section is technically a misnomer; the models are not exactly the same,
only the “hazard ratios” are. Using poisson instead of stcox carries the added assumption that the
baseline hazard is constant between observed failures. Making this assumption buys you the ability
to directly estimate the baseline hazard.

92 stcox — Cox proportional hazards model

There also exists a duality between the Poisson model and the exponential model as fit by streg;
see [ST] streg. A defining property of the Poisson distribution is that waiting times between events
are distributed as exponential. Thus we can fit the same piecewise-constant hazard model with

. streg ibn.interval drug age50, dist(exponential) noconstant

which we invite you to try.

Of course, if you are willing to assume the hazard is piecewise constant, then perhaps you do not
need it to change over all 21 observed failure times, and thus perhaps you would want to collapse some
intervals. Better still, why not just use streg without the indicator variables for interval, assume
the baseline hazard is some smooth function, and reduce your 21 parameters to one or two estimated
shape parameters? The advantages to this fully parametric approach are that you get a parsimonious
model and smooth hazard functions that you can estimate at any time point. The disadvantage is that
you now carry the stringent assumption that your hazard follows the chosen functional form. If you
choose the wrong function, then your hazard ratios are, in essence, worthless.

The two extremes here are the model that makes no assumption about the baseline hazard (the
Cox model) and the model that makes the strongest assumptions about the baseline hazard (the fully
parametric model). Our piecewise-constant baseline hazard model represents a compromise between
Cox regression and fully parametric regression. If you are interested in other ways you can compromise
between Cox and parametric models, we recommend you read Royston and Lambert (2011), which
is entirely devoted to that topic. There you will find information on (among other things) Royston–
Parmar models (Royston and Parmar 2002; Lambert and Royston 2009), proportional-odds models,
scaled-probit models, the use of cubic splines and fractional polynomials, time-dependent effects, and
models for relative survival.

Cox regression with shared frailty

A shared-frailty model is the survival-data analog to regression models with random effects. A
frailty is a latent random effect that enters multiplicatively on the hazard function. In a Cox model,
the data are organized as i = 1, . . . , n groups with j = 1, . . . , ni observations in group i. For the
jth observation in the ith group, the hazard is

hij(t) = h0(t)αi exp(xijβ)

where αi is the group-level frailty. The frailties are unobservable positive quantities and are assumed
to have mean 1 and variance θ, to be estimated from the data. You can fit a Cox shared-frailty model
by specifying shared(varname), where varname defines the groups over which frailties are shared.
stcox, shared() treats the frailties as being gamma distributed, but this is mainly an issue of
computational convenience; see Methods and formulas. Theoretically, any distribution with positive
support, mean 1, and finite variance may be used to model frailty.

Shared-frailty models are used to model within-group correlation; observations within a group are
correlated because they share the same frailty. The estimate of θ is used to measure the degree of
within-group correlation, and the shared-frailty model reduces to standard Cox when θ = 0.

For νi = logαi, the hazard can also be expressed as

hij(t) = h0(t) exp(xijβ+ νi)

and thus the log frailties, νi, are analogous to random effects in standard linear models.

stcox — Cox proportional hazards model 93

Example 10

Consider the data from a study of 38 kidney dialysis patients, as described in McGilchrist and
Aisbett (1991). The study is concerned with the prevalence of infection at the catheter insertion point.
Two recurrence times (in days) are measured for each patient, and each recorded time is the time
from initial insertion (onset of risk) to infection or censoring:

. use http://www.stata-press.com/data/r14/catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. list patient time infect age female in 1/10

patient time infect age female

1. 1 16 1 28 0
2. 1 8 1 28 0
3. 2 13 0 48 1
4. 2 23 1 48 1
5. 3 22 1 32 0

6. 3 28 1 32 0
7. 4 318 1 31.5 1
8. 4 447 1 31.5 1
9. 5 30 1 10 0

10. 5 12 1 10 0

Each patient (patient) has two recurrence times (time) recorded, with each catheter insertion
resulting in either infection (infect==1) or right-censoring (infect==0). Among the covariates
measured are age and sex (female==1 if female, female==0 if male).

One subtlety to note concerns the use of the generic term subjects. In this example, the subjects
are taken to be the individual catheter insertions, not the patients themselves. This is a function of
how the data were recorded—the onset of risk occurs at catheter insertion (of which there are two
for each patient), and not, say, at the time of admission of the patient into the study. We therefore
have two subjects (insertions) within each group (patient).

It is reasonable to assume independence of patients but unreasonable to assume that recurrence
times within each patient are independent. One solution would be to fit a standard Cox model,
adjusting the standard errors of the estimated hazard ratios to account for the possible correlation by
specifying vce(cluster patient).

We could instead model the correlation by assuming that the correlation is the result of a latent
patient-level effect, or frailty. That is, rather than fitting a standard model and specifying vce(cluster
patient), we could fit a frailty model by specifying shared(patient):

94 stcox — Cox proportional hazards model

. stset time, fail(infect)
(output omitted)

. stcox age female, shared(patient)

failure _d: infect
analysis time _t: time

Fitting comparison Cox model:

Estimating frailty variance:

Iteration 0: log profile likelihood = -182.06713
Iteration 1: log profile likelihood = -181.9791
Iteration 2: log profile likelihood = -181.97453
Iteration 3: log profile likelihood = -181.97453

Fitting final Cox model:

Iteration 0: log likelihood = -199.05599
Iteration 1: log likelihood = -183.72296
Iteration 2: log likelihood = -181.99509
Iteration 3: log likelihood = -181.97455
Iteration 4: log likelihood = -181.97453
Refining estimates:
Iteration 0: log likelihood = -181.97453

Cox regression --
Breslow method for ties Number of obs = 76
Gamma shared frailty Number of groups = 38

Group variable: patient
Obs per group:

No. of subjects = 76 min = 2
No. of failures = 58 avg = 2
Time at risk = 7424 max = 2

Wald chi2(2) = 11.66
Log likelihood = -181.97453 Prob > chi2 = 0.0029

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.006202 .0120965 0.51 0.607 .9827701 1.030192
female .2068678 .095708 -3.41 0.001 .0835376 .5122756

theta .4754497 .2673107

LR test of theta=0: chibar2(01) = 6.27 Prob >= chibar2 = 0.006

Note: Standard errors of hazard ratios are conditional on theta.

From the output, we obtain θ̂ = 0.475, and given the standard error of θ̂ and likelihood-ratio test
of H0: θ = 0, we find a significant frailty effect, meaning that the correlation within patient cannot be
ignored. Contrast this with the analysis of the same data in [ST] streg, which considered both Weibull
and lognormal shared-frailty models. For Weibull, there was significant frailty; for lognormal, there
was not.

The estimated νi are not displayed in the coefficient table but may be retrieved postestimation by
using predict with the effects option; see [ST] stcox postestimation for an example.

In shared-frailty Cox models, the estimation consists of two steps. In the first step, the optimization
is in terms of θ only. For fixed θ, the second step consists of fitting a standard Cox model via penalized
log likelihood, with the νi introduced as estimable coefficients of dummy variables identifying the
groups. The penalty term in the penalized log likelihood is a function of θ; see Methods and formulas.
The final estimate of θ is taken to be the one that maximizes the penalized log likelihood. Once
the optimal θ is obtained, it is held fixed, and a final penalized Cox model is fit. As a result, the

stcox — Cox proportional hazards model 95

standard errors of the main regression parameters (or hazard ratios, if displayed as such) are treated
as conditional on θ fixed at its optimal value.

With gamma-distributed frailty, hazard ratios decay over time in favor of the frailty effect and
thus the displayed “Haz. Ratio” in the above output is actually the hazard ratio only for t = 0. The
degree of decay depends on θ. Should the estimated θ be close to 0, the hazard ratios do regain their
usual interpretation; see Gutierrez (2002) for details.

Technical note

The likelihood-ratio test of θ = 0 is a boundary test and thus requires careful consideration
concerning the calculation of its p-value. In particular, the null distribution of the likelihood-ratio test
statistic is not the usual χ2

1 but is rather a 50:50 mixture of a χ2
0 (point mass at zero) and a χ2

1,
denoted as χ2

01. See Gutierrez, Carter, and Drukker (2001) for more details.

Technical note
In [ST] streg, shared-frailty models are compared and contrasted with unshared frailty models.

Unshared-frailty models are used to model heterogeneity, and the frailties are integrated out of the
conditional survivor function to produce an unconditional survivor function, which serves as a basis
for all likelihood calculations.

Given the nature of Cox regression (the baseline hazard remains unspecified), there is no Cox
regression analog to the unshared parametric frailty model as fit using streg. That is not to say that
you cannot fit a shared-frailty model with 1 observation per group; you can as long as you do not
fit a null model.

Stored results
stcox stores the following in e():

Scalars
e(N) number of observations
e(N sub) number of subjects
e(N fail) number of failures
e(N g) number of groups
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(N clust) number of clusters
e(chi2) χ2

e(chi2 c) χ2, comparison model
e(risk) total time at risk
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(theta) frailty parameter
e(se theta) standard error of θ
e(p c) significance, comparison model
e(rank) rank of e(V)

96 stcox — Cox proportional hazards model

Macros
e(cmd) cox or stcox fr
e(cmd2) stcox
e(cmdline) command as typed
e(depvar) t
e(t0) t0
e(texp) function used for time-varying covariates
e(ties) method used for handling ties
e(strata) strata variables
e(shared) frailty grouping variable
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) requested estimation method
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the
e(V modelbased) model-based variance estimators

Functions
e(sample) marks estimation sample

Methods and formulas
The proportional hazards model with explanatory variables was first suggested by Cox (1972). For

an introductory explanation, see Hosmer, Lemeshow, and May (2008, chap. 3, 4, and 7), Kahn and
Sempos (1989, 193–198), and Selvin (2004, 412–442). For an introduction for the social scientist, see
Box-Steffensmeier and Jones (2004, chap. 4). For a comprehensive review of the methods in this entry,
see Klein and Moeschberger (2003). For a detailed development of these methods, see Kalbfleisch
and Prentice (2002). For more Stata-specific insight, see Cleves, Gould, and Marchenko (2016),
Dupont (2009), and Vittinghoff et al. (2012).

Let xi be the row vector of covariates for the time interval (t0i, ti] for the ith observation in the
dataset i = 1, . . . , N . stcox obtains parameter estimates, β̂, by maximizing the partial log-likelihood
function

logL =

D∑
j=1

[∑
i∈Dj

xiβ− dj log
{∑
k∈Rj

exp(xkβ)
}]

stcox — Cox proportional hazards model 97

where j indexes the ordered failure times t(j), j = 1, . . . , D; Dj is the set of dj observations that
fail at t(j); dj is the number of failures at t(j); and Rj is the set of observations k that are at risk
at time t(j) (that is, all k such that t0k < t(j) ≤ tk). This formula for logL is for unweighted data
and handles ties by using the Peto–Breslow approximation (Peto 1972; Breslow 1974), which is the
default method of handling ties in stcox.

If strata(varnames) is specified, then the partial log likelihood is the sum of each stratum-specific
partial log likelihood, obtained by forming the ordered failure times t(j), the failure sets Dj , and the
risk sets Rj , using only those observations within that stratum.

The variance of β̂ is estimated by the conventional inverse matrix of (negative) second derivatives
of logL, unless vce(robust) is specified, in which case the method of Lin and Wei (1989) is
used. That method treats efficient score residuals as analogs to the log-likelihood scores one would
find in fully parametric models; see Methods and formulas in [ST] stcox postestimation for how to
calculate efficient score residuals. If vce(cluster clustvar) is specified, the efficient score residuals
are summed within cluster before the sandwich (robust) estimator is applied.

Tied values are handled using one of four approaches. The log likelihoods corresponding to the
four approaches are given with weights (exactp and efron do not allow weights) and offsets by

logLbreslow =

D∑
j=1

∑
i∈Dj

wi(xiβ+ offseti)− wi log

∑
`∈Rj

w` exp(x`β+ offset`)




logLefron =

D∑
j=1

∑
i∈Dj

xiβ+ offseti − d−1
j

dj−1∑
k=0

log

∑
`∈Rj

exp(x`β+ offset`)− kAj




Aj = d−1
j

∑
`∈Dj

exp(x`β+ offset`)

logLexactm =

D∑
j=1

log

∫ ∞
0

∏
`∈Dj

{
1− exp

(
−e`
s
t
)}w`

exp(−t)dt

e` = exp(x`β+ offset`)

s =
∑
k∈Rj
k 6∈Dj

wk exp(xkβ+ offsetk) = sum of weighted nondeath risk scores

logLexactp =

D∑
j=1

∑
i∈Rj

δij(xiβ+ offseti)− log f(rj , dj)


f(r, d) = f(r − 1, d) + f(r − 1, d− 1) exp(xkβ+ offsetk)

k = rth observation in the set Rj

rj = cardinality of the set Rj

f(r, d) =
{

0 if r < d
1 if d = 0

where δij is an indicator for failure of observation i at time t(j).

98 stcox — Cox proportional hazards model

Calculations for the exact marginal log likelihood (and associated derivatives) are obtained with
15-point Gauss–Laguerre quadrature. The breslow and efron options both provide approximations
of the exact marginal log likelihood. The efron approximation is a better (closer) approximation,
but the breslow approximation is faster. The choice of the approximation to use in a given situation
should generally be driven by the proportion of ties in the data.

For shared-frailty models, the data are organized into G groups with the ith group consisting of
ni observations, i = 1, . . . , G. From Therneau and Grambsch (2000, 253–255), estimation of θ takes
place via maximum profile log likelihood. For fixed θ, estimates of β and ν1, . . . , νG are obtained
by maximizing

logL(θ) = logLCox(β, ν1, . . . , νG) +

G∑
i=1

[
1

θ
{νi − exp(νi)}+

(
1

θ
+Di

){
1− log

(
1

θ
+Di

)}
− log θ

θ
+ log Γ

(
1

θ
+Di

)
− log Γ

(
1

θ

)]

where Di is the number of death events in group i, and logLCox(β, ν1, . . . , νG) is the standard Cox
partial log likelihood, with the νi treated as the coefficients of indicator variables identifying the
groups. That is, the jth observation in the ith group has log relative hazard xijβ+ νi. The estimate
of the frailty parameter, θ̂, is chosen as that which maximizes logL(θ). The final estimates of β are
obtained by maximizing logL(θ̂) in β and the νi. The νi are not reported in the coefficient table but
are available via predict; see [ST] stcox postestimation. The estimated variance–covariance matrix
of β̂ is obtained as the appropriate submatrix of the variance matrix of (β̂, ν̂1, . . . , ν̂G), and that
matrix is obtained as the inverse of the negative Hessian of logL(θ̂). Therefore, standard errors and
inference based on β̂ should be treated as conditional on θ = θ̂.

The likelihood-ratio test statistic for testing H0: θ = 0 is calculated as minus twice the difference
between the log likelihood for a Cox model without shared frailty and logL(θ̂) evaluated at the final
(β̂, ν̂1, . . . , ν̂G).

� �
David Roxbee Cox (1924–) was born in Birmingham, England. He earned master’s and PhD
degrees in mathematics and statistics from the universities of Cambridge and Leeds, and he worked
at the Royal Aircraft Establishment, the Wool Industries Research Association, and the universities
of Cambridge, London (Birkbeck and Imperial Colleges), and Oxford. He was knighted in 1985.
Sir David has worked on a wide range of theoretical and applied statistical problems, with
outstanding contributions in areas such as experimental design, stochastic processes, binary data,
survival analysis, asymptotic techniques, and multivariate dependencies. In 2010, Sir David was
awarded the Copley Medal, the Royal Society’s highest honor.� �

Acknowledgment
We thank Peter Sasieni of the Wolfson Institute of Preventive Medicine, London, for his statistical

advice and guidance in implementing the robust variance estimator for this command.

stcox — Cox proportional hazards model 99

References
Andersson, T. M.-L., and P. C. Lambert. 2012. Fitting and modeling cure in population-based cancer studies within

the framework of flexible parametric survival models. Stata Journal 12: 623–638.

Box-Steffensmeier, J. M., and B. S. Jones. 2004. Event History Modeling: A Guide for Social Scientists. Cambridge:
Cambridge University Press.

Breslow, N. E. 1974. Covariance analysis of censored survival data. Biometrics 30: 89–99.

Cleves, M. A. 1999. ssa13: Analysis of multiple failure-time data with Stata. Stata Technical Bulletin 49: 30–39.
Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 338–349. College Station, TX: Stata Press.

Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3
ed. College Station, TX: Stata Press.

Cox, D. R. 1972. Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series
B 34: 187–220.

. 1975. Partial likelihood. Biometrika 62: 269–276.

Cox, D. R., and D. Oakes. 1984. Analysis of Survival Data. London: Chapman & Hall/CRC.

Cox, D. R., and E. J. Snell. 1968. A general definition of residuals (with discussion). Journal of the Royal Statistical
Society, Series B 30: 248–275.

Crowley, J., and M. Hu. 1977. Covariance analysis of heart transplant survival data. Journal of the American Statistical
Association 72: 27–36.

Cui, J. 2005. Buckley–James method for analyzing censored data, with an application to a cardiovascular disease and
an HIV/AIDS study. Stata Journal 5: 517–526.

Dupont, W. D. 2009. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the Analysis of
Complex Data. 2nd ed. Cambridge: Cambridge University Press.

Fleming, T. R., and D. P. Harrington. 1991. Counting Processes and Survival Analysis. New York: Wiley.

Gutierrez, R. G. 2002. Parametric frailty and shared frailty survival models. Stata Journal 2: 22–44.

Gutierrez, R. G., S. L. Carter, and D. M. Drukker. 2001. sg160: On boundary-value likelihood-ratio tests. Stata
Technical Bulletin 60: 15–18. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 269–273. College Station,
TX: Stata Press.

Hills, M., and B. L. De Stavola. 2012. A Short Introduction to Stata for Biostatistics: Updated to Stata 12. London:
Timberlake.

Hinchliffe, S. R., D. A. Scott, and P. C. Lambert. 2013. Flexible parametric illness-death models. Stata Journal 13:
759–775.

Hosmer, D. W., Jr., S. A. Lemeshow, and S. May. 2008. Applied Survival Analysis: Regression Modeling of Time
to Event Data. 2nd ed. New York: Wiley.

Jenkins, S. P. 1997. sbe17: Discrete time proportional hazards regression. Stata Technical Bulletin 39: 22–32. Reprinted
in Stata Technical Bulletin Reprints, vol. 7, pp. 109–121. College Station, TX: Stata Press.

Kahn, H. A., and C. T. Sempos. 1989. Statistical Methods in Epidemiology. New York: Oxford University Press.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

Klein, J. P., and M. L. Moeschberger. 2003. Survival Analysis: Techniques for Censored and Truncated Data. 2nd
ed. New York: Springer.

Lambert, P. C., and P. Royston. 2009. Further development of flexible parametric models for survival analysis. Stata
Journal 9: 265–290.

Lin, D. Y., and L. J. Wei. 1989. The robust inference for the Cox proportional hazards model. Journal of the American
Statistical Association 84: 1074–1078.

McGilchrist, C. A., and C. W. Aisbett. 1991. Regression with frailty in survival analysis. Biometrics 47: 461–466.

Newman, S. C. 2001. Biostatistical Methods in Epidemiology. New York: Wiley.

Overgaard, M., P. K. Andersen, and E. T. Parner. 2015. Regression analysis of censored data using pseudo-observations:
An update. Stata Journal 15: 809–821.

Parner, E. T., and P. K. Andersen. 2010. Regression analysis of censored data using pseudo-observations. Stata Journal
10: 408–422.

http://www.stata-journal.com/article.html?article=st0165_1
http://www.stata-journal.com/article.html?article=st0165_1
http://www.stata.com/bookstore/ehm.html
http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata-press.com/books/survival-analysis-stata-introduction/
http://www.stata-journal.com/sjpdf.html?articlenum=st0093
http://www.stata-journal.com/sjpdf.html?articlenum=st0093
http://www.stata.com/bookstore/smbr.html
http://www.stata.com/bookstore/smbr.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0006
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata-journal.com/article.html?article=st0316
http://www.stata.com/bookstore/asa.html
http://www.stata.com/bookstore/asa.html
http://www.stata.com/products/stb/journals/stb39.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=st0165
http://www.stata-journal.com/article.html?article=st0202_1
http://www.stata-journal.com/article.html?article=st0202_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0202

100 stcox — Cox proportional hazards model

Peto, R. 1972. Contribution to the discussion of paper by D. R. Cox. Journal of the Royal Statistical Society, Series
B 34: 205–207.

Reid, N. M. 1994. A conversation with Sir David Cox. Statistical Science 9: 439–455.

Royston, P. 2001. Flexible parametric alternatives to the Cox model, and more. Stata Journal 1: 1–28.

. 2006. Explained variation for survival models. Stata Journal 6: 83–96.

. 2007. Profile likelihood for estimation and confidence intervals. Stata Journal 7: 376–387.

. 2014. Tools for checking calibration of a Cox model in external validation: Approach based on individual event
probabilities. Stata Journal 14: 738–755.

. 2015. Tools for checking calibration of a Cox model in external validation: Prediction of population-averaged
survival curves based on risk groups. Stata Journal 15: 275–291.

Royston, P., and P. C. Lambert. 2011. Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model.
College Station, TX: Stata Press.

Royston, P., and M. K. B. Parmar. 2002. Flexible parametric proportional-hazards and proportional-odds models for
censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in
Medicine 21: 2175–2197.

Schoenfeld, D. A. 1982. Partial residuals for the proportional hazards regression model. Biometrika 69: 239–241.

Selvin, S. 2004. Statistical Analysis of Epidemiologic Data. 3rd ed. New York: Oxford University Press.

Sterne, J. A. C., and K. Tilling. 2002. G-estimation of causal effects, allowing for time-varying confounding. Stata
Journal 2: 164–182.

Suárez, E. L., C. M. Pérez, G. M. Nogueras, and C. Moreno-Gorrin. 2016. Biostatistics in Public Health Using Stata.
Boca Raton, FL: Taylor & Francis.

Therneau, T. M., and P. M. Grambsch. 2000. Modeling Survival Data: Extending the Cox Model. New York: Springer.

Vittinghoff, E., D. V. Glidden, S. C. Shiboski, and C. E. McCulloch. 2012. Regression Methods in Biostatistics:
Linear, Logistic, Survival, and Repeated Measures Models. 2nd ed. New York: Springer.

Xu, Y., and Y. B. Cheung. 2015. Frailty models and frailty-mixture models for recurrent event times. Stata Journal
15: 135–154.

Also see
[ST] stcox postestimation — Postestimation tools for stcox

[ST] stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[ST] stcox PH-assumption tests — Tests of proportional-hazards assumption

[ST] stcrreg — Competing-risks regression

[ST] streg — Parametric survival models

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[MI] estimation — Estimation commands for use with mi estimate

[PSS] power cox — Power analysis for the Cox proportional hazards model

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands

http://www.stata-journal.com/sjpdf.html?articlenum=st0001
http://www.stata-journal.com/sjpdf.html?articlenum=st0098
http://www.stata-journal.com/sjpdf.html?articlenum=st0132
http://www.stata-journal.com/article.html?article=st0357
http://www.stata-journal.com/article.html?article=st0357
http://www.stata-journal.com/article.html?article=st0380
http://www.stata-journal.com/article.html?article=st0380
http://www.stata-press.com/books/fpsaus.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0014
http://www.stata.com/bookstore/biostatistics-in-public-health-using-stata/
http://www.stata.com/bookstore/rmib.html
http://www.stata.com/bookstore/rmib.html
http://www.stata-journal.com/article.html?article=st0374

Title

stcox PH-assumption tests — Tests of proportional-hazards assumption

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
stphplot plots −ln{−ln(survival)} curves for each category of a nominal or ordinal covariate

versus ln(analysis time). These are often referred to as “log-log” plots. Optionally, these estimates
can be adjusted for covariates. The proportional-hazards assumption is not violated when the curves
are parallel.

stcoxkm plots Kaplan–Meier observed survival curves and compares them with the Cox predicted
curves for the same variable. The closer the observed values are to the predicted, the less likely it
is that the proportional-hazards assumption has been violated. Do not run stcox before running this
command; stcoxkm will execute stcox itself to fit the model and obtain predicted values.

estat phtest tests the proportional-hazards assumption on the basis of Schoenfeld residuals after
fitting a model with stcox.

Quick start
Log-log plot of survival

Check for parallel lines in plot of −ln{−ln(survival)} versus ln(analysis time) for each category of
covariate a using stset data

stphplot, by(a)

As above, but adjust for average values of covariates x1 and x2

stphplot, by(a) adjust(x1 x2)

Adjust for x1 = 0 and x2 = 0
stphplot, by(a) adjust(x1 x2) zero

Kaplan–Meier and predicted survival plot

Compare Kaplan–Meier survival curve with predicted survival from Cox model for each category of
covariate a using stset data

stcoxkm, by(a)

As above, but create separate plots for each level of a
stcoxklm, by(a) separate

Test using Schoenfeld residuals

Test the proportional-hazards assumption after stcox x1 x2 x3

estat phtest

As above, and report separate test for each covariate
estat phtest, detail

101

102 stcox PH-assumption tests — Tests of proportional-hazards assumption

Menu
stphplot

Statistics > Survival analysis > Regression models > Graphically assess proportional-hazards assumption

stcoxkm

Statistics > Survival analysis > Regression models > Kaplan-Meier versus predicted survival

estat phtest

Statistics > Survival analysis > Regression models > Test proportional-hazards assumption

Syntax

Check proportional-hazards assumption:

Log-log plot of survival

stphplot
[

if
]
,
{
by(varname) | strata(varname)

} [
stphplot options

]
Kaplan–Meier and predicted survival plot

stcoxkm
[

if
]
, by(varname)

[
stcoxkm options

]
Using Schoenfeld residuals

estat phtest
[
, phtest options

]
stphplot options Description

Main
∗by(varname) fit separate Cox models; the default
∗strata(varname) fit stratified Cox model
adjust(varlist) adjust to average values of varlist
zero adjust to zero values of varlist; use with adjust()

Options

nonegative plot ln{−ln(survival)}
nolntime plot curves against analysis time
noshow do not show st setting information

Plot

plot#opts(stphplot plot options) affect rendition of the #th connected line and #th plotted points

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

∗Either by(varname) or strata(varname) is required with stphplot.

stcox PH-assumption tests — Tests of proportional-hazards assumption 103

stphplot plot options Description

cline options change look of lines or connecting method
marker options change look of markers (color, size, etc.)

stcoxkm options Description

Main
∗by(varname) report the nominal or ordinal covariate
ties(breslow) use Breslow method to handle tied failures
ties(efron) use Efron method to handle tied failures
ties(exactm) use exact marginal-likelihood method to handle tied failures
ties(exactp) use exact partial-likelihood method to handle tied failures
separate draw separate plot for predicted and observed curves
noshow do not show st setting information

Observed plot

obsopts(stcoxkm plot options) affect rendition of the observed curve
obs#opts(stcoxkm plot options) affect rendition of the #th observed curve; not allowed

with separate

Predicted plot

predopts(stcoxkm plot options) affect rendition of the predicted curve
pred#opts(stcoxkm plot options) affect rendition of the #th predicted curve; not allowed

with separate

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

byopts(byopts) how subgraphs are combined, labeled, etc.

∗ by(varname) is required with stcoxkm.

stcoxkm plot options Description

connect options change look of connecting method
marker options change look of markers (color, size, etc.)

You must stset your data before using stphplot and stcoxkm; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

104 stcox PH-assumption tests — Tests of proportional-hazards assumption

phtest options Description

Main

log use natural logarithm time-scaling function
km use 1− KM product-limit estimate as the time-scaling function
rank use rank of analysis time as the time-scaling function
time(varname) use varname containing a monotone transformation of analysis time

as the time-scaling function
plot(varname) plot smoothed, scaled Schoenfeld residuals versus time
bwidth(#) use bandwidth of #; default is bwidth(0.8)

detail test proportional-hazards assumption separately for each covariate

Scatterplot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Smoothed line

lineopts(cline options) affect rendition of the smoothed line

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

estat phtest is not appropriate after estimation with svy.

Options
Options are presented under the following headings:

Options for stphplot
Options for stcoxkm
Options for estat phtest

Options for stphplot

� � �
Main �

by(varname) specifies the nominal or ordinal covariate. Either by() or strata() is required with
stphplot.

strata(varname) is an alternative to by(). Rather than fitting separate Cox models for each value
of varname, strata() fits one stratified Cox model. You must also specify adjust(varlist) with
the strata(varname) option; see [ST] sts graph.

adjust(varlist) adjusts the estimates to that for the average values of the varlist specified. The esti-
mates can also be adjusted to zero values of varlist by specifying the zero option. adjust(varlist)
can be specified with by(); it is required with strata(varname).

zero is used with adjust() to specify that the estimates be adjusted to the 0 values of the varlist
rather than to average values.

� � �
Options �

nonegative specifies that ln{−ln(survival)} be plotted instead of −ln{−ln(survival)}.

stcox PH-assumption tests — Tests of proportional-hazards assumption 105

nolntime specifies that curves be plotted against analysis time instead of against ln(analysis time).

noshow prevents stphplot from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

� � �
Plot �

plot#opts(stphplot plot options) affects the rendition of the #th connected line and #th plotted
points; see [G-3] cline options and [G-3] marker options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Options for stcoxkm

� � �
Main �

by(varname) specifies the nominal or ordinal covariate. by() is required.

ties(breslow | efron | exactm | exactp) specifies one of the methods available to stcox for
handling tied failures. If none is specified, ties(breslow) is assumed; see [ST] stcox.

separate produces separate plots of predicted and observed values for each value of the variable
specified with by().

noshow prevents stcoxkm from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

� � �
Observed plot �

obsopts(stcoxkm plot options) affects the rendition of the observed curve; see [G-3] connect options
and [G-3] marker options.

obs#opts(stcoxkm plot options) affects the rendition of the #th observed curve; see [G-3] con-
nect options and [G-3] marker options. This option is not allowed with separate.

� � �
Predicted plot �

predopts(stcoxkm connect options) affects the rendition of the predicted curve; see [G-3] con-
nect options and [G-3] marker options.

pred#opts(stcoxkm connect options) affects the rendition of the #th predicted curve; see [G-3] con-
nect options and [G-3] marker options. This option is not allowed with separate.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

106 stcox PH-assumption tests — Tests of proportional-hazards assumption

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

byopts(byopts) affects the appearance of the combined graph when by() and separate are specified,
including the overall graph title and the organization of subgraphs. See [G-3] by option.

Options for estat phtest

� � �
Main �

log, km, rank, and time() are used to specify the time scaling function.

By default, estat phtest performs the tests using the identity function, that is, analysis time
itself.

log specifies that the natural log of analysis time be used.

km specifies that 1 minus the Kaplan–Meier product-limit estimate be used.

rank specifies that the rank of analysis time be used.

time(varname) specifies a variable containing an arbitrary monotonic transformation of analysis
time. You must ensure that varname is a monotonic transform.

plot(varname) specifies that a scatterplot and smoothed plot of scaled Schoenfeld residuals versus
time be produced for the covariate specified by varname. By default, the smoothing is performed
using the running-mean method implemented in lowess, mean noweight; see [R] lowess.

bwidth(#) specifies the bandwidth. Centered subsets of bwidth() ×N observations are used for
calculating smoothed values for each point in the data except for endpoints, where smaller,
uncentered subsets are used. The greater the bwidth(), the greater the smoothing. The default is
bwidth(0.8).

detail specifies that a separate test of the proportional-hazards assumption be produced for each
covariate in the Cox model. By default, estat phtest produces only the global test.

� � �
Scatterplot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Smoothed line �

lineopts(cline options) affects the rendition of the smoothed line; see [G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

stcox PH-assumption tests — Tests of proportional-hazards assumption 107

Remarks and examples
Cox proportional hazards models assume that the hazard ratio is constant over time. Suppose that

a group of cancer patients on an experimental treatment is monitored for 10 years. If the hazard
of dying for the nontreated group is twice the rate as that of the treated group (HR = 2.0), the
proportional-hazards assumption implies that this ratio is the same at 1 year, at 2 years, or at any point
on the time scale. Because the Cox model, by definition, is constrained to follow this assumption,
it is important to evaluate its validity. If the assumption fails, alternative modeling choices would
be more appropriate (for example, a stratified Cox model, time-varying covariates). For examples of
testing the proportional-hazards assumption using Stata, see Allison (2014).

stphplot and stcoxkm provide graphical methods for assessing violations of the proportional-
hazards assumption. Although using graphs to assess the validity of the assumption is subjective, it
can be a helpful tool.

stphplot plots −ln{−ln(survival)} curves for each category of a nominal or ordinal covariate
versus ln(analysis time). These are often referred to as “log–log” plots. Optionally, these estimates
can be adjusted for covariates. If the plotted lines are reasonably parallel, the proportional-hazards
assumption has not been violated, and it would be appropriate to base the estimate for that variable
on one baseline survivor function.

Another graphical method of evaluating the proportional-hazards assumption, though less common,
is to plot the Kaplan–Meier observed survival curves and compare them with the Cox predicted curves
for the same variable. This plot is produced with stcoxkm. When the predicted and observed curves
are close together, the proportional-hazards assumption has not been violated. See Garrett (1997) for
more details.

Many popular tests for proportional hazards are, in fact, tests of nonzero slope in a generalized
linear regression of the scaled Schoenfeld residuals on time (see Grambsch and Therneau [1994]).
The estat phtest command tests, for individual covariates and globally, the null hypothesis of
zero slope, which is equivalent to testing that the log hazard-ratio function is constant over time.
Thus rejection of the null hypothesis of a zero slope indicates deviation from the proportional-hazards
assumption. The estat phtest command allows three common time-scaling options (log, km, and
rank) and also allows you to specify a user-defined function of time through the time() option.
When no option is specified, the tests are performed using analysis time without further transformation.

Example 1

These examples use data from a leukemia remission study (Garrett 1997). The data consist of 42
patients who are monitored over time to see how long (weeks) it takes them to go out of remission
(relapse: 1 = yes, 0 = no). Half the patients receive a new experimental drug, and the other
half receive a standard drug (treatment1: 1 = drug A, 0 = standard). White blood cell count, a
strong indicator of the presence of leukemia, is divided into three categories (wbc3cat: 1 = normal,
2 = moderate, 3 = high).

108 stcox PH-assumption tests — Tests of proportional-hazards assumption

. use http://www.stata-press.com/data/r14/leukemia
(Leukemia Remission Study)

. describe

Contains data from http://www.stata-press.com/data/r14/leukemia.dta
obs: 42 Leukemia Remission Study

vars: 8 23 Mar 2014 10:39
size: 336

storage display value
variable name type format label variable label

weeks byte %8.0g Weeks in Remission
relapse byte %8.0g yesno Relapse
treatment1 byte %8.0g trt1lbl Treatment I
treatment2 byte %8.0g trt2lbl Treatment II
wbc3cat byte %9.0g wbclbl White Blood Cell Count
wbc1 byte %8.0g wbc3cat==Normal
wbc2 byte %8.0g wbc3cat==Moderate
wbc3 byte %8.0g wbc3cat==High

Sorted by: weeks

. stset weeks, failure(relapse)

failure event: relapse != 0 & relapse < .
obs. time interval: (0, weeks]
exit on or before: failure

42 total observations
0 exclusions

42 observations remaining, representing
30 failures in single-record/single-failure data

541 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 35

In this example, we examine whether the proportional-hazards assumption holds for drug A versus
the standard drug (treatment1). First, we will use stphplot, followed by stcoxkm.

stcox PH-assumption tests — Tests of proportional-hazards assumption 109

. stphplot, by(treatment1)

failure _d: relapse
analysis time _t: weeks

−
1

0
1

2
3

−
ln

[−
ln

(S
u

rv
iv

a
l
P

ro
b

a
b

ili
ty

)]

0 1 2 3 4
ln(analysis time)

treatment1 = Standard treatment1 = Drug A

Figure 1.

. stcoxkm, by(treatment1) legend(cols(1))

failure _d: relapse
analysis time _t: weeks

0
.0

0
0

.2
0

0
.4

0
0

.6
0

0
.8

0
1

.0
0

S
u

rv
iv

a
l
P

ro
b

a
b

ili
ty

0 10 20 30 40
analysis time

Observed: treatment1 = Standard

Observed: treatment1 = Drug A

Predicted: treatment1 = Standard

Predicted: treatment1 = Drug A

Figure 2.

Figure 1 (stphplot) displays lines that are parallel, implying that the proportional-hazards
assumption for treatment1 has not been violated. This is confirmed in figure 2 (stcoxkm), where
the observed values and predicted values are close together.

The graph in figure 3 is the same as the one in figure 1, adjusted for white blood cell count (using
two dummy variables). The adjustment variables were centered temporarily by stphplot before the
adjustment was made.

110 stcox PH-assumption tests — Tests of proportional-hazards assumption

. stphplot, strata(treatment1) adj(wbc2 wbc3)

failure _d: relapse
analysis time _t: weeks

−
2

−
1

0
1

2
3

−
ln

[−
ln

(S
u

rv
iv

a
l
P

ro
b

a
b

ili
ty

)]

0 1 2 3 4
ln(analysis time)

treatment1 = Standard treatment1 = Drug A

Figure 3.

The lines in figure 3 are still parallel, although they are somewhat closer together. Examining the
proportional-hazards assumption on a variable without adjusting for covariates is usually adequate as
a diagnostic tool before using the Cox model. However, if you know that adjustment for covariates in
a final model is necessary, you may wish to reexamine whether the proportional-hazards assumption
still holds.

Another variable in this dataset measures a different drug (treatment2: 1 = drug B, 0 = standard).
We wish to examine the proportional-hazards assumption for this variable.

. stphplot, by(treatment2)

failure _d: relapse
analysis time _t: weeks

−
1

0
1

2
3

−
ln

[−
ln

(S
u

rv
iv

a
l
P

ro
b

a
b

ili
ty

)]

0 1 2 3 4
ln(analysis time)

treatment2 = Standard treatment2 = Drug B

Figure 4.

stcox PH-assumption tests — Tests of proportional-hazards assumption 111

. stcoxkm, by(treatment2) separate legend(cols(1))

failure _d: relapse
analysis time _t: weeks

0
.0

0
0
.5

0
1
.0

0

0 10 20 30 40 0 10 20 30 40

Standard Drug B

Observed: treatment2 = Standard

Observed: treatment2 = Drug B

Predicted: treatment2 = Standard

Predicted: treatment2 = Drug B

S
u

rv
iv

a
l
P

ro
b

a
b

ili
ty

analysis time

Graphs by Treatment II

Figure 5.

This variable violates the proportional-hazards assumption. In figure 4, we see that the lines are
not only nonparallel but also cross in the data region. In figure 5, we see that there are considerable
differences between the observed and predicted values. We have overestimated the positive effect of
drug B for the first half of the study and have underestimated it in the later weeks. One hazard ratio
describing the effect of this drug would be inappropriate. We definitely would want to stratify on this
variable in our Cox model.

Example 2: estat phtest

In this example, we use estat phtest to examine whether the proportional-hazards assumption
holds for a model with covariates wbc2, wbc1, and treatment1. After stsetting the data, we first
run stcox with these three variables as regressors. Then we use estat phtest:

. stset weeks, failure(relapse)

failure event: relapse != 0 & relapse < .
obs. time interval: (0, weeks]
exit on or before: failure

42 total observations
0 exclusions

42 observations remaining, representing
30 failures in single-record/single-failure data

541 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 35

112 stcox PH-assumption tests — Tests of proportional-hazards assumption

. stcox treatment1 wbc2 wbc3, nolog

failure _d: relapse
analysis time _t: weeks

Cox regression -- Breslow method for ties

No. of subjects = 42 Number of obs = 42
No. of failures = 30
Time at risk = 541

LR chi2(3) = 33.02
Log likelihood = -77.476905 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treatment1 .2834551 .1229874 -2.91 0.004 .1211042 .6634517
wbc2 3.637825 2.201306 2.13 0.033 1.111134 11.91015
wbc3 10.92214 7.088783 3.68 0.000 3.06093 38.97284

. estat phtest, detail

Test of proportional-hazards assumption

Time: Time

rho chi2 df Prob>chi2

treatment1 -0.07019 0.15 1 0.6948
wbc2 -0.03223 0.03 1 0.8650
wbc3 0.01682 0.01 1 0.9237

global test 0.33 3 0.9551

Because we specified the detail option with the estat phtest command, both covariate-specific
and global tests were produced. We can see that there is no evidence that the proportional-hazards
assumption has been violated.

Another variable in this dataset measures a different drug (treatment2: 1 = drug B, 0 = standard).
We now wish to examine the proportional-hazards assumption for the previous model by substituting
treatment2 for treatment1.

We fit a new Cox model and perform the test for proportional hazards:

. stcox treatment2 wbc2 wbc3, nolog

failure _d: relapse
analysis time _t: weeks

Cox regression -- Breslow method for ties

No. of subjects = 42 Number of obs = 42
No. of failures = 30
Time at risk = 541

LR chi2(3) = 23.93
Log likelihood = -82.019053 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treatment2 .8483777 .3469054 -0.40 0.688 .3806529 1.890816
wbc2 3.409628 2.050784 2.04 0.041 1.048905 11.08353
wbc3 14.0562 8.873693 4.19 0.000 4.078529 48.44314

stcox PH-assumption tests — Tests of proportional-hazards assumption 113

. estat phtest, detail

Test of proportional-hazards assumption

Time: Time

rho chi2 df Prob>chi2

treatment2 -0.51672 10.19 1 0.0014
wbc2 -0.09860 0.29 1 0.5903
wbc3 -0.03559 0.04 1 0.8448

global test 10.24 3 0.0166

treatment2 violates the proportional-hazards assumption. A single hazard ratio describing the effect
of this drug is inappropriate.

The test of the proportional-hazards assumption is based on the principle that, for a given regressor,
the assumption restricts β(tj) = β for all tj . This implies that a plot of β(tj) versus time will have
a slope of zero. Grambsch and Therneau (1994) showed that E(s∗j) + β̂ ≈ β(tj), where s∗j is the

scaled Schoenfeld residual at failure time tj and β̂ is the estimated coefficient from the Cox model.
Thus a plot of s∗j + β̂ versus some function of time provides a graphical assessment of the assumption.

Continuing from above, if you type

. predict sch*, scaledsch

you obtain three variables—sch1, sch2, and sch3—corresponding to the three regressors, treat-
ment2, wbc2, and wbc3. Given the utility of s∗j+β̂, what is stored in variable sch1 is actually s∗j1+β̂1

and not just the scaled Schoenfeld residual for the first variable, s∗j1, itself. The estimated coefficient,

β̂1, is added automatically. The same holds true for the second created variable representing the
second regressor, sch2 = s∗j2 + β̂2, and so on.

As such, a graphical assessment of the proportional-hazards assumption for the first regressor is
as simple as

. scatter sch1 _t || lfit sch1 _t

which plots a scatter of s∗j1 + β̂1 versus analysis time, t, and overlays a linear fit. Is the slope zero?
The answer is no for the first regressor, treatment2, and that agrees with our results from estat
phtest.

Technical note
The tests of the proportional-hazards assumption assume homogeneity of variance across risk sets.

This allows the use of the estimated overall (pooled) variance–covariance matrix in the equations.
Although these tests have been shown by Grambsch and Therneau (1994) to be fairly robust to
departures from this assumption, exercise care where this assumption may not hold, particularly when
performing a stratified Cox analysis. In such cases, we recommend that you check the proportional-
hazards assumption separately for each stratum.

114 stcox PH-assumption tests — Tests of proportional-hazards assumption

Video example

How to fit a Cox proportional hazards model and check proportional-hazards assumption

Stored results
estat phtest stores the following in r():

Scalars
r(df) global test degrees of freedom r(chi2) global test χ2

Methods and formulas
For one covariate, x, the Cox proportional hazards model reduces to

h(t;x) = h0(t) exp(xβ)

where h0(t) is the baseline hazard function from the Cox model. Let S0(t) and H0(t) be the
corresponding Cox baseline survivor and baseline cumulative hazard functions, respectively.

The proportional-hazards assumption implies that

H(t) = H0(t) exp(xβ)

or
lnH(t) = lnH0(t) + xβ

where H(t) is the cumulative hazard function. Thus, under the proportional-hazards assumption, the
logs of the cumulative hazard functions at each level of the covariate have equal slope. This is the
basis for the method implemented in stphplot.

The proportional-hazards assumption also implies that

S(t) = S0(t) exp(xβ)

Let Ŝ(t) be the estimated survivor function based on the Cox model. This function is a step function
like the Kaplan–Meier estimate and, in fact, reduces to the Kaplan–Meier estimate when x = 0.
Thus for each level of the covariate of interest, we can assess violations of the proportional-hazards
assumption by comparing these survival estimates with estimates calculated independently of the
model. See Kalbfleisch and Prentice (2002) or Hess (1995).

stcoxkm plots Kaplan–Meier estimated curves for each level of the covariate together with the
Cox model predicted baseline survival curve. The closer the observed values are to the predicted
values, the less likely it is that the proportional-hazards assumption has been violated.

Grambsch and Therneau (1994) presented a scaled adjustment for the Schoenfeld residuals that
permits the interpretation of the smoothed residuals as a nonparametric estimate of the log hazard-ratio
function. These scaled Schoenfeld residuals, r∗Si , can be obtained directly with predict’s scaledsch
option; see [ST] stcox postestimation.

Scaled Schoenfeld residuals are centered at β̂ for each covariate and, when there is no violation
of proportional hazards, should have slope zero when plotted against functions of time. The estat
phtest command uses these residuals, tests the null hypothesis that the slope is equal to zero for
each covariate in the model, and performs the global test proposed by Grambsch and Therneau (1994).
The test of zero slope is equivalent to testing that the log hazard-ratio function is constant over time.

https://www.youtube.com/watch?v=ime8BaLLXxw

stcox PH-assumption tests — Tests of proportional-hazards assumption 115

For a specified function of time, g(t), the statistic for testing the pth individual covariate is, for
g(t) = d−1

∑N
i=1 δig(ti),

χ2
c =

[∑N
i=1

{
δig(ti)− g(t)

}
r∗Spi

]2
d Var(β̂p)

∑N
i=1

{
δig(ti)− g(t)

}2

which is asymptotically distributed as χ2 with 1 degree of freedom. r∗Spi is the scaled Schoenfeld
residual for observation i, and δi indicates failure for observation i, with d =

∑
δi.

The statistic for the global test is calculated as

χ2
g =

[
N∑
i=1

{
δig(ti)− g(t)

}
rSi

]′ d Var(β̂)∑N
i=1

{
δig(ti)− g(t)

}2

[N∑
i=1

{
δig(ti)− g(t)

}
rSi

]

for rSi , a vector of the m (unscaled) Schoenfeld residuals for the ith observation; see [ST] stcox
postestimation. The global test statistic is asymptotically distributed as χ2 with m degrees of freedom.

The equations for the scaled Schoenfeld residuals and the two test statistics just described assume
homogeneity of variance across risk sets. Although these tests are fairly robust to deviations from
this assumption, care must be exercised, particularly when dealing with a stratified Cox model.

Acknowledgment
The original versions of stphplot and stcoxkm were written by Joanne M. Garrett at the

University of North Carolina at Chapel Hill. We also thank Garrett for her contributions to the estat
phtest command.

References
Allison, P. D. 2014. Event History and Survival Analysis. 2nd ed. Newbury Park, CA: Sage.

Barthel, F. M.-S., and P. Royston. 2006. Graphical representation of interactions. Stata Journal 6: 348–363.

Breslow, N. E. 1974. Covariance analysis of censored survival data. Biometrics 30: 89–99.

Cox, D. R. 1972. Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series
B 34: 187–220.

. 1975. Partial likelihood. Biometrika 62: 269–276.

Cox, D. R., and D. Oakes. 1984. Analysis of Survival Data. London: Chapman & Hall/CRC.

Cox, D. R., and E. J. Snell. 1968. A general definition of residuals (with discussion). Journal of the Royal Statistical
Society, Series B 30: 248–275.

Garrett, J. M. 1997. sbe14: Odds ratios and confidence intervals for logistic regression models with effect modification.
Stata Technical Bulletin 36: 15–22. Reprinted in Stata Technical Bulletin Reprints, vol. 6, pp. 104–114. College
Station, TX: Stata Press.

. 1998. ssa12: Predicted survival curves for the Cox proportional hazards model. Stata Technical Bulletin 44:
37–41. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 285–290. College Station, TX: Stata Press.

Grambsch, P. M., and T. M. Therneau. 1994. Proportional hazards tests and diagnostics based on weighted residuals.
Biometrika 81: 515–526.

Hess, K. R. 1995. Graphical methods for assessing violations of the proportional hazards assumption in Cox regression.
Statistics in Medicine 14: 1707–1723.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

http://www.stata.com/bookstore/event-history-and-survival-analysis/
http://www.stata-journal.com/sjpdf.html?articlenum=gr0024
http://www.stata.com/products/stb/journals/stb36.pdf
http://www.stata.com/products/stb/journals/stb44.pdf

116 stcox PH-assumption tests — Tests of proportional-hazards assumption

Rogers, W. H. 1994. ssa4: Ex post tests and diagnostics for a proportional hazards model. Stata Technical Bulletin
19: 23–27. Reprinted in Stata Technical Bulletin Reprints, vol. 4, pp. 186–191. College Station, TX: Stata Press.

Xiao, T., X. He, G. A. Whitemore, and M.-L. Ting Lee. 2012. Threshold regression for time-to-event analysis: The
stthreg package. Stata Journal 12: 257–283.

Also see
[ST] stcox — Cox proportional hazards model

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[U] 20 Estimation and postestimation commands

http://www.stata.com/products/stb/journals/stb19.pdf
http://www.stata-journal.com/article.html?article=st0257
http://www.stata-journal.com/article.html?article=st0257

Title

stcox postestimation — Postestimation tools for stcox

Postestimation commands predict margins estat
Remarks and examples Stored results Methods and formulas References
Also see

Postestimation commands
The following postestimation commands are of special interest after stcox:

Command Description

estat concordance compute the concordance probability
estat phtest test the proportional-hazards assumption
stcurve plot the survivor, hazard, and cumulative hazard functions

estat concordance is not appropriate after estimation with svy.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗ hausman and lrtest are not appropriate with svy estimation results.

117

118 stcox postestimation — Postestimation tools for stcox

predict

Description for predict

predict creates a new variable containing predictions such as hazard ratios; linear predictions;
standard errors; baseline survivor, cumulative hazard, and hazard functions; martingale, Cox–Snell,
deviance, efficient score, Schoenfeld, and scaled Schoenfeld residuals; likelihood displacement values;
LMAX measures of influence; log frailties; and DFBETA measures of influence.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, sv statistic nooffset partial
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, mv statistic

[
partial

]
sv statistic Description

Main

hr predicted hazard ratio, also known as the relative hazard; the default
xb linear prediction xjβ
stdp standard error of the linear prediction; SE(xjβ)
∗basesurv baseline survivor function
∗basechazard baseline cumulative hazard function
∗basehc baseline hazard contributions
∗mgale martingale residuals
∗csnell Cox–Snell residuals
∗deviance deviance residuals
∗ldisplace likelihood displacement values
∗lmax LMAX measures of influence
∗effects log frailties

mv statistic Description

Main
∗scores efficient score residuals
∗esr synonym for scores
∗dfbeta DFBETA measures of influence
∗schoenfeld Schoenfeld residuals
∗scaledsch scaled Schoenfeld residuals

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample. Starred statistics are calculated only for the estimation sample, even when e(sample)

is not specified. nooffset is allowed only with unstarred statistics.
mgale, csnell, deviance, ldisplace, lmax, dfbeta, schoenfeld, and scaledsch are not allowed with svy

estimation results.

stcox postestimation — Postestimation tools for stcox 119

Options for predict

� � �
Main �

hr, the default, calculates the relative hazard (hazard ratio), that is, the exponentiated linear prediction,
exp(xjβ̂).

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a
set of parameters, β0, β1, β2, . . . , βk, and the linear prediction is β̂1x1j + β̂2x2j + · · ·+ β̂kxkj ,
often written in matrix notation as xjβ̂.

The x1j , x2j , . . . , xkj used in the calculation are obtained from the data currently in memory
and need not correspond to the data on the independent variables used in estimating β.

stdp calculates the standard error of the prediction, that is, the standard error of xjβ̂.

basesurv calculates the baseline survivor function. In the null model, this is equivalent to the Kaplan–
Meier product-limit estimate. If stcox’s strata() option was specified, baseline survivor functions
for each stratum are provided.

basechazard calculates the cumulative baseline hazard. If stcox’s strata() option was specified,
cumulative baseline hazards for each stratum are provided.

basehc calculates the baseline hazard contributions. These are used to construct the product-limit
type estimator for the baseline survivor function generated by basesurv. If stcox’s strata()
option was specified, baseline hazard contributions for each stratum are provided.

mgale calculates the martingale residuals. For multiple-record-per-subject data, by default only one
value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial martingale residuals, one for each record within
subject; see partial below. Partial martingale residuals are the additive contributions to a subject’s
overall martingale residual. In single-record-per-subject data, the partial martingale residuals are
the martingale residuals.

csnell calculates the Cox–Snell generalized residuals. For multiple-record data, by default only one
value per subject is calculated and, it is placed on the last record for the subject.

Adding the partial option will produce partial Cox–Snell residuals, one for each record within
subject; see partial below. Partial Cox–Snell residuals are the additive contributions to a subject’s
overall Cox–Snell residual. In single-record data, the partial Cox–Snell residuals are the Cox–Snell
residuals.

deviance calculates the deviance residuals. Deviance residuals are martingale residuals that have
been transformed to be more symmetric about zero. For multiple-record data, by default only one
value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial deviance residuals, one for each record within
subject; see partial below. Partial deviance residuals are transformed partial martingale residuals.
In single-record data, the partial deviance residuals are the deviance residuals.

ldisplace calculates the likelihood displacement values. A likelihood displacement value is an
influence measure of the effect of deleting a subject on the overall coefficient vector. For multiple-
record data, by default only one value per subject is calculated, and it is placed on the last record
for the subject.

Adding the partial option will produce partial likelihood displacement values, one for each
record within subject; see partial below. Partial displacement values are interpreted as effects
due to deletion of individual records rather than deletion of individual subjects. In single-record
data, the partial likelihood displacement values are the likelihood displacement values.

120 stcox postestimation — Postestimation tools for stcox

lmax calculates the LMAX measures of influence. LMAX values are related to likelihood displacement
values because they also measure the effect of deleting a subject on the overall coefficient vector.
For multiple-record data, by default only one LMAX value per subject is calculated, and it is placed
on the last record for the subject.

Adding the partial option will produce partial LMAX values, one for each record within subject;
see partial below. Partial LMAX values are interpreted as effects due to deletion of individual
records rather than deletion of individual subjects. In single-record data, the partial LMAX values
are the LMAX values.

effects is for use after stcox, shared() and provides estimates of the log frailty for each group.
The log frailties are random group-specific offsets to the linear predictor that measure the group
effect on the log relative-hazard.

scores calculates the efficient score residuals for each regressor in the model. For multiple-record
data, by default only one score per subject is calculated, and it is placed on the last record for the
subject.

Adding the partial option will produce partial efficient score residuals, one for each record
within subject; see partial below. Partial efficient score residuals are the additive contributions to
a subject’s overall efficient score residual. In single-record data, the partial efficient score residuals
are the efficient score residuals.

One efficient score residual variable is created for each regressor in the model; the first new
variable corresponds to the first regressor, the second to the second, and so on.

esr is a synonym for scores.

dfbeta calculates the DFBETA measures of influence for each regressor in the model. The DFBETA
value for a subject estimates the change in the regressor’s coefficient due to deletion of that subject.
For multiple-record data, by default only one value per subject is calculated, and it is placed on
the last record for the subject.

Adding the partial option will produce partial DFBETAs, one for each record within subject; see
partial below. Partial DFBETAs are interpreted as effects due to deletion of individual records
rather than deletion of individual subjects. In single-record data, the partial DFBETAs are the
DFBETAs.

One DFBETA variable is created for each regressor in the model; the first new variable corresponds
to the first regressor, the second to the second, and so on.

schoenfeld calculates the Schoenfeld residuals. This option may not be used after stcox with the
exactm or exactp option. Schoenfeld residuals are calculated and reported only at failure times.

One Schoenfeld residual variable is created for each regressor in the model; the first new variable
corresponds to the first regressor, the second to the second, and so on.

scaledsch calculates the scaled Schoenfeld residuals. This option may not be used after stcox with
the exactm or exactp option. Scaled Schoenfeld residuals are calculated and reported only at
failure times.

One scaled Schoenfeld residual variable is created for each regressor in the model; the first new
variable corresponds to the first regressor, the second to the second, and so on.

stcox postestimation — Postestimation tools for stcox 121

Note: The easiest way to use the preceding four options is, for example,

. predict double stub*, scores

where stub is a short name of your choosing. Stata then creates variables stub1, stub2, etc. You
may also specify each variable explicitly, in which case there must be as many (and no more)
variables specified as there are regressors in the model.

nooffset is allowed only with hr, xb, and stdp, and is relevant only if you specified off-
set(varname) for stcox. It modifies the calculations made by predict so that they ignore the
offset variable; the linear prediction is treated as xjβ̂ rather than xjβ̂+ offsetj .

partial is relevant only for multiple-record data and is valid with mgale, csnell, deviance,
ldisplace, lmax, scores, esr, and dfbeta. Specifying partial will produce “partial” versions
of these statistics, where one value is calculated for each record instead of one for each subject.
The subjects are determined by the id() option to stset.

Specify partial if you wish to perform diagnostics on individual records rather than on individual
subjects. For example, a partial DFBETA would be interpreted as the effect on a coefficient due to
deletion of one record, rather than the effect due to deletion of all records for a given subject.

122 stcox postestimation — Postestimation tools for stcox

margins

Description for margins

margins estimates margins of response for hazard ratios and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

hr predicted hazard ratio, also known as the relative hazard; the default
xb linear prediction xjβ
stdp not allowed with margins

basesurv not allowed with margins

basechazard not allowed with margins

basehc not allowed with margins

mgale not allowed with margins

csnell not allowed with margins

deviance not allowed with margins

ldisplace not allowed with margins

lmax not allowed with margins

effects not allowed with margins

scores not allowed with margins

esr not allowed with margins

dfbeta not allowed with margins

schoenfeld not allowed with margins

scaledsch not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

stcox postestimation — Postestimation tools for stcox 123

estat

Description for estat

estat concordance calculates the concordance probability, which is defined as the probability
that predictions and outcomes are concordant. estat concordance provides two measures of the
concordance probability: Harrell’s C and Gönen and Heller’s K concordance coefficients. estat
concordance also reports the Somers’s D rank correlation, which is obtained by calculating 2C − 1
or 2K − 1.

Menu for estat

Statistics > Postestimation

Syntax for estat

estat concordance
[

if
] [

in
] [

, concordance options
]

concordance options Description

Main

harrell compute Harrell’s C coefficient; the default
gheller compute Gönen and Heller’s concordance coefficient
se compute asymptotic standard error of Gönen and Heller’s coefficient
all compute statistic for all observations in the data
noshow do not show st setting information

Options for estat

� � �
Main �

harrell, the default, calculates Harrell’s C coefficient, which is defined as the proportion of all
usable subject pairs in which the predictions and outcomes are concordant.

gheller calculates Gönen and Heller’s K concordance coefficient instead of Harrell’s C coefficient.
The harrell and gheller options may be specified together to obtain both concordance measures.

se calculates the smoothed version of Gönen and Heller’s K concordance coefficient and its asymptotic
standard error. The se option requires the gheller option.

all requests that the statistic be computed for all observations in the data. By default, estat
concordance computes over the estimation subsample.

noshow prevents estat concordance from displaying the identities of the key st variables above
its output.

124 stcox postestimation — Postestimation tools for stcox

Remarks and examples
Remarks are presented under the following headings:

Baseline functions
Making baseline reasonable
Residuals and diagnostic measures
Multiple records per subject
Predictions after stcox with the tvc() option
Predictions after stcox with the shared() option
estat concordance

Baseline functions

predict after stcox provides estimates of the baseline survivor and baseline cumulative hazard
function, among other things. Here the term baseline means that these are the functions when all
covariates are set to zero, that is, they reflect (perhaps hypothetical) individuals who have zero-valued
measurements. When you specify predict’s basechazard option, you obtain the baseline cumulative
hazard. When you specify basesurv, you obtain the baseline survivor function. Additionally, when
you specify predict’s basehc option, you obtain estimates of the baseline hazard contribution at
each failure time, which are factors used to develop the product-limit estimator for the survivor
function generated by basesurv.

Although in theory S0(t) = exp{−H0(t)}, where S0(t) is the baseline survivor function and
H0(t) is the baseline cumulative hazard, the estimates produced by basechazard and basesurv
do not exactly correspond in this manner, although they closely do. The reason is that predict
after stcox uses different estimation schemes for each; the exact formulas are given in Methods and
formulas.

When the Cox model is fit with the strata() option, you obtain estimates of the baseline functions
for each stratum.

Example 1: Baseline survivor function

Baseline functions refer to the values of the functions when all covariates are set to 0. Let’s graph
the survival curve for the Stanford heart transplant model that we fit in example 3 of [ST] stcox, and
to make the baseline curve reasonable, let’s do that at age = 40 and year = 70.

Thus we will begin by creating variables that, when 0, correspond to the baseline values we desire,
and then we will fit our model with these variables instead. We then predict the baseline survivor
function and graph it:

. use http://www.stata-press.com/data/r14/stan3
(Heart transplant data)

. generate age40 = age - 40

. generate year70 = year - 70

stcox postestimation — Postestimation tools for stcox 125

. stcox age40 posttran surg year70, nolog

failure _d: died
analysis time _t: t1

id: id

Cox regression -- Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31938.1

LR chi2(4) = 17.56
Log likelihood = -289.53378 Prob > chi2 = 0.0015

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age40 1.030224 .0143201 2.14 0.032 1.002536 1.058677
posttran .9787243 .3032597 -0.07 0.945 .5332291 1.796416
surgery .3738278 .163204 -2.25 0.024 .1588759 .8796
year70 .8873107 .059808 -1.77 0.076 .7775022 1.012628

. predict s, basesurv

. summarize s

Variable Obs Mean Std. Dev. Min Max

s 172 .6291871 .2530009 .130666 .9908968

Our recentering of age and year did not affect the estimation, a fact you can verify by refitting the
model with the original age and year variables.

To see how the values of the baseline survivor function are stored, we first sort according to
analysis time and then list some observations.

. sort _t id

. list id _t0 _t _d s in 1/20

id _t0 _t _d s

1. 3 0 1 0 .9908968
2. 15 0 1 1 .9908968
3. 20 0 1 0 .9908968
4. 45 0 1 0 .9908968
5. 39 0 2 0 .9633915

6. 43 0 2 1 .9633915
7. 46 0 2 0 .9633915
8. 61 0 2 1 .9633915
9. 75 0 2 1 .9633915

10. 95 0 2 0 .9633915

11. 6 0 3 1 .9356873
12. 23 0 3 0 .9356873
13. 42 0 3 1 .9356873
14. 54 0 3 1 .9356873
15. 60 0 3 0 .9356873

16. 68 0 3 0 .9356873
17. 72 0 4 0 .9356873
18. 94 0 4 0 .9356873
19. 38 0 5 0 .9264087
20. 70 0 5 0 .9264087

126 stcox postestimation — Postestimation tools for stcox

At time t = 2, the baseline survivor function is 0.9634, or more precisely, S0(2 + ∆t) = 0.9634.
What we mean by S0(t+ ∆t) is the probability of surviving just beyond t. This is done to clarify
that the probability includes escaping failure at precisely time t.

The above also indicates that our estimate of S0(t) is a step function, and that the steps occur
only at times when failure is observed—our estimated S0(t) does not change from t = 3 to t = 4
because no failure occurred at time 4. This behavior is analogous to that of the Kaplan–Meier estimate
of the survivor function; see [ST] sts.

Here is a graph of the baseline survival curve:

. line s _t, sort c(J)

.2
.4

.6
.8

1
b

a
s
e

lin
e

 s
u

rv
iv

o
r

0 500 1000 1500 2000
analysis time when record ends

This graph was easy enough to produce because we wanted the survivor function at baseline. To
graph survivor functions after stcox with covariates set to any value (baseline or otherwise), use
stcurve; see [ST] stcurve.

The similarity to Kaplan–Meier is not limited to the fact that both are step functions that change
only when failure occurs. They are also calculated in much the same way, with predicting basesurv
after stcox having the added benefit that the result is automatically adjusted for all the covariates in
your Cox model. When you have no covariates, both methods are equivalent. If you continue from
the previous example, you will find that

. sts generate s1 = s

and

. stcox, estimate

. predict double s2, basesurv

produce the identical variables s1 and s2, both containing estimates of the overall survivor function,
unadjusted for covariates. We used type double for s2 to precisely match sts generate, which
gives results in double precision.

If we had fit a stratified model by using the strata() option, the recorded survivor-function
estimate on each observation would be for the stratum of that observation. That is, what you get is
one variable that holds not an overall survivor curve, but instead a set of stratum-specific curves.

stcox postestimation — Postestimation tools for stcox 127

Example 2: Baseline cumulative hazard

Obtaining estimates of the baseline cumulative hazard, H0(t), is just as easy as obtaining the
baseline survivor function. Using the same data as previously,

. use http://www.stata-press.com/data/r14/stan3, clear
(Heart transplant data)

. generate age40 = age - 40

. generate year70 = year - 70

. stcox age40 posttran surg year70
(output omitted)

. predict ch, basechazard

. line ch _t, sort c(J)

0
.5

1
1

.5
2

c
u

m
u

la
ti
v
e

 b
a

s
e

lin
e

 h
a

z
a

rd

0 500 1000 1500 2000
analysis time when record ends

The estimated baseline cumulative hazard is also a step function with the steps occurring at the
observed times of failure. When there are no covariates in your Cox model, what you obtain is
equivalent to the Nelson–Aalen estimate of the cumulative hazard (see [ST] sts), but using predict,
basechazard after stcox allows you to also adjust for covariates.

To obtain cumulative hazard curves at values other than baseline, you could either recenter your
covariates—as we did previously with age and year—so that the values in which you are interested
become baseline, or simply use stcurve; see [ST] stcurve.

Example 3: Baseline hazard contributions

Mathematically, a baseline hazard contribution, hi = (1−αi) (see Kalbfleisch and Prentice 2002,
115), is defined at every analytic time ti at which a failure occurs and is undefined at other times. Stata
stores hi in observations where a failure occurred and stores missing values in the other observations.

. use http://www.stata-press.com/data/r14/stan3, clear
(Heart transplant data)

. generate age40 = age - 40

. generate year70 = year - 70

. stcox age40 posttran surg year70
(output omitted)

. predict double h, basehc
(97 missing values generated)

128 stcox postestimation — Postestimation tools for stcox

. list id _t0 _t _d h in 1/10

id _t0 _t _d h

1. 1 0 50 1 .01503465
2. 2 0 6 1 .02035303
3. 3 0 1 0 .
4. 3 1 16 1 .03339642
5. 4 0 36 0 .

6. 4 36 39 1 .01365406
7. 5 0 18 1 .01167142
8. 6 0 3 1 .02875689
9. 7 0 51 0 .

10. 7 51 675 1 .06215003

At time t = 50, the hazard contribution h1 is 0.0150. At time t = 6, the hazard contribution h2

is 0.0204. In observation 3, no hazard contribution is stored. Observation 3 contains a missing value
because observation 3 did not fail at time 1. We also see that values of the hazard contributions are
stored only in observations that are marked as failing.

Hazard contributions by themselves have no substantive interpretation, and in particular they should
not be interpreted as estimating the hazard function at time t. Hazard contributions are simply mass
points that are used as components to calculate the survivor function; see Methods and formulas. You
can also use hazard contributions to estimate the hazard, but because they are only mass points, they
need to be smoothed first. This smoothing is done automatically with stcurve; see [ST] stcurve.
In summary, hazard contributions in their raw form serve no purpose other than to help replicate
calculations done by Stata, and we demonstrate this below simply for illustrative purposes.

When we created the new variable h for holding the hazard contributions, we used type double
because we plan on using h in some further calculations below and we wish to be as precise as
possible.

In contrast with the baseline hazard contributions, the baseline survivor function, S0(t), is defined
at all values of t: its estimate changes its value when failures occur, and at times when no failures
occur, the estimated S0(t) is equal to its value at the time of the last failure.

Continuing with our example, we now predict the baseline survivor function:

. predict double s, basesurv

. list id _t0 _t _d h s in 1/10

id _t0 _t _d h s

1. 1 0 50 1 .01503465 .68100303
2. 2 0 6 1 .02035303 .89846438
3. 3 0 1 0 . .99089681
4. 3 1 16 1 .03339642 .84087361
5. 4 0 36 0 . .7527663

6. 4 36 39 1 .01365406 .73259264
7. 5 0 18 1 .01167142 .82144038
8. 6 0 3 1 .02875689 .93568733
9. 7 0 51 0 . .6705895

10. 7 51 675 1 .06215003 .26115633

In the above, we sorted by id, but it is easier to see how h and s are related if we sort by t
and put the failures on top:

stcox postestimation — Postestimation tools for stcox 129

. gsort +_t -_d

. list id _t0 _t _d h s in 1/18

id _t0 _t _d h s

1. 15 0 1 1 .00910319 .99089681
2. 20 0 1 0 . .99089681
3. 3 0 1 0 . .99089681
4. 45 0 1 0 . .99089681
5. 43 0 2 1 .02775802 .96339147

6. 75 0 2 1 .02775802 .96339147
7. 61 0 2 1 .02775802 .96339147
8. 39 0 2 0 . .96339147
9. 46 0 2 0 . .96339147

10. 95 0 2 0 . .96339147

11. 54 0 3 1 .02875689 .93568733
12. 42 0 3 1 .02875689 .93568733
13. 6 0 3 1 .02875689 .93568733
14. 68 0 3 0 . .93568733
15. 23 0 3 0 . .93568733

16. 60 0 3 0 . .93568733
17. 72 0 4 0 . .93568733
18. 94 0 4 0 . .93568733

The baseline hazard contribution is stored on every failure record—if multiple failures occur at a given
time, the value of the hazard contribution is repeated—and the baseline survivor is stored on every
record. (More correctly, baseline values are stored on records that meet the criterion and that were
used in estimation. If some observations are explicitly or implicitly excluded from the estimation,
their baseline values will be set to missing, no matter what.)

With this listing, we can better understand how the hazard contributions are used to calculate the
survivor function. Because the patient with id = 15 died at time t1 = 1, the hazard contribution for
that patient is h15 = 0.00910319. Because that was the only death at t1 = 1, the estimated survivor
function at this time is S0(1) = 1− h15 = 1− 0.00910319 = 0.99089681. The next death occurs at
time t1 = 2, and the hazard contribution at this time for patient 43 (or patient 61 or patient 75, it
does not matter) is h43 = 0.02775802. Multiplying the previous survivor function value by 1− h43

gives the new survivor function at t1 = 2 as S0(2) = 0.96339147. The other survivor function values
are then calculated in succession, using this method at each failure time. At times when no failures
occur, the survivor function remains unchanged.

Technical note

Consider manually obtaining the estimate of S0(t) from the hi:

. sort _t _d

. by _t: keep if _d & _n==_N

. generate double s2 = 1-h

. replace s2 = s2[_n-1]*s2 if _n>1

s2 will be equivalent to s as produced above. If you had obtained stratified estimates, the code would
be

130 stcox postestimation — Postestimation tools for stcox

. sort group _t _d

. by group _t: keep if _d & _n==_N

. generate double s2 = 1-h

. by group: replace s2 = s2[_n-1]*s2 if _n>1

Making baseline reasonable

When predicting with basesurv or basechazard, for numerical accuracy reasons, the baseline
functions must correspond to something reasonable in your data. Remember, the baseline functions
correspond to all covariates equal to 0 in your Cox model.

Consider, for instance, a Cox model that includes the variable calendar year among the covariates.
Say that year varies between 1980 and 1996. The baseline functions would correspond to year 0,
almost 2,000 years in the past. Say that the estimated coefficient on year is −0.2, meaning that the
hazard ratio for one year to the next is a reasonable 0.82.

Think carefully about the contribution to the predicted log cumulative hazard: it would be approx-
imately −0.2× 2,000 = −400. Now e−400 ≈ 10−173, which on a digital computer is so close to 0
that there is simply no hope that H0(t)e−400 will produce an accurate estimate of H(t).

Even with less extreme numbers, problems arise, even in the calculation of the baseline survivor
function. Baseline hazard contributions near 1 produce baseline survivor functions with steps differing
by many orders of magnitude because the calculation of the survivor function is cumulative. Producing
a meaningful graph of such a survivor function is hopeless, and adjusting the survivor function to
other values of the covariates is too much work.

For these reasons, covariate values of 0 must be meaningful if you are going to specify the
basechazard or basesurv option. As the baseline values move to absurdity, the first problem you
will encounter is a baseline survivor function that is too hard to interpret, even though the baseline
hazard contributions are estimated accurately. Further out, the procedure Stata uses to estimate the
baseline hazard contributions will break down—it will produce results that are exactly 1. Hazard
contributions that are exactly 1 produce survivor functions that are uniformly 0, and they will remain
0 even after adjusting for covariates.

This, in fact, occurs with the Stanford heart transplant data:

. use http://www.stata-press.com/data/r14/stan3, clear
(Heart transplant data)

. stcox age posttran surg year
(output omitted)

. predict ch, basechazard

. predict s, basesurv

. summarize ch s

Variable Obs Mean Std. Dev. Min Max

ch 172 745.1134 682.8671 11.88239 2573.637
s 172 1.45e-07 9.43e-07 0 6.24e-06

The hint that there are problems is that the values of ch are huge and the values of s are close to
0. In this dataset, age (which ranges from 8 to 64 with a mean value of 45) and year (which ranges
from 67 to 74) are the problems. The baseline functions correspond to a newborn at the turn of the
century on the waiting list for a heart transplant!

stcox postestimation — Postestimation tools for stcox 131

To obtain accurate estimates of the baseline functions, type

. drop ch s

. generate age40 = age - 40

. generate year70 = year - 70

. stcox age40 posttran surg year70
(output omitted)

. predict ch, basechazard

. predict s, basesurv

. summarize ch s

Variable Obs Mean Std. Dev. Min Max

ch 172 .5685743 .521076 .0090671 1.963868
s 172 .6291871 .2530009 .130666 .9908968

Adjusting the variables does not affect the coefficient (and, hence, hazard-ratio) estimates, but it
changes the values at which the baseline functions are estimated to be within the range of the data.

Technical note

Above we demonstrated what can happen to predicted baseline functions when baseline values
represent a departure from what was observed in the data. In the above example, the Cox model
fit was fine and only the baseline functions lacked accuracy. As baseline values move even further
toward absurdity, the risk-set accumulations required to fit the Cox model will also break down. If
you are having difficulty getting stcox to converge or you obtain missing coefficients, one possible
solution is to recenter your covariates just as we did above.

Residuals and diagnostic measures

Stata can calculate Cox–Snell residuals, martingale residuals, deviance residuals, efficient score
residuals (esr), Schoenfeld residuals, scaled Schoenfeld residuals, likelihood displacement values,
LMAX values, and DFBETA influence measures.

Although the uses of residuals vary and depend on the data and user preferences, traditional
and suggested uses are the following: Cox–Snell residuals are useful in assessing overall model fit.
Martingale residuals are useful in determining the functional form of covariates to be included in the
model and are occasionally useful in identifying outliers. Deviance residuals are useful in examining
model accuracy and identifying outliers. Schoenfeld and scaled Schoenfeld residuals are useful for
checking and testing the proportional-hazards assumption. Likelihood displacement values and LMAX
values are useful in identifying influential subjects. DFBETAs also measure influence, but they do so
on a coefficient-by-coefficient basis. Likelihood displacement values, LMAX values, and DFBETAs are
all based on efficient score residuals.

Example 4: Cox–Snell residuals

Let’s first examine the use of Cox–Snell residuals. Using the cancer data introduced in example 2
in [ST] stcox, we first perform a Cox regression and then predict the Cox–Snell residuals.

. use http://www.stata-press.com/data/r14/drugtr, clear
(Patient Survival in Drug Trial)

. stset studytime, failure(died)
(output omitted)

132 stcox postestimation — Postestimation tools for stcox

. stcox age drug, nolog

failure _d: died
analysis time _t: studytime

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.120325 .0417711 3.05 0.002 1.041375 1.20526
drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622

. predict cs, csnell

The csnell option tells predict to output the Cox–Snell residuals to a new variable, cs. If
the Cox regression model fits the data, these residuals should have a standard censored exponential
distribution with hazard ratio 1. We can verify the model’s fit by calculating—based, for example, on
the Kaplan–Meier estimated survivor function or the Nelson–Aalen estimator—an empirical estimate
of the cumulative hazard function, using the Cox–Snell residuals as the time variable and the data’s
original censoring variable. If the model fits the data, the plot of the cumulative hazard versus cs
should approximate a straight line with slope 1.

To do this, we first re-stset the data, specifying cs as our new failure-time variable and died as
the failure/censoring indicator. We then use the sts generate command to generate the km variable
containing the Kaplan–Meier survivor estimates. Finally, we generate the cumulative hazard, H, by
using the relationship H = −ln(km) and plot it against cs.

. stset cs, failure(died)
(output omitted)

. sts generate km = s

. generate H = -ln(km)
(1 missing value generated)

. line H cs cs, sort ytitle("") clstyle(. refline)

0
1

2
3

4

0 1 2 3 4

Cox−Snell residual

H Cox−Snell residual

stcox postestimation — Postestimation tools for stcox 133

We specified cs twice in the graph command above so that a reference 45◦ line is plotted.
Comparing the jagged line with the reference line, we observe that the Cox model does not fit these
data too badly.

Technical note
The statement that “if the Cox regression model fits the data, the Cox–Snell residuals have a

standard censored exponential distribution with hazard ratio 1” holds only if the true parameters,
β, and the true cumulative baseline hazard function, H0(t), are used in calculating the residuals.
Because we use estimates β̂ and Ĥ0(t), deviations from the 45◦ line in the above plots could be due
in part to uncertainty about these estimates. This is particularly important for small sample sizes and
in the right-hand tail of the distribution, where the baseline hazard is more variable because of the
reduced effective sample caused by prior failures and censoring.

Example 5: Martingale residuals

Let’s now examine the martingale residuals. Martingale residuals are useful in assessing the
functional form of a covariate to be entered into a Cox model. Sometimes the covariate may need
transforming so that the transformed variable will satisfy the assumptions of the proportional hazards
model. To find the appropriate functional form of a variable, we fit a Cox model excluding the variable
and then plot a lowess smooth of the martingale residuals against some transformation of the variable
in question. If the transformation is appropriate, then the smooth should be approximately linear.

We apply this procedure to our cancer data to find an appropriate transformation of age (or to
verify that age need not be transformed).

. use http://www.stata-press.com/data/r14/drugtr, clear
(Patient Survival in Drug Trial)

. stset studytime, failure(died)
(output omitted)

. stcox drug
(output omitted)

. predict mg, mgale

. lowess mg age, mean noweight title("") note("") m(o)

−
3

−
2

−
1

0
1

m
a

rt
in

g
a

le
 r

e
s
id

u
a

l

45 50 55 60 65
Patient’s age at start of exp.

134 stcox postestimation — Postestimation tools for stcox

We used the lowess command with the mean and noweight options to obtain a plot of the
running-mean smoother to ease interpretation. A lowess smoother or other smoother could also be
used; see [R] lowess. The smooth appears nearly linear, supporting the inclusion of the untransformed
version of age in our Cox model. Had the smooth not been linear, we would have tried smoothing
the martingale residuals against various transformations of age until we found one that produced a
near-linear smooth.

Martingale residuals can also be interpreted as the difference over time of the observed number of
failures minus the difference predicted by the model. Thus a plot of the martingale residuals versus
the linear predictor may be used to detect outliers.

Plots of martingale residuals are sometimes difficult to interpret, however, because these residuals
are skewed, taking values in (−∞, 1). For this reason, deviance residuals are preferred for examining
model accuracy and identifying outliers.

� �
Originally, “à la martingale” was a French expression meaning in the fashion of Martigues, a
town in Provence. People from that town evidently had a reputation, no doubt unjustified, for
their extravagance. Later the term was applied to a betting method in which a gambler doubles
the stakes after each loss, which is not a strategy that StataCorp will endorse on your behalf.
The current meaning in probability theory is more prosaic. In a fair game, knowing past events
cannot help predict winnings in the future. By extension, a martingale is a stochastic process in
time for which the expectation of the next value equals the present value, even given knowledge
of all previous values. The original reference to fashion survives in equestrian and nautical terms
referring to straps or stays.� �

Example 6: Deviance residuals

Deviance residuals are a rescaling of the martingale residuals so that they are symmetric about
0 and thus are more like residuals obtained from linear regression. Plots of these residuals against
the linear predictor, survival time, rank order of survival, or observation number can be useful in
identifying aberrant observations and assessing model fit. We continue from the previous example,
but we need to first refit the Cox model with age included:

. drop mg

. stcox drug age
(output omitted)

. predict mg, mgale

. predict xb, xb

stcox postestimation — Postestimation tools for stcox 135

. scatter mg xb

−
3

−
2

−
1

0
1

m
a

rt
in

g
a

le
 r

e
s
id

u
a

l

3 4 5 6 7 8
Linear prediction

. predict dev, deviance

. scatter dev xb

−
2

−
1

0
1

2
d

e
v
ia

n
c
e

 r
e

s
id

u
a

l

3 4 5 6 7 8
Linear prediction

We first plotted the martingale residuals versus the linear predictor and then plotted the deviance
residuals versus the linear predictor. Given their symmetry about 0, deviance residuals are easier to
interpret, although both graphs yield the same information. With uncensored data, deviance residuals
should resemble white noise if the fit is adequate. Censored observations would be represented as
clumps of deviance residuals near 0 (Klein and Moeschberger 2003, 381). Given what we see above,
there do not appear to be any outliers.

In evaluating the adequacy of the fitted model, we must determine if any one subject has
a disproportionate influence on the estimated parameters. This is known as influence or leverage
analysis. The preferred method of performing influence or leverage analysis is to compare the
estimated parameter, β̂, obtained from the full data, with estimated parameters β̂i, obtained by fitting
the model to the N − 1 subjects remaining after the ith subject is removed. If β̂− β̂i is close to 0,

136 stcox postestimation — Postestimation tools for stcox

the ith subject has little influence on the estimate. The process is repeated for all subjects included
in the original model. To compute these differences for a dataset with N subjects, we would have to
execute stcox N additional times, which could be impractical for large datasets.

To avoid fitting N additional Cox models, an approximation to β̂− β̂i can be made based on the
efficient score residuals; see Methods and formulas. The difference β̂− β̂i is commonly referred to
as DFBETA in the literature; see [R] regress postestimation.

Example 7: DFBETAs

You obtain DFBETAs by using predict’s dfbeta option:

. use http://www.stata-press.com/data/r14/drugtr, clear
(Patient Survival in Drug Trial)
. stset studytime, failure(died)

(output omitted)
. stcox age drug

(output omitted)
. predict df*, dfbeta

The last command stores the estimates of DFBETAi = β̂ − β̂i for i = 1, . . . , N in the variables
df1 and df2. We can now plot these versus either time or subject (observation) number to identify
subjects with disproportionate influence. To maximize the available information, we plot versus time
and label the points by their subject numbers.

. generate obs = _n

. scatter df1 studytime, yline(0) mlabel(obs)

1

2

3

4

5

6

7

8 9

10
11

12

13

14

15

16

17 18

19

20

21

22
23

2425

26

27

28

29

30
31 32

33

34

35
36

37

38 39

40

41 42

43

44

45

46

47
48

−
.0

1
5

−
.0

1
−

.0
0

5
0

.0
0

5
.0

1
D

F
B

E
T

A
 −

 a
g

e

0 10 20 30 40
Months to death or end of exp.

stcox postestimation — Postestimation tools for stcox 137

. scatter df2 studytime, yline(0) mlabel(obs)

1

2

3

4

5
6

7
8

9

10

11
12

13

14

15

16

17
18

19

20

21

22

23

24
25

26

27

28
29

30

31

32

33

34

35
36

37

38

39

40

41

42

43

44

45
46

47

48

−
.0

5
0

.0
5

.1
.1

5
D

F
B

E
T

A
 −

 d
ru

g

0 10 20 30 40
Months to death or end of exp.

From the second graph we see that observation 35, if removed, would decrease the coefficient on
drug by approximately 0.15 or, equivalently, decrease the hazard ratio for drug by a factor of
approximately exp(−0.15) = 0.861.

DFBETAs as measures of influence have a straightforward interpretation. Their only disadvantage is
that the number of values to examine grows both with sample size and with the number of regressors.

Two alternative measures of influence are likelihood displacement values and LMAX values, and
both measure each subject’s influence on the coefficient vector as a whole. Thus, for each, you have
only one value per subject regardless of the number of regressors. As was the case with DFBETAs,
likelihood displacement and LMAX calculations are also based on efficient score residuals; see Methods
and formulas.

Likelihood displacement values measure influence by approximating what happens to the model
log likelihood (more precisely, twice the log likelihood) when you omit subject i. Formally, the
likelihood displacement value for subject i approximates the quantity

2
{

logL
(
β̂
)
− logL

(
β̂i

)}
where β̂ and β̂i are defined as previously and L(·) is the partial likelihood for the Cox model estimated
from all the data. In other words, when you calculate L(·), you use all the data, but you evaluate at
the parameter estimates β̂i obtained by omitting the ith subject. Note that because β̂ represents an
optimal solution, likelihood displacement values will always be nonnegative.

That likelihood displacements measure influence can be seen through the following logic: if subject
i is influential, then the vector β̂i will differ substantially from β̂. When that occurs, evaluating the
log likelihood at such a suboptimal solution will give you a very different log likelihood.

LMAX values are closely related to likelihood displacements and are derived from an eigensystem
analysis of the matrix of efficient score residuals; see Methods and formulas for details.

Both likelihood displacement and LMAX values measure each subject’s overall influence, but they
are not directly comparable with each other. Likelihood displacement values should be compared only
with other likelihood displacement values, and LMAX values only with other LMAX values.

138 stcox postestimation — Postestimation tools for stcox

Example 8: Likelihood displacement and LMAX values

You obtain likelihood displacement values with predict’s ldisplace option, and you obtain
LMAX values with the lmax option. Continuing from the previous example:

. predict ld, ldisplace

. predict lmax, lmax

. list _t0 _t _d ld lmax in 1/10

_t0 _t _d ld lmax

1. 0 1 1 .0059511 .0735375
2. 0 1 1 .032366 .1124505
3. 0 2 1 .0038388 .0686295
4. 0 3 1 .0481942 .0113989
5. 0 4 1 .0078195 .0331513

6. 0 4 1 .0019887 .0308102
7. 0 5 1 .0069245 .0614247
8. 0 5 1 .0051647 .0763283
9. 0 8 1 .0021315 .0353402

10. 0 8 0 .0116187 .1179539

We can plot the likelihood displacement values versus time and label the points by observation number:

. scatter ld studytime, mlabel(obs)

1

2

3

4

5
6

78 9

10
11

12

13
14

15

16

17 18

19

20

21

22

23

2425
26

27

28

29

3031

32

33

34

35
36

37

38

39

4041
4243 44

45

46

47 48

0
.0

5
.1

.1
5

.2
lo

g
−

lik
e

lih
o

o
d

 d
is

p
la

c
e

m
e

n
t

0 10 20 30 40
Months to death or end of exp.

The above shows subjects 16 and 46 to be somewhat influential. A plot of LMAX values will show
subject 16 as influential but not subject 46, a fact we leave to you to verify.

Schoenfeld residuals and scaled Schoenfeld residuals are most often used to test the proportional-
hazards assumption, as described in [ST] stcox PH-assumption tests.

stcox postestimation — Postestimation tools for stcox 139

Multiple records per subject

In the previous section, we analyzed data from a cancer study, and in doing so we were very loose
in differentiating “observations” versus “subjects”. In fact, we used both terms interchangeably. We
were able to get away with that because in that dataset each subject (patient) was represented by only
one observation—the subjects were the observations.

Oftentimes, however, subjects need representation by multiple observations, or records. For example,
if a patient leaves the study for some time only to return later, at least one additional record will be
needed to denote the subject’s return to the study and the gap in their history. If the covariates of
interest for a subject change during the study (for example, transitioning from smoking to nonsmoking),
then this will also require representation by multiple records.

Multiple records per subject are not a problem for Stata; you simply specify an id() variable
when stsetting your data, and this id() variable tells Stata which records belong to which subjects.
The other commands in Stata’s st suite know how to then incorporate this information into your
analysis.

For predict after stcox, by default Stata handles diagnostic measures as always being at the
subject level, regardless of whether that subject comprises one observation or multiple ones.

Example 9: Stanford heart transplant data

As an example, consider, as we did previously, data from the Stanford heart transplant study:

. use http://www.stata-press.com/data/r14/stan3, clear
(Heart transplant data)

. stset
-> stset t1, id(id) failure(died)

id: id
failure event: died != 0 & died < .

obs. time interval: (t1[_n-1], t1]
exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

31938.1 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 1799

140 stcox postestimation — Postestimation tools for stcox

. list id _t0 _t _d age posttran surgery year in 1/10

id _t0 _t _d age posttran surgery year

1. 1 0 50 1 30 0 0 67
2. 2 0 6 1 51 0 0 68
3. 3 0 1 0 54 0 0 68
4. 3 1 16 1 54 1 0 68
5. 4 0 36 0 40 0 0 68

6. 4 36 39 1 40 1 0 68
7. 5 0 18 1 20 0 0 68
8. 6 0 3 1 54 0 0 68
9. 7 0 51 0 50 0 0 68

10. 7 51 675 1 50 1 0 68

The data come to us already stset, and we type stset without arguments to examine the current
settings. We verify that the id variable has been set as the patient id. We also see that we have 172
records representing 103 subjects, implying multiple records for some subjects. From our listing, we
see that multiple records are necessary to accommodate changes in patients’ heart-transplant status
(pretransplant versus posttransplant).

Residuals and other diagnostic measures, where applicable, will by default take place at the subject
level, meaning that (for example) there will be 103 likelihood displacement values for detecting
influential subjects (not observations, but subjects).

. stcox age posttran surg year
(output omitted)

. predict ld, ldisplace
(69 missing values generated)

. list id _t0 _t _d age posttran surgery year ld in 1/10

id _t0 _t _d age posttran surgery year ld

1. 1 0 50 1 30 0 0 67 .0596877
2. 2 0 6 1 51 0 0 68 .0154667
3. 3 0 1 0 54 0 0 68 .
4. 3 1 16 1 54 1 0 68 .0298421
5. 4 0 36 0 40 0 0 68 .

6. 4 36 39 1 40 1 0 68 .0359712
7. 5 0 18 1 20 0 0 68 .1260891
8. 6 0 3 1 54 0 0 68 .0199614
9. 7 0 51 0 50 0 0 68 .

10. 7 51 675 1 50 1 0 68 .0659499

Because here we are not interested in predicting any baseline functions, it is perfectly safe to leave
age and year uncentered. The “(69 missing values generated)” message after predict tells us that
only 103 out of the 172 observations of ld were filled in; that is, we received only one likelihood
displacement per subject. Regardless of the current sorting of the data, the ld value for a subject is
stored in the last chronological record for that subject as determined by analysis time, t.

Patient 4 has two records in the data, one pretransplant and one posttransplant. As such, the ld
value for that patient is interpreted as the change in twice the log likelihood due to deletion of both
of these observations, that is, the deletion of patient 4 from the study. The interpretation is at the
patient level, not the record level.

stcox postestimation — Postestimation tools for stcox 141

If, instead, you want likelihood displacement values that you can interpret at the observation level
(that is, changes in twice the log likelihood due to deleting one record), you simply add the partial
option to the predict command above:

. predict ld, ldisplace partial

We do not think these kinds of observation-level diagnostics are generally what you would want, but
they are available.

In the above, we discussed likelihood displacement values, but the same issue concerning subject-
level versus observation-level interpretation also exists with Cox–Snell residuals, martingale residuals,
deviance residuals, efficient score residuals, LMAX values, and DFBETAs. Regardless of which diagnostic
you examine, this issue of interpretation is the same.

There is one situation where you do want to use the partial option. If you are using martingale
residuals to determine functional form and the variable you are thinking of adding varies within
subject, then you want to graph the partial martingale residuals against that new variable. Because
the variable changes within subject, the martingale residuals should also change accordingly.

Predictions after stcox with the tvc() option

The residuals and diagnostics discussed previously are not available after estimation with stcox
with the tvc() option, which is a convenience option for handling time-varying covariates:

. use http://www.stata-press.com/data/r14/drugtr, clear
(Patient Survival in Drug Trial)

. stcox drug age, tvc(age) nolog

failure _d: died
analysis time _t: studytime

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(3) = 33.63
Log likelihood = -83.095036 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

main
drug .1059862 .0478178 -4.97 0.000 .0437737 .2566171
age 1.156977 .07018 2.40 0.016 1.027288 1.303037

tvc
age .9970966 .0042415 -0.68 0.494 .988818 1.005445

Note: Variables in tvc equation interacted with _t.

. predict dev, deviance
this prediction is not allowed after estimation with tvc();
see tvc note for an alternative to the tvc() option
r(198);

The above fits a Cox model to the cancer data and includes an interaction of age with analysis
time, t. Such interactions are useful for testing the proportional-hazards assumption: significant
interactions are violations of the proportional-hazards assumption for the variable being interacted
with analysis time (or some function of analysis time). That is not the situation here.

142 stcox postestimation — Postestimation tools for stcox

In any case, models with tvc() interactions do not allow predicting the residuals and diagnostics
discussed thus far. The solution in such situations is to forgo the use of tvc(), expand the data, and
use factor variables to specify the interaction:

. generate id = _n

. streset, id(id)
(output omitted)

. stsplit, at(failures)
(21 failure times)
(534 observations (episodes) created)

. stcox drug age c.age#c._t, nolog

failure _d: died
analysis time _t: studytime

id: id

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 582
No. of failures = 31
Time at risk = 744

LR chi2(3) = 33.63
Log likelihood = -83.095036 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1059862 .0478178 -4.97 0.000 .0437737 .2566171
age 1.156977 .07018 2.40 0.016 1.027288 1.303037

c.age#c._t .9970966 .0042415 -0.68 0.494 .988818 1.005445

. predict dev, deviance
(534 missing values generated)

. summarize dev

Variable Obs Mean Std. Dev. Min Max

dev 48 .0658485 1.020993 -1.804876 2.065424

We split the observations, currently one per subject, so that the interaction term is allowed to vary
over time. Splitting the observations requires that we first establish a subject id variable. Once that
is done, we split the observations with stsplit and the at(failures) option, which splits the
records only at the observed failure times. This amount of splitting is the minimal amount required to
reproduce our previous Cox model. We then include the interaction term c.age#c. t in our model,
verify that our Cox model is the same as before, and obtain our 48 deviance residuals, one for each
subject.

Predictions after stcox with the shared() option

A Cox shared frailty model is a Cox model with added group-level random effects such that

hij(t) = h0(t) exp(xijβ+ νi)

with νi representing the added effect due to being in group i; see Cox regression with shared frailty
in [ST] stcox for more details. You fit this kind of model by specifying the shared(varname) option
with stcox, where varname identifies the groups. stcox will produce an estimate of β, its covariance
matrix, and an estimate of the variance of the νi. What it will not produce are estimates of the νi
themselves. These you can obtain postestimation with predict.

stcox postestimation — Postestimation tools for stcox 143

Example 10: Shared frailty models

In example 10 of [ST] stcox, we fit a shared frailty model to data from 38 kidney dialysis patients,
measuring the time to infection at the catheter insertion point. Two recurrence times (in days) were
measured for each patient.

The estimated νi are not displayed in the stcox coefficient table but may be retrieved postestimation
by using predict with the effects option:

. use http://www.stata-press.com/data/r14/catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. qui stcox age female, shared(patient)

. predict nu, effects

. sort nu

. list patient nu in 1/2

patient nu

1. 21 -2.448707
2. 21 -2.448707

. list patient nu in 75/L

patient nu

75. 7 .5187159
76. 7 .5187159

From the results above, we estimate that the least frail patient is patient 21, with ν̂21 = −2.45,
and that the frailest patient is patient 7, with ν̂7 = 0.52.

Technical note
When used with shared-frailty models, predict’s basehc, basesurv, and basechazard options

produce estimates of baseline quantities that are based on the last-step penalized Cox model fit.
Therefore, the term baseline means that not only are the covariates set to 0 but the νi are as well.

Other predictions, such as martingale residuals, are conditional on the estimated frailty variance being
fixed and known at the onset.

estat concordance
estat concordance calculates the concordance probability, which is defined as the probability

that predictions and outcomes are concordant. estat concordance provides two measures of the
concordance probability: Harrell’s C and Gönen and Heller’s K concordance coefficients. Harrell’s
C, which is defined as the proportion of all usable subject pairs in which the predictions and outcomes
are concordant, is computed by default. Gönen and Heller (2005) propose an alternative measure of
concordance, computed when the gheller option is specified, that is not sensitive to the degree of
censoring, unlike Harrell’s C coefficient. This estimator is not dependent on the observed event or
the censoring time and is a function of only the regression parameters and the covariate distribution,
which leads to the asymptotic unbiasedness. estat concordance also reports the Somers’s D rank
correlation, which is derived by calculating 2C − 1 for Harrell’s C and 2K − 1 for Gönen and
Heller’s K.

144 stcox postestimation — Postestimation tools for stcox

estat concordance may not be used after a Cox regression model with time-varying covariates
and may not be applied to weighted data or to data with delayed entries. The computation of
Gönen and Heller’s K coefficient is not supported for shared-frailty models, stratified estimation, or
multiple-record data.

Example 11: Harrell’s C

Using our cancer data, we wish to evaluate the predictive value of the measurement of drug and
age. After fitting a Cox regression model, we use estat concordance to calculate Harrell’s C
index.

. use http://www.stata-press.com/data/r14/drugtr, clear
(Patient Survival in Drug Trial)

. stcox drug age

failure _d: died
analysis time _t: studytime

Iteration 0: log likelihood = -99.911448
Iteration 1: log likelihood = -83.551879
Iteration 2: log likelihood = -83.324009
Iteration 3: log likelihood = -83.323546
Refining estimates:
Iteration 0: log likelihood = -83.323546

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

. estat concordance, noshow

Harrell’s C concordance statistic

Number of subjects (N) = 48
Number of comparison pairs (P) = 849
Number of orderings as expected (E) = 679
Number of tied predictions (T) = 15

Harrell’s C = (E + T/2) / P = 0.8086
Somers’ D = 0.6172

The result of stcox shows that the drug results in a lower hazard and therefore a longer survival
time, controlling for age and older patients being more likely to die. The value of Harrell’s C is
0.8086, which indicates that we can correctly order survival times for pairs of patients 81% of the
time on the basis of measurement of drug and age. See Methods and formulas for the full definition
of concordance.

stcox postestimation — Postestimation tools for stcox 145

Technical note
estat concordance does not work after a Cox regression model with time-varying covariates.

When the covariates are varying with time, the prognostic score, PS = xβ, will not capture or
condense the information in given measurements, in which case it does not make sense to calculate
the rank correlation between PS and survival time.

Example 12: Gönen and Heller’s K

Alternatively, we can obtain Gönen and Heller’s estimate of the concordance probability, K. To
do so, we specify the gheller option with estat concordance:

. estat concordance, noshow gheller

Gonen and Heller’s K concordance statistic

Number of subjects (N) = 48

Gonen and Heller’s K = 0.7748
Somers’ D = 0.5496

Gönen and Heller’s concordance coefficient may be preferred to Harrell’s C when censoring is
present because Harrell’s C can be biased. Because 17 of our 48 subjects are censored, we prefer
Gönen and Heller’s concordance to Harrell’s C.

Stored results
estat concordance stores the following in r():

Scalars
r(N) number of observations r(K) Gönen and Heller’s K coefficient
r(n P) number of comparison pairs r(K s) smoothed Gönen and Heller’s K

coefficient
r(n E) number of orderings as expected r(K s se) standard error of the smoothed K

coefficient
r(n T) number of tied predictions r(D) Somers’s D coefficient for Harrell’s C
r(C) Harrell’s C coefficient r(D K) Somers’s D coefficient for Gönen and

Heller’s K

r(n P), r(n E), and r(n T) are returned only when strata are not specified.

Methods and formulas
Let xi be the row vector of covariates for the time interval (t0i, ti] for the ith observation in

the dataset (i = 1, . . . , N). The Cox partial log-likelihood function, using the default Peto–Breslow
method for tied failures is

logLbreslow =

D∑
j=1

∑
i∈Dj

wi(xiβ+ offseti)− wi log

∑
`∈Rj

w` exp(x`β+ offset`)




where j indexes the ordered failure times tj (j = 1, . . . , D), Dj is the set of dj observations that
fail at tj , dj is the number of failures at tj , and Rj is the set of observations k that are at risk at
time tj (that is, all k such that t0k < tj ≤ tk). wi and offseti are, respectively, the weight and linear
offset for observation i, if specified.

146 stcox postestimation — Postestimation tools for stcox

If the Efron method for ties is specified at estimation, the partial log likelihood is

logLefron =

D∑
j=1

∑
i∈Dj

xiβ+ offseti − d−1
j

dj−1∑
k=0

log

∑
`∈Rj

exp(x`β+ offset`)− kAj




for Aj = d−1
j

∑
`∈Dj exp(x`β+ offset`). Weights are not supported with the Efron method.

At estimation, Stata also supports the exact marginal and exact partial methods for handling ties,
but only the Peto–Breslow and Efron methods are supported in regard to the calculation of residuals,
diagnostics, and other predictions. As such, only the partial log-likelihood formulas for those two
methods are presented above, for easier reference in what follows.

If you specified efron at estimation, all predictions are carried out using the Efron method; that is,
the handling of tied failures is done analogously to the way it was done when calculating logLefron.
If you specified breslow (or nothing, because breslow is the default), exactm, or exactp, all
predictions are carried out using the Peto–Breslow method. That is not to say that if you specify
exactm at estimation, your predictions will be the same as if you had specified breslow. The
formulas used will be the same, but the parameter estimates at which they are evaluated will differ
because those were based on different ways of handling ties.

Define zi = xiβ̂ + offseti. Schoenfeld residuals for the pth variable using the Peto–Breslow
method are given by

rSpi = δi (xpi − api)

where

api =

∑
`∈Ri w`xp` exp(z`)∑
`∈Ri w` exp(z`)

δi indicates failure for observation i, and xpi is the pth element of xi. For the Efron method,
Schoenfeld residuals are

rSpi = δi (xpi − bpi)

where

bpi = d−1
i

di−1∑
k=0

∑
`∈Ri xp` exp(z`)− kd−1

i

∑
`∈Di xp` exp(z`)∑

`∈Ri exp(z`)− kd−1
i

∑
`∈Di exp(z`)

Schoenfeld residuals are derived from the first derivative of the log likelihood, with

∂ logL

∂βp

∣∣∣∣
β̂

=

N∑
i=1

rSpi = 0

and only those observations that fail (δi = 1) contribute a Schoenfeld residual to the derivative.

For censored observations, Stata stores a missing value for the Schoenfeld residual even though the
above implies a value of 0. This is to emphasize that no calculation takes place when the observation
is censored.

Scaled Schoenfeld residuals are given by

r∗Si = β̂+ d Var(β̂)rSi

where rSi = (rS1i
, . . . , rSmi)

′, m is the number of regressors, and d is the total number of failures.

stcox postestimation — Postestimation tools for stcox 147

In what follows, we assume the Peto–Breslow method for handling ties. Formulas for the Efron
method, while tedious, can be obtained by applying similar principles of averaging across risk sets,
as demonstrated above with Schoenfeld residuals.

Efficient score residuals are obtained by

rEpi = rSpi − exp(zi)
∑

j:t0i<tj≤ti

δjwj(xpi − apj)∑
`∈Rj w` exp(z`)

Like Schoenfeld residuals, efficient score residuals are also additive components of the first derivative
of the log likelihood. Whereas Schoenfeld residuals are the contributions of each failure, efficient
score residuals are the contributions of each observation. Censored observations contribute to the log
likelihood (and its derivative) because they belong to risk sets at times when other observations fail. As
such, an observation’s contribution is twofold: 1) If the observation ends in failure, a risk assessment
is triggered, that is, a term in the log likelihood is computed. 2) Whether failed or censored, an
observation contributes to risk sets for other observations that do fail. Efficient score residuals reflect
both contributions.

The above computes efficient score residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the efficient score residual for a given subject
is calculated by summing the efficient scores over the observations within that subject.

Martingale residuals are

rMi
= δi − exp(zi)

∑
j:t0i<tj≤ti

wjδj∑
`∈Rj w` exp(z`)

The above computes martingale residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the martingale residual for a given subject
is calculated by summing rMi over the observations within that subject.

Martingale residuals are in the range (−∞, 1). Deviance residuals are transformations of martingale
residuals designed to have a distribution that is more symmetric about zero. Deviance residuals are
calculated using

rDi = sign(rMi
)

[
− 2 {rMi

+ δi log(δi − rMi
)}
]1/2

These residuals are expected to be symmetric about zero but do not necessarily sum to zero.

The above computes deviance residuals at the observation level. If you have multiple records per
subject and do not specify the partial option, then the deviance residual for a given subject is
calculated by applying the above transformation to the subject-level martingale residual.

The estimated baseline hazard contribution is obtained at each failure time as hj = 1− α̂j , where
α̂j is the solution to

∑
k∈Dj

exp(zk)

1− α̂ exp(zk)
j

=
∑
`∈Rj

exp(z`)

(Kalbfleisch and Prentice 2002, eq. 4.34, 115).

148 stcox postestimation — Postestimation tools for stcox

The estimated baseline survivor function is

Ŝ0(t) =
∏
j:tj≤t

α̂j

When estimated with no covariates, Ŝ0(t) is the Kaplan–Meier estimate of the survivor function.

The estimated baseline cumulative hazard function, if requested, is related to the baseline survivor
function calculation, yet the values of α̂j are set at their starting values and are not iterated.
Equivalently,

Ĥ0(t) =
∑
j:tj≤t

dj∑
`∈Rj exp(z`)

When estimated with no covariates, Ĥ0(t) is the Nelson–Aalen estimate of the cumulative hazard.

Cox–Snell residuals are calculated with

rCi = δi − rMi

where rMi
are the martingale residuals. Equivalently, Cox–Snell residuals can be obtained with

rCi = exp(zi)Ĥ0(ti)

The above computes Cox–Snell residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the Cox–Snell residual for a given subject
is calculated by summing rCi over the observations within that subject.

DFBETAs are calculated with
DFBETAi = rEiṼar(β̂)

where rEi = (rE1i , . . . , rEmi) is a row vector of efficient score residuals with one entry for each
regressor, and Ṽar(β̂) is the model-based variance matrix of β̂.

Likelihood displacement values are calculated with

LDi = rEiVar(β̂)r′Ei

(Collett 2003, 136). In both of the above, rEi can represent either one observation or, in multiple-
record data, the cumulative efficient score for an entire subject. For the former, the interpretation is
that due to deletion of one record; for the latter, the interpretation is that due to deletion of all of a
subject’s records.

Following Collett (2003, 137), LMAX values are obtained from an eigensystem analysis of

B = Θ Var(β̂) Θ′

where Θ is the N ×m matrix of efficient score residuals, with element (i, j) representing the jth
regressor and the ith observation (or subject). LMAX values are then the absolute values of the elements
of the unit-length eigenvector associated with the largest eigenvalue of the N ×N matrix B.

stcox postestimation — Postestimation tools for stcox 149

For shared-frailty models, the data are organized into G groups, with the ith group consisting of
ni observations, i = 1, . . . , G. From Therneau and Grambsch (2000, 253–255), for fixed θ, estimates
of β and ν1, . . . , νG are obtained by maximizing

logL(θ) = logLCox(β, ν1, . . . , νG) +

G∑
i=1

[
1

θ
{νi − exp(νi)}+

(
1

θ
+Di

){
1− log

(
1

θ
+Di

)}
− log θ

θ
+ log Γ

(
1

θ
+Di

)
− log Γ

(
1

θ

)]
where Di is the number of death events in group i, and logLCox(β, ν1, . . . , νG) is the standard Cox
partial log likelihood, with the νi treated as the coefficients of indicator variables identifying the
groups. That is, the jth observation in the ith group has log relative-hazard xijβ+ νi.

You obtain the estimates of ν1, . . . , νG with predict’s effects option after stcox, shared().

estat concordance
Harrell’s C was proposed by Harrell et al. (1982) and was developed to evaluate the results

of a medical test. The C index is defined as the proportion of all usable subject pairs in which
the predictions and outcomes are concordant. The C index may be applied to ordinary continuous
outcomes, dichotomous diagnostic outcomes, ordinal outcomes, and censored time-until-event response
variables.

In predicting the time until death, C is calculated by considering all comparable patient pairs. A
pair of patients is comparable if either 1) the two have different values on the time variable, and
the one with the lowest value presents a failure, or 2) the two have the same value on the time
variable, and exactly one of them presents a failure. If the predicted survival time is larger for the
patient who lived longer, the predictions for the pair are said to be concordant with the outcomes.
From Fibrinogen Studies Collaboration (2009), Harrell’s C is defined as

∑
k(Ek +Tk/2)/

∑
k(Dk),

where Dk is the total number of pairs usable for comparison in stratum k, Ek is the number of pairs
for which the predictions are concordant with the outcomes and the predictions are not identical in
stratum k, and Tk is the number of usable pairs for which the predictions are identical in stratum k.
If there are no strata specified, then the formula for Harrell’s C reduces to (E + T/2)/D.

For a Cox proportional hazards model, the probability that the patient survives past time t is given
by S0(t) raised to the exp(xβ) power, where S0(t) is the baseline survivor function, x denotes a set
of measurements for the patient, and β is the vector of coefficients. A Cox regression model is fit by
the stcox command. The hazard ratio, exp(xβ), is obtained by predict after stcox. Because the
predicted survival time and the predicted survivor function are one-to-one functions of each other,
the predicted survivor function can be used to calculate C instead of the predicted survival time. The
predicted survivor function decreases when the predicted hazard ratio increases; therefore, Harrell’s
C can be calculated by computing E, T , and D, based on the observed outcomes and the predicted
hazard ratios.

C takes a value between 0 and 1. A value of 0.5 indicates no predictive discrimination, and values
of 0 or 1.0 indicate perfect separation of subjects with different outcomes. See Harrell, Lee, and
Mark (1996) for more details. Somers’s D rank correlation is calculated by 2C−1; see Newson (2002)
for a discussion of Somers’s D.

In the presence of censoring, Harrell’s C coefficient tends to be biased. An alternative measure
of concordance that is asymptotically unbiased with censored data was proposed by Gönen and
Heller (2005). This estimator does not depend on observed time directly and is a function of only
the regression parameters and the covariate distribution, which leads to its asymptotic unbiasedness
and thus robustness to the degree of censoring.

150 stcox postestimation — Postestimation tools for stcox

Let ∆xij be the pairwise difference xi − xj . Then Gönen and Heller’s concordance probability
estimator is given by

K ≡ KN (β̂) =
2

N(N − 1)

∑
i<j

∑{
I(∆xjiβ̂ ≤ 0)

1 + exp(∆xjiβ̂)
+

I(∆xijβ̂ < 0)

1 + exp(∆xijβ̂)

}
(1)

where I(·) is the indicator function. Somers’s D rank correlation is calculated by 2K − 1.

The concordance probability estimator (1) involves indicator functions and thus is a nonsmooth
function for which the asymptotic standard error cannot be computed directly. To obtain the standard
error, a smooth approximation to this estimator is considered:

K̃ ≡ K̃N (β̂) =
2

N(N − 1)

∑
i<j

∑{
Φ(−∆xjiβ̂/h)

1 + exp(∆xjiβ̂)
+

Φ(−∆xijβ̂/h)

1 + exp(∆xijβ̂)

}
(2)

where Φ(·) is a standard normal distribution function, h = 0.5σ̂N−1/3 is a smoothing bandwidth,
and σ̂ is the estimated standard deviation of the subject-specific linear predictors xiβ̂.

The asymptotic standard error is then computed using a first-order Taylor series expansion of (2)
around the true parameter β; see Gönen and Heller (2005) for computational details.

References
Cefalu, M. S. 2011. Pointwise confidence intervals for the covariate-adjusted survivor function in the Cox model.

Stata Journal 11: 64–81.

Collett, D. 2003. Modelling Survival Data in Medical Research. 2nd ed. London: Chapman & Hall/CRC.

Fibrinogen Studies Collaboration. 2009. Measures to assess the prognostic ability of the stratified Cox proportional
hazards model. Statistics in Medicine 28: 389–411.

Gönen, M., and G. Heller. 2005. Concordance probability and discriminatory power in proportional hazards regression.
Biometrika 92: 965–970.

Harrell, F. E., Jr., R. M. Califf, D. B. Pryor, K. L. Lee, and R. A. Rosati. 1982. Evaluating the yield of medical
tests. Journal of the American Medical Association 247: 2543–2546.

Harrell, F. E., Jr., K. L. Lee, and D. B. Mark. 1996. Multivariable prognostic models: Issues in developing models,
evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 15: 361–387.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

Klein, J. P., and M. L. Moeschberger. 2003. Survival Analysis: Techniques for Censored and Truncated Data. 2nd
ed. New York: Springer.

Mansuy, R. 2009. The origins of the word “martingale”. Electronic Journal for History of Probability and Statistics
5: 1–10. http://www.jehps.net/juin2009/Mansuy.pdf.

Mazliak, L., and G. Shafer. 2009. The splendors and miseries of martingales. Electronic Journal for History of
Probability and Statistics 5: 1–5. http://www.jehps.net/juin2009/MazliakShafer.pdf.

Newson, R. B. 2002. Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’ D and median differences.
Stata Journal 2: 45–64.

. 2006. Confidence intervals for rank statistics: Somers’ D and extensions. Stata Journal 6: 309–334.

. 2010. Comparing the predictive powers of survival models using Harrell’s C or Somers’ D. Stata Journal 10:
339–358.

Rogers, W. H. 1994. ssa4: Ex post tests and diagnostics for a proportional hazards model. Stata Technical Bulletin
19: 23–27. Reprinted in Stata Technical Bulletin Reprints, vol. 4, pp. 186–191. College Station, TX: Stata Press.

Schoenfeld, D. A. 1982. Partial residuals for the proportional hazards regression model. Biometrika 69: 239–241.

http://www.stata-journal.com/sjpdf.html?articlenum=st0217
http://www.jehps.net/juin2009/Mansuy.pdf
http://www.jehps.net/juin2009/MazliakShafer.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=st0007
http://www.stata-journal.com/sjpdf.html?articlenum=snp15_6
http://www.stata-journal.com/sjpdf.html?articlenum=st0198
http://www.stata.com/products/stb/journals/stb19.pdf

stcox postestimation — Postestimation tools for stcox 151

Schwartzman, S. 1994. The Words of Mathematics: An Etymological Dictionary of Mathematical Terms Used in
English. Washington, DC: Mathematical Association of America.

Therneau, T. M., and P. M. Grambsch. 2000. Modeling Survival Data: Extending the Cox Model. New York: Springer.

Also see
[ST] stcox — Cox proportional hazards model

[ST] stcox PH-assumption tests — Tests of proportional-hazards assumption

[ST] stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[U] 20 Estimation and postestimation commands

Title

stcrreg — Competing-risks regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
stcrreg fits, via maximum likelihood, competing-risks regression models on st data, according

to the method of Fine and Gray (1999). Competing-risks regression posits a model for the subhazard
function of a failure event of primary interest. In the presence of competing failure events that impede
the event of interest, a standard analysis using Cox regression (see [ST] stcox) is able to produce
incidence-rate curves that either 1) are appropriate only for a hypothetical universe where competing
events do not occur or 2) are appropriate for the data at hand, yet the effects of covariates on these
curves are not easily quantified. Competing-risks regression, as performed using stcrreg, provides
an alternative model that can produce incidence curves that represent the observed data and for which
describing covariate effects is straightforward.

stcrreg can be used with single- or multiple-record data. stcrreg cannot be used when you
have multiple failures per subject.

Quick start
Competing-risks regression with covariates x1 and x2 and competing event defined by fvar = 2

using data that are stset with failure fvar = 1
stcrreg x1 x2, compete(fvar==2)

As above, but report coefficients instead of subhazard ratios
stcrreg x1 x2, compete(fvar==2) noshr

With cluster–robust standard errors for clustering by levels of cvar
stcrreg x1 x2, compete(fvar==2) vce(cluster cvar)

Competing events defined by fvar = 2, fvar = 3, and fvar = 4
stcrreg x1 x2, compete(fvar==2 3 4)

Specify indicator variable compvar identifying competing events
stcrreg x1 x2, compete(compvar)

Menu
Statistics > Survival analysis > Regression models > Competing-risks regression

152

stcrreg — Competing-risks regression 153

Syntax
stcrreg

[
varlist

] [
if
] [

in
]
, compete(crvar[==numlist])

[
options

]
options Description

Model
∗compete(crvar[==numlist]) specify competing-risks event(s)
tvc(tvarlist) time-varying covariates
texp(exp) multiplier for time-varying covariates; default is texp(t)

offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap,
or jackknife

noadjust do not use standard degree-of-freedom adjustment

Reporting

level(#) set confidence level; default is level(95)

noshr report coefficients, not subhazard ratios
noshow do not show st setting information
noheader suppress header from coefficient table
notable suppress coefficient table
nodisplay suppress output; iteration log is still displayed
nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗compete(crvar[==numlist]) is required.
You must stset your data before using stcrreg; see [ST] stset.
varlist and tvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, fp, jackknife, mfp, mi estimate, nestreg, statsby, and stepwise are allowed; see

[U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see [ST] stset. In multiple-record data, weights

are applied to subjects as a whole, not to individual observations. iweights are treated as fweights that can be
noninteger, but not negative.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

154 stcrreg — Competing-risks regression

Options

� � �
Model �

compete(crvar[==numlist]) is required and specifies the events that are associated with failure due
to competing risks.

If compete(crvar) is specified, crvar is interpreted as an indicator variable; any nonzero, nonmissing
values are interpreted as representing competing events.

If compete(crvar==numlist) is specified, records with crvar taking on any of the values in numlist
are assumed to be competing events.

The syntax for compete() is the same as that for stset’s failure() option. Use stset,
failure() to specify the failure event of interest, that is, the failure event you wish to model
using stcox, streg, stcrreg, or whatever. Use stcrreg, compete() to specify the event or
events that compete with the failure event of interest. Competing events, because they are not the
failure event of primary interest, must be stset as censored.

If you have multiple records per subject, only the value of crvar for the last chronological record
for each subject is used to determine the event type for that subject.

tvc(tvarlist) specifies those variables that vary continuously with respect to time, that is, time-varying
covariates. These variables are multiplied by the function of time specified in texp().

texp(exp) is used in conjunction with tvc(tvarlist) to specify the function of analysis time that
should be multiplied by the time-varying covariates. For example, specifying texp(ln(t))
would cause the time-varying covariates to be multiplied by the logarithm of analysis time. If
tvc(tvarlist) is used without texp(exp), Stata understands that you mean texp(t), and thus
multiplies the time-varying covariates by the analysis time.

Both tvc(tvarlist) and texp(exp) are explained more in Option tvc() and testing the proportional-
subhazards assumption below.

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option. vce(robust)
is the default in single-record-per-subject st data. For multiple-record st data, vce(cluster idvar)
is the default, where idvar is the ID variable previously stset.

Standard Hessian-based standard errors—vcetype oim—are not statistically appropriate for this
model and thus are not allowed.

noadjust is for use with vce(robust) or vce(cluster clustvar). noadjust prevents the estimated
variance matrix from being multiplied by N/(N − 1) or g/(g − 1), where g is the number of
clusters. The default adjustment is somewhat arbitrary because it is not always clear how to count
observations or clusters. In such cases, however, the adjustment is likely to be biased toward 1,
so we would still recommend making it.

� � �
Reporting �

level(#); see [R] estimation options.

noshr specifies that coefficients be displayed rather than exponentiated coefficients or subhazard
ratios. This option affects only how results are displayed and not how they are estimated. noshr

stcrreg — Competing-risks regression 155

may be specified at estimation time or when redisplaying previously estimated results (which you
do by typing stcrreg without a variable list).

noshow prevents stcrreg from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

noheader suppresses the header information from the output. The coefficient table is still displayed.
noheader may be specified at estimation time or when redisplaying previously estimated results.

notable suppresses the table of coefficients from the output. The header information is still displayed.
notable may be specified at estimation time or when redisplaying previously estimated results.

nodisplay suppresses the output. The iteration log is still displayed.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with stcrreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
This section provides a summary of what can be done with stcrreg. For a more general tutorial

on competing-risks analysis, see Cleves, Gould, and Marchenko (2016, chap. 17).

Remarks are presented under the following headings:

The case for competing-risks regression
Using stcrreg
Multiple competing-event types
stcrreg as an alternative to stcox
Multiple records per subject
Option tvc() and testing the proportional-subhazards assumption

The case for competing-risks regression

In this section, we provide a brief history and literature review of competing-risks analysis, and
provide the motivation behind the stcrreg model. If you know you want to use stcrreg and are
anxious to get started, you can safely skip this section.

Based on the method of Fine and Gray (1999), competing-risks regression provides a useful
alternative to Cox regression (Cox 1972) for survival data in the presence of competing risks.
Consider the usual survival analysis where one measures time-to-failure as a function of experimental
or observed factors. For example, we may be interested in measuring time from initial treatment to
recurrence of breast cancer in relation to factors such as treatment type and smoking status. The term

156 stcrreg — Competing-risks regression

competing risk refers to the chance that instead of cancer recurrence, you will observe a competing
event, for example, death. The competing event, death, impedes the occurrence of the event of interest,
breast cancer. This is not to be confused with the usual right-censoring found in survival data, such
as censoring due to loss to follow-up. When subjects are lost to follow-up, they are still considered
at risk of recurrent breast cancer—it is just that the researcher is not in a position to record the
precise time that it happens. In contrast, death is a permanent condition that prevents future breast
cancer. While censoring merely obstructs you from observing the event of interest, a competing event
prevents the event of interest from occurring altogether. Because competing events are distinct from
standard censorings, a competing-risks analysis requires some new methodology and some caution
when interpreting the results from the old methodology.

Putter, Fiocco, and Geskus (2007) and Gichangi and Vach (2005) provide excellent tutorials covering
the problem of competing risks, nonparametric estimators and tests, competing-risks regression, and
the more general multistate models. Textbook treatments of competing-risks analysis can be found
within Andersen et al. (1993), Klein and Moeschberger (2003), Therneau and Grambsch (2000), and
Marubini and Valsecchi (1997). The texts by Crowder (2001) and Pintilie (2006) are devoted entirely
to the topic. In what follows, we assume that you are familiar with the basic concepts of survival
analysis, for example, hazard functions and Kaplan–Meier curves. For such an introduction to survival
analysis aimed at Stata users, see Cleves, Gould, and Marchenko (2016).

Without loss of generality, assume a situation where there is only one event that competes with the
failure event of interest. Before analyzing the problem posed by competing-risks data—the problem
stcrreg proposes to solve—we first formalize the mechanism behind it. Ignoring censoring for
the moment, recording a failure time in a competing-risks scenario can be represented as observing
the minimum of two potential failure times: the time to the event of interest, T1, and the time to
the competing event, T2. The problem of competing risks then becomes one of understanding the
nature of the bivariate distribution of (T1, T2), and in particular the correlation therein. Although
conceptually simple, unfortunately this joint distribution cannot be identified by the data (Pepe and
Mori 1993; Tsiatis 1975; Gail 1975). If you get to observe only the minimum, you are getting only
half the picture.

An alternate representation of the competing-risks scenario that relies on quantities that are data-
identifiable is described by Beyersman et al. (2009). In that formulation, we consider the hazard for
the event of interest, h1(t), and that for the competing event, h2(t). Both hazards can be estimated
from available data and when combined form a total hazard that any event will occur equal to
h(t) = h1(t) + h2(t). As risk accumulates according to h(t), event times T are observed. Whether
these events turn out to be failures of interest (type 1) or competing events (type 2) is determined by
the two component hazards at that precise time. The event will be a failure of interest with probability
h1(T)/{h1(T) + h2(T)}, or a competing event with probability one minus that.

Instead of focusing on the survivor function for the event of interest, P (T > t and event type 1),
when competing risks are present you want to focus on the failure function, P (T ≤ t and event type 1),
also known as the cumulative incidence function (CIF). That is because you will not know what type
of event will occur until after it has occurred. It makes more sense to ask “What is the probability
of breast cancer within 5 months?” than to ask “What is probability that nothing happens before 5
months, and that when something does happen, it will be breast cancer and not death?”

Much of the literature on competing risks focuses on the inadequacy of the Kaplan–Meier (1958)
estimator (which we refer to as KM) as a measure of prevalence for the event of interest. Among
others, Gooley et al. (1999) point out that 1−KM is a biased estimate of the CIF. The bias results from
KM treating competing events as if they were censored. That is, subjects that experience competing
events are treated as if they could later experience the event of interest, even though that is impossible.
Although you could interpret 1−KM as the probability of a type 1 failure in a hypothetical setting
where type 2 failures do not occur, this requires you to assume that h1(t) remains unchanged given

stcrreg — Competing-risks regression 157

that h2(t) = 0, a rather strong and untestable assumption. Regardless of whether the independence
assumption holds, 1−KM is still not representative of the data at hand, under which competing events
do take place.

As such, 1−KM should be rejected in favor of the cumulative incidence estimator of the CIF; see
Coviello and Boggess (2004) for a Stata-specific presentation. The cumulative incidence estimator is
superior to 1−KM because it acknowledges that cumulative incidence is a function of both cause-specific
hazards, h1(t) and h2(t). Conversely, 1−KM treats the CIF as a function solely of h1(t).

When you have covariates, you can use stcox to perform regression on h1(t) by treating failures
of type 2 as censored, on h2(t) by treating failures of type 1 as censored, or on h1(t) and h2(t)
simultaneously by using the method of data duplication described by Lunn and McNeil (1995) and
Cleves (1999). Because cause-specific hazards are identified by the data, all three of the above analyses
are suitable for estimating how covariates affect the mechanism behind a given type of failure. For
example, if you are interested in how smoking affects breast cancer in general terms (competing
death notwithstanding), then a Cox model for h1(t) that treats death as censored is perfectly valid;
see Pintilie (2007).

If you are interested in the incidence of breast cancer, however, you want to use a Cox model that
models both h1(t) and h2(t), because the CIF for breast cancer will likely depend on both. Based on
the fitted model, you will have a hard time spotting the effects of covariates on cumulative incidence,
because the covariates can affect h1(t) and h2(t) differently, and the CIF is a nonlinear function of
these effects and of the baseline hazards. Whether increasing a covariate increases or decreases the
cumulative incidence depends on time and on the nominal value of that covariate, as well as on the
values of the other covariates. There is no way to determine the full effects of the covariates by just
looking at the model coefficients. You would have to estimate and graph the CIF for various sets of
covariate values, and this requires a bit of programming; see example 4.

An alternative model for the CIF that does make it easy to see the effects of covariates is that due
to Fine and Gray (1999). They specify a model for the hazard of the subdistribution (Gray 1988),
formally defined for failure type 1 as

h1(t) = limδ→0

{
P (t < T ≤ t+ δ and event type 1) | T > t or (T ≤ t and not event type 1)

δ

}
Less formally, think of this hazard as that which generates failure events of interest while keeping
subjects who experience competing events “at risk” so that they can be adequately counted as not
having any chance of failing. The advantage of modeling the subdistribution hazard, or subhazard, is
that you can readily calculate the CIF from it;

CIF1(t) = 1− exp{−H1(t)}

where H1(t) =
∫ t

0
h1(t)dt is the cumulative subhazard.

Competing-risks regression performed in this manner using stcrreg is quite similar to Cox
regression performed using stcox. The model is semiparametric in that the baseline subhazard
h1,0(t) (that for covariates set to zero) is left unspecified, while the effects of the covariates x are
assumed to be proportional:

h1(t|x) = h1,0(t) exp(xβ)

Estimation with stcrreg will produce estimates of β, or exponentiated coefficients known as subhazard
ratios. A positive (negative) coefficient means that the effect of increasing that covariate is to increase
(decrease) the subhazard and thus increase (decrease) the CIF across the board.

158 stcrreg — Competing-risks regression

Estimates of the baseline cumulative subhazard and of the baseline CIF are available via predict after
stcrreg; see [ST] stcrreg postestimation. Because proportionality holds for cumulative subhazards
as well, adjusting the baseline cumulative hazard and baseline CIF for a given set of covariate values
is quite easy and, in fact, done automatically for you by stcurve; see [ST] stcurve.

Using stcrreg

If you have used stcox before, stcrreg will look very familiar.

Example 1: Cervical cancer study

Pintilie (2006, sec. 1.6.2) describes data from 109 cervical cancer patients that were treated at a
cancer center between 1994 and 2000. The patients were treated and then the time in years until
relapse or loss to follow-up was recorded. Relapses were recorded as either “local” if cancer relapsed
in the pelvis, or “distant” if cancer recurred elsewhere but not in the pelvis. Patients who did not
respond to the initial treatment were considered to have relapsed locally after one day.

. use http://www.stata-press.com/data/r14/hypoxia
(Hypoxia study)

. describe

Contains data from http://www.stata-press.com/data/r14/hypoxia.dta
obs: 109 Hypoxia study

vars: 16 7 Apr 2014 09:44
size: 3,706 (_dta has notes)

storage display value
variable name type format label variable label

stnum int %8.0g Patient ID
age byte %8.0g Age (years)
hgb int %8.0g Hemoglobin (g/l)
tumsize float %9.0g Tumor size (cm)
ifp float %9.0g Interstitial fluid pressure

(marker, mmHg)
hp5 float %9.0g Hypoxia marker (percentage of

meas. < 5 mmHg)
pelvicln str1 %9s Pelvic node involvement:

N=Negative, E=Equivocal,
Y=Positive

resp str2 %9s Response after treatment:
CR=Complete response, NR=No
response

pelrec byte %9.0g yesno Pelvic disease observed
disrec byte %9.0g yesno Distant disease observed
survtime float %9.0g Time from diagnosis to death or

last follow-up time (yrs)
stat byte %8.0g Status at last follow-up: 0=Alive,

1=Dead
dftime float %9.0g Time from diagnosis to first

failure or last follow-up (yrs)
dfcens byte %8.0g Censoring variable: 1=Failure,

0=Censored
failtype byte %8.0g Failure type: 1 if pelrec, 2 if

disrec & not pelrec, 0 otherwise
pelnode byte %8.0g 1 if pelvic nodes negative or

equivocal

Sorted by:

stcrreg — Competing-risks regression 159

The dftime variable records analysis time in years and the failtype variable records the type of
event observed: 0 for loss to follow-up (censored), 1 for a local relapse, and 2 for a distant relapse.
Among the covariates used in the analysis were a hypoxia marker (hp5) that measures the degree of
oxygenation in the tumor, interstitial fluid pressure (ifp), tumor size (tumsize), and an indicator of
pelvic node involvement (pelnode == 0 if positive involvement and pelnode == 1 otherwise). The
main goal of the study was to determine whether ifp and hp5 influence the outcome, controlling for
the other covariates. Following Pintilie (2006), we focus on ifp and not on hp5. For more details
regarding this study and the process behind the measured data, see Fyles et al. (2002) and Milosevic
et al. (2001).

We wish to fit a competing-risks model that treats a local relapse as the event of interest and a
distant relapse as the competing event. Although a distant relapse does not strictly prevent a future
local relapse, presumably, the treatment protocol changed based on which event was first observed.
As such, both events can be treated as competing with one another because the conditions of the
study ended once any relapse was observed. Because no deaths occurred before first relapse, death
is not considered a competing event in this analysis.

To fit the model, we first stset the data and specify that a local relapse, failtype == 1, is the
event of interest. We then specify to stcrreg the covariates and that a distant relapse (failtype
== 2) is a competing event.

. stset dftime, failure(failtype == 1)
(output omitted)

. stcrreg ifp tumsize pelnode, compete(failtype == 2)

failure _d: failtype == 1
analysis time _t: dftime

Iteration 0: log pseudolikelihood = -138.67925
Iteration 1: log pseudolikelihood = -138.53082
Iteration 2: log pseudolikelihood = -138.5308
Iteration 3: log pseudolikelihood = -138.5308

Competing-risks regression No. of obs = 109
No. of subjects = 109

Failure event : failtype == 1 No. failed = 33
Competing event: failtype == 2 No. competing = 17

No. censored = 59

Wald chi2(3) = 33.21
Log pseudolikelihood = -138.5308 Prob > chi2 = 0.0000

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

ifp 1.033206 .0178938 1.89 0.059 .9987231 1.068879
tumsize 1.297332 .1271191 2.66 0.008 1.070646 1.572013
pelnode .4588123 .1972067 -1.81 0.070 .1975931 1.065365

From the above we point out the following:

• When we stset the data, distant relapses were set as censored because they are not the
event of interest and any standard, noncompeting-risks analysis would want to treat them
as censored. stcrreg option compete() tells Stata which of these “censored” events are
actually competing events that require special consideration in a competing-risks regression.
Because competing events are not the event of interest, stcrreg will issue an error if
competing events are not stset as censored.

• stcrreg lists the event code(s) for the event of interest under “Failure event(s):” and
the competing event code(s) under “Competing event(s):”. The syntax for stset and

160 stcrreg — Competing-risks regression

stcrreg allows you to have multiple codes for both. For competing events, multiple event
codes can be devoted entirely to one competing event type, many competing event types,
or some combination of both. The methodology behind stcrreg extends to more than one
competing event type and is concerned only with whether events are competing events, not
with their exact type. The focus is on the event of interest.

• We see that out of the 109 patients, 33 experienced a local relapse, 17 experienced a distant
relapse, and the remaining 59 were lost to follow-up before any relapse.

• In the column labeled “SHR” are the estimated subhazard ratios, and you interpret these
similarly to hazard ratios in Cox regression. Because the estimated subhazard ratio for ifp
is greater than 1, higher interstitial fluid pressures are associated with higher incidence of
local relapses controlling for tumor size, pelvic node involvement, and the fact that distant
relapses can also occur. However, this effect is not highly significant.

• To see the estimated coefficients instead of subhazard ratios, use the noshr option either
when fitting the model or when replaying results.

• Standard errors are listed as “Robust”, even though we did not specify any sampling weights,
vce(robust), or vce(cluster clustvar). As mentioned in the previous section, competing-
risks regression works by keeping subjects who experience competing events at risk so that
they can be adequately counted as having no chance of failing. Doing so requires a form of
sample weighting that invalidates the usual model-based standard errors; see Methods and
formulas. Robust standard errors are conventional in stcrreg.

• The output lists a “log pseudolikelihood” rather than the standard log likelihood. This
is also a consequence of the inherent sample weighting explained in the previous bullet. The
log pseudolikelihood is used as a maximization criterion to obtain parameter estimates, but
is not representative of the distribution of the data. For this reason, likelihood-ratio (LR) tests
(the lrtest command) are not valid after stcrreg. Use Wald tests (the test command)
instead.

As mentioned above, you can use the noshr option to obtain coefficients instead of subhazard
ratios.

. stcrreg, noshr

Competing-risks regression No. of obs = 109
No. of subjects = 109

Failure event : failtype == 1 No. failed = 33
Competing event: failtype == 2 No. competing = 17

No. censored = 59

Wald chi2(3) = 33.21
Log pseudolikelihood = -138.5308 Prob > chi2 = 0.0000

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ifp .0326664 .0173188 1.89 0.059 -.0012777 .0666105
tumsize .2603096 .0979851 2.66 0.008 .0682623 .4523568
pelnode -.779114 .4298199 -1.81 0.070 -1.621546 .0633175

Just as with stcox, this model has no constant term. It is absorbed as part of the baseline subhazard,
which is not directly estimated.

stcrreg — Competing-risks regression 161

Example 2: CIF curves after stcrreg

In the above analysis, we stated that with increased interstitial fluid pressure comes an increase
in the incidence of local relapses in the presence of possible distant relapses. To demonstrate this
visually, we use stcurve to compare two CIF curves: one for ifp == 5 and one for ifp == 20. For
both curves, we assume positive pelvic node involvement (pelnode==0) and tumor size set at the
mean over the data.

. stcurve, cif at1(ifp = 5 pelnode = 0) at2(ifp = 20 pelnode = 0)
.1

.2
.3

.4
.5

C
u

m
u

la
ti
v
e

 I
n

c
id

e
n

c
e

0 2 4 6 8
analysis time

ifp = 5 pelnode = 0 ifp = 20 pelnode = 0

Competing−risks regression

For positive pelvic node involvement and mean tumor size, the probability of local relapse within
2 years is roughly 26% when the interstitial fluid pressure is 5 mmHg and near 40% when this is
increased to 20 mmHg. Both probabilities take into account the possibility that a distant relapse could
occur instead.

Multiple competing-event types

Competing-risks regression generalizes to the case where more than one type of event competes
with the event of interest. If you have such data, after you stset the failure event of interest, you
can lump together all competing event codes into the compete() option of stcrreg. It does not
matter whether multiple codes represent the same competing-event type, or if they represent multiple
types. The results will be the same.

Example 3: UDCA in patients with PBC

Therneau and Grambsch (2000, sec. 8.4.3) analyze data from patients with primary biliary cirrhosis
(PBC), a chronic liver disease characterized by progressive destruction of the bile ducts. Data were
obtained from 170 patients in a randomized double-blind trial conducted at the Mayo Clinic from
1988 to 1992. The trial was for a new treatment, ursodeoxycholic acid (UDCA; Lindor et al. [1994]).

162 stcrreg — Competing-risks regression

. use http://www.stata-press.com/data/r14/udca
(Randomized trial of UDCA in PBC)

. describe

Contains data from http://www.stata-press.com/data/r14/udca.dta
obs: 188 Randomized trial of UDCA in PBC

vars: 8 3 Apr 2014 09:37
size: 5,264 (_dta has notes)

storage display value
variable name type format label variable label

id int %9.0g Patient ID
entry float %td Date of enrollment
eventtime float %td Date of first event or loss to

follow-up
treat byte %9.0g 0=placebo 1=UDCA
stage byte %9.0g histologic stage: 0=stage 1/2 at

entry 1=stage 3/4
lbili float %9.0g log(bilirubin value)
etype float %9.0g event Event type (see notes)
wt double %4.2f Observation weight

Sorted by: id

The etype variable is coded as any of eight distinct event types (or no event) according to table 1.

Table 1. Event codes for the etype variable

Event code Event type

0 No event (censored)
1 Death
2 Transplant
3 Histologic progression
4 Development of varices
5 Development of ascites
6 Development of encephalopathy
7 Doubling of bilirubin
8 Worsening of symptoms

Cleves (1999) analyzed these data by estimating the cause-specific hazards for each of the eight
events. In the version of the data used there, the time at which any adverse event occurred was
recorded, but here we record only the time of the first adverse event for each patient. We do so
because we wish to perform a competing-risks analysis where we are interested in the time to the
first adverse event and the type of that event. The events compete because only one can be first.

We are interested in whether treatment will decrease the incidence of histologic progression (etype
== 3) as the first adverse outcome, in reference to treatment (treat), the logarithm of bilirubin level
(lbili), and histologic stage at entry (stage). Because the patients entered the study at different
times (entry), when stsetting the data we must specify this variable as the origin, or onset of risk.

The competing-risks analysis described above could thus proceed as follows:

. stset eventtime, failure(etype == 3) origin(entry)

. stcrreg treat lbili stage, compete(etype == 1 2 4 5 6 7 8)

except for one minor complication. Some patients experienced multiple “first events”, and thus ties
exist. For example, consider patient 8 who experienced four adverse events at the same time:

stcrreg — Competing-risks regression 163

. list if id == 8

id entry eventtime treat stage lbili etype wt

8. 8 25may1988 02jul1990 0 1 1.629241 ascites 0.25
9. 8 25may1988 02jul1990 0 1 1.629241 ence 0.25

10. 8 25may1988 02jul1990 0 1 1.629241 bili_2 0.25
11. 8 25may1988 02jul1990 0 1 1.629241 worse 0.25

While most patients are represented by one record each, patients with multiple first events are represented
by multiple records. Rather than break ties arbitrarily, we take advantage of how importance weights
(iweights) are handled by stcrreg. Importance weights are treated like frequency weights, but
they are allowed to be noninteger. As such, we define the weight variable (wt) to equal one for
single-record patients and to equal one divided by the number of tied events for multiple-record
patients. In this way, each patient contributes a total weight of one observation.

The only further modification we need is to specify vce(cluster id) so that our standard errors
account for the correlation within multiple records on the same patient.

. stset eventtime [iw=wt], failure(etype == 3) origin(entry)
(output omitted)

. stcrreg treat lbili stage, compete(etype == 1 2 4 5 6 7 8) vce(cluster id)

failure _d: etype == 3
analysis time _t: (eventtime-origin)

origin: time entry
weight: [iweight=wt]

Iteration 0: log pseudolikelihood = -62.158461
Iteration 1: log pseudolikelihood = -61.671367
Iteration 2: log pseudolikelihood = -61.669225
Iteration 3: log pseudolikelihood = -61.669225

Competing-risks regression No. of obs = 170
No. of subjects = 170

Failure event : etype == 3 No. failed = 13
Competing events: etype == 1 2 4 5 6 7 8 No. competing = 59

No. censored = 98

Wald chi2(3) = 1.89
Log pseudolikelihood = -61.669225 Prob > chi2 = 0.5955

(Std. Err. adjusted for 170 clusters in id)

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

treat .5785214 .3238038 -0.98 0.328 .1931497 1.732786
lbili 1.012415 .367095 0.03 0.973 .4974143 2.060623
stage .5537101 .3305371 -0.99 0.322 .1718534 1.78405

In the above, we clustered on id but we did not stset it as an id() variable. That was because
we wanted stcrreg to treat each observation within patient as its own distinct spell, not as a set of
overlapping spells.

Treatment with UDCA seems to decrease the incidence of histologic progression as a first adverse
event. However, the effect is not significant, most likely as a result of observing so few failures.

164 stcrreg — Competing-risks regression

stcrreg as an alternative to stcox

In this section, we demonstrate that you may also use stcox to perform a cumulative-incidence
analysis, and we compare that approach with one that uses stcrreg.

Example 4: HIV and SI as competing events

Geskus (2000) and Putter, Fiocco, and Geskus (2007) analyzed data from 324 homosexual men
from the Amsterdam Cohort Studies on HIV infection and AIDS. During the course of infection, the
syncytium inducing (SI) HIV phenotype appeared in many of these individuals. The appearance of the
SI phenotype worsens prognosis. Thus the time to SI appearance in the absence of an AIDS diagnosis
is of interest. In this context, a diagnosis of AIDS acts as a competing event.

. use http://www.stata-press.com/data/r14/hiv_si
(HIV and SI as competing risks)

. describe

Contains data from http://www.stata-press.com/data/r14/hiv_si.dta
obs: 324 HIV and SI as competing risks

vars: 4 3 Apr 2014 13:40
size: 2,592 (_dta has notes)

storage display value
variable name type format label variable label

patnr int %8.0g ID
time float %9.0g Years from HIV infection
status byte %10.0g stat 1 = AIDS, 2 = SI, 0 = event-free
ccr5 byte %9.0g ccr5 1 if WM (deletion in C-C chemokine

receptor 5 gene)

Sorted by:

In what follows, we re-create the analysis performed by Putter, Fiocco, and Geskus (2007), treating
AIDS and SI as competing events and modeling cumulative incidence in relation to covariate ccr5.
ccr5 equals 1 if a specific deletion in the C-C chemokine receptor 5 gene is present and equals zero
otherwise (wild type).

We can model the cumulative incidence of SI on ccr5 directly with stcrreg:
. stset time, failure(status == 2) // SI is the event of interest

(output omitted)
. stcrreg ccr5, compete(status == 1) // AIDS is the competing event

(output omitted)
Competing-risks regression No. of obs = 324

No. of subjects = 324
Failure event : status == 2 No. failed = 107
Competing event: status == 1 No. competing = 113

No. censored = 104

Wald chi2(1) = 0.01
Log pseudolikelihood = -579.06241 Prob > chi2 = 0.9172

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

ccr5 1.023865 .2324119 0.10 0.917 .6561827 1.597574

It seems that this particular genetic mutation has little relation with the incidence of SI, a point
we emphasize further with a graph:

stcrreg — Competing-risks regression 165

. stcurve, cif at1(ccr5=0) at2(ccr5=1) title(SI) range(0 13) yscale(range(0 0.5))

0
.1

.2
.3

.4
C

u
m

u
la

ti
v
e

 I
n

c
id

e
n

c
e

0 5 10 15
analysis time

ccr5=0 ccr5=1

SI

The above analysis compared SI incidence curves under the assumption that the subhazard for
SI, that which generates SI events in the presence of AIDS, was proportional with respect to ccr5.
Because we modeled the subhazard and not the cause-specific hazard, obtaining estimates of cumulative
incidence was straightforward and depended only on the subhazard for SI and not on that for AIDS.

As explained in The case for competing-risks regression, the cumulative incidence of SI is a
function of both the cause-specific hazard for SI, h1(t), and that for AIDS, h2(t), because SI and
AIDS are competing events. Suppose for the moment that we are not interested in the incidence of SI
in the presence of AIDS, but instead in the biological mechanism that causes SI in general. We can
model this mechanism with stcox by treating AIDS events as censored.

. stcox ccr5

(output omitted)

Cox regression -- no ties

No. of subjects = 324 Number of obs = 324
No. of failures = 107
Time at risk = 2261.959996

LR chi2(1) = 1.19
Log likelihood = -549.73443 Prob > chi2 = 0.2748

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

ccr5 .7755334 .1846031 -1.07 0.286 .4863914 1.23656

Because we initially stset our data with SI as the event of interest, AIDS events are treated as
censored by stcox (but not by stcrreg). In any case, the ccr5 mutation somewhat decreases the
risk of SI, but this effect is not significant.

We make the above interpretation with no regard to AIDS as a competing risk because we are
interested only in the biological mechanism behind SI. To estimate the cumulative incidence of SI, we
first need to make a choice. Either we can pretend a diagnosis of AIDS does not exist as a competing
risk and use stcurve to plot survivor curves for SI based on the Cox model above, or we can
acknowledge AIDS as a competing risk and model that cause-specific hazard also.

We choose the latter. Before fitting the model, however, we need to re-stset the data with AIDS
as the event of interest.

166 stcrreg — Competing-risks regression

. stset time, failure(status == 1) // AIDS is the event of interest
(output omitted)

. stcox ccr5

(output omitted)
Cox regression -- Breslow method for ties

No. of subjects = 324 Number of obs = 324
No. of failures = 113
Time at risk = 2261.959996

LR chi2(1) = 21.98
Log likelihood = -555.37301 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

ccr5 .2906087 .0892503 -4.02 0.000 .1591812 .530549

Patients with the ccr5 mutation have a significantly lower risk of AIDS.

We have now modeled both cause-specific hazards separately. Cleves (1999); Lunn and Mc-
Neil (1995); and Putter, Fiocco, and Geskus (2007) (among others) describe an approach based
on data duplication where both hazards can be modeled simultaneously. Such an approach has the
advantage of being able to set the effects of ccr5 on both hazards as equal and to test that hypothesis.
Also, you can model the baseline hazards as proportional rather than entirely distinct. However, for
the least parsimonious model with event-specific covariate effects and event-specific baseline hazards,
the data duplication method is no different than fitting separate models for each event type, just as
we have done above. Because data duplication will reveal no simpler model for these data, we do
not describe it further.

We can derive estimates of cumulative incidence for SI based on the above cause-specific hazard
models, but the process is a bit more complicated than before. The cumulative incidence of SI (event
type 1) in the presence of AIDS (event type 2) is calculated as

ĈIF1(t) =
∑
j:tj≤t

ĥ1(tj)Ŝ(tj−1)

with
Ŝ(t) =

∏
j:tj≤t

{
1− ĥ1(tj)− ĥ2(tj)

}
The tj index the times at which events (of any type) occur, and ĥ1(tj) and ĥ2(tj) are the cause-specific
hazard contributions for SI and AIDS respectively. Baseline hazard contributions can be obtained with
predict after stcox, and they can be transformed to hazard contributions for any covariate pattern by
multiplying them by the exponentiated linear predictor for that pattern. Hazard contributions represent
the increments of the cumulative hazards at each event time. Ŝ(t) estimates the probability that you
are event free at time t.

stcrreg — Competing-risks regression 167

We begin by refitting both models and predicting the hazard contributions.

. stset time, failure(status == 2) // SI
(output omitted)

. stcox ccr5
(output omitted)

. predict h_si_0, basehc
(217 missing values generated)

. generate h_si_1 = h_si_0*exp(_b[ccr5])
(217 missing values generated)

. stset time, failure(status == 1) // AIDS
(output omitted)

. stcox ccr5
(output omitted)

. predict h_aids_0, basehc
(211 missing values generated)

. gsort _t -_d

. by _t: replace h_aids_0 = . if _n > 1
(1 real change made, 1 to missing)

. generate h_aids_1 = h_aids_0*exp(_b[ccr5])
(212 missing values generated)

Variables h si 0 and h aids 0 hold the baseline hazard contributions, those for ccr5 == 0.
Variables h si 1 and h aids 1 hold the hazard contributions for ccr5 == 1, and they were obtained
by multiplying the baseline contributions by the exponentiated coefficient for ccr5. When we ran
stcox with AIDS as the event of interest, the output indicated that we had tied failure times (the
analysis for SI had no ties). As such, this required the extra step of setting any duplicated hazard
contributions to missing. As it turned out, this affected only one observation.

Hazard contributions are generated only at times when events are observed and are set to missing
otherwise. Because we will be summing and multiplying over event times, we next drop the observations
that contribute nothing and then replace missing with zero for those observations that have some
hazard contributions missing and some nonmissing.

. drop if missing(h_si_0) & missing(h_aids_0)
(105 observations deleted)

. replace h_aids_0 = 0 if missing(h_aids_0)
(107 real changes made)

. replace h_aids_1 = 0 if missing(h_aids_1)
(107 real changes made)

. replace h_si_0 = 0 if missing(h_si_0)
(112 real changes made)

. replace h_si_1 = 0 if missing(h_si_1)
(112 real changes made)

We can now sort by analysis time and calculate the estimated event-free survivor functions. Recall
that you can express a product as an exponentiated sum of logarithms, which allows us to take
advantage of Stata’s sum() function for obtaining running sums.

. sort _t

. generate S_0 = exp(sum(log(1- h_aids_0 - h_si_0)))

. generate S_1 = exp(sum(log(1- h_aids_1 - h_si_1)))

Finally, we calculate the estimated CIFs and graph:

. generate cif_si_0 = sum(S_0[_n-1]*h_si_0)

. label var cif_si_0 "ccr5 = 0"

168 stcrreg — Competing-risks regression

. generate cif_si_1 = sum(S_1[_n-1]*h_si_1)

. label var cif_si_1 "ccr5 = 1"

. twoway line cif_si* _t if _t<13, connect(J J) sort yscale(range(0 0.5))
> title(SI) ytitle(Cumulative Incidence) xtitle(analysis time)

0
.1

.2
.3

.4
C

u
m

u
la

ti
v
e

 I
n

c
id

e
n

c
e

0 5 10 15
analysis time

ccr5 = 0 ccr5 = 1

SI

This model formulation shows ccr5 to have more of an effect on the incidence of SI, although the
effect is still small. Note that under this formulation, the effect of ccr5 is not constrained to be overall
increasing or overall decreasing. In fact, when t > 11 years or so, those with the ccr5 mutation
actually have an increased SI incidence. That is due to time-accumulated reduced competition from
AIDS, the risk of which is significantly lower when the ccr5 mutation is present.

Putter, Fiocco, and Geskus (2007) also performed the same analysis using AIDS as the event of
interest, something we leave to you as an exercise.

We have described two different modeling approaches for estimating the cumulative incidence of
SI. Although you may prefer the stcrreg approach because it is much simpler, that does not mean
it is a better model than the one based on stcox. The better model is the one whose assumptions
more closely fit the data. The stcrreg model assumes that the effect of ccr5 is proportional on
the subhazard for SI. The stcox model assumes proportionality on the cause-specific hazards for
both SI and AIDS. Because our analysis uses only one binary covariate, we can compare both models
with a nonparametric estimator of the CIF to see which fits the data more closely; see [ST] stcrreg
postestimation.

Multiple records per subject

stcrreg can be used with data where you have multiple records per subject, as long as 1) you
stset an ID variable that identifies the subjects and 2) you carefully consider the role played by
time-varying covariates in subjects who fail because of competing events. We explain both issues
below.

Stata’s st suite of commands allows for multiple records per subject. Having multiple records
allows you to record gaps in subjects’ histories and to keep track of time-varying covariates. If you
have multiple records per subject, you identify which records belong to which subjects by specifying
an ID variable to stset option id().

stcrreg — Competing-risks regression 169

Consider the sample data listed below:

. list if id == 18

id _t0 _t _d x

1. 18 3 5 0 5.1
2. 18 5 8 0 7.8
3. 18 11 12 0 6.7
4. 18 12 20 1 8.9

These data reflect the following:

• Subject 18 first became at risk at analysis time 3 (delayed entry) with covariate value x
equal to 5.1.

• At time 5, subject 18’s x value changed to 7.8.

• Subject 18 left the study at time 8 only to return at time 11 (gap), with x equal to 6.7 at
that time.

• At time 12, x changed to 8.9.

• Subject 18 failed at time 20 with x equal to 8.9 at that time.

An analysis of these data with Cox regression using stcox is capable of processing all of this
information. Intermittent records are treated as censored (d==0), and either failure or censoring
occurs on the last record (here failure with d==1). When subjects are not under observation, they
are simply not considered at risk of failure. Time-varying covariates are also processed correctly. For
example, if some other subject failed at time 7, then the risk calculations would count subject 18 at
risk with x equal to 7.8 at that time.

stcox will give the same results for the above data whether or not you stset the ID variable, id.
Whether you treat the above data as four distinct subjects (three censored and one failed) or as one
subject with a four-record history is immaterial. The only difference you may encounter concerns
robust and replication-based standard errors, in which case if you stset an ID variable, then stcox
will automatically cluster on this variable.

Such a distinction, however, is of vital importance to stcrreg. While stcox is concerned only
about detecting one type of failure, stcrreg relies on precise accounting of the number of subjects
who fail because of the event of interest, those who fail because of competing events, and those
who are censored. In particular, the weighting mechanism behind stcrreg depends on an accurate
estimate of the probability a subject will be censored; see Methods and formulas. As such, it makes
a difference whether you want to treat the above as four distinct subjects or as one subject. If you
have multiple records per subject, you must stset your ID variable before using stcrreg. When
counting the number failed, number competing, and number censored, stcrreg only considers what
happened at the end of a subject’s history. Intermittent records are treated simply as temporary entries
to and exits from the analysis, and the exits are not counted as censored in the strict sense.

Furthermore, when using stcrreg with covariates that change over multiple records (time-varying
covariates), you need to carefully consider what happens when subjects experience competing failures.
For the above sample data, subject 18 failed because of the event interest (d==1). Consider, however,
what would have happened had this subject failed because of a competing event instead. Competing-
risks regression keeps such subjects “at risk” of failure from the event of interest even after they
fail from competing events; see Methods and formulas. Because these subjects will be used in future
risk calculations for which they have no data, stcrreg will use the last available covariate values
for these calculations. For the above example, if subject 18 experiences a competing event at time
20, then the last available value of x, 8.9, will be used in all subsequent risk calculations. If the last

170 stcrreg — Competing-risks regression

available values are as good a guess as any as to what future values would have been—for example,
a binary covariate recording pretransplant versus posttransplant status—then this is not an issue. If,
however, you have reason to believe that a subject’s covariates would have been much different had
the subject remained under observation, then the results from stcrreg could be biased.

Example 5: Hospital-acquired pneumonia

Consider the following simulated data from a competing-risks analysis studying the effects of
pneumonia.

. use http://www.stata-press.com/data/r14/pneumonia, clear
(Hospital-acquired pneumonia)

. describe

Contains data from http://www.stata-press.com/data/r14/pneumonia.dta
obs: 957 Hospital-acquired pneumonia

vars: 7 7 Apr 2014 15:35
size: 8,613

storage display value
variable name type format label variable label

id int %9.0g Patient ID
age byte %9.0g Age at admission
ndays int %9.0g Days in ICU
died byte %9.0g 1 if died
censored byte %9.0g 1 if alive and in ICU at the end

of the study
discharged byte %9.0g 1 if discharged
pneumonia byte %9.0g 1 if pneumonia

Sorted by: id

The above data are for 855 ICU patients. One hundred twenty-three patients contracted pneumonia,
of which 21 did before admission and 102 during their stay. Those patients who contracted pneumonia
during their stay are represented by two records with the time-varying covariate pneumonia recording
the change in status.

We perform a competing-risks regression for the cumulative incidence of death during ICU stay
with age and pneumonia as covariates. We also treat hospital discharge as a competing event.

. stset ndays, id(id) failure(died)
(output omitted)

. stcrreg age pneumonia, compete(discharged) noshow nolog

Competing-risks regression No. of obs = 957
No. of subjects = 855

Failure events : died nonzero, nonmissing No. failed = 178
Competing events: discharged nonzero, nonmissing No. competing = 641

No. censored = 36

Wald chi2(2) = 121.21
Log pseudolikelihood = -1128.6096 Prob > chi2 = 0.0000

(Std. Err. adjusted for 855 clusters in id)

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

age 1.021612 .0076443 2.86 0.004 1.006739 1.036705
pneumonia 5.587052 .9641271 9.97 0.000 3.983782 7.835558

stcrreg — Competing-risks regression 171

Both increased age and contracting pneumonia are associated with an increased incidence of death in
the ICU.

Option tvc() and testing the proportional-subhazards assumption

In the previous section, we considered data with multiple records per subject. Such data makes it
possible to record discrete time-varying covariates, those whose values change at discrete points in
time. Each change is captured by a new record.

Consider instead what happens when you have covariates that vary continuously with respect to
time. Competing-risks regression assumes the following relationship between subhazard and baseline
subhazard

h1(t) = h1,0(t) exp(β1x1 + · · ·+ βkxk)

where h1,0(t) is the baseline subhazard function. For most purposes, this model is sufficient, but
sometimes we may wish to introduce variables of the form zi(t) = zig(t), which vary continuously
with time so that

h1(t) = h1,0(t) exp {β1x1 + · · ·+ βkxk + g(t)(γ1z1 + · · ·+ γmzm)} (1)

where (z1, . . . , zm) are the time-varying covariates. Fitting this model has the net effect of estimating
the regression coefficient, γi, for the covariate g(t)zi, which is a function of analysis time.

The time-varying covariates (z1, . . . , zm) are specified using the tvc(tvarlist) option, and g(t)
is specified using the texp(exp) option, where t in g(t) is analysis time. For example, if we want
g(t) = log(t), we would use texp(log(t)) because t stores the analysis time once the data are
stset.

When subjects fail because of competing events, covariate values for these subjects continue to
be used in subsequent risk calculations; see the previous section for details. When this occurs, any
time-varying covariates specified using tvc() will continue to respect their time interactions even
after these subjects fail. Because such behavior is unlikely to reflect any real data situation, we do
not recommend using tvc() for this purpose.

We do, however, recommend using tvc() to model time-varying coefficients, because these can
be used to test the proportionality assumption behind competing-risks regression. Consider a version
of (1) that contains only one fixed covariate, x1, and sets z1 = x1:

h1(t) = h1,0(t) exp [{β1 + γ1g(t)}x1]

Given this new arrangement, we consider that β1 + γ1g(t) is a (possibly) time-varying coefficient
on the covariate x1, for some specified function of time g(t). The coefficient has a time-invariant
component β1, with γ1 determining the magnitude of the time-dependent deviations from β1. As
such, a test of γ1 = 0 is a test of time invariance for the coefficient on x1.

Confirming that a coefficient is time invariant is one way of testing the proportional-subhazards
assumption. Proportional subhazards implies that the relative subhazard (that is, β) is fixed over time,
and this assumption would be violated if a time interaction proved significant.

172 stcrreg — Competing-risks regression

Example 6: Testing proportionality of subhazards

Returning to our cervical cancer study (example 1), we now include time interactions on all three
covariates as a way of testing the proportional-subhazards assumption for each:

. use http://www.stata-press.com/data/r14/hypoxia
(Hypoxia study)

. stset dftime, failure(failtype == 1)
(output omitted)

. stcrreg ifp tumsize pelnode, compete(failtype == 2) tvc(ifp tumsize pelnode)
> noshr

(output omitted)
Competing-risks regression No. of obs = 109

No. of subjects = 109
Failure event : failtype == 1 No. failed = 33
Competing event: failtype == 2 No. competing = 17

No. censored = 59

Wald chi2(6) = 44.93
Log pseudolikelihood = -136.79 Prob > chi2 = 0.0000

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

main
ifp .0262093 .0174458 1.50 0.133 -.0079838 .0604025

tumsize .37897 .1096628 3.46 0.001 .1640348 .5939052
pelnode -.766362 .473674 -1.62 0.106 -1.694746 .162022

tvc
ifp .0055901 .0081809 0.68 0.494 -.0104441 .0216243

tumsize -.1415204 .0908955 -1.56 0.119 -.3196722 .0366314
pelnode .0610457 .5676173 0.11 0.914 -1.051464 1.173555

Note: Variables in tvc equation interacted with _t.

We used the default function of time g(t) = t, although we could have specified otherwise with
the texp() option. After looking at the significance levels in the equation labeled “tvc”, we find no
indication that the proportionality assumption has been violated.

When you use tvc() in this manner, there is no issue of postfailure covariate values for subjects
who fail from competing events. The covariate values are assumed constant—the coefficients change
with time.

stcrreg — Competing-risks regression 173

Stored results
stcrreg stores the following in e():

Scalars
e(N) number of observations
e(N sub) number of subjects
e(N fail) number of failures
e(N compete) number of competing events
e(N censor) number of censored subjects
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log pseudolikelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(rank) rank of e(V)
e(fmult) 1 if > 1 failure events, 0 otherwise
e(crmult) 1 if > 1 competing events, 0 otherwise
e(fnz) 1 if nonzero indicates failure, 0 otherwise
e(crnz) 1 if nonzero indicates competing, 0 otherwise
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) stcrreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(mainvars) variables in main equation
e(tvc) time-varying covariates
e(texp) function used for time-varying covariates
e(fevent) failure event(s) in estimation output
e(crevent) competing event(s) in estimation output
e(compete) competing event(s) as typed
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

174 stcrreg — Competing-risks regression

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
In what follows, we assume single-record data and time-invariant covariates or coefficients.

Extensions to both multiple-record data and continuous time-varying covariates are achieved by
treating the mechanisms that generate censorings, competing events, and failure events of interest as
counting processes; see Fine and Gray (1999) and Andersen et al. (1993) for further details.

Let xi be the row vector of m covariates for the time interval (t0i, ti] for the ith observation in the
dataset (i = 1, . . . , n). stcrreg obtains parameter estimates β̂ by maximizing the log-pseudolikelihood
function

logL =

n∑
i=1

δiwi

xiβ+ offseti − log

∑
j∈Ri

wjπji exp(xjβ+ offsetj)




where δi indicates a failure of interest for observation i and Ri is the set of observations, j, that are
at risk at time ti (that is, all j such that t0j < ti ≤ tj). wi and offseti are the usual observation
weights and linear offsets, if specified.

The log likelihood given above is identical to that for standard Cox regression (Breslow method
for ties) with the exception of the weights πji. These weights are used to keep subjects who have
failed because of competing events in subsequent risk sets and to decrease their weight over time as
their likelihood of being otherwise censored increases.

Formally, extend Ri above not only to include those at risk of failure at time ti, but also to include
those subjects already having experienced a competing-risks event. Also, define

πji =
Ŝc(ti)

Ŝc{min(tj , ti)}

if subject j experiences a competing event; πji = 1 otherwise. Ŝc(t) is the Kaplan–Meier estimate
of the survivor function for the censoring distribution—that which treats censorings as the events of
interest—evaluated at time t, and tj is the time at which subject j experienced his or her competing-
failure event. As a matter of convention, Ŝc(t) is treated as the probability of being censored up to
but not including time t.

Because of the sample weighting inherent to this estimator, the standard Hessian-based estimate
of variance is not statistically appropriate and is thus rejected in favor of a robust, sandwich-type
estimator, as derived by Fine and Gray (1999).

Define zi = xiβ̂+ offseti. (Pseudo)likelihood scores are given by

ûi = η̂i + ψ̂i

stcrreg — Competing-risks regression 175

where η̂i = (η̂1i, . . . , η̂mi)
′, and

η̂ki = δi (xki − aki)− exp(zi)
∑

j:t0i<tj≤ti

δjwjπij(xki − akj)∑
`∈Rj w`π`j exp(z`)

for

aki =

∑
`∈Ri w`π`ixk` exp(z`)∑
`∈Ri w`π`i exp(z`)

The ψ̂i are variance contributions due to data estimation of the weights πji, with

ψ̂i =
γiq̂(ti)

r(ti)
−

∑
j:t0i<tj≤ti

γj ĥc(tj)q̂(tj)

r(tj)

γi indicates censoring for observation i, r(t) is the number at risk of failure (or censoring) at time t,

ĥc(t) =

∑n
i=1 γiI(ti = t)

r(t)

and the kth component of q̂(t) is

q̂k(t) =
∑
i∈C(t)

wi exp(zi)
∑

j:t0i<tj≤ti

δjwjπij(xki − akj)∑
`∈Rj w`π`j exp(z`)

I(tj ≥ t)

where C(t) is the set of observations that experienced a competing event prior to time t.

By default, stcrreg calculates the Huber/White/sandwich estimator of the variance and calculates
its clustered version if either the vce(cluster clustvar) option is specified or an ID variable has been
stset. See Maximum likelihood estimators and Methods and formulas in [P] robust for details on
how the pseudolikelihood scores defined above are used to calculate this variance estimator.

Acknowledgment
We thank Jason Fine of the Gillings School of Global Public Health at the University of North

Carolina, Chapel Hill, for answering our technical questions.

References
Andersen, P. K., Ø. Borgan, R. D. Gill, and N. Keiding. 1993. Statistical Models Based on Counting Processes. New

York: Springer.

Beyersman, J., A. Latouche, A. Buchholz, and M. Schumacher. 2009. Simulating competing risks data in survival
analysis. Statistics in Medicine 28: 956–971.

Beyersman, J., and M. Schumacher. 2008. Time-dependent covariates in the proportional subdistribution hazards model
for competing risks. Biostatistics 9: 765–776.

Cleves, M. A. 1999. ssa13: Analysis of multiple failure-time data with Stata. Stata Technical Bulletin 49: 30–39.
Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 338–349. College Station, TX: Stata Press.

Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3
ed. College Station, TX: Stata Press.

http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata-press.com/books/survival-analysis-stata-introduction/

176 stcrreg — Competing-risks regression

Coviello, V., and M. M. Boggess. 2004. Cumulative incidence estimation in the presence of competing risks. Stata
Journal 4: 103–112.

Cox, D. R. 1972. Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series
B 34: 187–220.

Crowder, M. J. 2001. Classical Competing Risks. Boca Raton, FL: Chapman & Hall/CRC.

Fine, J. P., and R. J. Gray. 1999. A proportional hazards model for the subdistribution of a competing risk. Journal
of the American Statistical Association 94: 496–509.

Fyles, A., M. Milosevic, D. Hedley, M. Pintilie, W. Levin, L. Manchul, and R. P. Hill. 2002. Tumor hypoxia has
independent predictor impact only in patients with node-negative cervix cancer. Journal of Clinical Oncology 20:
680–687.

Gail, M. H. 1975. A review and critique of some models used in competing risk analysis. Biometrics 31: 209–222.

Geskus, R. B. 2000. On the inclusion of prevalent cases in HIV/AIDS natural history studies through a marker-based
estimate of time since seroconversion. Statistics in Medicine 19: 1753–1769.

Gichangi, A., and W. Vach. 2005. The analysis of competing risks data: A guided tour. Preprint series, Department
of Statistics, University of Southern Denmark.

Gooley, T. A., W. Leisenring, J. Crowley, and B. E. Storer. 1999. Estimation of failure probabilities in the presence
of competing risks: New representations of old estimators. Statistics in Medicine 18: 695–706.

Gray, R. J. 1988. A class of k-sample tests for comparing the cumulative incidence of a competing risk. Annals of
Statistics 16: 1141–1154.

Hinchliffe, S. R., and P. C. Lambert. 2013. Extending the flexible parametric survival model for competing risks.
Stata Journal 13: 344–355.

Hinchliffe, S. R., D. A. Scott, and P. C. Lambert. 2013. Flexible parametric illness-death models. Stata Journal 13:
759–775.

Kaplan, E. L., and P. Meier. 1958. Nonparametric estimation from incomplete observations. Journal of the American
Statistical Association 53: 457–481.

Klein, J. P., and M. L. Moeschberger. 2003. Survival Analysis: Techniques for Censored and Truncated Data. 2nd
ed. New York: Springer.

Lambert, P. C. 2007. Modeling of the cure fraction in survival studies. Stata Journal 7: 351–375.

Lin, D. Y., and L. J. Wei. 1989. The robust inference for the Cox proportional hazards model. Journal of the American
Statistical Association 84: 1074–1078.

Lindor, K. D., E. R. Dickson, W. P. Baldus, R. A. Jorgensen, J. Ludwig, P. A. Murtaugh, J. M. Harrison, R. H.
Wiesner, M. L. Anderson, S. M. Lange, G. LeSage, S. S. Rossi, and A. F. Hofman. 1994. Ursodeoxycholic acid
in the treatment of primary biliary cirrhosis. Gastroenterology 106: 1284–1290.

Lunn, M., and D. McNeil. 1995. Applying Cox regression to competing risks. Biometrics 51: 524–532.

Marubini, E., and M. G. Valsecchi. 1997. Analysing Survival Data from Clinical Trials and Observational Studies.
Chichester, UK: Wiley.

Milosevic, M., A. Fyles, D. Hedley, M. Pintilie, W. Levin, L. Manchul, and R. P. Hill. 2001. Interstitial fluid
pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen
measurements. Cancer Research 61: 6400–6405.

Pepe, M. S., and M. Mori. 1993. Kaplan–Meier, marginal or conditional probability curves in summarizing competing
risks failure time data? Statistics in Medicine 12: 737–751.

Pintilie, M. 2006. Competing Risks: A Practical Perspective. Chichester, UK: Wiley.

. 2007. Analysing and interpreting competing risk data. Statistics in Medicine 26: 1360–1367.

Putter, H., M. Fiocco, and R. B. Geskus. 2007. Tutorial in biostatistics: Competing risks and multi-state models.
Statistics in Medicine 26: 2389–2430.

Therneau, T. M., and P. M. Grambsch. 2000. Modeling Survival Data: Extending the Cox Model. New York: Springer.

Tsiatis, A. A. 1975. A nonidentifiability aspect of the problem of competing risks. Proceedings of the National
Academy of Sciences 72: 20–22.

http://www.stata-journal.com/sjpdf.html?articlenum=st0059
http://www.stata-journal.com/article.html?article=st0298
http://www.stata-journal.com/article.html?article=st0316
http://www.stata-journal.com/sjpdf.html?articlenum=st0131
http://www.stata.com/bookstore/crpp.html

stcrreg — Competing-risks regression 177

Also see
[ST] stcrreg postestimation — Postestimation tools for stcrreg

[ST] stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[ST] stcox — Cox proportional hazards model

[ST] stcox PH-assumption tests — Tests of proportional-hazards assumption

[ST] stcox postestimation — Postestimation tools for stcox

[ST] streg — Parametric survival models

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[MI] estimation — Estimation commands for use with mi estimate

[U] 20 Estimation and postestimation commands

Title

stcrreg postestimation — Postestimation tools for stcrreg

Postestimation commands predict margins Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation command is of special interest after stcrreg:

Command Description

stcurve plot the cumulative subhazard and cumulative incidence functions

For information on stcurve, see [ST] stcurve.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

178

stcrreg postestimation — Postestimation tools for stcrreg 179

predict

Description for predict

predict creates a new variable containing predictions such as subhazard ratios, linear predictions,
standard errors, baseline cumulative incidence and subhazard functions, Kaplan–Meier survivor curves,
pseudolikelihood scores, efficient score and Schoenfeld residuals, and DFBETA measures of influence.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, sv statistic nooffset
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, mv statistic

[
partial

]
sv statistic Description

Main

shr predicted subhazard ratio, also known as the relative subhazard; the default
xb linear prediction xjβ
stdp standard error of the linear prediction; SE(xjβ)
∗basecif baseline cumulative incidence function (CIF)
∗basecshazard baseline cumulative subhazard function
∗kmcensor Kaplan–Meier survivor curve for the censoring distribution

mv statistic Description

Main
∗scores pseudolikelihood scores
∗esr efficient score residuals
∗dfbeta DFBETA measures of influence
∗schoenfeld Schoenfeld residuals

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.

nooffset is allowed only with unstarred statistics.

180 stcrreg postestimation — Postestimation tools for stcrreg

Options for predict

� � �
Main �

shr, the default, calculates the relative subhazard (subhazard ratio), that is, the exponentiated linear
prediction, exp(xjβ̂).

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a
set of parameters, β1, β2, . . . , βk, and the linear prediction is β̂1x1j + β̂2x2j + · · ·+ β̂kxkj , often
written in matrix notation as xjβ̂.

The x1j , x2j , . . . , xkj used in the calculation are obtained from the data currently in memory
and need not correspond to the data on the independent variables used in estimating β.

stdp calculates the standard error of the prediction, that is, the standard error of xjβ̂.

basecif calculates the baseline CIF. This is the CIF of the subdistribution for the cause-specific failure
process.

basecshazard calculates the baseline cumulative subhazard function. This is the cumulative hazard
function of the subdistribution for the cause-specific failure process.

kmcensor calculates the Kaplan–Meier survivor function for the censoring distribution. These estimates
are used to weight within risk pools observations that have experienced a competing event. As
such, these values are not predictions or diagnostics in the strict sense, but are provided for those
who wish to reproduce the pseudolikelihood calculations performed by stcrreg; see [ST] stcrreg.

nooffset is allowed only with shr, xb, and stdp, and is relevant only if you specified off-
set(varname) for stcrreg. It modifies the calculations made by predict so that they ignore
the offset variable; the linear prediction is treated as xjβ̂ rather than xjβ̂+ offsetj .

scores calculates the pseudolikelihood scores for each regressor in the model. These scores are
components of the robust estimate of variance. For multiple-record data, by default only one score
per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial scores, one for each record within subject;
see partial below. Partial pseudolikelihood scores are the additive contributions to a subject’s
overall pseudolikelihood score. In single-record data, the partial pseudolikelihood scores are the
pseudolikelihood scores.

One score variable is created for each regressor in the model; the first new variable corresponds
to the first regressor, the second to the second, and so on.

esr calculates the efficient score residuals for each regressor in the model. Efficient score residuals
are diagnostic measures equivalent to pseudolikelihood scores, with the exception that efficient
score residuals treat the censoring distribution (that used for weighting) as known rather than
estimated. For multiple-record data, by default only one score per subject is calculated and it is
placed on the last record for the subject.

Adding the partial option will produce partial efficient score residuals, one for each record
within subject; see partial below. Partial efficient score residuals are the additive contributions
to a subject’s overall efficient score residual. In single-record data, the partial efficient scores are
the efficient scores.

One efficient variable is created for each regressor in the model; the first new variable corresponds
to the first regressor, the second to the second, and so on.

dfbeta calculates the DFBETA measures of influence for each regressor of in the model. The DFBETA
value for a subject estimates the change in the regressor’s coefficient due to deletion of that subject.

stcrreg postestimation — Postestimation tools for stcrreg 181

For multiple-record data, by default only one value per subject is calculated and it is placed on
the last record for the subject.

Adding the partial option will produce partial DFBETAs, one for each record within subject; see
partial below. Partial DFBETAs are interpreted as effects due to deletion of individual records
rather than deletion of individual subjects. In single-record data, the partial DFBETAs are the
DFBETAs.

One DFBETA variable is created for each regressor in the model; the first new variable corresponds
to the first regressor, the second to the second, and so on.

schoenfeld calculates the Schoenfeld-like residuals. Schoenfeld-like residuals are diagnostic measures
analogous to Schoenfeld residuals in Cox regression. They compare a failed observation’s covariate
values to the (weighted) average covariate values for all of those at risk at the time of failure.
Schoenfeld-like residuals are calculated only for those observations that end in failure; missing
values are produced otherwise.

One Schoenfeld residual variable is created for each regressor in the model; the first new variable
corresponds to the first regressor, the second to the second, and so on.

Note: The easiest way to use the preceding four options is, for example,

. predict double stub*, scores

where stub is a short name of your choosing. Stata then creates variables stub1, stub2, etc. You
may also specify each variable name explicitly, in which case there must be as many (and no
more) variables specified as there are regressors in the model.

partial is relevant only for multiple-record data and is valid with scores, esr, and dfbeta.
Specifying partial will produce “partial” versions of these statistics, where one value is calculated
for each record instead of one for each subject. The subjects are determined by the id() option
to stset.

Specify partial if you wish to perform diagnostics on individual records rather than on individual
subjects. For example, a partial DFBETA would be interpreted as the effect on a coefficient due to
deletion of one record, rather than the effect due to deletion of all records for a given subject.

182 stcrreg postestimation — Postestimation tools for stcrreg

margins

Description for margins

margins estimates margins of response for subhazard ratios and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

shr predicted subhazard ratio, also known as the relative subhazard; the default
xb linear prediction xjβ
stdp not allowed with margins

basecif not allowed with margins

basecshazard not allowed with margins

kmcensor not allowed with margins

scores not allowed with margins

esr not allowed with margins

dfbeta not allowed with margins

schoenfeld not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Remarks are presented under the following headings:

Baseline functions
Null models
Measures of influence

stcrreg postestimation — Postestimation tools for stcrreg 183

Baseline functions

Example 1: Cervical cancer study

In example 1 of [ST] stcrreg, we fit a proportional subhazards model on data from a cervical
cancer study.

. use http://www.stata-press.com/data/r14/hypoxia
(Hypoxia study)

. stset dftime, failure(failtype == 1)
(output omitted)

. stcrreg ifp tumsize pelnode, compete(failtype == 2)

(output omitted)

Competing-risks regression No. of obs = 109
No. of subjects = 109

Failure event : failtype == 1 No. failed = 33
Competing event: failtype == 2 No. competing = 17

No. censored = 59

Wald chi2(3) = 33.21
Log pseudolikelihood = -138.5308 Prob > chi2 = 0.0000

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

ifp 1.033206 .0178938 1.89 0.059 .9987231 1.068879
tumsize 1.297332 .1271191 2.66 0.008 1.070646 1.572013
pelnode .4588123 .1972067 -1.81 0.070 .1975931 1.065365

After fitting the model, we can predict the baseline cumulative subhazard, H1,0(t), and the baseline
CIF, CIF1,0(t):

. predict bch, basecsh

. predict bcif, basecif

. list dftime failtype ifp tumsize pelnode bch bcif in 1/15

dftime failtype ifp tumsize pelnode bch bcif

1. 6.152 0 8 7 1 .0658792 .063756
2. 8.008 0 8.2 2 1 .0813224 .0781036
3. .003 1 8.6 10 1 .0260186 .025683
4. 1.073 1 3.3 8 1 .0379107 .0372011
5. .003 1 18.5 8 0 .0260186 .025683

6. 7.929 0 20 8 1 .0813224 .0781036
7. 8.454 0 21.8 4 1 .0813224 .0781036
8. 7.107 1 31.6 5 1 .0813224 .0781036
9. 8.378 0 16.5 5 1 .0813224 .0781036

10. 8.178 0 31.5 3 1 .0813224 .0781036

11. 3.395 0 18.5 4 1 .0658792 .063756
12. .003 1 12.8 5 0 .0260186 .025683
13. 1.35 1 18.4 4 1 .051079 .0497964
14. .003 1 18.5 8 1 .0260186 .025683
15. .512 2 21 10 0 .0260186 .025683

184 stcrreg postestimation — Postestimation tools for stcrreg

The baseline functions are for subjects who have zero-valued covariates, which in this example are
not representative of the data. If baseline is an extreme departure from the covariate patterns in your
data, then we recommend recentering your covariates to avoid numerical overflows when predicting
baseline functions; see Making baseline reasonable in [ST] stcox postestimation for more details.

For our data, baseline is close enough to not cause any numerical problems, but far enough to
not be of scientific interest (zero tumor size?). You can transform the baseline functions to those for
other covariate patterns according to the relationships

H1(t) = exp(xβ)H1,0(t)

and
CIF1(t) = 1− exp{− exp(xβ)H1,0(t)}

but it is rare that you will ever have to do that. stcurve will predict, transform, and graph these
functions for you. When you use stcurve, you specify the covariate settings, and any you leave
unspecified are set at the mean over the data used in the estimation.

. stcurve, cif at1(ifp = 5 pelnode = 0) at2(ifp = 20 pelnode = 0)

.1
.2

.3
.4

.5
C

u
m

u
la

ti
v
e

 I
n

c
id

e
n

c
e

0 2 4 6 8
analysis time

ifp = 5 pelnode = 0 ifp = 20 pelnode = 0

Competing−risks regression

Because they were left unspecified, the cumulative incidence curves are for mean tumor size. If
you wish to graph cumulative subhazards instead of CIFs, use the stcurve option cumhaz in place
of cif.

Null models
Predicting baseline functions after fitting a null model (one without covariates) yields nonparametric

estimates of the cumulative subhazard and the CIF.

Example 2: HIV and SI as competing events

In example 4 of [ST] stcrreg, we analyzed the incidence of appearance of the SI HIV phenotype,
where a diagnosis of AIDS is a competing event. We modeled SI incidence in reference to a genetic
mutation indicated by the covariate ccr5. We compared two approaches: one that used stcrreg and

stcrreg postestimation — Postestimation tools for stcrreg 185

assumed that the subhazard of SI was proportional with respect to ccr5 versus one that used stcox
and assumed that the cause-specific hazards for both SI and AIDS were each proportional with respect
to ccr5. For both approaches, we produced cumulative incidence curves for SI comparing those who
did not have the mutation (ccr5==0) to those who did (ccr5==1).

To see which approach better fits these data, we now produce cumulative incidence curves that
make no model assumption about the effect of ccr5. We do this by fitting null models on the two
subsets of the data defined by ccr5 and predicting the baseline CIF for each. Because the models
have no covariates, the estimated baseline CIFs are nonparametric estimators.

. use http://www.stata-press.com/data/r14/hiv_si, clear
(HIV and SI as competing risks)

. stset time, failure(status == 2) // SI is the event of interest
(output omitted)

. stcrreg if !ccr5, compete(status == 1) noshow // AIDS is the competing event

Competing-risks regression No. of obs = 259
No. of subjects = 259

Failure event : status == 2 No. failed = 84
Competing event: status == 1 No. competing = 101

No. censored = 74

Wald chi2(0) = 0.00
Log pseudolikelihood = -435.80148 Prob > chi2 = .

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

. predict cif_si_0, basecif
(65 missing values generated)

. label var cif_si_0 "ccr5 = 0"

. stcrreg if ccr5, compete(status == 1) noshow

Competing-risks regression No. of obs = 65
No. of subjects = 65

Failure event : status == 2 No. failed = 23
Competing event: status == 1 No. competing = 12

No. censored = 30

Wald chi2(0) = 0.00
Log pseudolikelihood = -88.306665 Prob > chi2 = .

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

. predict cif_si_1, basecif
(259 missing values generated)

. label var cif_si_1 "ccr5 = 1"

186 stcrreg postestimation — Postestimation tools for stcrreg

. twoway line cif_si* _t if _t<13, connect(J J) sort yscale(range(0 0.5))
> title(SI) ytitle(Cumulative Incidence) xtitle(analysis time)

0
.1

.2
.3

.4
C

u
m

u
la

ti
v
e

 I
n

c
id

e
n

c
e

0 5 10 15
analysis time

ccr5 = 0 ccr5 = 1

SI

After comparing with the graphs produced in [ST] stcrreg, we find that the nonparametric analysis
favors the stcox approach over the stcrreg approach.

Technical note
Predicting the baseline CIF after fitting a null model with stcrreg produces a nonparametric CIF

estimator that is asymptotically equivalent, but not exactly equal, to an alternate estimator that is
often used; see Coviello and Boggess (2004) for the details of that estimator. The estimator used by
predict after stcrreg is a competing-risks extension of the Nelson–Aalen estimator (Nelson 1972;
Aalen 1978); see Methods and formulas. The other is a competing-risks extension of the Kaplan–Meier
(1958) estimator.

In large samples with many failures, the difference is negligible.

Measures of influence
With predict after stcrreg, you can obtain pseudolikelihood scores that are used to calculate

robust estimates of variance, Schoenfeld residuals that reflect each failure’s contribution to the gradient
of the log pseudolikelihood, efficient score residuals that represent each subject’s (observation’s)
contribution to the gradient, and DFBETAs that measure the change in coefficients due to deletion of
a subject or observation.

stcrreg postestimation — Postestimation tools for stcrreg 187

Example 3: DFBETAs

Returning to our cervical cancer study, we obtain DFBETAs for each of the three coefficients in
the model and graph those for the first with respect to analysis time.

. use http://www.stata-press.com/data/r14/hypoxia, clear
(Hypoxia study)

. stset dftime, failure(failtype == 1)
(output omitted)

. stcrreg ifp tumsize pelnode, compete(failtype == 2)
(output omitted)

. predict df*, dfbeta

. generate obs = _n

. twoway scatter df1 dftime, yline(0) mlabel(obs)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

2829
30

31

32
33

34

3536

37

38

39

40

41

42

43

44

45

46

47

48

49 50
51

52

53
54

55
56

57

58

59
60
61

6263

64
65

66

67

68
69

70

71

72

73

74

75
76

77
78

79
80

81

82

83

84

85

86

87

88

89

90

91 92
93

94

95

96
97

98

99

100

101

102
103

104
105

106107
108109

−
.0

0
6

−
.0

0
4

−
.0

0
2

0
.0

0
2

.0
0

4
D

F
B

E
T

A
 −

 i
fp

0 2 4 6 8
Time from diagnosis to first failure or last follow−up (yrs)

predict created the variables df1, df2, and df3, holding DFBETA values for variables ifp,
tumsize, and pelnode, respectively. Based on the graph, we see that subject 4 is the most influential
on the coefficient for ifp, the first covariate in the model.

In the previous example, we had single-record data. If you have data with multiple records per
subject, then by default DFBETAs will be calculated at the subject level, with one value representing
each subject and measuring the effect of deleting all records for that subject. If you instead want
record-level DFBETAs that measure the change due to deleting single records within subjects, add the
partial option; see [ST] stcox postestimation for further details.

Methods and formulas
Continuing the discussion from Methods and formulas in [ST] stcrreg, the baseline cumulative

subhazard function is calculated as

Ĥ1,0(t) =
∑
j:tj≤t

δj∑
`∈Rj w`π`j exp(z`)

The baseline CIF is ĈIF1,0(t) = 1− exp{−Ĥ1,0(t)}.

188 stcrreg postestimation — Postestimation tools for stcrreg

The Kaplan–Meier survivor curve for the censoring distribution is

Ŝc(t) =
∏
t(j)<t

{
1−

∑
i γiI(ti = t(j))

r(t(j))

}

where t(j) indexes the times at which censorings occur.

Both the pseudolikelihood scores, ûi, and the efficient score residuals, η̂i, are as defined previously.
DFBETAs are calculated according to Collett (2003):

DFBETAi = η̂
′

iVar∗(β̂)

where Var∗(β̂) is the model-based variance estimator, that is, the inverse of the negative Hessian.

Schoenfeld residuals are ri = (r̂1i, . . . , r̂mi) with

r̂ki = δi (xki − aki)

References
Aalen, O. O. 1978. Nonparametric inference for a family of counting processes. Annals of Statistics 6: 701–726.

Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3
ed. College Station, TX: Stata Press.

Collett, D. 2003. Modelling Survival Data in Medical Research. 2nd ed. London: Chapman & Hall/CRC.

Coviello, V., and M. M. Boggess. 2004. Cumulative incidence estimation in the presence of competing risks. Stata
Journal 4: 103–112.

Fyles, A., M. Milosevic, D. Hedley, M. Pintilie, W. Levin, L. Manchul, and R. P. Hill. 2002. Tumor hypoxia has
independent predictor impact only in patients with node-negative cervix cancer. Journal of Clinical Oncology 20:
680–687.

Geskus, R. B. 2000. On the inclusion of prevalent cases in HIV/AIDS natural history studies through a marker-based
estimate of time since seroconversion. Statistics in Medicine 19: 1753–1769.

Kaplan, E. L., and P. Meier. 1958. Nonparametric estimation from incomplete observations. Journal of the American
Statistical Association 53: 457–481.

Milosevic, M., A. Fyles, D. Hedley, M. Pintilie, W. Levin, L. Manchul, and R. P. Hill. 2001. Interstitial fluid
pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen
measurements. Cancer Research 61: 6400–6405.

Nelson, W. 1972. Theory and applications of hazard plotting for censored failure data. Technometrics 14: 945–966.

Pintilie, M. 2006. Competing Risks: A Practical Perspective. Chichester, UK: Wiley.

Putter, H., M. Fiocco, and R. B. Geskus. 2007. Tutorial in biostatistics: Competing risks and multi-state models.
Statistics in Medicine 26: 2389–2430.

Also see
[ST] stcrreg — Competing-risks regression

[ST] stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[U] 20 Estimation and postestimation commands

http://www.stata-press.com/books/survival-analysis-stata-introduction/
http://www.stata-journal.com/sjpdf.html?articlenum=st0059
http://www.stata.com/bookstore/crpp.html

Title

stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
stcurve plots the survivor, hazard, or cumulative hazard function after stcox, streg, mestreg,

or xtstreg. stcurve also plots the cumulative subhazard or cumulative incidence function (CIF)
after stcrreg.

Quick start
Plot the survivor function with covariates at their means after stcox, streg, mestreg, or xtstreg

stcurve, survival

As above, but plot separate survivor functions for covariate x set to 1, 2, and 3
stcurve, survival at1(x=1) at2(x=2) at3(x=3)

As above, but specify a different pattern for each line
stcurve, survival at1(x=1) at2(x=2) at3(x=3) ///

lpattern(solid dash dot)

As above, and save the graph as mygraph.gph

stcurve, survival at1(x=1) at2(x=2) at3(x=3) saving(mygraph)

Plot the estimated hazard function after stcox, streg, mestreg, or xtstreg
stcurve, hazard

Smooth the estimated hazard contributions using the Gaussian kernel function for the kernel-density
estimate after stcox and set x to 1

stcurve, hazard kernel(gaussian) at(x=1)

Plot the cumulative hazard function after stcox, streg, mestreg, or xtstreg
stcurve, cumhaz

Plot the cumulative subhazard function after stcrreg
stcurve, cumhaz

Plot the cumulative incidence function after stcrreg
stcurve, cif

As above, but set x to 0
stcurve, cif at(x=0)

Menu
Statistics > Survival analysis > Regression models > Plot survivor, hazard, cumulative hazard, or cumulative
incidence function

189

190 stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

Syntax

stcurve
[
, options

]
options Description

Main
∗survival plot survivor function
∗hazard plot hazard function
∗cumhaz plot cumulative hazard function
∗cif plot cumulative incidence function
at(varname=#

[
varname=# . . .

]
) value of the specified covariates and mean of[

at1(varname=#
[
varname=# . . .

]
) unspecified covariates[

at2(varname=#
[
varname=# . . .

]
)[

. . .
]]]

Options

alpha1 conditional frailty model
fixedonly set all random effects to zero
unconditional unconditional frailty model or random-effects model
marginal synonym for unconditional
range(# #) range of analysis time
outfile(filename

[
, replace

]
) save values used to plot the curves

width(#) override “optimal” width; use with hazard

kernel(kernel) kernel function; use with hazard

noboundary no boundary correction; use with hazard

Plot

connect options affect rendition of plotted survivor, hazard, or cumulative
hazard function

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

∗One of survival, hazard, cumhaz, or cif must be specified.
survival and hazard are not allowed after estimation with stcrreg; see [ST] stcrreg.
cif is allowed only after estimation with stcrreg; see [ST] stcrreg.

Options

� � �
Main �

survival requests that the survivor function be plotted. survival is not allowed after estimation
with stcrreg.

hazard requests that the hazard function be plotted. hazard is not allowed after estimation with
stcrreg.

stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function 191

cumhaz requests that the cumulative hazard function be plotted when used after stcox, streg,
mestreg, or xtstreg and requests that the cumulative subhazard function be plotted when used
after stcrreg.

cif requests that the cumulative incidence function be plotted. This option is available only after
estimation with stcrreg.

at(varname=# . . .) requests that the covariates specified by varname be set to #. By default, stcurve
evaluates the function by setting each covariate to its mean value. This option causes the function
to be evaluated at the value of the covariates listed in at() and at the mean of all unlisted
covariates.

at1(varname=# . . .), at2(varname=# . . .), . . . , at10(varname=# . . .) specify that multiple
curves (up to 10) be plotted on the same graph. at1(), at2(), . . . , at10() work like the at()
option. They request that the function be evaluated at the value of the covariates specified and at
the mean of all unlisted covariates. at1() specifies the values of the covariates for the first curve,
at2() specifies the values of the covariates for the second curve, and so on.

� � �
Options �

alpha1, when used after fitting a frailty model, plots curves that are conditional on a frailty value
of one. This is the default for shared-frailty models.

fixedonly specifies that all random effects be set to zero, which is equivalent to using only the fixed
portion of the model, when plotting results for random-effects models. This option is allowed only
after xtstreg or mestreg; it is the default after xtstreg.

unconditional and marginal, when used after fitting a frailty model or a random-effects model,
plot curves that are unconditional on the frailty or on the random effects. That is, the curve
is “averaged” over the frailty distribution or over the random-effects distributions. This is the
default for unshared-frailty models and for random-effects models. This option is not allowed after
xtstreg.

range(# #) specifies the range of the time axis to be plotted. If this option is not specified, stcurve
plots the desired curve on an interval expanding from the earliest to the latest time in the data.

outfile(filename
[
, replace

]
) saves in filename.dta the values used to plot the curve(s).

width(#) is for use with hazard (and applies only after stcox) and is used to specify the bandwidth
to be used in the kernel smooth used to plot the estimated hazard function. If left unspecified, a
default bandwidth is used, as described in [R] kdensity.

kernel(kernel) is for use with hazard and is for use only after stcox because, for Cox regression,
an estimate of the hazard function is obtained by smoothing the estimated hazard contributions.
kernel() specifies the kernel function for use in calculating the weighted kernel-density estimate
required to produce a smoothed hazard-function estimator. The default is kernel(epanechnikov),
yet kernel may be any of the kernels supported by kdensity; see [R] kdensity.

noboundary is for use with hazard and applies only to the plotting of smoothed hazard functions
after stcox. It specifies that no boundary-bias adjustments are to be made when calculating
the smoothed hazard-function estimator. By default, the smoothed hazards are adjusted near the
boundaries; see [ST] sts graph. If the epan2, biweight, or rectangular kernel is used, the bias
correction near the boundary is performed using boundary kernels. For other kernels, the plotted
range of the smoothed hazard function is restricted to be inside of one bandwidth from each
endpoint. For these other kernels, specifying noboundary merely removes this range restriction.

192 stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

� � �
Plot �

connect options affect the rendition of the plotted survivor, hazard, or cumulative hazard function;
see [G-3] connect options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

stcurve after stcox
stcurve after streg
stcurve after stcrreg

For examples of stcurve after xtstreg and mestreg, see [XT] xtstreg postestimation and
[ME] mestreg postestimation, respectively.

stcurve after stcox
After fitting a Cox model, stcurve can be used to plot the estimated hazard, cumulative hazard,

and survivor functions.

Example 1

. use http://www.stata-press.com/data/r14/drugtr
(Patient Survival in Drug Trial)

. stcox age drug
(output omitted)

. stcurve, survival

0
.2

.4
.6

.8
1

S
u

rv
iv

a
l

0 10 20 30 40
analysis time

Cox proportional hazards regression

stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function 193

By default, the curve is evaluated at the mean values of all the predictors, but we can specify
other values if we wish.

. stcurve, survival at1(drug=0) at2(drug=1)

0
.2

.4
.6

.8
1

S
u

rv
iv

a
l

0 10 20 30 40
analysis time

drug=0 drug=1

Cox proportional hazards regression

In this example, we asked for two plots, one for the placebo group and one for the treatment group.
For both groups, the value of age was held at its mean value for the overall estimation sample.

See Cefalu (2011) for a Stata command to plot the survivor or cumulative hazard function with
pointwise confidence intervals.

Example 2

stcurve can also be used to plot estimated hazard functions. The hazard function is estimated by
a kernel smooth of the estimated hazard contributions; see [ST] sts graph for details. We can thus
customize the smooth as we would any other; see [R] kdensity for details.

. stcurve, hazard at1(drug=0) at2(drug=1) kernel(gauss) yscale(log)

.1
.2

.3
S

m
o

o
th

e
d

 h
a

z
a

rd
 f

u
n

c
ti
o

n

5 10 15 20 25 30
analysis time

drug=0 drug=1

Cox proportional hazards regression

194 stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

For the hazard plot, we plotted on a log scale to demonstrate the proportionality of hazards under
this model; see the technical note below on smoothed hazards.

Technical note
For survivor or cumulative hazard estimation, stcurve works by first estimating the baseline

function and then modifying it to adhere to the specified (or by default, mean) covariate patterns. As
mentioned previously, baseline (when all covariates are equal to zero) must correspond to something
that is meaningful and preferably in the range of your data. Otherwise, stcurve could encounter
numerical difficulties. We ignored our own advice above and left age unchanged. Had we encountered
numerical problems, or funny-looking graphs, we would have known to try shifting age so that age==0
was in the range of our data.

For hazard estimation, stcurve works by first transforming the estimated hazard contributions
to adhere to the necessary covariate pattern and then applying the smooth. When you plot multiple
curves, each is smoothed independently, although the same bandwidth is used for each.

The smoothing takes place in the hazard scale and not in the log hazard-scale. As a result, the
resulting curves will look nearly, but not exactly, parallel when plotted on a log scale. This inexactitude
is a product of the smoothing and should not be interpreted as a deviation from the proportional-hazards
assumption; stcurve (after stcox) assumes proportionality of hazards and will reflect this in the
produced plots. If smoothing were a perfect science, the curves would be parallel when plotted on
a log scale. If you encounter estimated hazards exhibiting severe disproportionality, this may signal
a numerical problem as described above. Try recentering your covariates so that baseline is more
reasonable.

stcurve after streg

stcurve is used after streg to plot the fitted survivor, hazard, and cumulative hazard functions.
By default, stcurve computes the means of the covariates and evaluates the fitted model at each
time in the data, censored or uncensored. The resulting plot is therefore the survival experience of a
subject with a covariate pattern equal to the average covariate pattern in the study. You can produce
the plot at other values of the covariates by using the at() option or specify a time range by using
the range() option.

Example 3

We pick up where example 6 of [ST] streg left off. The cancer dataset we are using has three values
for variable drug: 1 corresponds to placebo, and 2 and 3 correspond to two alternative treatments.
Using the cancer data with drug remapped to form an indicator of treatment, let’s fit a loglogistic
regression model and plot its survival curves. We can perform a loglogistic regression by issuing the
following commands:

stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function 195

. use http://www.stata-press.com/data/r14/cancer
(Patient Survival in Drug Trial)

. replace drug = drug==2 | drug==3 // 0, placebo : 1, nonplacebo
(48 real changes made)

. stset studytime, failure(died)
(output omitted)

. streg age drug, distribution(llogistic) nolog

failure _d: died
analysis time _t: studytime

Loglogistic regression -- accelerated failure-time form

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 35.14
Log likelihood = -43.21698 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0803289 .0221598 -3.62 0.000 -.1237614 -.0368964
drug 1.420237 .2502148 5.68 0.000 .9298251 1.910649

_cons 6.446711 1.231914 5.23 0.000 4.032204 8.861218

/ln_gam -.8456552 .1479337 -5.72 0.000 -1.1356 -.5557105

gamma .429276 .0635044 .3212293 .5736646

Now we wish to plot the survivor and the hazard functions:

. stcurve, survival ylabels(0 .5 1)

0
.5

1
S

u
rv

iv
a

l

0 10 20 30 40
analysis time

Loglogistic regression

Figure 3. Loglogistic survival distribution at mean value of all covariates

196 stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

. stcurve, hazard

0
.0

2
.0

4
.0

6
.0

8
H

a
z
a

rd
 f

u
n

c
ti
o

n

0 10 20 30 40
analysis time

Loglogistic regression

Figure 4. Loglogistic hazard distribution at mean value of all covariates

These plots show the fitted survivor and hazard functions evaluated for a cancer patient of average
age receiving the average drug. Of course, the “average drug” has no meaning here because drug
is an indicator variable. It makes more sense to plot the curves at a fixed value (level) of the drug.
We can do this with the at option. For example, we may want to compare the average-age patient’s
survival curve under placebo (drug==0) and under treatment (drug==1).

We can plot both curves on the same graph:

. stcurve, surv at1(drug = 0) at2(drug = 1) ylabels(0 .5 1)

0
.5

1
S

u
rv

iv
a

l

0 10 20 30 40
analysis time

drug = 0 drug = 1

Loglogistic regression

Figure 5. Loglogistic survival distribution at mean age for placebo

In the plot, we can see from the loglogistic model that the survival experience of an average-age patient
receiving the placebo is worse than the survival experience of that same patient receiving treatment.
We can also see the accelerated-failure-time feature of the loglogistic model. The survivor function
for treatment is a time-decelerated (stretched-out) version of the survivor function for placebo.

stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function 197

Example 4

In our discussion of frailty models in [ST] streg, we emphasize the distinction between the individual
hazard (or survivor) function and the hazard (survivor) function for the population. When significant
frailty is present, the population hazard will tend to begin falling past a certain point, regardless of the
shape of the individual hazard. This is due to the frailty effect—as time passes, the frailer individuals
will fail, leaving a more homogeneous population comprising only the most robust individuals.

The frailty effect may be demonstrated using stcurve to plot the estimated hazard (both individual
and population) after fitting a frailty model. Use the alpha1 option to specify the individual hazard
(α = 1) and the unconditional option to specify the population hazard. Applying this to the
Weibull/inverse-Gaussian shared-frailty model on the kidney data of example 11 of [ST] streg,

. use http://www.stata-press.com/data/r14/catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. stset time infect

(output omitted)
. quietly streg age female, d(weibull) frailty(invgauss) shared(patient)

. stcurve, hazard at(female = 1) alpha1

.0
0

5
.0

1
.0

1
5

H
a

z
a

rd
 f

u
n

c
ti
o

n

0 200 400 600
analysis time

Weibull regression

Figure 6. Individual hazard for females at mean age

198 stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

Compare with

. stcurve, hazard at(female = 1) unconditional

.0
0

4
.0

0
5

.0
0

6
.0

0
7

H
a

z
a

rd
 f

u
n

c
ti
o

n

0 200 400 600
analysis time

Weibull regression

Figure 7. Population hazard for females at mean age

stcurve after stcrreg

Example 5

In [ST] stcrreg, we analyzed data from 109 patients with primary cervical cancer, treated at a
cancer center between 1994 and 2000. We fit a competing-risks regression model where local relapse
was the failure event of interest (failtype == 1), distant relapse with no local relapse was the
competing risk event (failtype == 2), and we were interested primarily in the effect of interstitial
fluid pressure (ifp) while controlling for tumor size and pelvic node involvement.

After fitting the competing-risks regression model, we can use stcurve to plot the estimated
cumulative incidence of local relapses in the presence of the competing risk. We wish to compare
the cumulative incidence curves for ifp == 5 versus ifp == 20, assuming positive pelvic node
involvement (pelnode == 0) and a tumor size that is the average over the data.

stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function 199

. use http://www.stata-press.com/data/r14/hypoxia
(Hypoxia study)

. stset dftime, fail(failtype==1)
(output omitted)

. stcrreg ifp tumsize pelnode, compete(failtype==2)
(output omitted)

. stcurve, cif at1(ifp=5 pelnode=0) at2(ifp=20 pelnode=0)

.1
.2

.3
.4

.5
C

u
m

u
la

ti
v
e

 I
n

c
id

e
n

c
e

0 2 4 6 8
analysis time

ifp=5 pelnode=0 ifp=20 pelnode=0

Competing−risks regression

Figure 8. Comparative cumulative incidence functions

References
Cefalu, M. S. 2011. Pointwise confidence intervals for the covariate-adjusted survivor function in the Cox model.

Stata Journal 11: 64–81.

Cleves, M. A. 2000. stata54: Multiple curves plotted with stcurv command. Stata Technical Bulletin 54: 2–4. Reprinted
in Stata Technical Bulletin Reprints, vol. 9, pp. 7–10. College Station, TX: Stata Press.

http://www.stata-journal.com/sjpdf.html?articlenum=st0217
http://www.stata.com/products/stb/journals/stb54.pdf

200 stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

Also see
[ST] stcox — Cox proportional hazards model

[ST] stcox postestimation — Postestimation tools for stcox

[ST] stcrreg — Competing-risks regression

[ST] stcrreg postestimation — Postestimation tools for stcrreg

[ST] streg — Parametric survival models

[ST] streg postestimation — Postestimation tools for streg

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[ME] mestreg — Multilevel mixed-effects parametric survival models

[ME] mestreg postestimation — Postestimation tools for mestreg

[TE] stteffects — Treatment-effects estimation for observational survival-time data

[TE] stteffects postestimation — Postestimation tools for stteffects

[XT] xtstreg — Random-effects parametric survival models

[XT] xtstreg postestimation — Postestimation tools for xtstreg

Title

stdescribe — Describe survival-time data

Description Quick start Menu Syntax
Options Remarks and examples Stored results Reference
Also see

Description

stdescribe reports the characteristics of a survival-time dataset. The report includes the number
of subjects and per-subject summary statistics related to the number of records, entry and exit times,
gaps in the data, time at risk, and number of failures.

stdescribe can be used with single- or multiple-record and single- or multiple-failure st data.

Quick start
Report characteristics of a survival-time dataset using stset data

stdescribe

Describe only data with v1 = 1
stdescribe if v1==1

Compute weighted statistics using the weight specified in stset

stdescribe, weight

Menu
Statistics > Survival analysis > Summary statistics, tests, and tables > Describe survival-time data

201

202 stdescribe — Describe survival-time data

Syntax
stdescribe

[
if
] [

in
] [

, weight noshow
]

You must stset your data before using stdescribe; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.
by is allowed; see [D] by.

Options

� � �
Main �

weight specifies that the summary use weighted rather than unweighted statistics. weight does
nothing unless you specified a weight when you stset the data. The weight option and the
ability to ignore weights are unique to stdescribe. The purpose of stdescribe is to describe
the data in a computer sense—the number of records, etc.—and for that purpose, the weights are
best ignored.

noshow prevents stdescribe from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

Remarks and examples
Here is an example of stdescribe with single-record survival data:

. use http://www.stata-press.com/data/r14/page2

. stdescribe

failure _d: dead
analysis time _t: time

per subject
Category total mean min median max

no. of subjects 40
no. of records 40 1 1 1 1

(first) entry time 0 0 0 0
(final) exit time 227.95 142 231 344

subjects with gap 0
time on gap if gap 0
time at risk 9118 227.95 142 231 344

failures 36 .9 0 1 1

There is one record per subject. The purpose of this summary is not analysis—it is to describe how
the data are arranged. We can quickly see that there is one record per subject (the number of subjects
equals the number of records, but if there is any doubt, the minimum and maximum number of
records per subject is 1), that all the subjects entered at time 0, that the subjects exited between times
142 and 344 (median 231), that there are no gaps (as there could not be if there is only one record
per subject), that the total time at risk is 9,118 (distributed reasonably evenly across the subjects),
and that the total number of failures is 36 (with a maximum of 1 failure per subject).

stdescribe — Describe survival-time data 203

Here is a description of the multiple-record Stanford heart transplant data that we introduced in
[ST] stset:

. use http://www.stata-press.com/data/r14/stan3
(Heart transplant data)

. stdescribe

failure _d: died
analysis time _t: t1

id: id

per subject
Category total mean min median max

no. of subjects 103
no. of records 172 1.669903 1 2 2

(first) entry time 0 0 0 0
(final) exit time 310.0786 1 90 1799

subjects with gap 0
time on gap if gap 0
time at risk 31938.1 310.0786 1 90 1799

failures 75 .7281553 0 1 1

Here patients have one or two records. Although this is not revealed by the output, a patient has one
record if the patient never received a heart transplant and two if the patient did receive a transplant;
the first reflects the patient’s survival up to the time of transplantation and the second their subsequent
survival:

. stset, noshow /* to not show the st marker variables */

. stdescribe if !transplant

per subject
Category total mean min median max

no. of subjects 34
no. of records 34 1 1 1 1

(first) entry time 0 0 0 0
(final) exit time 96.61765 1 21 1400

subjects with gap 0
time on gap if gap 0
time at risk 3285 96.61765 1 21 1400

failures 30 .8823529 0 1 1

. stdescribe if transplant

per subject
Category total mean min median max

no. of subjects 69
no. of records 138 2 2 2 2

(first) entry time 0 0 0 0
(final) exit time 415.2623 5.1 207 1799

subjects with gap 0
time on gap if gap 0
time at risk 28653.1 415.2623 5.1 207 1799

failures 45 .6521739 0 1 1

204 stdescribe — Describe survival-time data

Finally, here are the results of stdescribe from multiple-failure data:
. use http://www.stata-press.com/data/r14/mfail2

. stdescribe

per subject
Category total mean min median max

no. of subjects 926
no. of records 1734 1.87257 1 2 4

(first) entry time 0 0 0 0
(final) exit time 470.6857 1 477 960

subjects with gap 6
time on gap if gap 411 68.5 16 57.5 133
time at risk 435444 470.2419 1 477 960

failures 808 .8725702 0 1 3

The maximum number of failures per subject observed is three, although 50% had just one failure,
and six subjects have gaps in their histories.

Video example

How to describe and summarize survival data

Stored results
stdescribe stores the following in r():
Scalars

r(N sub) number of subjects r(gap) total gap, if gap
r(N total) number of records r(gap min) minimum gap, if gap
r(N min) minimum number of records r(gap mean) mean gap, if gap
r(N mean) mean number of records r(gap med) median gap, if gap
r(N med) median number of records r(gap max) maximum gap, if gap
r(N max) maximum number of records r(tr) total time at risk
r(t0 min) minimum first entry time r(tr min) minimum time at risk
r(t0 mean) mean first entry time r(tr mean) mean time at risk
r(t0 med) median first entry time r(tr med) median time at risk
r(t0 max) maximum first entry time r(tr max) maximum time at risk
r(t1 min) minimum final exit time r(N fail) number of failures
r(t1 mean) mean final exit time r(f min) minimum number of failures
r(t1 med) median final exit time r(f mean) mean number of failures
r(t1 max) maximum final exit time r(f med) median number of failures
r(N gap) number of subjects with gap r(f max) maximum number of failures

Reference
Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3

ed. College Station, TX: Stata Press.

Also see
[ST] stset — Declare data to be survival-time data

[ST] stsum — Summarize survival-time data

[ST] stvary — Report variables that vary over time

https://www.youtube.com/watch?v=zw8UvYdI8y8
http://www.stata-press.com/books/survival-analysis-stata-introduction/

Title

stfill — Fill in by carrying forward values of covariates

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
stfill is intended for use with multiple-record st data for which id() has been stset. stfill

may be used with single-record data, but it does nothing. That is, stfill can be used with multiple-
record or single- or multiple-failure st data.

stfill, baseline changes variables to contain the value at the earliest time each subject was
observed, making the variable constant over time. stfill, baseline changes all subsequent values
of the specified variables to equal the first value, whether they originally contained missing or not.

stfill, forward fills in missing values of each variable with that of the most recent time at
which the variable was last observed. stfill, forward changes only missing values.

You must specify either the baseline or the forward option.

if exp and in range operate slightly differently from their usual definitions to work as you would
expect. if and in restrict where changes can be made to the data, but no matter what, all stset
observations are used to provide the values to be carried forward.

Quick start
Replace values of x1 with the value of x1 at the earliest time the subject was observed using

multiple-record stset data
stfill x1, baseline

Replace missing values in x1 and x2 with the most recently observed value of the variable for the
subject

stfill x1 x2, forward

Menu
Statistics > Survival analysis > Setup and utilities > Fill forward with values of covariates

205

206 stfill — Fill in by carrying forward values of covariates

Syntax
stfill varlist

[
if
] [

in
]
,
{
baseline | forward

} [
options

]
options Description

Main
∗baseline replace with values at baseline
∗forward carry forward values
noshow do not show st setting information

∗ Either baseline or forward is required.
You must stset your data before using stfill; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options

� � �
Main �

baseline specifies that values be replaced with the values at baseline, the earliest time at which the
subject was observed. All values of the specified variables are replaced, missing and nonmissing.

forward specifies that values be carried forward and that previously observed, nonmissing values be
used to fill in later values that are missing in the specified variables.

noshow prevents stfill from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

Remarks and examples
stfill assists in fixing data errors and makes baseline analyses easier.

Example 1

Let’s begin by repairing broken data.

You have a multiple-record st dataset that, because of how it was constructed, has a problem with
the gender variable:

. use http://www.stata-press.com/data/r14/mrecord

. stvary sex

failure _d: myopic
analysis time _t: t

id: id

subjects for whom the variable is
never always sometimes

variable constant varying missing missing missing

sex 131 1 22 0 110

For 110 subjects, sex is sometimes missing, and for one more subject, the value of sex changes over
time! The sex change is an error, but the missing values occurred because sometimes the subject’s
sex was not filled in on the revisit forms. We will assume that you have checked the changing-sex
subject and determined that the baseline record is correct in that case, too.

stfill — Fill in by carrying forward values of covariates 207

. stfill sex, baseline

failure _d: myopic
analysis time _t: t

id: id

replace all values with value at earliest observed:
sex: 221 real changes made

. stvary sex

failure _d: myopic
analysis time _t: t

id: id

subjects for whom the variable is
never always sometimes

variable constant varying missing missing missing

sex 132 0 132 0 0

The sex variable is now completely filled in.

In this same dataset, there is another variable—bp, blood pressure—that is not always filled in
because readings were not always taken.

. stvary bp

failure _d: myopic
analysis time _t: t

id: id

subjects for whom the variable is
never always sometimes

variable constant varying missing missing missing

bp 18 114 9 0 123

(bp is constant for 18 patients because it was taken only once—at baseline.) Anyway, you decide
that it will be good enough when bp is missing to use the previous value of bp:

. stfill bp, forward noshow

replace missing values with previously observed values:
bp: 263 real changes made

. stvary bp, noshow

subjects for whom the variable is
never always sometimes

variable constant varying missing missing missing

bp 18 114 132 0 0

So much for data repair and fabrication.

208 stfill — Fill in by carrying forward values of covariates

Example 2

Much later, deep in analysis, you are concerned about the bp variable and decide to compare
results with a model that simply includes blood pressure at baseline. You are undecided on the issue
and want to have both variables in your data:

. stset, noshow

. gen bp0 = bp

. stfill bp0, baseline

replace all values with value at earliest observed:
bp0: 406 real changes made

. stvary bp bp0

subjects for whom the variable is
never always sometimes

variable constant varying missing missing missing

bp 18 114 132 0 0
bp0 132 0 132 0 0

Also see
[ST] stbase — Form baseline dataset

[ST] stgen — Generate variables reflecting entire histories

[ST] stset — Declare data to be survival-time data

[ST] stvary — Report variables that vary over time

Title

stgen — Generate variables reflecting entire histories

Description Quick start Menu Syntax
Functions Remarks and examples Also see

Description
stgen provides a convenient way to generate new variables reflecting entire histories. These

functions are intended for use with multiple-record survival data but may be used with single-record
data. With single-record data, each function reduces to one generate, and generate would be a
more natural way to approach the problem.

stgen can be used with single- or multiple-failure st data.

If you want to generate calculated values, such as the survivor function, see [ST] sts.

Quick start
Create binary indicator newv1 equal to 1 in all records for a subject if v1 = 1 at any time using

multiple-record stset data
stgen newv1 = ever(v1==1)

Create newv2 containing the time when v2 is first greater than 5 for the subject
stgen newv2 = when(v2>5)

As above, but assume v2 > 5 becomes true at the beginning instead of at the end of the corresponding
record

stgen newv2 = when0(v2>5)

Create newv3 containing the cumulative number of records with v1 = 1 for the subject
stgen newv3 = count(v1==1)

As above, but assume v1 = 1 becomes true at the beginning instead of at the end of the corresponding
record

stgen newv3 = count0(v1==1)

Create newv4 containing the cumulative number of gaps for the subject
stgen newv4 = ngaps()

Menu
Statistics > Survival analysis > Setup and utilities > Generate variable reflecting entire histories

209

210 stgen — Generate variables reflecting entire histories

Syntax
stgen

[
type

]
newvar = function

where function is
ever(exp)
never(exp)
always(exp)
min(exp)
max(exp)
when(exp)
when0(exp)
count(exp)
count0(exp)
minage(exp)
maxage(exp)
avgage(exp)
nfailures()
ngaps()
gaplen()
hasgap()

You must stset your data before using stgen; see [ST] stset.

Functions
In the description of the functions below, time units refer to the same units as timevar from stset

timevar, For instance, if timevar is the number of days since 01 January 1960 (a Stata date), time
units are days. If timevar is in years—years since 1960, years since diagnosis, or whatever—time
units are years.

When we say variable X records a “time”, we mean a variable that records when something
occurred in the same units and with the same base as timevar. If timevar is a Stata date, “time” is
correspondingly a Stata date.

t units, or analysis-time units, refer to a variable in the units timevar/scale() from stset
timevar, scale(. . .) If you did not specify a scale(), t units are the same as time units.
Alternatively, say that timevar is recorded as a Stata date and you specified scale(365.25). Then
t units are years. If you specified a nonconstant scale—scale(myvar), where myvar varies from
subject to subject—t units are different for every subject.

“An analysis time” refers to the time something occurred, recorded in the units (timevar-
origin())/scale(). We speak about analysis time only in terms of the beginning and end of each
time-span record.

Although in Description above we said that stgen creates variables reflecting entire histories,
stgen restricts itself to the stset observations, so “entire history” means the entire history as it is
currently stset. If you really want to use entire histories as recorded in the data, type streset,
past or streset, past future before using stgen. Then type streset to reset to the original
analysis sample.

stgen — Generate variables reflecting entire histories 211

The following functions are available:

ever(exp) creates newvar containing 1 (true) if the expression is ever true (nonzero) and 0 otherwise.
For instance,

. stgen everlow = ever(bp<100)

would create everlow containing, for each subject, uniformly 1 or 0. Every record for a subject
would contain everlow= 1 if, on any stset record for the subject, bp< 100; otherwise, everlow
would be 0.

never(exp) is the reverse of ever(); it creates newvar containing 1 (true) if the expression is always
false (0) and 0 otherwise. For instance,

. stgen neverlow = never(bp<100)

would create neverlow containing, for each subject, uniformly 1 or 0. Every record for a subject
would contain neverlow= 1 if, on every stset record for the subject, bp< 100 is false.

always(exp) creates newvar containing 1 (true) if the expression is always true (nonzero) and 0
otherwise. For instance,

. stgen lowlow = always(bp<100)

would create lowlow containing, for each subject, uniformly 1 or 0. Every record for a subject
would contain lowlow= 1 if, on every stset record for a subject, bp< 100.

min(exp) and max(exp) create newvar containing the minimum or maximum nonmissing value of
exp within id(). min() and max() are often used with variables recording a time (see definition
above), such as min(visitdat).

when(exp) and when0(exp) create newvar containing the time when exp first became true within
the previously stset id(). The result is in time, not t units; see the definition above.

when() and when0() differ about when the exp became true. Records record time spans
(time0, time1]. when() assumes that the expression became true at the end of the time span,
time1. when0() assumes that the expression became true at the beginning of the time span, time0.

Assume that you previously stset myt, failure(eventvar =. . .) when() would be appro-
priate for use with eventvar, and, presumably, when0() would be appropriate for use with the
remaining variables.

count(exp) and count0(exp) create newvar containing the number of occurrences when exp is true
within id().

count() and count0() differ in when they assume that exp occurs. count() assumes that exp
corresponds to the end of the time-span record. Thus even if exp is true in this record, the count
would remain unchanged until the next record.

count0() assumes that exp corresponds to the beginning of the time-span record. Thus if exp is
true in this record, the count is immediately updated.

For example, assume that you previously stset myt, failure(eventvar=. . .) count()
would be appropriate for use with eventvar, and, presumably, count0() would be appropriate for
use with the remaining variables.

minage(exp), maxage(exp), and avgage(exp) return the elapsed time, in time units, because exp is
at the beginning, end, or middle of the record, respectively. exp is expected to evaluate to a time
in time units. minage(), maxage(), and avgage() would be appropriate for use with the result
of when(), when0(), min(), and max(), for instance.

212 stgen — Generate variables reflecting entire histories

Also see [ST] stsplit; stsplit will divide the time-span records into new time-span records that
record specified intervals of ages.

nfailures() creates newvar containing the cumulative number of failures for each subject as of the
entry time for the observation. nfailures() is intended for use with multiple-failure data; with
single-failure data, nfailures() is always 0. In multiple-failure data,

. stgen nfail = nfailures()

might create, for a particular subject, the following:
id time0 time1 fail x nfail
93 0 20 0 1 0
93 20 30 1 1 0
93 30 40 1 2 1
93 40 60 0 1 2
93 60 70 0 2 2
93 70 80 1 1 2

The total number of failures for this subject is 3, and yet the maximum of the new variable nfail
is 2. At time 70, the beginning of the last record, there had been two failures previously, and there
were two failures up to but not including time 80.

ngaps() creates newvar containing the cumulative number of gaps for each subject as of the entry
time for the record. Delayed entry (an opening gap) is not considered a gap. For example,

. stgen ngap = ngaps()

might create, for a particular subject, the following:
id time0 time1 fail x ngap
94 10 30 0 1 0
94 30 40 0 2 0
94 50 60 0 1 1
94 60 70 0 2 1
94 82 90 1 1 2

gaplen() creates newvar containing the time on gap, measured in analysis-time units, for each
subject as of the entry time for the observation. Delayed entry (an opening gap) is not considered
a gap. Continuing with the previous example,

. stgen gl = gaplen()

would produce
id time0 time1 fail x ngap gl
94 10 30 0 1 0 0
94 30 40 0 2 0 0
94 50 60 0 1 1 10
94 60 70 0 2 1 0
94 82 90 1 1 2 12

hasgap() creates newvar containing uniformly 1 if the subject ever has a gap and 0 otherwise.
Delayed entry (an opening gap) is not considered a gap.

Remarks and examples
stgen does nothing you cannot do in other ways, but it is convenient.

Consider how you would obtain results like those created by stgen should you need something
that stgen will not create for you. Say that we have an st dataset for which we have previously

. stset t, failure(d) id(id)

stgen — Generate variables reflecting entire histories 213

Assume that these are some of the data:

id t d bp
27 30 0 90
27 50 0 110
27 60 1 85
28 11 0 120
28 40 1 130

If we were to type

. stgen everlow = ever(bp<100)

the new variable, everlow, would contain for these two subjects

id t d bp everlow
27 30 0 90 1
27 50 0 110 1
27 60 1 85 1
28 11 0 120 0
28 40 1 130 0

Variable everlow is 1 for subject 27 because, in two of the three observations, bp< 100, and
everlow is 0 for subject 28 because everlow is never less than 100 in either observation.

Here is one way we could have created everlow for ourselves:

. generate islow = bp<100

. sort id

. by id: generate sumislow = sum(islow)

. by id: generate everlow = sumislow[_N]>0

. drop islow sumislow

The generic term for code like this is explicit subscripting; see [U] 13.7 Explicit subscripting.

Anyway, that is what stgen did for us, although, internally, stgen used denser code that was
equivalent to

. by id, sort: generate everlow=sum(bp<100)

. by id: replace everlow = everlow[_N]>0

Obtaining things like the time on gap is no more difficult. When we stset the data, stset created
variable t0 to record the entry time. stgen’s gaplen() function is equivalent to

. sort id _t

. by id: generate gaplen = _t0-_t[_n-1]

. by id: replace gaplen = 0 if _n == 1

Seeing this, you should realize that if all you wanted was the cumulative length of the gap before
the current record, you could type

. sort id _t

. by id: generate curgap = sum(_t0-_t[_n-1])

If, instead, you wanted a variable that was 1 if there were a gap just before this record and 0 otherwise,
you could type

. sort id _t

. by id: generate iscurgap = (_t0-_t[_n-1])>0

214 stgen — Generate variables reflecting entire histories

Example 1

Let’s use the stgen commands to real effect. We have a multiple-record, multiple-failure dataset.

. use http://www.stata-press.com/data/r14/mrmf, clear

. st
-> stset t, id(id) failure(d) time0(t0) exit(time .) noshow

id: id
failure event: d != 0 & d < .

obs. time interval: (t0, t]
exit on or before: time .

. stdescribe

per subject
Category total mean min median max

no. of subjects 926
no. of records 1734 1.87257 1 2 4

(first) entry time 0 0 0 0
(final) exit time 470.6857 1 477 960

subjects with gap 6
time on gap if gap 411 68.5 16 57.5 133
time at risk 435444 470.2419 1 477 960

failures 808 .8725702 0 1 3

Also in this dataset are two covariates, x1 and x2. We wish to fit a Cox model on these data but
wish to assume that the baseline hazard for first failures is different from that for second and later
failures.

Our data contain six subjects with gaps. Because failures might have occurred during the gap, we
begin by dropping those six subjects:

. stgen hg = hasgap()

. drop if hg
(14 observations deleted)

The six subjects had 14 records among them. We can now create variable nf containing the number
of failures and, from that, create variable group, which will be 0 when subjects have experienced no
previous failures and 1 thereafter:

. stgen nf = nfailures()

. generate byte group = nf>0

stgen — Generate variables reflecting entire histories 215

We can now fit our stratified model:

. stcox x1 x2, strata(group) vce(robust)

Iteration 0: log pseudolikelihood = -4499.9966
Iteration 1: log pseudolikelihood = -4444.7797
Iteration 2: log pseudolikelihood = -4444.4596
Iteration 3: log pseudolikelihood = -4444.4596
Refining estimates:
Iteration 0: log pseudolikelihood = -4444.4596

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 920 Number of obs = 1,720
No. of failures = 800
Time at risk = 432153

Wald chi2(2) = 102.78
Log pseudolikelihood = -4444.4596 Prob > chi2 = 0.0000

(Std. Err. adjusted for 920 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

x1 2.087903 .1961725 7.84 0.000 1.736738 2.510074
x2 .2765613 .052277 -6.80 0.000 .1909383 .4005806

Stratified by group

Also see
[ST] stci — Confidence intervals for means and percentiles of survival time

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[ST] stvary — Report variables that vary over time

Title

stir — Report incidence-rate comparison

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

stir reports point estimates and confidence intervals for the incidence-rate ratio (IRR) and incidence-
rate difference. Stratified IRRs may be standardized to produce standardized mortality ratios.

stir can be used with single- or multiple-record and single- or multiple-failure st data.

Quick start
IRR and difference with confidence intervals for exposure indicator exposed using stset data

stir exposed

Crude and Mantel–Haenszel combined IRRs with test of homogeneity for strata defined by svar

stir exposed, strata(svar)

As above, and standardize the IRRs by weighting variable wvar

stir exposed, strata(svar) standard(wvar)

As above, but standardize using time at risk for the unexposed group as weights
stir exposed, strata(svar) estandard

Menu
Statistics > Survival analysis > Summary statistics, tests, and tables > Report incidence-rate comparison

216

stir — Report incidence-rate comparison 217

Syntax
stir exposedvar

[
if
] [

in
] [

, options
]

options Description

Main

strata(varname) stratify on varname
noshow do not show st setting information

Options

ird report incidence-rate difference rather than ratio
estandard combine external weights with within-stratum statistics
istandard combine internal weights with within-stratum statistics
standard(varname) combine user-specified weights with within-stratum statistics
pool display pooled estimate
nocrude do not display crude estimate
nohom do not display homogeneity test
tb calculate test-based confidence intervals
level(#) set confidence level; default is level(95)

Options except noshow, tb, and level(#) are relevant only if strata() is specified.
You must stset your data before using stir; see [ST] stset.
by is allowed; see [D] by.
fweights and iweights may be specified using stset; see [ST] stset. stir may not be used with
pweighted data.

Options

� � �
Main �

strata(varname) specifies that the calculation be stratified on varname, which may be a numeric
or string variable. Within-stratum statistics are shown and then combined with Mantel–Haenszel
weights.

noshow prevents stir from showing the key st variables. This option is seldom used because most
people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

� � �
Options �

ird, estandard, istandard, standard(varname), pool, nocrude, and nohom are relevant only
if strata() is specified; see [R] epitab.

tb and level(#) are relevant in all cases; see [R] epitab.

218 stir — Report incidence-rate comparison

Remarks and examples
stir examines the incidence rate and time at risk.

. use http://www.stata-press.com/data/r14/page2

. stir group, noshow

note: Exposed <-> group==2 and Unexposed <-> group==1

group
Exposed Unexposed Total

Failure 19 17 36
Time 5023 4095 9118

Incidence rate .0037826 .0041514 .0039482

Point estimate [95% Conf. Interval]

Inc. rate diff. -.0003688 -.002974 .0022364
Inc. rate ratio .9111616 .4484366 1.866047 (exact)
Prev. frac. ex. .0888384 -.8660469 .5515634 (exact)
Prev. frac. pop .04894

(midp) Pr(k<=19) = 0.3900 (exact)
(midp) 2*Pr(k<=19) = 0.7799 (exact)

Video example

How to calculate incidence rates and incidence-rate ratios

Stored results
stir stores the following in r():

Scalars
r(p) one-sided p-value
r(ird) incidence-rate difference
r(lb ird) lower bound of CI for ird
r(ub ird) upper bound of CI for ird
r(irr) incidence-rate ratio
r(lb irr) lower bound of CI for irr
r(ub irr) upper bound of CI for irr
r(afe) attributable (prev.) fraction among exposed
r(lb afe) lower bound of CI for afe
r(ub afe) upper bound of CI for afe
r(afp) attributable fraction for the population
r(chi2 mh) Mantel–Haenszel homogeneity χ2

r(chi2 p) pooled homogeneity χ2

r(df) degrees of freedom

Methods and formulas
stir simply accumulates numbers of failures and time at risk by exposed and unexposed (by

strata, if necessary) and passes the calculation to ir; see [R] epitab.

https://www.youtube.com/watch?v=ItmXrcfpTfE&list=UUVk4G4nEtBS4tLOyHqustDA

stir — Report incidence-rate comparison 219

Reference
Dupont, W. D. 2009. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the Analysis of

Complex Data. 2nd ed. Cambridge: Cambridge University Press.

Also see
[ST] stset — Declare data to be survival-time data

[ST] stsum — Summarize survival-time data

[R] epitab — Tables for epidemiologists

http://www.stata.com/bookstore/smbr.html
http://www.stata.com/bookstore/smbr.html

Title

stptime — Calculate person-time, incidence rates, and SMR

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description

stptime calculates person-time and incidence rates. stptime computes standardized mortal-
ity/morbidity ratios (SMRs) after merging the data with a suitable file of standard rates specified with
the using() option.

Quick start
Person-time and incidence rate using stset data

stptime

As above, but tabulate in ten-year intervals from 20 to 50
stptime, at(20(10)50)

As above, but exclude observations less than or equal to 20 or greater than 50
stptime, at(20(10)50) trim

As above, but report rate per 1,000 person-years with two decimal places
stptime, at(20(10)50) trim per(1000) dd(2)

Person-time and incidence rates for each level of v1
stptime, by(v1)

Standardized mortality ratios in 10-year intervals from 20 to 50 from reference rates rvar for lower
end-points lower defining each cohort saved in mydata.dta

stptime, at(20(10)50) smr(lower rvar) using(mydata)

Menu
Statistics > Survival analysis > Summary statistics, tests, and tables > Person-time, incidence rates, and SMR

220

stptime — Calculate person-time, incidence rates, and SMR 221

Syntax

stptime
[

if
] [

, options
]

options Description

Main

at(numlist) compute person-time at specified intervals; default is to
compute overall person-time and incidence rates

trim exclude observations ≤ minimum or > maximum of at()
by(varname) compute incidence rates or SMRs by varname

Options

per(#) units to be used in reported rates
dd(#) number of decimal digits to be displayed
smr(groupvar ratevar) use groupvar and ratevar in using() dataset to calculate SMRs
using(filename) specify filename to merge that contains smr() variables
level(#) set confidence level; default is level(95)

noshow do not show st setting information

Advanced

jackknife jackknife confidence intervals
title(string) label output table with string
output(filename

[
, replace

]
) save summary dataset as filename; use replace to overwrite

existing filename

You must stset your data before using stptime; see [ST] stset.
by is allowed; see [D] by.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options

� � �
Main �

at(numlist) specifies intervals at which person-time is to be computed. The intervals are specified
in analysis time t units. If at() is not specified, overall person-time and incidence rates are
computed.

If, for example, you specify at(5(5)20) and the trim option is not specified, person-time is
reported for the intervals t = (0− 5], t = (5− 10], t = (10− 15], and t = (15− 20].

trim specifies that observations less than or equal to the minimum or greater than the maximum
value listed in at() be excluded from the computations.

by(varname) specifies a categorical variable by which incidence rates or SMRs are to be computed.

� � �
Options �

per(#) specifies the units to be used in reported rates. For example, if the analysis time is in years,
specifying per(1000) results in rates per 1,000 person-years.

dd(#) specifies the maximum number of decimal digits to be reported for rates, ratios, and confidence
intervals. This option affects only how values are displayed, not how they are calculated.

222 stptime — Calculate person-time, incidence rates, and SMR

smr(groupvar ratevar) specifies two variables in the using() dataset. The groupvar identifies the
age-group or calendar-period variable used to match the data in memory and the using() dataset.
The ratevar variable contains the appropriate reference rates. stptime then calculates SMRs rather
than incidence rates.

using(filename) specifies the filename that contains a file of standard rates that is to be merged with
the data so that SMRs can be calculated.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

noshow prevents stptime from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

� � �
Advanced �

jackknife specifies that jackknife confidence intervals be produced. This is the default if pweights
or iweights were specified when the dataset was stset.

title(string) replaces the default “person-time” label on the output table with string.

output(filename
[
, replace

]
) saves a summary dataset in filename. The file contains counts of

failures and person-time, incidence rates (or SMRs), confidence limits, and categorical variables
identifying the time intervals. This dataset could be used for further calculations or simply as input
to the table command.

replace specifies that filename be overwritten if it exists. This option is not shown in the dialog
box.

Remarks and examples

stptime computes and tabulates the person-time and incidence rate (formed from the number of
failures divided by the person-time). If you use the by() option, this will be calculated by different
levels of one or more categorical explanatory variables specified by varname. Confidence intervals
for the rate are also given. By default, the confidence intervals are calculated using the quadratic
approximation to the Poisson log likelihood for the log-rate parameter. However, whenever the Poisson
assumption is questionable, such as when pweights or iweights are used, jackknife confidence
intervals can also be calculated.

stptime can also calculate and report SMRs if the data have been merged with a suitable file of
reference rates.

If pweights or iweights were specified when the dataset was stset, stptime calculates jackknife
confidence intervals by default.

The summary dataset can be saved to a file specified with the output() option for further analysis
or a more elaborate graphical display.

stptime — Calculate person-time, incidence rates, and SMR 223

Example 1

We begin with a simple fictitious example from Clayton and Hills (1993, 42). Thirty subjects were
monitored until the development of a particular disease. Here are the data for the first five subjects:

. use http://www.stata-press.com/data/r14/stptime

. list in 1/5

id year fail

1. 1 19.6 1
2. 2 10.8 1
3. 3 14.1 1
4. 4 3.5 1
5. 5 4.8 1

The id variable identifies the subject, year records the time to failure in years, and fail is the
failure indicator, which is 1 for all 30 subjects in the data. To use stptime, we must first stset the
data.

. stset year, fail(fail) id(id)

id: id
failure event: fail != 0 & fail < .

obs. time interval: (year[_n-1], year]
exit on or before: failure

30 total observations
0 exclusions

30 observations remaining, representing
30 subjects
30 failures in single-failure-per-subject data

261.9 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 36.5

We can use stptime to obtain the overall person-time of observation and disease incidence rate.

. stptime, title(person-years)

failure _d: fail
analysis time _t: year

id: id

Cohort person-years failures rate [95% Conf. Interval]

total 261.9 30 .11454754 .08009 .1638299

The total 261.9 person-years reported by stptime matches what stset reported as total analysis
time at risk. stptime computed an incidence rate of 0.11454754 per person-year. In epidemiology,
incidence rates are often presented per 1,000 person-years. We can do this by specifying per(1000).

. stptime, title(person-years) per(1000)

failure _d: fail
analysis time _t: year

id: id

Cohort person-years failures rate [95% Conf. Interval]

total 261.9 30 114.54754 80.09001 163.8299

224 stptime — Calculate person-time, incidence rates, and SMR

More interesting would be to compare incidence rates at 10-year intervals. We will specify dd(4)
to display rates to four decimal places.

. stptime, per(1000) at(0(10)40) dd(4)

failure _d: fail
analysis time _t: year

id: id

Cohort person-time failures rate [95% Conf. Interval]

(0 - 10] 188.8000 18 95.3390 60.0676 151.3215
(10 - 20] 55.1000 10 181.4882 97.6506 337.3044
(20 - 30] 11.5000 1 86.9565 12.2490 617.3106

> 30 6.5000 1 153.8462 21.6713 1092.1648

total 261.9000 30 114.5475 80.0900 163.8299

Example 2

Using the diet data (Clayton and Hills 1993) described in example 1 of [ST] stsplit, we will use
stptime to tabulate age-specific person-years and coronary heart disease (CHD) incidence rates. In
this dataset, CHD has been coded as fail = 1, 3, or 13.

We first stset the data: failure codes for CHD are specified; origin is set to date of birth, making
age the analysis time; and the scale is set to 365.25, so analysis time is measured in years.

. use http://www.stata-press.com/data/r14/diet
(Diet data with dates)

. stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
> fail(fail==1 3 13)

id: id
failure event: fail == 1 3 13

obs. time interval: (dox[_n-1], dox]
enter on or after: time doe
exit on or before: failure

t for analysis: (time-origin)/365.25
origin: time dob

337 total observations
0 exclusions

337 observations remaining, representing
337 subjects
46 failures in single-failure-per-subject data

4603.669 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 30.07529
last observed exit t = 69.99863

stptime — Calculate person-time, incidence rates, and SMR 225

The incidence of CHD per 1,000 person-years can be tabulated in 10-year intervals.

. stptime, per(1000) at(40(10)70) trim

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time dob
enter on or after: time doe

id: id
note: _group<=40 trimmed

Cohort person-time failures rate [95% Conf. Interval]

(40 - 50] 907.00616 6 6.6151701 2.971936 14.72457
(50 - 60] 2107.0418 18 8.5427828 5.382317 13.55906
(60 - 70] 1493.2923 22 14.732548 9.700656 22.37457

total 4507.3402 46 10.205575 7.644246 13.62512

The SMR for a cohort is the ratio of the total number of observed deaths to the number expected
from age-specific reference rates. This expected number can be found by multiplying the person-time
in each cohort by the reference rate for that cohort. Using the smr option to define the cohort variable
and reference rate variable in the using() dataset, stptime calculates SMRs and confidence intervals.
You must specify the per() option. For example, if the reference rates were per 100,000, you would
specify per(100000).

Example 3

In smrchd.dta, we have age-specific CHD rates per 1,000 person-years for a reference population.
We can merge these data with our current data and use stptime to obtain SMRs and confidence
intervals.

. stptime, smr(ageband rate) using(http://www.stata-press.com/data/r14/smrchd)
> per(1000) at(40(10)70) trim

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time dob
enter on or after: time doe

id: id
note: _group<=40 trimmed

observed expected
Cohort person-time failures failures SMR [95% Conf. Interval]

(40 - 50] 907.00616 6 5.62344 1.067 .4793445 2.374931
(50 - 60] 2107.0418 18 18.7527 .95986 .6047547 1.52349
(60 - 70] 1493.2923 22 22.8474 .96291 .6340298 1.46239

total 4507.3402 46 47.2235 .97409 .7296205 1.300477

The stptime command can also calculate person-time and incidence rates or SMRs by categories
of the explanatory variable. In our diet data, the variable hienergy is coded 1 if the total energy
consumption is more than 2.75 Mcal and 0 otherwise. We want to compute the person-years and
incidence rates for these two levels of hienergy.

226 stptime — Calculate person-time, incidence rates, and SMR

. stptime, by(hienergy) per(1000)

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time dob
enter on or after: time doe

id: id

hienergy person-time failures rate [95% Conf. Interval]

0 2059.4305 28 13.595992 9.387478 19.69123
1 2544.2382 18 7.0748093 4.457431 11.2291

total 4603.6687 46 9.9920309 7.484296 13.34002

We can also compute the incidence rate for the two levels of hienergy and the three previously
defined age cohorts:

. stptime, by(hienergy) per(1000) at(40(10)70) trim

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time dob
enter on or after: time doe

id: id

hienergy person-time failures rate [95% Conf. Interval]

0
(40 - 50] 346.87474 2 5.76577 1.442006 23.05407
(50 - 60] 979.34018 12 12.253148 6.958681 21.57587

> 60 699.13758 14 20.024671 11.85966 33.81104

1
(40 - 50] 560.13142 4 7.1411813 2.680213 19.02702
(50 - 60] 1127.7016 6 5.3205566 2.390317 11.84292

> 60 794.15469 8 10.073604 5.037786 20.14327

total 4507.3402 46 10.205575 7.644246 13.62512

Or we can compute the corresponding SMR:

. stptime, smr(ageband rate) using(http://www.stata-press.com/data/r14/smrchd)
> by(hienergy) per(1000) at(40(10)70) trim

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time dob
enter on or after: time doe

id: id

observed expected
hienergy person-time failures failures SMR [95% Conf. Interval]

0
(40 - 50] 346.87474 2 2.15062 .9299629 .2325815 3.718399
(50 - 60] 979.34018 12 8.71613 1.376758 .7818743 2.424256

> 60 699.13758 14 10.6968 1.308802 .7751411 2.209872

1
(40 - 50] 560.13142 4 3.47281 1.151803 .4322924 3.068875
(50 - 60] 1127.7016 6 10.0365 .5978154 .2685749 1.330665

> 60 794.15469 8 12.1506 .6584055 .329267 1.316554

total 4507.3402 46 47.2235 .9740917 .7296205 1.300477

stptime — Calculate person-time, incidence rates, and SMR 227

Video example

How to calculate incidence rates and incidence-rate ratios

Stored results
stptime stores the following in r():

Scalars
r(ptime) person-time
r(failures) observed failures
r(rate) failure rate
r(expected) expected number of failures
r(smr) standardized mortality ratio
r(lb) lower bound for SMR
r(ub) upper bound for SMR

References
Clayton, D. G., and M. Hills. 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.

Rutherford, M. J., P. C. Lambert, and J. R. Thompson. 2010. Age–period–cohort modeling. Stata Journal 10: 606–627.

Also see
[ST] stci — Confidence intervals for means and percentiles of survival time

[ST] stir — Report incidence-rate comparison

[ST] strate — Tabulate failure rates and rate ratios

[ST] stset — Declare data to be survival-time data

[ST] stsplit — Split and join time-span records

[R] epitab — Tables for epidemiologists

https://www.youtube.com/watch?v=ItmXrcfpTfE&list=UUVk4G4nEtBS4tLOyHqustDA
http://www.stata.com/bookstore/sme.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0211

Title

strate — Tabulate failure rates and rate ratios

Description Quick start Menu
Syntax Options for strate Options for stmh and stmc
Remarks and examples Stored results Acknowledgments
References Also see

Description

strate tabulates rates by one or more categorical variables declared in varlist. You can also save
an optional summary dataset, which includes event counts and rate denominators, for further analysis
or display. The combination of the commands stsplit and strate implements most of, if not all,
the functions of the special-purpose person-years programs in widespread use in epidemiology; see
[ST] stsplit.

stmh calculates stratified rate ratios and significance tests by using a Mantel–Haenszel-type method.

stmc calculates rate ratios that are stratified finely by time by using the Mantel–Cox method. The
corresponding significance test (the log-rank test) is also calculated.

Both stmh and stmc can estimate the failure-rate ratio for two categories of the explanatory
variable specified by the first argument of varlist. You can define categories to be compared by
specifying them with the compare() option. The remaining variables in varlist before the comma
are categorical variables, which are to be “controlled for” using stratification. Strata are defined by
cross-classification of these variables.

You can also use stmh and stmc to carry out trend tests for a metric explanatory variable. Here
a one-step Newton approximation to the log-linear Poisson regression coefficient is computed.

Quick start
Table of failure rates using stset data

strate

As above, but calculate failure rates at each level of categorical variable catvar

strate catvar

Graph rates against catvar
strate catvar, graph

Table of SMRs per 1,000 with reference rates stored in variable rvar

strate catvar, per(1000) smr(rvar)

Stratified failure-rate ratios with test for unequal rate ratios using Mantel–Haenszel method comparing
category 0 with 1 in binary variable a

stmh a

As above, but compare 4 to 3 in multivalued b at each level of catvar
stmh b, compare(4,3) by(catvar)

Failure-rate ratio using Mantel–Cox method and controlling for values of catvar
stmc b catvar, compare(4,3)

228

strate — Tabulate failure rates and rate ratios 229

Menu
strate

Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate failure rates and rate ratios

stmh

Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate Mantel-Haenszel rate ratios

stmc

Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate Mantel-Cox rate ratios

Syntax

Tabulate failure rates

strate
[

varlist
] [

if
] [

in
] [

, strate options
]

Calculate rate ratios with the Mantel–Haenszel method

stmh varname
[

varlist
] [

if
] [

in
] [

, options
]

Calculate rate ratios with the Mantel–Cox method

stmc varname
[

varlist
] [

if
] [

in
] [

, options
]

230 strate — Tabulate failure rates and rate ratios

strate options Description

Main

per(#) units to be used in reported rates
smr(varname) use varname as reference-rate variable to calculate SMRs
cluster(varname) cluster variable to be used by the jackknife
jackknife report jackknife confidence intervals
missing include missing values as extra categories
level(#) set confidence level; default is level(95)

output(filename
[
, replace

]
) save summary dataset as filename; use replace to overwrite

existing filename
nolist suppress listed output
graph graph rates against exposure category
nowhisker omit confidence intervals from the graph

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options affect rendition of the plotted points

CI plot

ciopts(rspike options) affect rendition of the confidence intervals (whiskers)

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

options Description

Main

by(varlist) tabulate rate ratio on varlist
compare(num1,den2) compare categories of exposure variable
missing include missing values as extra categories
level(#) set confidence level; default is level(95)

You must stset your data before using strate, stmh, and stmc; see [ST] stset.
by is allowed with stmh and stmc; see [D] by.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options for strate

� � �
Main �

per(#) specifies the units to be used in reported rates. For example, if the analysis time is in years,
specifying per(1000) results in rates per 1,000 person-years.

smr(varname) specifies a reference-rate variable. strate then calculates SMRs rather than rates. This
option will usually follow stsplit to separate the follow-up records by age bands and possibly
calendar periods.

strate — Tabulate failure rates and rate ratios 231

cluster(varname) defines a categorical variable that indicates clusters of data to be used by the
jackknife. If the jackknife option is selected and this option is not specified, the cluster variable
is taken as the id variable defined in the st data. Specifying cluster() implies jackknife.

jackknife specifies that jackknife confidence intervals be produced. This is the default if weights
were specified when the dataset was stset.

missing specifies that missing values of the explanatory variables be treated as extra categories. The
default is to exclude such observations.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

output(filename
[
, replace

]
) saves a summary dataset in filename. The file contains counts of

failures and person-time, rates (or SMRs), confidence limits, and all the categorical variables in
the varlist. This dataset could be used for further calculations or simply as input to the table
command; see [R] table.

replace specifies that filename be overwritten if it exists. This option is not shown in the dialog
box.

nolist suppresses the output. This is used only when saving results to a file specified by output().

graph produces a graph of the rate against the numerical code used for the categories of varname.

nowhisker omits the confidence intervals from the graph.

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

cline options affect whether lines connect the plotted points and the rendition of those lines; see
[G-3] cline options.

� � �
CI plot �

ciopts(rspike options) affects the rendition of the confidence intervals (whiskers); see
[G-3] rspike options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Options for stmh and stmc

� � �
Main �

by(varlist) specifies categorical variables by which the rate ratio is to be tabulated.

A separate rate ratio is produced for each category or combination of categories of varlist, and a
test for unequal rate ratios (effect modification) is displayed.

232 strate — Tabulate failure rates and rate ratios

compare(num1,den2) specifies the categories of the exposure variable to be compared. The first
code defines the numerator categories, and the second code defines the denominator categories.

When compare is absent and there are only two categories, the larger is compared with the smaller;
when there are more than two categories, compare analyzes log-linear trend.

missing specifies that missing values of the explanatory variables be treated as extra categories. The
default is to exclude such observations.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

Remarks and examples
Remarks are presented under the following headings:

Tabulation of rates by using strate
Stratified rate ratios using stmh
Log-linear trend test for metric explanatory variables using stmh
Controlling for age with fine strata by using stmc

Tabulation of rates by using strate

strate tabulates the rate, formed from the number of failures divided by the person-time, by
different levels of one or more categorical explanatory variables specified by varlist. Confidence
intervals for the rate are also given. By default, the confidence intervals are calculated using the
quadratic approximation to the Poisson log likelihood for the log-rate parameter. However, whenever
the Poisson assumption is questionable, jackknife confidence intervals can also be calculated. The
jackknife option also allows for multiple records for the same cluster (usually subject).

strate can also calculate and report SMRs if the data have been merged with a suitable file of
reference rates.

The summary dataset can be saved to a file specified with the output() option for further analysis
or more elaborate graphical display.

If weights were specified when the dataset was stset, strate calculates jackknife confidence
intervals by default.

Example 1

Using the diet data (Clayton and Hills 1993) described in example 1 of [ST] stsplit, we will use
strate to tabulate age-specific coronary heart disease (CHD). In this dataset, CHD has been coded as
fail = 1, 3, or 13.

We first stset the data: failure codes for CHD are specified; origin is set to date of birth, making
age analysis time; and the scale is set to 365.25, so analysis time is measured in years.

strate — Tabulate failure rates and rate ratios 233

. use http://www.stata-press.com/data/r14/diet
(Diet data with dates)

. stset dox, origin(time doe) id(id) scale(365.25) fail(fail==1 3 13)

id: id
failure event: fail == 1 3 13

obs. time interval: (dox[_n-1], dox]
exit on or before: failure

t for analysis: (time-origin)/365.25
origin: time doe

337 total observations
0 exclusions

337 observations remaining, representing
337 subjects
46 failures in single-failure-per-subject data

4603.669 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 20.04107

Now we stsplit the data into 10-year age bands.

. stsplit ageband, at(40(10)70) after(time=dob) trim
(26 + 0 obs. trimmed due to lower and upper bounds)
(418 observations (episodes) created)

stsplit added 418 observations to the dataset in memory and generated a new variable, ageband,
which identifies each observation’s age group.

The CHD rate per 1,000 person-years can now be tabulated for categories of ageband:

. strate ageband, per(1000) graph

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time doe
id: id

note: ageband<=40 trimmed

Estimated rates (per 1000) and lower/upper bounds of 95% confidence intervals
(729 records included in the analysis)

ageband D Y Rate Lower Upper

40 6 0.9070 6.6152 2.9719 14.7246
50 18 2.1070 8.5428 5.3823 13.5591
60 22 1.4933 14.7325 9.7007 22.3746

234 strate — Tabulate failure rates and rate ratios

5
1

0
1

5
2

0
2

5
R

a
te

 (
p

e
r

1
0

0
0

)

40 45 50 55 60
ageband

Because we specified the graph option, strate also generated a plot of the estimated rates and
confidence intervals.

The SMR for a cohort is the ratio of the total number of observed deaths to the number expected
from age-specific reference rates. This expected number can be found by first expanding on age, using
stsplit, and then multiplying the person-years in each age band by the reference rate for that band.
merge (see [D] merge) can be used to add the reference rates to the dataset. Using the smr option to
define the variable containing the reference rates, strate calculates SMRs and confidence intervals.
You must specify the per() option. For example, if the reference rates were per 100,000, you would
specify per(100000). When reference rates are available by age and calendar period, you must call
stsplit twice to expand on both time scales before merging the data with the reference-rate file.

Example 2

In smrchd.dta, we have age-specific CHD rates per 1,000 person-years for a reference population.
We can merge these data with our current data and use strate to obtain SMRs and confidence
intervals.

strate — Tabulate failure rates and rate ratios 235

. sort ageband

. merge m:1 ageband using http://www.stata-press.com/data/r14/smrchd
(note: variable ageband was byte, now float to accommodate using data’s

values)

Result # of obs.

not matched 26
from master 26 (_merge==1)
from using 0 (_merge==2)

matched 729 (_merge==3)

. strate ageband, per(1000) smr(rate)

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time doe
id: id

note: ageband<=40 trimmed

Estimated SMRs and lower/upper bounds of 95% confidence intervals
(729 records included in the analysis)

ageband D E SMR Lower Upper

40 6 5.62 1.0670 0.4793 2.3749
50 18 18.75 0.9599 0.6048 1.5235
60 22 22.85 0.9629 0.6340 1.4624

Stratified rate ratios using stmh

The stmh command is used for estimating rate ratios, controlled for confounding, using stratification.
You can use it to estimate the ratio of the rates of failure for two categories of the explanatory variable.
Categories to be compared may be defined by specifying the codes of the levels with compare().

The first variable listed on the command line after stmh is the explanatory variable used in
comparing rates, and any remaining variables, if any, are categorical variables, which are to be
controlled for by using stratification.

Example 3

To illustrate this command, let’s return to the diet data. The variable hienergy is coded 1 if the
total energy consumption is more than 2.75 Mcal and 0 otherwise. We want to compare the rate for
hienergy level 1 with the rate for level 0, controlled for ageband.

To do this, we first stset and stsplit the data into age bands as before, and then we use stmh:

. use http://www.stata-press.com/data/r14/diet, clear
(Diet data with dates)

. stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
> fail(fail==1 3 13)

(output omitted)
. stsplit ageband, at(40(10)70) after(time=dob) trim
(26 + 0 obs. trimmed due to lower and upper bounds)
(418 observations (episodes) created)

236 strate — Tabulate failure rates and rate ratios

. stmh hienergy, by(ageband)

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time dob
enter on or after: time doe

id: id
note: ageband<=40 trimmed

Maximum likelihood estimate of the rate ratio
comparing hienergy==1 vs. hienergy==0
by ageband

RR estimate, and lower and upper 95% confidence limits

ageband RR Lower Upper

40 1.24 0.23 6.76
50 0.43 0.16 1.16
60 0.50 0.21 1.20

Overall estimate controlling for ageband

RR chi2 P>chi2 [95% Conf. Interval]

0.534 4.36 0.0369 0.293 0.972

Approx test for unequal RRs (effect modification): chi2(2) = 1.19
Pr>chi2 = 0.5514

Because the RR estimates are approximate, the test for unequal rate ratios is also approximate.

We can also compare the effect of hienergy between jobs, controlling for ageband.
. stmh hienergy ageband, by(job)

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time dob
enter on or after: time doe

id: id
note: ageband<=40 trimmed

Mantel-Haenszel estimate of the rate ratio
comparing hienergy==1 vs. hienergy==0
controlling for ageband
by job

RR estimate, and lower and upper 95% confidence limits

job RR Lower Upper

0 0.42 0.13 1.33
1 0.64 0.22 1.87
2 0.51 0.21 1.26

Overall estimate controlling for ageband job

RR chi2 P>chi2 [95% Conf. Interval]

0.521 4.88 0.0271 0.289 0.939

Approx test for unequal RRs (effect modification): chi2(2) = 0.28
Pr>chi2 = 0.8695

strate — Tabulate failure rates and rate ratios 237

Log-linear trend test for metric explanatory variables using stmh

stmh may also be used to carry out trend tests for a metric explanatory variable. A one-step
Newton approximation to the log-linear Poisson regression coefficient is also computed.

The diet dataset contains the height for each patient recorded in the variable height. We can test
for a trend of heart disease rates with height controlling for ageband by typing

. stmh height ageband

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time dob
enter on or after: time doe

id: id
note: ageband<=40 trimmed

Score test for trend of rates with height
with an approximate estimate of the
rate ratio for a one unit increase in height
controlling for ageband

RR estimate, and lower and upper 95% confidence limits

RR chi2 P>chi2 [95% Conf. Interval]

0.906 18.60 0.0000 0.866 0.948

stmh tested for trend of heart disease rates with height within age bands and provided a rough estimate
of the rate ratio for a 1-cm increase in height—this estimate is a one-step Newton approximation to
the maximum likelihood estimate. It is not consistent, but it does provide a useful indication of the
size of the effect.

The rate ratio is significantly less than 1, so there is clear evidence for a decreasing rate with
increasing height (about 9% decrease in rate per centimeter increase in height).

Controlling for age with fine strata by using stmc

The stmc (Mantel–Cox) command is used to control for variation of rates on a time scale by
breaking up time into short intervals, or clicks .

Usually this approach is used only to calculate significance tests, but the rate ratio estimated
remains just as useful as in the coarsely stratified analysis from stmh. The method may be viewed
as an approximate form of Cox regression.

The rate ratio produced by stmc is controlled for analysis time separately for each level of the
variables specified with by() and then combined to give a rate ratio controlled for both time and the
by() variables.

Example 4

For example, to obtain the effect of high energy controlled for age by stratifying finely, we first
stset the data specifying the date of birth, dob, as the origin (so analysis time is age), and then we
use stmc:

. stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
> fail(fail==1 3 13)

(output omitted)

238 strate — Tabulate failure rates and rate ratios

. stmc hienergy

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25

origin: time dob
enter on or after: time doe

id: id

Mantel-Cox comparisons

Mantel-Haenszel estimates of the rate ratio
comparing hienergy==1 vs. hienergy==0
controlling for time (by clicks)

Overall Mantel-Haenszel estimate, controlling for time from dob

RR chi2 P>chi2 [95% Conf. Interval]

0.537 4.20 0.0403 0.293 0.982

The rate ratio of 0.537 is close to that obtained with stmh when controlling for age by using 10-year
age bands.

Stored results
stmh and stmc store the following in r():

Scalars
r(RR) overall rate ratio

� �
Nathan Mantel (1919–2002) was an American biostatistician who grew up in New York. He
worked at the National Cancer Institute from 1947 to 1974 on a wide range of medical problems
and was also later affiliated with George Washington University and the American University in
Washington.

William M. Haenszel (1910–1998) was an American biostatistician and epidemiologist who
graduated from the University of Buffalo. He also worked at the National Cancer Institute and
later at the University of Illinois.� �

Acknowledgments
The original versions of strate, stmh, and stmc were written by David Clayton of the Cambridge

Institute for Medical Research and Michael Hills (retired) of the London School of Hygiene and
Tropical Medicine.

References
Clayton, D. G., and M. Hills. 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.

. 1995. ssa7: Analysis of follow-up studies. Stata Technical Bulletin 27: 19–26. Reprinted in Stata Technical
Bulletin Reprints, vol. 5, pp. 219–227. College Station, TX: Stata Press.

. 1997. ssa10: Analysis of follow-up studies with Stata 5.0. Stata Technical Bulletin 40: 27–39. Reprinted in
Stata Technical Bulletin Reprints, vol. 7, pp. 253–268. College Station, TX: Stata Press.

http://www.stata.com/bookstore/sme.html
http://www.stata.com/products/stb/journals/stb27.pdf
http://www.stata.com/products/stb/journals/stb40.pdf

strate — Tabulate failure rates and rate ratios 239

Gail, M. H. 1997. A conversation with Nathan Mantel. Statistical Science 12: 88–97.

Hankey, B. 1997. A conversation with William M. Haenszel. Statistical Science 12: 108–112.

Also see
[ST] stci — Confidence intervals for means and percentiles of survival time

[ST] stir — Report incidence-rate comparison

[ST] stptime — Calculate person-time, incidence rates, and SMR

[ST] stset — Declare data to be survival-time data

Title

streg — Parametric survival models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

streg performs maximum likelihood estimation for parametric regression survival-time models.
streg can be used with single- or multiple-record or single- or multiple-failure st data. Survival
models currently supported are exponential, Weibull, Gompertz, lognormal, loglogistic, and generalized
gamma. Parametric frailty models and shared-frailty models are also fit using streg.

Also see [ST] stcox for proportional hazards models.

Quick start
Weibull survival model with covariates x1 and x2 using stset data

streg x1 x2, distribution(weibull)

Use accelerated failure-time metric instead of proportional-hazards parameterization
streg x1 x2, distribution(weibull) time

Different intercepts and ancillary parameters for strata identified by svar

streg x1 x2, distribution(weibull) strata(svar)

Lognormal survival model
streg x1 x2, distribution(lognormal)

As above, but also model frailty using the gamma distribution
streg x1 x2, distribution(lognormal) frailty(gamma)

Specify shared frailty within groups identified by gvar

streg x1 x2, distribution(lognormal) frailty(gamma) shared(gvar)

Menu
Statistics > Survival analysis > Regression models > Parametric survival models

240

streg — Parametric survival models 241

Syntax

streg
[

varlist
] [

if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
distribution(exponential) exponential survival distribution
distribution(gompertz) Gompertz survival distribution
distribution(loglogistic) loglogistic survival distribution
distribution(llogistic) synonym for distribution(loglogistic)
distribution(weibull) Weibull survival distribution
distribution(lognormal) lognormal survival distribution
distribution(lnormal) synonym for distribution(lognormal)
distribution(ggamma) generalized gamma survival distribution
frailty(gamma) gamma frailty distribution
frailty(invgaussian) inverse-Gaussian distribution
time use accelerated failure-time metric

Model 2

strata(varname) strata ID variable
offset(varname) include varname in model with coefficient constrained to 1
shared(varname) shared frailty ID variable
ancillary(varlist) use varlist to model the first ancillary parameter
anc2(varlist) use varlist to model the second ancillary parameter
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

nohr do not report hazard ratios
tr report time ratios
noshow do not show st setting information
noheader suppress header from coefficient table
nolrtest do not perform likelihood-ratio test
nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

242 streg — Parametric survival models

You must stset your data before using streg; see [ST] stset.
varlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, fp, jackknife, mfp, mi estimate, nestreg, statsby, stepwise, and svy are allowed; see

[U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
shared(), vce(), and noheader are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights may be specified using stset; see [ST] stset. However, weights may not be

specified if you are using the bootstrap prefix with the streg command.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

distribution(distname) specifies the survival model to be fit. A specified distribution() is
remembered from one estimation to the next when distribution() is not specified.

For instance, typing streg x1 x2, distribution(weibull) fits a Weibull model. Subsequently,
you do not need to specify distribution(weibull) to fit other Weibull regression models.

All Stata estimation commands, including streg, redisplay results when you type the command
name without arguments. To fit a model with no explanatory variables, type streg, distribu-
tion(distname). . . .

frailty(gamma | invgaussian) specifies the assumed distribution of the frailty, or heterogeneity.
The estimation results, in addition to the standard parameter estimates, will contain an estimate of
the variance of the frailties and a likelihood-ratio test of the null hypothesis that this variance is
zero. When this null hypothesis is true, the model reduces to the model with frailty(distname)
not specified.

A specified frailty() is remembered from one estimation to the next when distribution()
is not specified. When you specify distribution(), the previously remembered specification of
frailty() is forgotten.

time specifies that the model be fit in the accelerated failure-time metric rather than in the log
relative-hazard metric. This option is valid only for the exponential and Weibull models because
these are the only models that have both a proportional hazards and an accelerated failure-time
parameterization. Regardless of metric, the likelihood function is the same, and models are equally
appropriate viewed in either metric; it is just a matter of changing the interpretation.

time must be specified at estimation.

� � �
Model 2 �

strata(varname) specifies the stratification ID variable. Observations with equal values of the variable
are assumed to be in the same stratum. Stratified estimates (with equal coefficients across strata
but intercepts and ancillary parameters unique to each stratum) are then obtained. This option is
not available if frailty(distname) is specified.

offset(varname); see [R] estimation options.

shared(varname) is valid with frailty() and specifies a variable defining those groups over which
the frailty is shared, analogous to a random-effects model for panel data where varname defines the
panels. frailty() specified without shared() treats the frailties as occurring at the observation
level.

streg — Parametric survival models 243

A specified shared() is remembered from one estimation to the next when distribution()
is not specified. When you specify distribution(), the previously remembered specification of
shared() is forgotten.

shared() may not be used with distribution(ggamma), vce(robust), vce(cluster clust-
var), vce(opg), the svy prefix, or in the presence of delayed entries or gaps.

If shared() is specified without frailty() and there is no remembered frailty() from the
previous estimation, frailty(gamma) is assumed to provide behavior analogous to stcox; see
[ST] stcox.

ancillary(varlist) specifies that the ancillary parameter for the Weibull, lognormal, Gompertz, and
loglogistic distributions and that the first ancillary parameter (sigma) of the generalized log-gamma
distribution be estimated as a linear combination of varlist. This option may not be used with
frailty(distname).

When an ancillary parameter is constrained to be strictly positive, the logarithm of the ancillary
parameter is modeled as a linear combination of varlist.

anc2(varlist) specifies that the second ancillary parameter (kappa) for the generalized log-gamma
distribution be estimated as a linear combination of varlist. This option may not be used with
frailty(distname).

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

nohr, which may be specified at estimation or upon redisplaying results, specifies that coefficients
rather than exponentiated coefficients be displayed, that is, that coefficients rather than hazard ratios
be displayed. This option affects only how coefficients are displayed, not how they are estimated.

This option is valid only for models with a natural proportional-hazards parameterization: exponen-
tial, Weibull, and Gompertz. These three models, by default, report hazard ratios (exponentiated
coefficients).

tr specifies that exponentiated coefficients, which are interpreted as time ratios, be displayed. tr
is appropriate only for the loglogistic, lognormal, and generalized gamma models, or for the
exponential and Weibull models when fit in the accelerated failure-time metric.

tr may be specified at estimation or upon replay.

noshow prevents streg from showing the key st variables. This option is rarely used because most
people type stset, show or stset, noshow to set once and for all whether they want to see
these variables mentioned at the top of the output of every st command; see [ST] stset.

noheader suppresses the output header, either at estimation or upon replay.

nolrtest is valid only with frailty models, in which case it suppresses the likelihood-ratio test for
significant frailty.

nocnsreport; see [R] estimation options.

244 streg — Parametric survival models

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with streg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Distributions

Weibull and exponential models
Gompertz model
Lognormal and loglogistic models
Generalized gamma model

Examples
Parameterization of ancillary parameters
Stratified estimation
(Unshared-) frailty models
Shared-frailty models

Introduction

What follows is a brief summary of what you can do with streg. For a complete tutorial, see
Cleves, Gould, and Marchenko (2016), which devotes four chapters to this topic.

Two often-used models for adjusting survivor functions for the effects of covariates are the
accelerated failure-time (AFT) model and the multiplicative or proportional hazards (PH) model. In
the AFT model, the natural logarithm of the survival time, log t, is expressed as a linear function of
the covariates, yielding the linear model

log tj = xjβ+ zj

where xj is a vector of covariates, β is a vector of regression coefficients, and zj is the error with
density f(). The distributional form of the error term determines the regression model. If we let f()
be the normal density, the lognormal regression model is obtained. Similarly, by letting f() be the
logistic density, the loglogistic regression is obtained. Setting f() equal to the extreme-value density
yields the exponential and the Weibull regression models.

The effect of the AFT model is to change the time scale by a factor of exp(−xjβ). Depending
on whether this factor is greater or less than 1, time is either accelerated or decelerated (degraded).
That is, if a subject at baseline experiences a probability of survival past time t equal to S(t), then
a subject with covariates xj would have probability of survival past time t equal to S() evaluated at

streg — Parametric survival models 245

the point exp(−xjβ)t, instead. Thus accelerated failure time does not imply a positive acceleration
of time with the increase of a covariate but instead implies a deceleration of time or, equivalently, an
increase in the expected waiting time for failure.

In the PH model, the concomitant covariates have a multiplicative effect on the hazard function

h(tj) = h0(t)g(xj)

for some h0(t), and for g(xj), a nonnegative function of the covariates. A popular choice, and the
one adopted here, is to let g(xj) = exp(xjβ). The function h0(t) may either be left unspecified,
yielding the Cox proportional hazards model (see [ST] stcox), or take a specific parametric form.
For the streg command, h0(t) is assumed to be parametric. Three regression models are currently
implemented as PH models: the exponential, Weibull, and Gompertz models. The exponential and
Weibull models are implemented as both AFT and PH models, and the Gompertz model is implemented
only in the PH metric.

The above model allows for the presence of an intercept term, β0, within xjβ. Thus what is
commonly referred to as the baseline hazard function—the hazard when all covariates are zero—is
actually equal to h0(t) exp(β0). That is, the intercept term serves to scale the baseline hazard. Of
course, specifying noconstant suppresses the intercept or equivalently constrains β0 to equal zero.

streg is suitable only for data that have been stset. By stsetting your data, you define the
variables t0, t, and d, which serve as the trivariate response variable (t0, t, d). Each response
corresponds to a period under observation, (t0, t], resulting in either failure (d = 1) or right-censoring
(d = 0) at time t. As a result, streg is appropriate for data exhibiting delayed entry, gaps, time-varying
covariates, and even multiple-failure data.

Distributions

Six parametric survival distributions are currently supported by streg. The parameterization and
ancillary parameters for each distribution are summarized in table 1:

Table 1. Parametric survival distributions supported by streg

Ancillary
Distribution Metric Survivor function Parameterization parameters

Exponential PH exp(−λjtj) λj = exp(xjβ)

Exponential AFT exp(−λjtj) λj = exp(−xjβ)

Weibull PH exp(−λjtpj) λj = exp(xjβ) p

Weibull AFT exp(−λjtpj) λj = exp(−pxjβ) p

Gompertz PH exp{−λjγ−1(eγtj − 1)} λj = exp(xjβ) γ

Lognormal AFT 1− Φ
{

log(tj)−µj
σ

}
µj = xjβ σ

Loglogistic AFT {1 + (λjtj)
1/γ}−1 λj = exp(−xjβ) γ

Generalized gamma
if κ > 0 AFT 1− I

(
γ, u

)
µj = xjβ σ, κ

if κ = 0 AFT 1− Φ(z) µj = xjβ σ, κ
if κ < 0 AFT I

(
γ, u

)
µj = xjβ σ, κ

246 streg — Parametric survival models

where PH = proportional hazards, AFT = accelerated failure time, and Φ(z) is the standard normal
cumulative distribution. For the generalized gamma, γ = |κ|−2, u = γexp(|κ|z), I(a, x) is the
incomplete gamma function, and z = sign(κ){log(tj)− µj}/σ.

Plotted in figure 1 are example hazard functions for five of the six distributions. The exponential
hazard (not separately plotted) is a special case of the Weibull hazard when the Weibull ancillary
parameter p = 1. The generalized gamma (not plotted) is extremely flexible and therefore can take
many shapes.

0
1

2
3

4
h
(t

)

0 .2 .4 .6 .8 1
time

gamma = 2 gamma = 0

gamma = −2

Gompertz

0
2

4
6

h
(t

)

0 1 2 3
time

p = .5 p = 1

p = 2 p = 4

Weibull

0
.5

1
1
.5

2
h
(t

)

0 2 4 6
time

sigma = 0.5 sigma = 1

sigma = 1.25

lognormal

0
.5

1
1
.5

2
2
.5

h
(t

)

0 2 4 6
time

gamma = 1 gamma = 0.5

gamma = 0.25

loglogistic

Figure 1. Example plots of hazard functions

Weibull and exponential models

The Weibull and exponential models are parameterized as both PH and AFT models. The Weibull
distribution is suitable for modeling data with monotone hazard rates that either increase or decrease
exponentially with time, whereas the exponential distribution is suitable for modeling data with
constant hazard (see figure 1).

For the PH model, h0(t) = 1 for exponential regression, and h0(t) = p tp−1 for Weibull regression,
where p is the shape parameter to be estimated from the data. Some authors refer not to p but to
σ = 1/p.

streg — Parametric survival models 247

The AFT model is written as
log(tj) = xjβ

∗ + zj

where zj has an extreme-value distribution scaled by σ. Let β be the vector of regression coefficients
derived from the PH model so that β∗ = −σβ. This relationship holds only if the ancillary parameter,
p, is a constant; it does not hold when the ancillary parameter is parameterized in terms of covariates.

streg uses, by default, for the exponential and Weibull models, the proportional-hazards metric
simply because it eases comparison with those results produced by stcox (see [ST] stcox). You can,
however, specify the time option to choose the accelerated failure-time parameterization.

The Weibull hazard and survivor functions are

h(t) = pλtp−1

S(t) = exp(−λtp)

where λ is parameterized as described in table 1. If p = 1, these functions reduce to those of the
exponential.

Gompertz model

The Gompertz regression is parameterized only as a PH model. First described in 1825, this
model has been extensively used by medical researchers and biologists modeling mortality data. The
Gompertz distribution implemented is the two-parameter function as described in Lee and Wang (2003),
with the following hazard and survivor functions:

h(t) = λ exp(γt)

S(t) = exp{−λγ−1(eγt − 1)}

The model is implemented by parameterizing λj = exp(xjβ), implying that h0(t) = exp(γt),
where γ is an ancillary parameter to be estimated from the data.

This distribution is suitable for modeling data with monotone hazard rates that either increase or
decrease exponentially with time (see figure 1).

When γ is positive, the hazard function increases with time; when γ is negative, the hazard
function decreases with time; and when γ is zero, the hazard function is equal to λ for all t, so the
model reduces to an exponential.

Some recent survival analysis texts, such as Klein and Moeschberger (2003), restrict γ to be strictly
positive. If γ < 0, then as t goes to infinity, the survivor function, S(t), exponentially decreases
to a nonzero constant, implying that there is a nonzero probability of never failing (living forever).
That is, there is always a nonzero hazard rate, yet it decreases exponentially. By restricting γ to be
positive, we know that the survivor function always goes to zero as t tends to infinity.

Although the above argument may be desirable from a mathematical perspective, in Stata’s
implementation, we took the more traditional approach of not restricting γ. We did this because, in
survival studies, subjects are not monitored forever—there is a date when the study ends, and in many
investigations, specifically in medical research, an exponentially decreasing hazard rate is clinically
appealing.

248 streg — Parametric survival models

Lognormal and loglogistic models

The lognormal and loglogistic models are implemented only in the AFT form. These two distributions
are similar and tend to produce comparable results. For the lognormal distribution, the natural logarithm
of time follows a normal distribution; for the loglogistic distribution, the natural logarithm of time
follows a logistic distribution.

The lognormal survivor and density functions are

S(t) = 1− Φ

{
log(t)− µ

σ

}

f (t) =
1

tσ
√

2π
exp
[
−1

2σ2

{
log(t)− µ

}2
]

where Φ(z) is the standard normal cumulative distribution function.

The lognormal regression is implemented by setting µj = xjβ and treating the standard deviation,
σ, as an ancillary parameter to be estimated from the data.

The loglogistic regression is obtained if zj has a logistic density. The loglogistic survivor and
density functions are

S(t) = {1 + (λt)1/γ}−1

f (t) =
λ1/γt1/γ−1

γ
{

1 + (λt)
1/γ}2

This model is implemented by parameterizing λj = exp(−xjβ) and treating the scale parameter
γ as an ancillary parameter to be estimated from the data.

Unlike the exponential, Weibull, and Gompertz distributions, the lognormal and the loglogistic
distributions are indicated for data exhibiting nonmonotonic hazard rates, specifically initially increasing
and then decreasing rates (figure 1).

Thus far we have considered the exponential, Weibull, lognormal, and loglogistic models. These
models are sufficiently flexible for many datasets, but further flexibility can be obtained with the
generalized gamma model, described below. Alternatively, you might consider using a Royston–
Parmar model (Royston and Parmar 2002; Lambert and Royston 2009). Royston–Parmar models are
highly flexible alternatives to the exponential, Weibull, lognormal, and loglogistic models that allow
extension from proportional hazards to proportional odds and to scaled probit models. Additional
flexibility can be obtained with restricted cubic spline functions as alternatives to the linear functions
of log time considered in Introduction. See Royston and Lambert (2011) for a thorough treatment of
this topic.

streg — Parametric survival models 249

Generalized gamma model

The generalized gamma model is implemented only in the AFT form. The three-parameter generalized
gamma survivor and density functions are

S(t) =


1− I

(
γ, u

)
, if κ > 0

1− Φ(z), if κ = 0

I
(
γ, u

)
, if κ < 0

f(t) =

{ γγ

σt
√
γΓ(γ) exp

(
z
√
γ − u), if κ 6= 0

1
σt
√

2π
exp(−z2/2), if κ = 0

where γ = |κ|−2, z = sign(κ){log(t) − µ}/σ, u = γ exp(|κ|z), Φ(z) is the standard normal
cumulative distribution function, and I(a, x) is the incomplete gamma function. See the gammap(a,x)
entry in [FN] Statistical functions to see how the incomplete gamma function is implemented in
Stata.

This model is implemented by parameterizing µj = xjβ and treating the parameters κ and σ as
ancillary parameters to be estimated from the data.

The hazard function of the generalized gamma distribution is extremely flexible, allowing for many
possible shapes, including as special cases the Weibull distribution when κ = 1, the exponential when
κ = 1 and σ = 1, and the lognormal distribution when κ = 0. The generalized gamma model is,
therefore, commonly used for evaluating and selecting an appropriate parametric model for the data.
The Wald or likelihood-ratio test can be used to test the hypotheses that κ = 1 or that κ = 0.

Technical note

Prior to Stata 14, streg’s option distribution(gamma) was used to fit generalized gamma
models. As of Stata 14, the new option for fitting these models is distribution(ggamma). The
old option continues to work under version control. This option was renamed to avoid confusion
with mestreg’s option distribution(gamma) for fitting mixed-effects survival gamma models; see
[ME] mestreg.

Examples

Example 1

The Weibull distribution provides a good illustration of streg because this distribution is param-
eterized as both AFT and PH and serves to compare and contrast the two approaches.

We wish to analyze an experiment testing the ability of emergency generators with new-style
bearings to withstand overloads. This dataset is described in [ST] stcox. This time, we wish to fit a
Weibull model:

250 streg — Parametric survival models

. use http://www.stata-press.com/data/r14/kva
(Generator experiment)

. streg load bearings, distribution(weibull)

failure _d: 1 (meaning all fail)
analysis time _t: failtime

Fitting constant-only model:

Iteration 0: log likelihood = -13.666193
Iteration 1: log likelihood = -9.7427276
Iteration 2: log likelihood = -9.4421169
Iteration 3: log likelihood = -9.4408287
Iteration 4: log likelihood = -9.4408286

Fitting full model:

Iteration 0: log likelihood = -9.4408286
Iteration 1: log likelihood = -2.078323
Iteration 2: log likelihood = 5.2226016
Iteration 3: log likelihood = 5.6745808
Iteration 4: log likelihood = 5.6934031
Iteration 5: log likelihood = 5.6934189
Iteration 6: log likelihood = 5.6934189

Weibull regression -- log relative-hazard form

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27
Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

load 1.599315 .1883807 3.99 0.000 1.269616 2.014631
bearings .1887995 .1312109 -2.40 0.016 .0483546 .7371644

_cons 2.51e-20 2.66e-19 -4.26 0.000 2.35e-29 2.68e-11

/ln_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

p 7.779969 1.802677 4.940241 12.25202
1/p .1285352 .0297826 .0816192 .2024193

Because we did not specify otherwise, the estimation took place in the hazard metric, which is
the default for distribution(weibull). The estimates are directly comparable to those produced
by stcox: stcox estimated a hazard ratio of 1.526 for load and 0.0636 for bearings.

However, we estimated the baseline hazard function as well, assuming that it is Weibull. The
estimates are the full maximum-likelihood estimates. The shape parameter is fit as ln p, but streg
then reports p and 1/p = σ so that you can think about the parameter however you wish.

We find that p is greater than 1, which means that the hazard of failure increases with time and,
here, increases dramatically. After 100 hours, the bearings are more than 1 million times more likely
to fail per second than after 10 hours (or, to be precise, (100/10)7.78−1). From our knowledge of
generators, we would expect this; it is the accumulation of heat due to friction that causes bearings
to expand and seize.

streg — Parametric survival models 251

Technical note
Regression results are often presented in a metric other than the natural regression coefficients, that

is, as hazard ratios, relative risk ratios, odds ratios, etc. In those cases, standard errors are calculated
using the delta method.

However, the Z test and p-values given are calculated from the natural regression coefficients
and standard errors. Although a test based on, say, a hazard ratio and its standard error would be
asymptotically equivalent to that based on a regression coefficient, in real samples a hazard ratio will
tend to have a more skewed distribution because it is an exponentiated regression coefficient. Also,
it is more natural to think of these tests as testing whether a regression coefficient is nonzero, rather
than testing whether a transformed regression coefficient is unequal to some nonzero value (one for
a hazard ratio).

Finally, the confidence intervals given are obtained by transforming the endpoints of the cor-
responding confidence interval for the untransformed regression coefficient. This ensures that, say,
strictly positive quantities such as hazard ratios have confidence intervals that do not overlap zero.

Example 2

The previous estimation took place in the PH metric, and exponentiated coefficients—hazard
ratios—were reported. If we want to see the unexponentiated coefficients, we could redisplay results
and specify the nohr option:

. streg, nohr

Weibull regression -- log relative-hazard form

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27
Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

load .4695753 .1177884 3.99 0.000 .2387143 .7004363
bearings -1.667069 .6949745 -2.40 0.016 -3.029194 -.3049443

_cons -45.13191 10.60663 -4.26 0.000 -65.92053 -24.34329

/ln_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

p 7.779969 1.802677 4.940241 12.25202
1/p .1285352 .0297826 .0816192 .2024193

252 streg — Parametric survival models

Example 3

We could just as well have fit this model in the AFT metric:

. streg load bearings, d(weibull) time nolog

failure _d: 1 (meaning all fail)
analysis time _t: failtime

Weibull regression -- accelerated failure-time form

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27
Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

load -.060357 .0062214 -9.70 0.000 -.0725507 -.0481632
bearings .2142771 .0746451 2.87 0.004 .0679753 .3605789

_cons 5.80104 .1752301 33.11 0.000 5.457595 6.144485

/ln_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

p 7.779969 1.802677 4.940241 12.25202
1/p .1285352 .0297826 .0816192 .2024193

This is the same model we previously fit, but it is presented in a different metric. Calling the
previous coefficients b, these coefficients are −σb = −b/p. For instance, in the previous example,
the coefficient on load was reported as 0.4695753, and −0.4695753/7.779969 = −0.06035696. d()
is a convenient shorthand for distribution().

Example 4

streg may also be applied to more complicated data. Below we have multiple records per subject
on a failure that can occur repeatedly:

. use http://www.stata-press.com/data/r14/mfail3

. stdescribe

per subject
Category total mean min median max

no. of subjects 926
no. of records 1734 1.87257 1 2 4

(first) entry time 0 0 0 0
(final) exit time 470.6857 1 477 960

subjects with gap 6
time on gap if gap 411 68.5 16 57.5 133
time at risk 435444 470.2419 1 477 960

failures 808 .8725702 0 1 3

In this dataset, subjects have up to four records (most have two) and have up to three failures (most
have one) and, although you cannot tell from the above output, the data have time-varying covariates,
as well. There are even six subjects with gaps in their histories, meaning that, for a while, they went
unobserved. Although we could estimate in the AFT metric, it is easier to interpret results in the PH
metric (or the log relative-hazard metric, as it is also known):

streg — Parametric survival models 253

. streg x1 x2, d(weibull) vce(robust)

Fitting constant-only model:

Iteration 0: log pseudolikelihood = -1398.2504
Iteration 1: log pseudolikelihood = -1382.8224
Iteration 2: log pseudolikelihood = -1382.7457
Iteration 3: log pseudolikelihood = -1382.7457

Fitting full model:

Iteration 0: log pseudolikelihood = -1382.7457
Iteration 1: log pseudolikelihood = -1328.4186
Iteration 2: log pseudolikelihood = -1326.4483
Iteration 3: log pseudolikelihood = -1326.4449
Iteration 4: log pseudolikelihood = -1326.4449

Weibull regression -- log relative-hazard form

No. of subjects = 926 Number of obs = 1,734
No. of failures = 808
Time at risk = 435444

Wald chi2(2) = 154.45
Log pseudolikelihood = -1326.4449 Prob > chi2 = 0.0000

(Std. Err. adjusted for 926 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

x1 2.240069 .1812848 9.97 0.000 1.911504 2.625111
x2 .3206515 .0504626 -7.23 0.000 .2355458 .436507

_cons .0006962 .0001792 -28.25 0.000 .0004204 .001153

/ln_p .1771265 .0310111 5.71 0.000 .1163458 .2379071

p 1.193782 .0370205 1.123384 1.268591
1/p .8376738 .0259772 .7882759 .8901674

A one-unit change in x1 approximately doubles the hazard of failure, whereas a one-unit change
in x2 cuts the hazard to one-third its previous value. We also see that these data are close to being
exponentially distributed; p is nearly 1.

Above we mentioned that interpreting results in the PH metric is easier, though regression coefficients
are not difficult to interpret in the AFT metric. A positive coefficient means that time is decelerated
by a unit increase in the covariate in question. This may seem awkward, but think of this instead as
a unit increase in the covariate causing a delay in failure and thus increasing the expected time until
failure.

The difficulty that arises with the AFT metric is merely that it places an emphasis on log(time-to-
failure) rather than risk (hazard) of failure. With this emphasis usually comes a desire to predict the
time to failure, and therein lies the difficulty with complex survival data. Predicting the log(time to
failure) with predict assumes that the subject is at risk from time 0 until failure and has a fixed
covariate pattern over this period. With these data, such assumptions produce predictions having little
to do with the test subjects, who exhibit not only time-varying covariates but also multiple failures.

Predicting time to failure with complex survival data is difficult regardless of the metric under
which estimation took place. Those who estimate in the PH metric are probably used to dealing with
results from Cox regression, of which predicted time to failure is typically not the focus.

254 streg — Parametric survival models

Example 5

The multiple-failure data above are close enough to exponentially distributed that we will reestimate
using exponential regression:

. streg x1 x2, d(exp) vce(robust)

Iteration 0: log pseudolikelihood = -1398.2504
Iteration 1: log pseudolikelihood = -1343.6083
Iteration 2: log pseudolikelihood = -1341.5932
Iteration 3: log pseudolikelihood = -1341.5893
Iteration 4: log pseudolikelihood = -1341.5893

Exponential regression -- log relative-hazard form

No. of subjects = 926 Number of obs = 1,734
No. of failures = 808
Time at risk = 435444

Wald chi2(2) = 166.92
Log pseudolikelihood = -1341.5893 Prob > chi2 = 0.0000

(Std. Err. adjusted for 926 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

x1 2.19065 .1684399 10.20 0.000 1.884186 2.54696
x2 .3037259 .0462489 -7.83 0.000 .2253552 .4093511

_cons .0024536 .0001535 -96.05 0.000 .0021704 .0027738

Technical note
For our “complex” survival data, we specified vce(robust)when fitting the Weibull and exponential

models. This was because these data were stset with an id() variable, and given the time-varying
covariates and multiple failures, it is important not to assume that the observations within each subject
are independent. When we specified vce(robust), it was implicit that we were “clustering” on the
groups defined by the id() variable.

You might sometimes have multiple observations per subject, which exist merely as a result
of the data-organization mechanism and are not used to record gaps, time-varying covariates, or
multiple failures. Such data could be collapsed into single-observation-per-subject data with no loss
of information. In these cases, we refer to splitting the observations to form multiple observations per
subject as noninformative. When the episode-splitting is noninformative, the model-based (nonrobust)
standard errors produced will be the same as those produced when the data are collapsed into single
records per subject. Thus, for these type of data, clustering of these multiple observations that results
from specifying vce(robust) is not critical.

Example 6

A reasonable question to ask is, “Given that we have several possible parametric models, how can
we select one?” When parametric models are nested, the likelihood-ratio or Wald test can be used
to discriminate between them. This can certainly be done for Weibull versus exponential or gamma
versus Weibull or lognormal. When models are not nested, however, these tests are inappropriate,
and the task of discriminating between models becomes more difficult. A common approach to this
problem is to use the Akaike information criterion (AIC). Akaike (1974) proposed penalizing each
log likelihood to reflect the number of parameters being estimated in a particular model and then
comparing them. Here the AIC can be defined as

streg — Parametric survival models 255

AIC = −2(log likelihood) + 2(c+ p+ 1)

where c is the number of model covariates and p is the number of model-specific ancillary parameters
listed in table 1. Although the best-fitting model is the one with the largest log likelihood, the preferred
model is the one with the smallest AIC value. The AIC value may be obtained by using the estat
ic postestimation command; see [R] estat ic.

Using cancer.dta distributed with Stata, let’s first fit a generalized gamma model and test the
hypothesis that κ = 0 (test for the appropriateness of the lognormal) and then test the hypothesis that
κ = 1 (test for the appropriateness of the Weibull).

. use http://www.stata-press.com/data/r14/cancer
(Patient Survival in Drug Trial)

. stset studytime, failure(died)
(output omitted)

. replace drug = drug==2 | drug==3 // 0, placebo : 1, nonplacebo
(48 real changes made)

. streg drug age, d(ggamma) nolog

failure _d: died
analysis time _t: studytime

Generalized gamma regression -- accelerated failure-time form

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 36.07
Log likelihood = -42.452006 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

drug 1.394658 .2557198 5.45 0.000 .893456 1.895859
age -.0780416 .0227978 -3.42 0.001 -.1227245 -.0333587

_cons 6.456091 1.238457 5.21 0.000 4.02876 8.883421

/ln_sig -.3793632 .183707 -2.07 0.039 -.7394222 -.0193041
/kappa .4669252 .5419478 0.86 0.389 -.595273 1.529123

sigma .684297 .1257101 .4773897 .980881

The Wald test of the hypothesis that κ = 0 (test for the appropriateness of the lognormal) is
reported in the output above. The p-value is 0.389, suggesting that lognormal might be an adequate
model for these data.

The Wald test for κ = 1 is

. test [kappa]_cons = 1

(1) [kappa]_cons = 1

chi2(1) = 0.97
Prob > chi2 = 0.3253

providing some support against rejecting the Weibull model.

We now fit the exponential, Weibull, loglogistic, and lognormal models separately. To directly
compare coefficients, we will ask Stata to report the exponential and Weibull models in AFT form by
specifying the time option. The output from fitting these models and the results from the generalized
gamma model are summarized in table 2.

256 streg — Parametric survival models

Table 2. Results obtained from streg, using cancer.dta with drug as an indicator variable

Generalized
Parameter Exponential Weibull Lognormal Loglogistic gamma

Age −0.0886715 −0.0714323 −0.0833996 −0.0803289 −0.078042
Drug 1.682625 1.305563 1.445838 1.420237 1.394658
Constant 7.146218 6.289679 6.580887 6.446711 6.456091
Ancillary 1.682751 0.751136 0.429276 0.684297
Kappa 0.466925
Log likelihood −48.397094 −42.931335 −42.800864 −43.21698 −42.452006
AIC 102.7942 93.86267 93.60173 94.43396 94.90401

The largest log likelihood was obtained for the generalized gamma model; however, the lognormal
model is preferred by the AIC.

Parameterization of ancillary parameters

By default, all ancillary parameters are estimated as being constant. For example, the ancillary
parameter, p, of the Weibull distribution is assumed to be a constant that is not dependent on
any covariates. streg’s ancillary() and anc2() options allow for complete parameterization of
parametric survival models. By specifying, for example,

. streg x1 x2, d(weibull) ancillary(x2 z1 z2)

both λ and the ancillary parameter, p, are parameterized in terms of covariates.

Ancillary parameters are usually restricted to be strictly positive, in which case the logarithm of
the ancillary parameter is modeled using a linear predictor, which can assume any value on the real
line.

Example 7

Consider a dataset in which we model the time until hip fracture as Weibull for patients on the basis
of age, sex, and whether the patient wears a hip-protective device (variable protect). We believe
that the hazard is scaled according to sex and the presence of the device but believe the hazards for
both sexes to be of different shapes.

streg — Parametric survival models 257

. use http://www.stata-press.com/data/r14/hip3, clear
(hip fracture study)

. streg protect age, d(weibull) ancillary(male) nolog

failure _d: fracture
analysis time _t: time1

id: id

Weibull regression -- log relative-hazard form

No. of subjects = 148 Number of obs = 206
No. of failures = 37
Time at risk = 1703

LR chi2(2) = 39.80
Log likelihood = -69.323532 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

_t
protect -2.130058 .3567005 -5.97 0.000 -2.829178 -1.430938

age .0939131 .0341107 2.75 0.006 .0270573 .1607689
_cons -10.17575 2.551821 -3.99 0.000 -15.17722 -5.174269

ln_p
male -.4887189 .185608 -2.63 0.008 -.8525039 -.1249339

_cons .4540139 .1157915 3.92 0.000 .2270667 .6809611

From our estimation results, we see that ̂ln(p) = 0.454 for females and ̂ln(p) = 0.454− 0.489 =
−0.035 for males. Thus p̂ = 1.57 for females and p̂ = 0.97 for males. When we combine this with
the main equation in the model, the estimated hazards are then

ĥ(tj |xj) =

{
exp
(
−10.18− 2.13protectj + 0.09agej

)
1.57t0.57

j if female

exp
(
−10.18− 2.13protectj + 0.09agej

)
0.97t−0.03

j if male

If we believe this model, we would say that the hazard for males given age and protect is almost
constant over time.

Contrast this with what we obtain if we type

. streg protect age if male, d(weibull)

. streg protect age if !male, d(weibull)

which is completely general, because not only will the shape parameter, p, differ over both sexes,
but the regression coefficients will as well.

The anc2() option is for use only with the gamma regression model, because it contains two
ancillary parameters—anc2() is used to parametrize κ.

Stratified estimation
When we type

. streg xvars, d(distname) strata(varname)

we are asking that a completely stratified model be fit. By completely stratified, we mean that both
the model’s intercept and any ancillary parameters are allowed to vary for each level of the strata
variable. That is, we are constraining the coefficients on the covariates to be the same across strata
but allowing the intercept and ancillary parameters to vary.

258 streg — Parametric survival models

Example 8

We demonstrate this by fitting a stratified Weibull model to the cancer data, with the drug variable
left in its original state: drug==1 refers to the placebo, and drug==2 and drug==3 correspond to
two alternative treatments.

. use http://www.stata-press.com/data/r14/cancer
(Patient Survival in Drug Trial)

. stset studytime, failure(died)
(output omitted)

. streg age, d(weibull) strata(drug) nolog

failure _d: died
analysis time _t: studytime

Weibull regression -- log relative-hazard form

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(3) = 16.58
Log likelihood = -41.113074 Prob > chi2 = 0.0009

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

_t
age .1212332 .0367538 3.30 0.001 .049197 .1932694

_Sdrug_2 -4.561178 2.339448 -1.95 0.051 -9.146411 .0240556
_Sdrug_3 -3.715737 2.595986 -1.43 0.152 -8.803776 1.372302

_cons -10.36921 2.341022 -4.43 0.000 -14.95753 -5.780896

ln_p
_Sdrug_2 .4872195 .332019 1.47 0.142 -.1635257 1.137965
_Sdrug_3 .2194213 .4079989 0.54 0.591 -.5802418 1.019084

_cons .4541282 .1715663 2.65 0.008 .1178645 .7903919

Completely stratified models are fit by first generating stratum-specific indicator variables (dummy
variables) and then adding these as independent variables in the model and as covariates in the
ancillary parameter. The strata() option is thus merely a shorthand method for generating the
indicator variables from the drug categories and then placing these indicators in both the main
equation and the ancillary equation(s).

We associate the term stratification with this process by noting that the intercept term of the main
equation is a component of the baseline hazard (or baseline survivor) function. By allowing this
intercept, as well as the ancillary shape parameter, to vary with respect to the strata, we allow the
baseline functions to completely vary over the strata, analogous to a stratified Cox model.

streg — Parametric survival models 259

Example 9

We can produce a less-stratified model by specifying a factor variable in the ancillary() option.

. streg age, d(weibull) ancillary(i.drug) nolog

failure _d: died
analysis time _t: studytime

Weibull regression -- log relative-hazard form

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(1) = 9.61
Log likelihood = -44.596379 Prob > chi2 = 0.0019

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

_t
age .1126419 .0362786 3.10 0.002 .0415373 .1837466

_cons -10.95772 2.308489 -4.75 0.000 -15.48227 -6.433162

ln_p
drug

2 -.3279568 .11238 -2.92 0.004 -.5482176 -.107696
3 -.4775351 .1091141 -4.38 0.000 -.6913948 -.2636755

_cons .6684086 .1327284 5.04 0.000 .4082657 .9285514

By doing this, we are restricting not only the coefficients on the covariates to be the same across
“strata” but also the intercept, while allowing only the ancillary parameter to differ.

By using ancillary() or strata(), we may thus consider a wide variety of models, depending
on what we believe about the effect of the covariate(s) in question. For example, when fitting a
Weibull PH model to the cancer data, we may choose from many models, depending on what we
want to assume is the effect of the categorical variable drug. For all models considered below, we
assume implicitly that the effect of age is proportional on the hazard function.

1. drug has no effect:

. streg age, d(weibull)

2. The effect of drug is proportional on the hazard (scale), and the effect of age is the same for
each level of drug:

. streg age i.drug, d(weibull)

3. drug affects the shape of the hazard, and the effect of age is the same for each level of drug:

. streg age, d(weibull) ancillary(i.drug)

4. drug affects both the scale and shape of the hazard, and the effect of age is the same for each
level of drug:

. streg age, d(weibull) strata(drug)

260 streg — Parametric survival models

5. drug affects both the scale and shape of the hazard, and the effect of age is different for each
level of drug:

. streg drug##c.age, d(weibull) strata(drug)

These models may be compared using Wald or likelihood-ratio tests when the models in question
are nested (such as 3 nested within 4) or by using the AIC for nonnested models.

Everything we said regarding the modeling of ancillary parameters and stratification applies to AFT
models as well, for which interpretations may be stated in terms of the baseline survivor function,
that is, the unaccelerated probability of survival past time t.

Technical note

When fitting PH models, streg will, by default, display the exponentiated regression coefficients,
labeled as hazard ratios. However, in our previous examples using ancillary() and strata(), the
regression outputs displayed the untransformed coefficients instead. This change in behavior has to
do with the modeling of the ancillary parameter. When we use one or more covariates from the main
equation to model an ancillary parameter, hazard ratios (and time ratios for AFT models) lose their
interpretation. streg, as a precaution, disallows the display of hazard/time ratios when ancillary(),
anc2(), or strata() is specified.

Keep this in mind when comparing results across various model specifications. For example, when
comparing a stratified Weibull PH model to a standard Weibull PH model, be sure that the latter is
displayed using the nohr option.

(Unshared-) frailty models

A frailty model is a survival model with unobservable heterogeneity, or frailty. At the observation
level, frailty is introduced as an unobservable multiplicative effect, α, on the hazard function, such
that

h(t|α) = αh(t)

where h(t) is a nonfrailty hazard function, say, the hazard function of any of the six parametric models
supported by streg described earlier in this entry. The frailty, α, is a random positive quantity and,
for model identifiability, is assumed to have mean 1 and variance θ.

Exploiting the relationship between the cumulative hazard function and survivor function yields
the expression for the survivor function, given the frailty

S(t|α) = exp
{
−
∫ t

0

h(u|α)du

}
= exp

{
−α

∫ t

0

f(u)

S(u)
du

}
= {S(t)}α

where S(t) is the survivor function that corresponds to h(t).

Because α is unobservable, it must be integrated out of S(t|α) to obtain the unconditional survivor
function. Let g(α) be the probability density function of α, in which case an estimable form of our
frailty model is achieved as

Sθ(t) =

∫ ∞
0

S(t|α)g(α)dα =

∫ ∞
0

{S(t)}α g(α)dα

streg — Parametric survival models 261

Given the unconditional survivor function, we can obtain the unconditional hazard and density in
the usual way:

fθ(t) = − d

dt
Sθ(t) hθ(t) =

fθ(t)

Sθ(t)

Hence, an unshared-frailty model is merely a typical parametric survival model, with the addi-
tional estimation of an overdispersion parameter, θ. In a standard survival regression, the likelihood
calculations are based on S(t), h(t), and f(t). In an unshared-frailty model, the likelihood is based
analogously on Sθ(t), hθ(t), and fθ(t).

At this stage, the only missing piece is the choice of frailty distribution, g(α). In theory, any
continuous distribution supported on the positive numbers that has expectation 1 and finite variance θ is
allowed here. For mathematical tractability, however, we limit the choice to either the gamma(1/θ, θ)
distribution or the inverse-Gaussian distribution with parameters 1 and 1/θ, denoted as IG(1, 1/θ).
The gamma(a, b) distribution has probability density function

g(x) =
xa−1e−x/b

Γ(a)ba

and the IG(a, b) distribution has density

g(x) =

(
b

2πx3

)1/2

exp
{
− b

2a

(x
a
− 2 +

a

x

)}
Therefore, performing the integrations described above will show that specifying frailty(gamma)

will result in the frailty survival model (in terms of the nonfrailty survivor function, S(t))

Sθ(t) = [1− θ log {S(t)}]−1/θ

Specifying frailty(invgaussian) will give

Sθ(t) = exp
{

1

θ

(
1− [1− 2θ log {S(t)}]1/2

)}
Regardless of the choice of frailty distribution, limθ→0Sθ(t) = S(t), and thus the frailty model
reduces to S(t) when there is no heterogeneity present.

When using frailty models, distinguish between the hazard faced by the individual (subject), αh(t),
and the “average” hazard for the population, hθ(t). Similarly, an individual will have probability of
survival past time t equal to {S(t)}α, whereas Sθ(t) will measure the proportion of the population
surviving past time t. You specify S(t) as before with distribution(distname), and the list of
possible parametric forms for S(t) is given in table 1. Thus when you specify distribution() you
are specifying a model for an individual with frailty equal to one. Specifying frailty(distname)
determines which of the two above forms for Sθ(t) is used.

The output of the estimation remains unchanged from the nonfrailty version, except for the additional
estimation of θ and a likelihood-ratio test of H0: θ = 0. For more information on frailty models,
Hougaard (1986) offers an excellent introduction. For a Stata-specific overview, see Gutierrez (2002).

262 streg — Parametric survival models

Example 10

Consider as an example a survival analysis of data on women with breast cancer. Our hypothetical
dataset consists of analysis times on 80 women with covariates age, smoking, and dietfat, which
measures the average weekly calories from fat (×103) in the patient’s diet over the course of the
study.

. use http://www.stata-press.com/data/r14/bc

. list in 1/12

age smoking dietfat t dead

1. 30 1 4.919 14.2 0
2. 50 0 4.437 8.21 1
3. 47 0 5.85 5.64 1
4. 49 1 5.149 4.42 1
5. 52 1 4.363 2.81 1

6. 29 0 6.153 35 0
7. 49 1 3.82 4.57 1
8. 27 1 5.294 35 0
9. 47 0 6.102 3.74 1

10. 59 0 4.446 2.29 1

11. 35 0 6.203 15.3 0
12. 26 0 4.515 35 0

The data are well fit by a Weibull model for the distribution of survival time conditional on age,
smoking, and dietary fat. By omitting the dietfat variable from the model, we hope to introduce
unobserved heterogeneity.

. stset t, fail(dead)
(output omitted)

. streg age smoking, d(weibull) frailty(gamma)

failure _d: dead
analysis time _t: t

Fitting Weibull model:

Fitting constant-only model:

Iteration 0: log likelihood = -137.15363
Iteration 1: log likelihood = -136.3927
Iteration 2: log likelihood = -136.01557
Iteration 3: log likelihood = -136.01202
Iteration 4: log likelihood = -136.01201

Fitting full model:

Iteration 0: log likelihood = -85.933969
Iteration 1: log likelihood = -73.61173
Iteration 2: log likelihood = -68.999447
Iteration 3: log likelihood = -68.340858
Iteration 4: log likelihood = -68.136187
Iteration 5: log likelihood = -68.135804
Iteration 6: log likelihood = -68.135804

streg — Parametric survival models 263

Weibull regression -- log relative-hazard form
Gamma frailty

No. of subjects = 80 Number of obs = 80
No. of failures = 58
Time at risk = 1257.07

LR chi2(2) = 135.75
Log likelihood = -68.135804 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.475948 .1379987 4.16 0.000 1.228811 1.772788
smoking 2.788548 1.457031 1.96 0.050 1.00143 7.764894

_cons 4.57e-11 2.38e-10 -4.57 0.000 1.70e-15 1.23e-06

/ln_p 1.087761 .222261 4.89 0.000 .6521376 1.523385
/ln_the .3307466 .5250758 0.63 0.529 -.698383 1.359876

p 2.967622 .6595867 1.91964 4.587727
1/p .3369701 .0748953 .2179729 .520931

theta 1.392007 .7309092 .4973889 3.895711

LR test of theta=0: chibar2(01) = 22.57 Prob >= chibar2 = 0.000

We could also use an inverse-Gaussian distribution to model the heterogeneity.

. streg age smoking, d(weibull) frailty(invgauss) nolog

failure _d: dead
analysis time _t: t

Weibull regression -- log relative-hazard form
Inverse-Gaussian frailty

No. of subjects = 80 Number of obs = 80
No. of failures = 58
Time at risk = 1257.07

LR chi2(2) = 125.44
Log likelihood = -73.838578 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.284133 .0463256 6.93 0.000 1.196473 1.378217
smoking 2.905409 1.252785 2.47 0.013 1.247892 6.764528

_cons 1.11e-07 2.34e-07 -7.63 0.000 1.83e-09 6.79e-06

/ln_p .7173904 .1434382 5.00 0.000 .4362567 .9985241
/ln_the .2374778 .8568064 0.28 0.782 -1.441832 1.916788

p 2.049079 .2939162 1.546906 2.714273
1/p .4880241 .0700013 .3684228 .6464518

theta 1.268047 1.086471 .2364941 6.799082

LR test of theta=0: chibar2(01) = 11.16 Prob >= chibar2 = 0.000

The results are similar with respect to the choice of frailty distribution, with the gamma frailty
model producing a slightly higher likelihood. Both models show a statistically significant level of
unobservable heterogeneity because the p-value for the likelihood-ratio (LR) test of H0 : θ = 0 is
virtually zero in both cases.

264 streg — Parametric survival models

Technical note

With gamma-distributed or inverse-Gaussian–distributed frailty, hazard ratios decay over time in
favor of the frailty effect, and thus the displayed “Haz. Ratio” in the above output is actually the
hazard ratio only for t = 0. The degree of decay depends on θ. Should the estimated θ be close to
zero, the hazard ratios regain their usual interpretation. The rate of decay and the limiting hazard
ratio differ between the gamma and inverse-Gaussian models; see Gutierrez (2002) for details.

For this reason, many researchers prefer fitting frailty models in the AFT metric because the
interpretation of regression coefficients is unchanged by the frailty—the factors in question serve to
either accelerate or decelerate the survival experience. The only difference is that with frailty models,
the unconditional probability of survival is described by Sθ(t) rather than S(t).

Technical note
The LR test of θ = 0 is a boundary test and thus requires careful consideration concerning the

calculation of its p-value. In particular, the null distribution of the LR test statistic is not the usual χ2
1

but rather is a 50:50 mixture of a χ2
0 (point mass at zero) and a χ2

1, denoted as χ2
01. See Gutierrez,

Carter, and Drukker (2001) for more details.

To verify that the significant heterogeneity is caused by the omission of dietfat, we now refit
the Weibull/inverse-Gaussian frailty model with dietfat included.

. streg age smoking dietfat, d(weibull) frailty(invgauss) nolog

failure _d: dead
analysis time _t: t

Weibull regression -- log relative-hazard form
Inverse-Gaussian frailty

No. of subjects = 80 Number of obs = 80
No. of failures = 58
Time at risk = 1257.07

LR chi2(3) = 246.41
Log likelihood = -13.352142 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.74928 .0985246 9.93 0.000 1.566453 1.953447
smoking 5.203552 1.704943 5.03 0.000 2.737814 9.889992
dietfat 9.229842 2.219331 9.24 0.000 5.761312 14.78656

_cons 1.07e-20 4.98e-20 -9.92 0.000 1.22e-24 9.45e-17

/ln_p 1.431742 .0978847 14.63 0.000 1.239892 1.623593
/ln_the -14.29793 2673.364 -0.01 0.996 -5253.995 5225.399

p 4.185987 .4097439 3.45524 5.071278
1/p .2388923 .0233839 .197189 .2894155

theta 6.17e-07 .0016502 0 .

LR test of theta=0: chibar2(01) = 0.00 Prob >= chibar2 = 1.000

The estimate of the frailty variance component θ is near zero, and the p-value of the test of
H0: θ = 0 equals one, indicating negligible heterogeneity. A regular Weibull model could be fit to
these data (with dietfat included), producing almost identical estimates of the hazard ratios and
ancillary parameter, p, so such an analysis is omitted here.

streg — Parametric survival models 265

Also hazard ratios now regain their original interpretation. Thus an increase in weekly calories
from fat of 1,000 would increase the risk of death by more than ninefold.

Shared-frailty models

A generalization of the frailty models considered in the previous section is the shared-frailty model,
where the frailty is assumed to be group specific; this is analogous to a panel-data regression model.
For observation j from the ith group, the hazard is

hij(t|αi) = αihij(t)

for i = 1, . . . , n and j = 1, . . . , ni, where by hij(t) we mean h(t|xij), which is the individual
hazard given covariates xij .

Shared-frailty models are appropriate when you wish to model the frailties as being specific to
groups of subjects, such as subjects within families. Here a shared-frailty model may be used to
model the degree of correlation within groups; that is, the subjects within a group are correlated
because they share the same common frailty.

Example 11

Consider the data from a study of 38 kidney dialysis patients, as described in McGilchrist and
Aisbett (1991). The study is concerned with the prevalence of infection at the catheter-insertion point.
Two recurrence times (in days) are measured for each patient, and each recorded time is the time
from initial insertion (onset of risk) to infection or censoring.

. use http://www.stata-press.com/data/r14/catheter
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. list patient time infect age female in 1/10

patient time infect age female

1. 1 16 1 28 0
2. 1 8 1 28 0
3. 2 13 0 48 1
4. 2 23 1 48 1
5. 3 22 1 32 0

6. 3 28 1 32 0
7. 4 318 1 31.5 1
8. 4 447 1 31.5 1
9. 5 30 1 10 0

10. 5 12 1 10 0

Each patient (patient) has two recurrence times (time) recorded, with each catheter insertion
resulting in either infection (infect==1) or right-censoring (infect==0). Among the covariates
measured are age and sex (female==1 if female, female==0 if male).

One subtlety to note concerns the use of the generic term subjects. In this example, the subjects
are the individual catheter insertions, not the patients themselves. This is a function of how the data
were recorded—the onset of risk occurs at catheter insertion (of which there are two for each patient)
not, say, at the time of admission of the patient into the study. Thus we have two subjects (insertions)
within each group (patient).

266 streg — Parametric survival models

It is reasonable to assume independence of patients but unreasonable to assume that recurrence
times within each patient are independent. One solution would be to fit a standard survival model,
adjusting the standard errors of the parameter estimates to account for the possible correlation by
specifying vce(cluster patient).

We could also model the correlation by assuming that the correlation is the result of a latent
patient-level effect, or frailty. That is, rather than fitting a standard model and specifying vce(cluster
patient), we fit a frailty model and specify shared(patient). Assuming that the time to infection,
given age and female, follows a Weibull distribution, and inverse-Gaussian distributed frailties, we
get

. stset time, fail(infect)
(output omitted)

. streg age female, d(weibull) frailty(invgauss) shared(patient) nolog

failure _d: infect
analysis time _t: time

Weibull regression --
log relative-hazard form Number of obs = 76
Inverse-Gaussian shared frailty Number of groups = 38

Group variable: patient
Obs per group:

No. of subjects = 76 min = 2
No. of failures = 58 avg = 2
Time at risk = 7424 max = 2

LR chi2(2) = 9.84
Log likelihood = -99.093527 Prob > chi2 = 0.0073

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.006918 .013574 0.51 0.609 .9806623 1.033878
female .2331376 .1046382 -3.24 0.001 .0967322 .5618928
_cons .0110089 .0099266 -5.00 0.000 .0018803 .0644557

/ln_p .1900625 .1315342 1.44 0.148 -.0677398 .4478649
/ln_the .0357272 .7745362 0.05 0.963 -1.482336 1.55379

p 1.209325 .1590676 .9345036 1.564967
1/p .8269074 .1087666 .638991 1.070087

theta 1.036373 .8027085 .2271066 4.729362

LR test of theta=0: chibar2(01) = 8.70 Prob >= chibar2 = 0.002

streg — Parametric survival models 267

Contrast this with what we obtain by assuming a subject-level lognormal model:

. streg age female, d(lnormal) frailty(invgauss) shared(patient) nolog

failure _d: infect
analysis time _t: time

Lognormal regression --
accelerated failure-time form Number of obs = 76
Inverse-Gaussian shared frailty Number of groups = 38

Group variable: patient
Obs per group:

No. of subjects = 76 min = 2
No. of failures = 58 avg = 2
Time at risk = 7424 max = 2

LR chi2(2) = 16.34
Log likelihood = -97.614583 Prob > chi2 = 0.0003

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0066762 .0099457 -0.67 0.502 -.0261694 .0128171
female 1.401719 .3334931 4.20 0.000 .7480844 2.055354
_cons 3.336709 .4972641 6.71 0.000 2.362089 4.311329

/ln_sig .0625872 .1256185 0.50 0.618 -.1836205 .3087949
/ln_the -1.606248 1.190775 -1.35 0.177 -3.940125 .7276282

sigma 1.064587 .1337318 .8322516 1.361783
theta .2006389 .2389159 .0194458 2.070165

LR test of theta=0: chibar2(01) = 1.53 Prob >= chibar2 = 0.108

The frailty effect is insignificant at the 10% level in the latter model yet highly significant in
the former. We thus have two possible stories to tell concerning these data: If we believe the first
model, we believe that the individual hazard of infection continually rises over time (Weibull), but
there is a significant frailty effect causing the population hazard to begin falling after some time.
If we believe the second model, we believe that the individual hazard first rises and then declines
(lognormal), meaning that if a given insertion does not become infected initially, the chances that it
will become infected begin to decrease after a certain point. Because the frailty effect is insignificant,
the population hazard mirrors the individual hazard in the second model.

As a result, both models view the population hazard as rising initially and then falling past a
certain point. The second version of our story corresponds to higher log likelihood, yet perhaps not
significantly higher given the limited data. More investigation is required. One idea is to fit a more
distribution-agnostic form of a frailty model, such as a piecewise exponential (Cleves, Gould, and
Marchenko 2016, 345–348) or a Cox model with frailty; see [ST] stcox.

Shared-frailty models are also appropriate when the frailties are subject specific yet there exist
multiple records per subject. Here you would share frailties across the same id() variable previously
stset. When you have subject-specific frailties and uninformative episode splitting, it makes no
difference whether you fit a shared or an unshared frailty model. The estimation results will be the
same.

268 streg — Parametric survival models

Stored results
streg stores the following in e():

Scalars
e(N) number of observations
e(N sub) number of subjects
e(N fail) number of failures
e(N g) number of groups
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(N clust) number of clusters
e(chi2) χ2

e(chi2 c) χ2, comparison model
e(risk) total time at risk
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(theta) frailty parameter
e(aux p) ancillary parameter (weibull)
e(gamma) ancillary parameter (gompertz, loglogistic)
e(sigma) ancillary parameter (ggamma, lnormal)
e(kappa) ancillary parameter (ggamma)
e(p) significance
e(p c) significance, comparison model
e(rank) rank of e(V)
e(rank0) rank of e(V), constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

streg — Parametric survival models 269

Macros
e(cmd) model or regression name
e(cmd2) streg
e(cmdline) command as typed
e(dead) d
e(depvar) t
e(title) title in estimation output
e(title2) secondary title in estimation output
e(clustvar) name of cluster variable
e(shared) frailty grouping variable
e(fr title) title in output identifying frailty
e(wtype) weight type
e(wexp) weight expression
e(t0) t0
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(frm2) hazard or time
e(chi2type) Wald or LR; type of model χ2 test
e(offset1) offset for main equation
e(stcurve) stcurve
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(predict sub) predict subprogram
e(footnote) program used to implement the footnote display
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
For an introduction to survival models, see Cleves, Gould, and Marchenko (2016). For an intro-

duction to survival analysis directed at social scientists, see Box-Steffensmeier and Jones (2004).

Consider for j = 1, . . . , n observations the trivariate response, (t0j , tj , dj), representing a period
of observation, (t0j , tj], ending in either failure (dj = 1) or right-censoring (dj = 0). This structure
allows analysis of a wide variety of models and may be used to account for delayed entry, gaps,
time-varying covariates, and multiple failures per subject. Regardless of the structure of the data, once
they are stset, the data may be treated in a common manner by streg: the stset-created variable
t0 holds the t0j , t holds the tj , and d holds the dj .

For a given survivor function, S(t), the density function is obtained as

f(t) = − d

dt
S(t)

270 streg — Parametric survival models

and the hazard function (the instantaneous rate of failure) is obtained as h(t) = f(t)/S(t). Available
forms for S(t) are listed in table 1. For a set of covariates from the jth observation, xj , define
Sj(t) = S(t|x = xj), and similarly define hj(t) and fj(t). For example, in a Weibull PH model,
Sj(t) = exp{− exp(xjβ)tp}.

Parameter estimation
In this command, β and the ancillary parameters are estimated via maximum likelihood. A subject

known to fail at time tj contributes to the likelihood function the value of the density at time tj
conditional on the entry time t0j , fj(tj)/Sj(t0j). A censored observation, known to survive only
up to time tj , contributes Sj(tj)/Sj(t0j), which is the probability of surviving beyond time tj
conditional on the entry time, t0j . The log likelihood is thus given by

logL =

n∑
j=1

{dj log fj(tj) + (1− dj) logSj(tj)− logSj(t0j)}

Implicit in the above log-likelihood expression are the regression parameters, β, and the ancillary
parameters because both are components of the chosen Sj(t) and its corresponding fj(t); see table 1.
streg reports maximum likelihood estimates of β and of the ancillary parameters (if any for the
chosen model). The reported log-likelihood value is logLr = logL + T , where T =

∑
log(tj) is

summed over uncensored observations. The adjustment removes the time units from logL. Whether
the adjustment is made makes no difference to any test or result since such tests and results depend
on differences in log-likelihood functions or their second derivatives, or both.

Specifying ancillary(), anc2(), or strata() will parameterize the ancillary parameter(s) by
using the linear predictor, zjαz , where the covariates, zj , need not be distinct from xj . Here streg
will report estimates of αz in addition to estimates of β. The log likelihood here is simply the log
likelihood given above, with zjαz substituted for the ancillary parameter. If the ancillary parameter
is constrained to be strictly positive, its logarithm is parameterized instead; that is, we substitute the
linear predictor for the logarithm of the ancillary parameter in the above log likelihood. The gamma
model has two ancillary parameters, σ and κ; we parameterize σ by using ancillary() and κ by
using anc2(), and the linear predictors used for each may be distinct. Specifying strata() creates
indicator variables for the strata, places these indicators in the main equation, and uses the indicators
to parameterize any ancillary parameters that exist for the chosen model.

Unshared-frailty models have a log likelihood of the above form, with Sθ(t) and fθ(t) substituted
for S(t) and f(t), respectively. Equivalently, for gamma-distributed frailties,

logL =

n∑
j=1

[
θ−1 log {1− θ logSj(t0j)} −

(
θ−1 + dj

)
log {1− θ logSj(tj)}+ dj log hj(tj)

]

streg — Parametric survival models 271

and for inverse-Gaussian–distributed frailties,

logL =

n∑
j=1

[
θ−1 {1− 2θ logSj(t0j)}1/2− θ−1 {1− 2θ logSj(tj)}1/2 +

dj log hj(tj)−
1

2
dj log {1− 2θ logSj(tj)}

]
In a shared-frailty model, the frailty is common to a group of observations. Thus, to form an

unconditional likelihood, the frailties must be integrated out at the group level. The data are organized
as i = 1, . . . , n groups with the ith group comprising j = 1, . . . , ni observations. The log likelihood
is the sum of the log-likelihood contributions for each group. Define Di =

∑
j dij as the number of

failures in the ith group. For gamma frailties, the log-likelihood contribution for the ith group is

logLi =

ni∑
j=1

dij log hij(tij)− (1/θ +Di) log

1− θ
ni∑
j=1

log
Sij(tij)

Sij(t0ij)

+

Di log θ + log Γ(1/θ +Di)− log Γ(1/θ)

This formula corresponds to the log-likelihood contribution for multiple-record data. For single-record
data, the denominator Sij(t0ij) is equal to 1. This formula is not applicable to data with delayed
entries or gaps.

For inverse-Gaussian frailties, define

Ci =

1− 2θ

ni∑
j=1

log
Sij(tij)

Sij(t0ij)


−1/2

The log-likelihood contribution for the ith group then becomes

logLi = θ−1(1− C−1
i) +B(θCi, Di) +

ni∑
j=1

dij {log hij(tij) + logCi}

The function B(a, b) is related to the modified Bessel function of the third kind, commonly known
as the BesselK function; see Wolfram (1999, 767). In particular,

B(a, b) = a−1 +
1

2

{
log

(
2

π

)
− log a

}
+ log BesselK

(
1

2
− b, a−1

)
For both unshared- and shared-frailty models, estimation of θ takes place jointly with the estimation
of β and the ancillary parameters.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas. If observations in the dataset represent
repeated observations on the same subjects (that is, there are time-varying covariates), the assumption
of independence of the observations is highly questionable, meaning that the conventional estimate
of variance is not appropriate. We strongly advise that you use the vce(robust) and vce(cluster
clustvar) options here. (streg knows to specify vce(cluster clustvar) if you specify vce(robust).)
vce(robust) and vce(cluster clustvar) do not apply in shared-frailty models, where the correlation
within groups is instead modeled directly.

streg also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.

272 streg — Parametric survival models� �
Benjamin Gompertz (1779–1865) came from a Jewish family who left Holland and settled in
England. Excluded from a university education, he was self-educated in mathematics. In 1819,
his publications in mathematics earned him an invitation to join the Royal Society. In 1824, he
was appointed as actuary and head clerk of the Alliance Assurance Company.

Gompertz carried out pioneering work on the application of differential calculus to actuarial
questions, particularly the dependence of mortality on age. He is credited with introducing, in
1825, the concept that mortality is a continuous function over time. From this idea came the
notion of a survival function, and ultimately, parametric survival-time analysis. Gompertz’s work
also had a strong influence on the practice of demography, where it is used in the study of parity
and fertility.

Aside from his work in actuarial sciences, Gompertz contributed to astronomy and the study
of astronomical instruments. He was a member of the Astronomical Society nearly from its
founding in 1820. The society’s memoirs recognize him as an important contributor to the study
of the aberration of light. He also helped to develop the society’s catalog of the stars and make
improvements to its instruments, including the convertible pendulum, transit instruments for
studying the position of stars, and the differential sextant, his own invention.� �

� �
Ernst Hjalmar Waloddi Weibull (1887–1979) was a Swedish applied physicist most famous for his
work on the statistics of material properties. He worked in Germany and Sweden as an inventor
and a consulting engineer, publishing his first paper on the propagation of explosive waves in
1914, thereafter becoming a full professor at the Royal Institute of Technology in 1924. Weibull
wrote two important papers, “Investigations into strength properties of brittle materials” and “The
phenomenon of rupture in solids”, which discussed his ideas about the statistical distributions of
material strength. These articles came to the attention of engineers in the late 1930s.� �

References
Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:

716–723.

Bottai, M., and N. Orsini. 2013. A command for Laplace regression. Stata Journal 13: 302–314.

Box-Steffensmeier, J. M., and B. S. Jones. 2004. Event History Modeling: A Guide for Social Scientists. Cambridge:
Cambridge University Press.

Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3
ed. College Station, TX: Stata Press.

Cox, D. R., and D. Oakes. 1984. Analysis of Survival Data. London: Chapman & Hall/CRC.

Crowder, M. J., A. C. Kimber, R. L. Smith, and T. J. Sweeting. 1991. Statistical Analysis of Reliability Data. London:
Chapman & Hall/CRC.

Crowther, M. J., K. R. Abrams, and P. C. Lambert. 2013. Joint modeling of longitudinal and survival data. Stata
Journal 13: 165–184.

Cui, J. 2005. Buckley–James method for analyzing censored data, with an application to a cardiovascular disease and
an HIV/AIDS study. Stata Journal 5: 517–526.

Fisher, R. A., and L. H. C. Tippett. 1928. Limiting forms of the frequency distribution of the largest or smallest
member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society 24: 180–190.

Gutierrez, R. G. 2002. Parametric frailty and shared frailty survival models. Stata Journal 2: 22–44.

Gutierrez, R. G., S. L. Carter, and D. M. Drukker. 2001. sg160: On boundary-value likelihood-ratio tests. Stata
Technical Bulletin 60: 15–18. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 269–273. College Station,
TX: Stata Press.

http://www.stata.com/giftshop/bookmarks/series7/gompertz/
http://www.stata.com/giftshop/bookmarks/series2/weibull/
http://www.stata-journal.com/article.html?article=st0294
http://www.stata.com/bookstore/ehm.html
http://www.stata-press.com/books/survival-analysis-stata-introduction/
http://www.stata-journal.com/article.html?article=st0289
http://www.stata-journal.com/sjpdf.html?articlenum=st0093
http://www.stata-journal.com/sjpdf.html?articlenum=st0093
http://www.stata-journal.com/sjpdf.html?articlenum=st0006
http://www.stata.com/products/stb/journals/stb60.pdf

streg — Parametric survival models 273

Hooker, P. F. 1965. Benjamin Gompertz. Journal of the Institute of Actuaries 91: 203–212.

Hosmer, D. W., Jr., S. A. Lemeshow, and S. May. 2008. Applied Survival Analysis: Regression Modeling of Time
to Event Data. 2nd ed. New York: Wiley.

Hougaard, P. 1986. Survival models for heterogeneous populations derived from stable distributions. Biometrika 73:
387–396.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

Klein, J. P., and M. L. Moeschberger. 2003. Survival Analysis: Techniques for Censored and Truncated Data. 2nd
ed. New York: Springer.

Lambert, P. C., and P. Royston. 2009. Further development of flexible parametric models for survival analysis. Stata
Journal 9: 265–290.

Lee, E. T., and J. W. Wang. 2003. Statistical Methods for Survival Data Analysis. 3rd ed. New York: Wiley.

McGilchrist, C. A., and C. W. Aisbett. 1991. Regression with frailty in survival analysis. Biometrics 47: 461–466.

Olshansky, S. J., and B. A. Carnes. 1997. Ever since Gompertz. Demography 34: 1–15.

Peto, R., and P. Lee. 1973. Weibull distributions for continuous-carcinogenesis experiments. Biometrics 29: 457–470.

Pike, M. C. 1966. A method of analysis of a certain class of experiments in carcinogenesis. Biometrics 22: 142–161.

Royston, P. 2006. Explained variation for survival models. Stata Journal 6: 83–96.

Royston, P., and P. C. Lambert. 2011. Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model.
College Station, TX: Stata Press.

Royston, P., and M. K. B. Parmar. 2002. Flexible parametric proportional-hazards and proportional-odds models for
censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in
Medicine 21: 2175–2197.

Schoenfeld, D. A. 1982. Partial residuals for the proportional hazards regression model. Biometrika 69: 239–241.

Scotto, M. G., and A. Tobı́as. 1998. sg83: Parameter estimation for the Gumbel distribution. Stata Technical Bulletin
43: 32–35. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 133–137. College Station, TX: Stata Press.

. 2000. sg146: Parameter estimation for the generalized extreme value distribution. Stata Technical Bulletin 56:
40–43. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 205–210. College Station, TX: Stata Press.

Weibull, W. 1939. A statistical theory of the strength of materials. In Ingeniörs Vetenskaps Akademien Handlingar,
vol. 151. Stockholm: Generalstabens Litografiska Anstalts Förlag.

Wolfram, S. 1999. The Mathematica Book. 4th ed. Cambridge: Cambridge University Press.

Also see
[ST] streg postestimation — Postestimation tools for streg

[ST] stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[ST] stcox — Cox proportional hazards model

[ST] stcrreg — Competing-risks regression

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[ME] mestreg — Multilevel mixed-effects parametric survival models

[MI] estimation — Estimation commands for use with mi estimate

[PSS] power exponential — Power analysis for the exponential test

[SVY] svy estimation — Estimation commands for survey data

[TE] stteffects — Treatment-effects estimation for observational survival-time data

[XT] xtstreg — Random-effects parametric survival models

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/asa.html
http://www.stata.com/bookstore/asa.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0165
http://www.stata-journal.com/sjpdf.html?articlenum=st0098
http://www.stata-press.com/books/fpsaus.html
http://www.stata.com/products/stb/journals/stb43.pdf
http://www.stata.com/products/stb/journals/stb56.pdf

Title

streg postestimation — Postestimation tools for streg

Postestimation commands predict margins Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation command is of special interest after streg:

Command Description

stcurve plot the survivor, hazard, and cumulative hazard functions

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗ hausman and lrtest are not appropriate with svy estimation results.

274

streg postestimation — Postestimation tools for streg 275

predict

Description for predict

predict creates a new variable containing predictions such as median and mean survival times;
hazards; hazard ratios; linear predictions; standard errors; probabilities; Cox–Snell, martingale-like,
and deviance residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic options
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

median time median survival time; the default
median lntime median ln(survival time)
mean time mean survival time
mean lntime mean ln(survival time)
hazard hazard
hr hazard ratio, also known as the relative hazard
xb linear prediction xjβ
stdp standard error of the linear prediction; SE(xjβ)
surv S(t|t0)
∗csurv S(t | earliest t0 for subject)
∗csnell Cox–Snell residuals
∗mgale martingale-like residuals
∗deviance deviance residuals

options Description

oos make statistic available in and out of sample
nooffset ignore the offset() variable specified in streg

alpha1 predict statistic conditional on frailty value equal to one
unconditional predict statistic unconditionally on the frailty
marginal synonym for unconditional
partial produce observation-level results

276 streg postestimation — Postestimation tools for streg

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample. Starred statistics are calculated for the estimation sample by default, but the oos option
makes them available both in and out of sample.

When no option is specified, the predicted median survival time is calculated for all models. The predicted hazard ratio,
option hr, is available only for the exponential, Weibull, and Gompertz models. The mean time and mean lntime
options are not available for the Gompertz model. Unconditional estimates of mean time and mean lntime are
not available if frailty() was specified with streg; see [ST] streg.

csnell, mgale, and deviance are not allowed with svy estimation results.

Options for predict

� � �
Main �

median time calculates the predicted median survival time in analysis-time units. This is the prediction
from time 0 conditional on constant covariates. When no options are specified with predict, the
predicted median survival time is calculated for all models.

median lntime calculates the natural logarithm of what median time produces.

mean time calculates the predicted mean survival time in analysis-time units. This is the prediction
from time 0 conditional on constant covariates. This option is not available for Gompertz regressions
and is available for frailty models only if alpha1 is specified, in which case what you obtain is
an estimate of the mean survival time conditional on a frailty effect of one.

mean lntime predicts the mean of the natural logarithm of time. This option is not available for
Gompertz regression and is available for frailty models only if alpha1 is specified, in which case
what you obtain is an estimate of the mean log survival-time conditional on a frailty effect of one.

hazard calculates the predicted hazard.

hr calculates the hazard ratio. This option is valid only for models having a proportional-hazards
parameterization.

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a set of
parameters, β0, β1, β2, . . . , βk, and the linear prediction is ŷj = β̂0+β̂1x1j+β̂2x2j+· · ·+β̂kxkj ,
often written in matrix notation as ŷj = xjβ̂.

The x1j , x2j , . . . , xkj used in the calculation are obtained from the data currently in memory
and need not correspond to the data on the independent variables used in estimating β.

stdp calculates the standard error of the prediction, that is, the standard error of ŷj .

surv calculates each observation’s predicted survivor probability, S(t|t0), where t0 is t0, the
analysis time at which each record became at risk. For multiple-record data, see the csurv option
below.

csurv calculates the predicted S(t|earliest t0) for each subject in multiple-record data by calculating
the conditional survivor values, S(t|t0) (see the surv option above), and then multiplying them.

What you obtain from surv will differ from what you obtain from csurv only if you have multiple
records for that subject.

In the presence of gaps or delayed entry, the estimates obtained from csurv can be different
for subjects with gaps from those without gaps, having the same covariate values, because the
probability of survival over gaps is assumed to be 1. Thus the predicted cumulative conditional
survivor function is not a smooth function of time t for constant values of the covariates. Use
stcurve, survival to obtain a smooth estimate of the cumulative survivor function S(t|x).

csnell calculates the Cox–Snell generalized residuals. For multiple-record-per-subject data, by default
only one value per subject is calculated and it is placed on the last record for the subject.

streg postestimation — Postestimation tools for streg 277

Adding the partial option will produce partial Cox–Snell residuals, one for each record within
subject; see partial below. Partial Cox–Snell residuals are the additive contributions to a subject’s
overall Cox–Snell residual. In single-record-per-subject data, the partial Cox–Snell residuals are
the Cox–Snell residuals.

mgale calculates the martingale-like residuals. For multiple-record data, by default only one value
per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial martingale residuals, one for each record within
subject; see partial below. Partial martingale residuals are the additive contributions to a subject’s
overall martingale residual. In single-record data, the partial martingale residuals are the martingale
residuals.

deviance calculates the deviance residuals. Deviance residuals are martingale residuals that have
been transformed to be more symmetric about zero. For multiple-record data, by default only one
value per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial deviance residuals, one for each record within
subject; see partial below. Partial deviance residuals are transformed partial martingale residuals.
In single-record data, the partial deviance residuals are the deviance residuals.

oos makes csurv, csnell, mgale, and deviance available both in and out of sample. oos also
dictates that summations and other accumulations take place over the sample as defined by if
and in. By default, the summations are taken over the estimation sample, with if and in merely
determining which values of newvar are to be filled in once the calculation is finished.

nooffset is relevant only if you specified offset(varname) with streg. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xβ
rather than xβ+ offset.

alpha1, when used after fitting a frailty model, specifies that statistic be predicted conditional on a
frailty value equal to one. This is the default for shared-frailty models.

unconditional and marginal, when used after fitting a frailty model, specify that statistic be
predicted unconditional on the frailty. That is, the prediction is averaged over the frailty distribution.
This is the default for unshared-frailty models.

partial is relevant only for multiple-record data and is valid with csnell, mgale, and deviance.
Specifying partial will produce “partial” versions of these statistics, where one value is calculated
for each record instead of one for each subject. The subjects are determined by the id() option
of stset.

Specify partial if you wish to perform diagnostics on individual records rather than on individual
subjects. For example, a partial deviance can be used to diagnose the fitted characteristics of an
individual record rather than those of the set of records for a given subject.

scores calculates equation-level score variables. The number of score variables created depends upon
the chosen distribution.

The first new variable will always contain ∂lnL/∂(xjβ).

The subsequent new variables will contain the partial derivative of the log likelihood with respect
to the ancillary parameters.

278 streg postestimation — Postestimation tools for streg

margins

Description for margins

margins estimates margins of response for median and mean survival times, hazards, hazard
ratios, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . .)

[
predict(statistic . . .) . . .

] [
options

]
statistic Description

median time median survival time; the default
median lntime median ln(survival time)
mean time mean survival time
mean lntime mean ln(survival time)
hazard hazard
hr hazard ratio, also known as the relative hazard
xb linear prediction xjβ
stdp not allowed with margins

surv not allowed with margins

csurv not allowed with margins

csnell not allowed with margins

mgale not allowed with margins

deviance not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
predict after streg is used to generate a variable containing predicted values or residuals.

For a more detailed discussion on residuals, read Residuals and diagnostic measures in the [ST] stcox
postestimation entry. Many of the concepts and ideas presented there also apply to streg models.

Regardless of the metric used, predict can generate predicted median survival times and median
log survival-times for all models, and predicted mean times and mean log survival-times where
available. Predicted survival, hazard, and residuals are also available for all models. The predicted
hazard ratio can be calculated only for models with a proportional-hazards parameterization, that is,
the Weibull, exponential, and Gompertz models. However, the estimation need not take place in the
log-hazard metric. You can perform, for example, a Weibull regression specifying the time option
and then ask that hazard ratios be predicted.

streg postestimation — Postestimation tools for streg 279

After fitting a frailty model, you can use predict with the alpha1 option to generate predicted
values based on S(t) or use the unconditional option to generate predictions based on Sθ(t); see
[ST] streg.

Example 1

Let’s return to example 1 of [ST] streg concerning the ability of emergency generators with
new-style bearings to withstand overloads. Assume that, as before, we fit a proportional hazards
Weibull model:

. use http://www.stata-press.com/data/r14/kva
(Generator experiment)

. streg load bearings, d(weibull) nolog

failure _d: 1 (meaning all fail)
analysis time _t: failtime

Weibull regression -- log relative-hazard form

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27
Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

load 1.599315 .1883807 3.99 0.000 1.269616 2.014631
bearings .1887995 .1312109 -2.40 0.016 .0483546 .7371644

_cons 2.51e-20 2.66e-19 -4.26 0.000 2.35e-29 2.68e-11

/ln_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

p 7.779969 1.802677 4.940241 12.25202
1/p .1285352 .0297826 .0816192 .2024193

Now we can predict both the median survival time and the log-median survival time for each
observation:

. predict time, time
(option median time assumed; predicted median time)

. predict lntime, lntime
(option median lntime assumed; predicted median log time)

. format time lntime %9.4f

280 streg postestimation — Postestimation tools for streg

. list failtime load bearings time lntime

failtime load bearings time lntime

1. 100 15 0 127.5586 4.8486
2. 140 15 1 158.0407 5.0629
3. 97 20 0 94.3292 4.5468
4. 122 20 1 116.8707 4.7611
5. 84 25 0 69.7562 4.2450

6. 100 25 1 86.4255 4.4593
7. 54 30 0 51.5845 3.9432
8. 52 30 1 63.9114 4.1575
9. 40 35 0 38.1466 3.6414

10. 55 35 1 47.2623 3.8557

11. 22 40 0 28.2093 3.3397
12. 30 40 1 34.9504 3.5539

Example 2

Using the cancer data of example 6 in [ST] streg, again with drug remapped into a drug-treatment
indicator, we can examine the various residuals that Stata produces. For a more detailed discussion on
residuals, read Residuals and diagnostic measures in [ST] stcox postestimation. Many of the concepts
and ideas presented there also apply to streg models. For a more technical presentation of these
residuals, see Methods and formulas.

We will begin by requesting the generalized Cox–Snell residuals with the command predict cs,
csnell. The csnell option causes predict to create a new variable, cs, containing the Cox–Snell
residuals. If the model fits the data, these residuals should have a standard exponential distribution
with λ = 1. One way to verify the fit is to calculate an empirical estimate of the cumulative hazard
function—based, for example, on the Kaplan–Meier survival estimates or the Aalen–Nelson estimator,
taking the Cox–Snell residuals as the time variable and the censoring variable as before—and plotting
it against cs. If the model fits the data, the plot should be a straight line with a slope of 1.

To do this after fitting the model, we first stset the data, specifying cs as our new failure-time
variable and died as the failure indicator. We then use the sts generate command to generate the
variable km containing the Kaplan–Meier survival estimates. Finally, we generate a new variable, H
(cumulative hazard), and plot it against cs. The commands are

. use http://www.stata-press.com/data/r14/cancer, clear
(Patient Survival in Drug Trial)

. replace drug = drug==2 | drug==3 // 0, placebo : 1, nonplacebo
(48 real changes made)

. qui stset studytime, failure(died)

. qui streg age drug, d(exp)

. predict double cs, csnell

. qui stset cs, failure(died)

. qui sts generate km=s

. qui generate double H=-ln(km)

. line H cs cs, sort

We specified cs twice in the graph command so that a reference 45◦ line was plotted. We did
this separately for each of four distributions. Results are plotted in figure 1:

streg postestimation — Postestimation tools for streg 281

0
1

2
3

0 1 2 3

Exponential

0
1

2
3

4

0 1 2 3 4

Weibull
0

1
2

3

0 1 2 3

Loglogistic

0
1

2
3

0 1 2 3

Lognormal

−
ln

(K
a

p
la

n
−

M
e

ie
r)

Cox−Snell residual

Figure 1. Cox–Snell residuals to evaluate model fit of four regression models

The plots indicate that the Weibull and lognormal models fit the data best and that the exponential
model fits poorly. These results are consistent with our previous results (in [ST] streg) based on
Akaike’s information criterion.

Example 3

Let’s now look at the martingale-like and deviance residuals. We use the term “martingale-like”
because, although these residuals do not arise naturally from martingale theory for parametric survival
models as they do for the Cox proportional hazards model, they do share similar form. We can
generate these residuals by using predict’s mgale option. Martingale residuals take values between
−∞ and 1 and therefore are difficult to interpret. The deviance residuals are a rescaling of the
martingale-like residuals so that they are symmetric about zero and thus more like residuals obtained
from linear regression. Plots of either deviance residuals against the linear predictor (that is, the log
relative hazard in PH models) or of deviance residuals against individual predictors can be useful
in identifying aberrant observations and in assessing model fit. Continuing with our modified cancer
data, we plot the deviance residual obtained after fitting a lognormal model:

. qui streg age drug, d(lnormal)

. predict dev, deviance

282 streg postestimation — Postestimation tools for streg

. scatter dev studytime, yline(0) m(o)

−
2

−
1

0
1

2
3

d
e

v
ia

n
c
e

 r
e

s
id

u
a

l

0 10 20 30 40
Months to death or end of exp.

Figure 2. Deviance residuals to evaluate model fit of lognormal model

Figure 2 shows the deviance residuals to be relatively well behaved, with a few minor early exceptions.

Methods and formulas
predict newvar, options may be used after streg to predict various quantities, according to the

following options:

median time:
newvarj = {t : Ŝj(t) = 1/2}

where Ŝj(t) is Sj(t) with the parameter estimates “plugged in”.

median lntime:
newvarj =

{
y : Ŝj(e

y) = 1/2
}

mean time:

newvarj =

∫ ∞
0

Ŝj(t)dt

mean lntime:

newvarj =

∫ ∞
−∞

yey f̂j(e
y)dy

where f̂j(t) is fj(t) with the parameter estimates plugged in.

hazard:
newvarj = f̂j(tj)/Ŝj(tj)

streg postestimation — Postestimation tools for streg 283

hr (PH models only):
newvarj = exp(xjβ̂)

xb:
newvarj = xjβ̂

stdp:
newvarj = ŝe(xjβ̂)

surv and csurv:
newvarj = Ŝj(tj)/Ŝj(t0j)

The above represents the probability of survival past time tj given survival up until t0j and
represents what you obtain when you specify surv. If csurv is specified, these probabilities are
multiplied (in time order) over a subject’s multiple observations. What is obtained is then equal to
the probability of survival past time tj , given survival through the earliest observed t0j , and given
the subject’s (possibly time-varying) covariate history. In single-record-per-subject data, surv and
csurv are identical.

csnell:
newvarj = − log Ŝj(tj)

The Cox–Snell (1968) residual, CSj , for observation j at time tj is defined as Ĥj(tj) = −logŜj(tj),
which is the estimated cumulative hazard function obtained from the fitted model (Collett 2003,
111–112). Cox and Snell argued that if the correct model has been fit to the data, these residuals
are n observations from an exponential distribution with unit mean. Thus a plot of the cumulative
hazard rate of the residuals against the residuals themselves should result in a straight line of
slope 1. Cox–Snell residuals can never be negative and therefore are not symmetric about zero.
The options csnell and partial store in each observation that observation’s contribution to the
subject’s Cox–Snell residual, which we refer to as a partial Cox–Snell residual. If only csnell
is specified, partial residuals are summed within each subject to obtain one overall Cox–Snell
residual for that subject. If there is only 1 observation per subject, partial has no effect.

mgale:
newvarj = dj − CSj

Martingale residuals follow naturally from martingale theory for Cox proportional hazards, but their
development does not carry over for parametric survival models. However, martingale-like residuals
similar to those obtained for Cox can be derived from the Cox–Snell residuals: Mj = dj −CSj ,
where CSj are the Cox–Snell residuals, as previously described.

Because martingale-like residuals are calculated from the Cox–Snell residuals, they also could be
partial or not. Partial martingale residuals are generated with the mgale and partial options,
and overall martingale residuals are generated with the mgale option.

Martingale residuals can be interpreted as the difference over time between the number of deaths
in the data and the expected number from the fitted model. These residuals take values between
−∞ and 1 and have an expected value of zero, although, like the Cox–Snell residuals, they are
not symmetric about zero, making them difficult to interpret.

284 streg postestimation — Postestimation tools for streg

deviance:
newvarj = sign(Mj) [−2 {Mj + dj log(dj −Mj)}]1/2

Deviance residuals are a scaling of the martingale-like residuals in an attempt to make them
symmetric about zero. When the model fits the data, these residuals are symmetric about zero and
thus can be more readily used to examine the data for outliers. If you also specify the partial
option, you obtain partial deviance residuals, one for each observation.

predict also allows two options for use after fitting frailty models: alpha1 and unconditional.
If unconditional is specified, the above predictions are modified to be based on Sθ(t) and fθ(t),
rather than S(t) and f(t); see [ST] streg. If alpha1 is specified, the predictions are as described
above.

References
Boswell, T. M., and R. G. Gutierrez. 2011. Stata tip 94: Manipulation of prediction parameters for parametric survival

regression models. Stata Journal 11: 143–144.

Collett, D. 2003. Modelling Binary Data. 2nd ed. London: Chapman & Hall/CRC.

Cox, D. R., and E. J. Snell. 1968. A general definition of residuals (with discussion). Journal of the Royal Statistical
Society, Series B 30: 248–275.

Also see
[ST] streg — Parametric survival models

[ST] stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[U] 20 Estimation and postestimation commands

http://www.stata-journal.com/sjpdf.html?articlenum=st0221
http://www.stata-journal.com/sjpdf.html?articlenum=st0221

Title

sts — Generate, graph, list, and test the survivor and cumulative hazard functions

Description Syntax Remarks and examples Stored results
Methods and formulas References Also see

Description

sts reports and creates variables containing the estimated survivor and related functions, such
as the Nelson–Aalen cumulative hazard function. For the survivor function, sts tests and produces
Kaplan–Meier estimates or, via Cox regression, adjusted estimates.

sts graph is equivalent to typing sts by itself—it graphs the survivor function.

sts list lists the estimated survivor and related functions.

sts test tests the equality of the survivor function across groups.

sts generate creates new variables containing the estimated survivor function, the Nelson–Aalen
cumulative hazard function, or related functions.

sts can be used with single- or multiple-record or single- or multiple-failure st data.

Syntax
sts

[
graph

] [
if
] [

in
] [

, . . .
]

sts list
[

if
] [

in
] [

, . . .
]

sts test varlist
[

if
] [

in
] [

, . . .
]

sts generate newvar = . . .
[

if
] [

in
] [

, . . .
]

You must stset your data before using sts; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

See [ST] sts graph, [ST] sts list, [ST] sts test, and [ST] sts generate for details of syntax.

Remarks and examples
Remarks are presented under the following headings:

Listing, graphing, and generating variables
Comparing survivor or cumulative hazard functions
Testing equality of survivor functions
Adjusted estimates
Counting the number lost due to censoring
Video examples

285

286 sts — Generate, graph, list, and test the survivor and cumulative hazard functions

sts concerns the survivor function, S(t); the probability of surviving to t or beyond; the cumulative
hazard function, H(t); and the hazard function, h(t). Its subcommands can list and generate variables
containing Ŝ(t) and Ĥ(t) and test the equality of S(t) over groups. Also:

• All subcommands share a common syntax.

• All subcommands deal with either the Kaplan–Meier product-limit or the Nelson–Aalen estimates
unless you request adjusted survival estimates.

• If you request an adjustment, all subcommands perform the adjustment in the same way, which
is described below.

The full details of each subcommand are found in the entries following this one, but each subcommand
provides so many options to control exactly how the listing looks, how the graph appears, the form
of the test to be performed, or what exactly is to be generated that the simplicity of sts can be easily
overlooked.

So, without getting burdened by the details of syntax, let us demonstrate the sts commands by
using the Stanford heart transplant data introduced in [ST] stset.

Example 1

. use http://www.stata-press.com/data/r14/drugtr

Graph the Kaplan–Meier survivor function . sts graph
. sts graph, by(drug)

Graph the Nelson–Aalen cumulative hazard function . sts graph, cumhaz
. sts graph, cumhaz by(drug)

Graph the estimated hazard function . sts graph, hazard
. sts graph, hazard by(drug)

List the Kaplan–Meier survivor function . sts list
. sts list, by(drug) compare

List the Nelson–Aalen cumulative hazard function . sts list, cumhaz
. sts list, cumhaz by(drug) compare

Generate variable containing the Kaplan–Meier . sts gen surv = s
survivor function . sts gen surv by drug = s, by(drug)

Generate variable containing the Nelson–Aalen . sts gen haz = na
cumulative hazard function . sts gen haz by drug = na, by(drug)

Test equality of survivor functions . sts test drug
. gen agecat = autocode(age,4,47,67)
. sts test drug, strata(agecat)

Listing, graphing, and generating variables

You can list the overall survivor function by typing sts list, and you can graph it by typing
sts graph or sts. sts assumes that you mean graph when you do not type a subcommand.

Or, you can list the Nelson–Aalen cumulative hazard function by typing sts list, cumhaz, and
you can graph it by typing sts graph, cumhaz.

sts — Generate, graph, list, and test the survivor and cumulative hazard functions 287

When you type sts list, you are shown all the details:

. use http://www.stata-press.com/data/r14/stan3
(Heart transplant data)

. stset, noshow

. sts list

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

1 103 1 0 0.9903 0.0097 0.9331 0.9986
2 102 3 0 0.9612 0.0190 0.8998 0.9852
3 99 3 0 0.9320 0.0248 0.8627 0.9670
5 96 1 0 0.9223 0.0264 0.8507 0.9604

(output omitted)
1586 2 0 1 0.1519 0.0493 0.0713 0.2606
1799 1 0 1 0.1519 0.0493 0.0713 0.2606

When you type sts graph or just sts, you are shown a graph of the same result detailed by list:

. sts graph

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 500 1000 1500 2000
analysis time

Kaplan−Meier survival estimate

288 sts — Generate, graph, list, and test the survivor and cumulative hazard functions

sts generate is a rarely used command. Typing sts generate survf = s creates a new variable,
survf, containing the same survivor function that list just listed and graph just graphed:

. sts gen survf = s

. sort t1

. list t1 survf in 1/10

t1 survf

1. 1 .99029126
2. 1 .99029126
3. 1 .99029126
4. 1 .99029126
5. 2 .96116505

6. 2 .96116505
7. 2 .96116505
8. 2 .96116505
9. 2 .96116505

10. 2 .96116505

sts generate is provided if you want to make a calculation, listing, or graph that sts cannot already
do for you.

Comparing survivor or cumulative hazard functions

sts allows you to compare survivor or cumulative hazard functions. sts graph and sts graph,
cumhaz are probably most successful at this. For example, survivor functions can be plotted using

. sts graph, by(posttran)

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 500 1000 1500 2000
analysis time

posttran = 0 posttran = 1

Kaplan−Meier survival estimates

sts — Generate, graph, list, and test the survivor and cumulative hazard functions 289

and Nelson–Aalen cumulative hazard functions can be plotted using

. sts graph, cumhaz by(posttran)

0
.0

0
0

.5
0

1
.0

0
1

.5
0

2
.0

0

0 500 1000 1500 2000
analysis time

posttran = 0 posttran = 1

Nelson−Aalen cumulative hazard estimates

To compare survivor functions, we typed sts graph, just as before, and then we added by(posttran)
to see the survivor functions for the groups designated by posttran. Here there are two groups, but
as far as the sts command is concerned, there could have been more. cumhaz was also added to
compare cumulative hazard functions.

You can also plot and compare estimated hazard functions by using sts graph, hazard. The
hazard is estimated as a kernel smooth of the increments that sum to form the estimated cumulative
hazard. The increments themselves do not estimate the hazard, but the smooth is weighted so that it
estimates the hazard; see [ST] sts graph.

Just as you can compare survivor functions graphically by typing sts graph, by(posttran) and
cumulative hazard functions by typing sts graph, cumhaz by(posttran), you can obtain detailed
listings by typing sts list, by(posttran) and sts list, cumhaz by(posttran), respectively.
Below we list the survivor function and specify enter, which adds a number-who-enter column:

290 sts — Generate, graph, list, and test the survivor and cumulative hazard functions

. sts list, by(posttran) enter

Beg. Survivor Std.
Time Total Fail Lost Enter Function Error [95% Conf. Int.]

posttran=0
0 0 0 0 103 1.0000 . . .
1 103 1 3 0 0.9903 0.0097 0.9331 0.9986
2 99 3 3 0 0.9603 0.0195 0.8976 0.9849

(output omitted)
427 2 0 1 0 0.2359 0.1217 0.0545 0.4882

1400 1 0 1 0 0.2359 0.1217 0.0545 0.4882
posttran=1

1 0 0 0 3 1.0000 . . .
2 3 0 0 3 1.0000 . . .
3 6 0 0 3 1.0000 . . .
4 9 0 0 2 1.0000 . . .
5 11 0 0 3 1.0000 . . .

5.1 14 1 0 0 0.9286 0.0688 0.5908 0.9896
6 13 0 0 1 0.9286 0.0688 0.5908 0.9896
8 14 0 0 2 0.9286 0.0688 0.5908 0.9896

10 16 0 0 2 0.9286 0.0688 0.5908 0.9896
(output omitted)
1586 2 0 1 0 0.1420 0.0546 0.0566 0.2653
1799 1 0 1 0 0.1420 0.0546 0.0566 0.2653

sts list’s compare option allows you to compare survivor or cumulative hazard functions by
listing the groups side by side.

. sts list, by(posttran) compare

Survivor Function
posttran 0 1

time 1 0.9903 1.0000
225 0.4422 0.3934
449 0.2359 0.3304
673 0.2359 0.3139
897 0.2359 0.2535

1121 0.2359 0.1774
1345 0.2359 0.1774
1569 . 0.1420
1793 . 0.1420
2017 . .

sts — Generate, graph, list, and test the survivor and cumulative hazard functions 291

If we include the cumhaz option, the cumulative hazard functions are listed:
. sts list, cumhaz by(posttran) compare

Nelson-Aalen Cum. Haz.
posttran 0 1

time 1 0.0097 0.0000
225 0.7896 0.9145
449 1.3229 1.0850
673 1.3229 1.1350
897 1.3229 1.3411

1121 1.3229 1.6772
1345 1.3229 1.6772
1569 . 1.8772
1793 . 1.8772
2017 . .

When you specify compare, the same detailed survivor or cumulative hazard function is calculated,
but it is then evaluated at 10 or so given times, and those evaluations are listed. Above we left it to
sts list to choose the comparison times, but we can specify them ourselves with the at() option:

. sts list, by(posttran) compare at(0 100 to 1700)

Survivor Function
posttran 0 1

time 0 1.0000 1.0000
100 0.5616 0.4814
200 0.4422 0.4184
300 0.3538 0.3680
400 0.2359 0.3304
500 0.2359 0.3304
600 0.2359 0.3139
700 0.2359 0.2942
800 0.2359 0.2746
900 0.2359 0.2535

1000 0.2359 0.2028
1100 0.2359 0.1774
1200 0.2359 0.1774
1300 0.2359 0.1774
1400 0.2359 0.1420
1500 . 0.1420
1600 . 0.1420
1700 . 0.1420

Testing equality of survivor functions

sts test tests equality of survivor functions:
. sts test posttran

Log-rank test for equality of survivor functions

Events Events
posttran observed expected

0 30 31.20
1 45 43.80

Total 75 75.00

chi2(1) = 0.13
Pr>chi2 = 0.7225

292 sts — Generate, graph, list, and test the survivor and cumulative hazard functions

When you do not specify otherwise, sts test performs the log-rank test, but it can also perform
the Wilcoxon test:

. sts test posttran, wilcoxon

Wilcoxon (Breslow) test for equality of survivor functions

Events Events Sum of
posttran observed expected ranks

0 30 31.20 -85
1 45 43.80 85

Total 75 75.00 0

chi2(1) = 0.14
Pr>chi2 = 0.7083

sts test also performs stratified tests; see [ST] sts test.

Adjusted estimates

All the estimates of the survivor function we have seen so far are the Kaplan–Meier product-limit
estimates. sts can make adjusted estimates to the survivor function. We want to illustrate this and
explain how it is done.

The heart transplant dataset is not the best for demonstrating this feature because we are starting
with survivor functions that are similar already, so let’s switch to data on a fictional drug trial:

. use http://www.stata-press.com/data/r14/drug2, clear
(Patient Survival in Drug Trial)

. stset, noshow

. stdescribe

per subject
Category total mean min median max

no. of subjects 48
no. of records 48 1 1 1 1

(first) entry time 0 0 0 0
(final) exit time 15.5 1 12.5 39

subjects with gap 0
time on gap if gap 0
time at risk 744 15.5 1 12.5 39

failures 31 .6458333 0 1 1

This dataset contains 48 subjects, all observed from time 0. The st command shows us how the
dataset is currently declared:

. st
-> stset studytime, failure(died) noshow

failure event: died != 0 & died < .
obs. time interval: (0, studytime]
exit on or before: failure

sts — Generate, graph, list, and test the survivor and cumulative hazard functions 293

The dataset contains variables age and drug:

. summarize age drug

Variable Obs Mean Std. Dev. Min Max

age 48 47.125 9.492718 32 67
drug 48 .5833333 .4982238 0 1

We are comparing the outcomes of drug = 1 with that of the placebo, drug = 0. Here are the
survivor curves for the two groups:

. sts graph, by(drug)

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 10 20 30 40
analysis time

drug = 0 drug = 1

Kaplan−Meier survival estimates

Here are the survivor curves adjusted for age (and scaled to age 50):
. generate age50 = age-50

. sts graph, by(drug) adjustfor(age50)

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 10 20 30 40
analysis time

drug = 0 drug = 1

Survivor functions
adjusted for age50

The age difference between the two samples accounts for much of the difference between the survivor
functions.

294 sts — Generate, graph, list, and test the survivor and cumulative hazard functions

When you type by(group) adjustfor(vars), sts fits a separate Cox proportional hazards model
on vars (estimation via stcox) and retrieves the separately estimated baseline survivor functions. sts
graph graphs the baseline survivor functions, sts list lists them, and sts generate saves them.

Thus sts list can list what sts graph plots:

. sts list, by(drug) adjustfor(age50) compare

Adjusted Survivor Function
drug 0 1

time 1 0.9463 1.0000
5 0.7439 1.0000
9 0.6135 0.7358

13 0.3770 0.5588
17 0.2282 0.4668
21 0.2282 0.4668
25 . 0.1342
29 . 0.0872
33 . 0.0388
37 . 0.0388
41 . .

Survivor function adjusted for age50

In both the graph and the listing, we must adjust for variable age50= age− 50 and not just age.
Adjusted survivor functions are adjusted to the adjustfor() variables and scaled to correspond to
the adjustfor() variables set to 0. Here is the result of adjusting for age, which is 0 at birth:

. sts list, by(drug) adjustfor(age) compare

Adjusted Survivor Function
drug 0 1

time 1 0.9994 1.0000
5 0.9970 1.0000
9 0.9951 0.9995

13 0.9903 0.9990
17 0.9853 0.9987
21 0.9853 0.9987
25 . 0.9965
29 . 0.9958
33 . 0.9944
37 . 0.9944
41 . .

Survivor function adjusted for age

These are equivalent to what we obtained previously but not nearly so informative because of the scaling
of the survivor function. The adjustfor(age) option scales the survivor function to correspond to
age = 0. age is calendar age, so the survivor function is scaled to correspond to a newborn.

There is another way that sts will adjust the survivor function. Rather than specifying by(group)
adjustfor(vars), we can specify strata(group) adjustfor(vars):

sts — Generate, graph, list, and test the survivor and cumulative hazard functions 295

. sts list, strata(drug) adjustfor(age50) compare

Adjusted Survivor Function
drug 0 1

time 1 0.9526 1.0000
5 0.7668 1.0000
9 0.6417 0.7626

13 0.4080 0.5995
17 0.2541 0.5139
21 0.2541 0.5139
25 . 0.1800
29 . 0.1247
33 . 0.0614
37 . 0.0614
41 . .

Survivor function adjusted for age50

When we specify strata() instead of by(), instead of fitting separate Cox models for each stratum,
sts list fits one stratified Cox model and retrieves the stratified baseline survivor function. That
is, strata() rather than by() constrains the effect of the adjustfor() variables to be the same
across strata.

Counting the number lost due to censoring

sts list, in the detailed output, shows the number lost in the fourth column:

. sts list

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

1 48 2 0 0.9583 0.0288 0.8435 0.9894
2 46 1 0 0.9375 0.0349 0.8186 0.9794
3 45 1 0 0.9167 0.0399 0.7930 0.9679

(output omitted)
8 36 3 1 0.7061 0.0661 0.5546 0.8143
9 32 0 1 0.7061 0.0661 0.5546 0.8143

10 31 1 1 0.6833 0.0678 0.5302 0.7957
(output omitted)

39 1 0 1 0.1918 0.0791 0.0676 0.3634

sts graph, if you specify the lost option, will show that number, too:

296 sts — Generate, graph, list, and test the survivor and cumulative hazard functions

. sts graph, lost

1

2
1

1

1

4

1
3

2 1

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 10 20 30 40
analysis time

Kaplan−Meier survival estimate

The number on the listing and on the graph is the number of net lost, defined as the number of censored
minus the number who enter. With simple survival data—with 1 observation per subject—net lost
corresponds to lost.

With more complicated survival data—meaning delayed entry or multiple records per subject—the
number of net lost may surprise you. With complicated data, the vague term lost can mean many
things. Sometimes subjects are lost, but mostly there are many censorings followed by reentries—a
subject is censored at time 5 immediately to reenter the data with different covariates. This is called
thrashing.

There are other possibilities: a subject can be lost, but only for a while, and so reenter the data with
a gap; a subject can be censored out of one stratum to enter another. There are too many possibilities
to dedicate a column in a table or a plotting symbol in a graph to each one. sts’s solution is to
define lost as net lost, meaning censored minus entered, and show that number. How we define lost
does not affect the calculation of the survivor function; it merely affects a number that researchers
often report.

Defining lost as censored minus entered results in exactly what is desired for simple survival
data. Because everybody enters at time 0, calculating censored minus entered amounts to calculating
censored− 0. The number of net lost is the number of censored.

In more complicated data, calculating censored minus entered results in the number really lost if
there are no gaps and no delayed entry. Then the subtraction smooths the thrashing. In an interval,
five might be censored and three reenter, so 5− 3 = 2 were lost.

In even more complicated data, calculating censored minus entered results in something reasonable
once you understand how to interpret negative numbers and are cautious in interpreting positive ones.
Five might be censored and three might enter (from the five? who can say?), resulting in two net
lost; or three might be censored and five enter, resulting in −2 being lost.

sts, by default, reports the net lost but will, if you specify the enter option, report the pure
number censored and the pure number who enter. Sometimes you will want to do that. Earlier in this
entry, we used sts list to display the survivor functions in the Stanford heart transplant data for
subjects pre- and posttransplantation, and we slipped in an enter option:

. use http://www.stata-press.com/data/r14/stan3, clear
(Heart transplant data)

sts — Generate, graph, list, and test the survivor and cumulative hazard functions 297

. stset, noshow

. sts list, by(posttran) enter

Beg. Survivor Std.
Time Total Fail Lost Enter Function Error [95% Conf. Int.]

posttran=0
0 0 0 0 103 1.0000 . . .
1 103 1 3 0 0.9903 0.0097 0.9331 0.9986
2 99 3 3 0 0.9603 0.0195 0.8976 0.9849
3 93 3 3 0 0.9293 0.0258 0.8574 0.9657

(output omitted)
427 2 0 1 0 0.2359 0.1217 0.0545 0.4882

1400 1 0 1 0 0.2359 0.1217 0.0545 0.4882
posttran=1

1 0 0 0 3 1.0000 . . .
2 3 0 0 3 1.0000 . . .
3 6 0 0 3 1.0000 . . .
4 9 0 0 2 1.0000 . . .
5 11 0 0 3 1.0000 . . .

5.1 14 1 0 0 0.9286 0.0688 0.5908 0.9896
6 13 0 0 1 0.9286 0.0688 0.5908 0.9896
8 14 0 0 2 0.9286 0.0688 0.5908 0.9896

(output omitted)
1586 2 0 1 0 0.1420 0.0546 0.0566 0.2653
1799 1 0 1 0 0.1420 0.0546 0.0566 0.2653

We did that to keep you from being shocked at negative numbers for the net lost. In this complicated
dataset, the value of posttran changes over time. All patients start with posttran = 0, and later
some change to posttran = 1.

Thus, at time 1 in the posttran = 0 group, three are lost—to the group but not to the experiment.
Simultaneously, in the posttran = 1 group, we see that three enter. Had we not specified the enter
option, you would not have seen that three enter, and you would have seen that −3 were, in net, lost:

. sts list, by(posttran)

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

posttran=0
1 103 1 3 0.9903 0.0097 0.9331 0.9986
2 99 3 3 0.9603 0.0195 0.8976 0.9849
3 93 3 3 0.9293 0.0258 0.8574 0.9657

(output omitted)
427 2 0 1 0.2359 0.1217 0.0545 0.4882

1400 1 0 1 0.2359 0.1217 0.0545 0.4882
posttran=1

1 0 0 -3 1.0000 . . .
2 3 0 -3 1.0000 . . .
3 6 0 -3 1.0000 . . .
4 9 0 -2 1.0000 . . .
5 11 0 -3 1.0000 . . .

5.1 14 1 0 0.9286 0.0688 0.5908 0.9896
6 13 0 -1 0.9286 0.0688 0.5908 0.9896
8 14 0 -2 0.9286 0.0688 0.5908 0.9896

(output omitted)
1586 2 0 1 0.1420 0.0546 0.0566 0.2653
1799 1 0 1 0.1420 0.0546 0.0566 0.2653

298 sts — Generate, graph, list, and test the survivor and cumulative hazard functions

Here specifying enter makes the table easier to explain, but do not jump to the conclusion that
specifying enter is always a good idea. In this same dataset, let’s look at the overall survivor function,
first with the enter option:

. sts list, enter

Beg. Survivor Std.
Time Total Fail Lost Enter Function Error [95% Conf. Int.]

0 0 0 0 103 1.0000 . . .
1 103 1 3 3 0.9903 0.0097 0.9331 0.9986
2 102 3 3 3 0.9612 0.0190 0.8998 0.9852
3 99 3 3 3 0.9320 0.0248 0.8627 0.9670

(output omitted)
1571 3 0 1 0 0.1519 0.0493 0.0713 0.2606
1586 2 0 1 0 0.1519 0.0493 0.0713 0.2606
1799 1 0 1 0 0.1519 0.0493 0.0713 0.2606

At time 1, three are lost and three enter. There is no delayed entry in this dataset, and there are no
gaps; so, it is the same three that were lost and reentered, and no one was really lost. At time 1571,
on the other hand, a patient really was lost. This is all more clearly revealed when we do not specify
the enter option:

. sts list

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

1 103 1 0 0.9903 0.0097 0.9331 0.9986
2 102 3 0 0.9612 0.0190 0.8998 0.9852
3 99 3 0 0.9320 0.0248 0.8627 0.9670

(output omitted)
1571 3 0 1 0.1519 0.0493 0.0713 0.2606
1586 2 0 1 0.1519 0.0493 0.0713 0.2606
1799 1 0 1 0.1519 0.0493 0.0713 0.2606

Thus, to summarize:

• The sts list and graph commands will show the number lost or censored. sts list, by
default, shows this number on the detailed output. sts graph shows the number when you
specify the lost option.

• By default, the number lost is the net number lost, defined as censored minus entered.

• Both commands allow you to specify the enter option and then show the number who actually
entered, and the number lost becomes the actual number censored, not censored minus entered.

Technical note

There is one other issue about the Kaplan–Meier estimator regarding delayed entry. When the
earliest entry into the study occurs after t = 0, one may still calculate the Kaplan–Meier estimation,
but the interpretation changes. Rather than estimating S(t), you are now estimating S(t|tmin), the
probability of surviving past time t given survival to time tmin, where tmin is the earliest entry time.

sts — Generate, graph, list, and test the survivor and cumulative hazard functions 299

Video examples

How to graph survival curves

How to calculate the Kaplan-Meier survivor and Nelson-Aalen cumulative hazard functions

How to test the equality of survivor functions using nonparametric tests

Stored results
See Stored results in [ST] sts test.

Methods and formulas
Unless adjusted estimates are requested, sts estimates the survivor function by using the Kaplan–

Meier product-limit method.

When the cumhaz option is specified, sts estimates the cumulative hazard function by using the
Nelson–Aalen estimator.

For an introduction to the Kaplan–Meier product-limit method and the log-rank test, see Pagano and
Gauvreau (2000, 495–499) and Oliveira (2013); for a detailed discussion, see Cox and Oakes (1984),
Kalbfleisch and Prentice (2002), or Klein and Moeschberger (2003). For an introduction to survival
analysis with examples using the sts commands, see Dupont (2009).

Let tj , j = 1, . . . , denote the times at which failure occurs. Let nj be the number at risk of failure
just before time tj and dj be the number of failures at time tj . Then the nonparametric maximum
likelihood estimate of the survivor function (Kaplan and Meier 1958) is

Ŝ(t) =
∏
j|tj≤t

(
nj − dj
nj

)

(Kalbfleisch and Prentice 2002, 15).

The failure function, F̂ (t), is defined as 1− Ŝ(t).

The standard error reported is given by Greenwood’s formula (Greenwood 1926):

V̂ar{Ŝ(t)} = Ŝ 2(t)
∑
j|tj≤t

dj
nj(nj − dj)

(Kalbfleisch and Prentice 2002, 17–18). These standard errors, however, are not used for confidence
intervals. Instead, the asymptotic variance of ln[−ln Ŝ(t)],

σ̂ 2(t) =

∑ dj
nj(nj−dj){∑

ln
(nj−dj

nj

)}2

is used, where sums are calculated over j|tj ≤ t (Kalbfleisch and Prentice 2002, 18). The confidence

bounds are then Ŝ(t) exp(±zα/2σ̂(t)), where zα/2 is the (1−α/2) quantile of the normal distribution.
sts suppresses reporting the standard error and confidence bounds if the data are pweighted because
these formulas are no longer appropriate.

https://www.youtube.com/watch?v=3MoWoZQCrUI&list=UUVk4G4nEtBS4tLOyHqustDA
https://www.youtube.com/watch?v=9XZR32zElZ8&list=UUVk4G4nEtBS4tLOyHqustDA
https://www.youtube.com/watch?v=W1uympJV7Ko&list=UUVk4G4nEtBS4tLOyHqustDA

300 sts — Generate, graph, list, and test the survivor and cumulative hazard functions

When the adjustfor() option is specified, the survivor function estimate, Ŝ(t), is the baseline
survivor function estimate Ŝ0(t) of stcox; see [ST] stcox. If, by(), is specified, Ŝ(t) is obtained
from fitting separate Cox models on adjustfor() for each of the by() groups. If instead strata()
is specified, one Cox model on adjustfor(), stratified by strata(), is fit.

The Nelson–Aalen estimator of the cumulative hazard rate function is derived from Nelson (1972)
and Aalen (1978) and is defined up to the largest observed time as

Ĥ(t) =
∑
j|tj≤t

dj
nj

Its variance (Aalen 1978) may be estimated by

V̂ar{Ĥ(t)} =
∑
j|tj≤t

dj
nj2

Pointwise confidence intervals are calculated using the asymptotic variance of lnĤ(t),

φ̂ 2(t) =
V̂ar{Ĥ(t)}
{Ĥ(t)}2

The confidence bounds are then Ĥ(t) exp{±zα/2φ̂(t)}. If the data are pweighted, these formulas
are not appropriate, and then confidence intervals are not reported.

References
Aalen, O. O. 1978. Nonparametric inference for a family of counting processes. Annals of Statistics 6: 701–726.

Breslow, N. E. 1992. Kaplan and Meier (1958) “Nonparametric estimation from incomplete observations”. In
Breakthroughs in Statistics, Vol. II: Methodology and Distribution, ed. S. Kotz and N. L. Johnson, 311–338. New
York: Springer.

Clerc-Urmès, I., M. Grzebyk, and G. Hédelin. 2014. Net survival estimation with stns. Stata Journal 14: 87–102.

Cleves, M. A. 1999. stata53: censored option added to sts graph command. Stata Technical Bulletin 50: 34–36.
Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 4–7. College Station, TX: Stata Press.

Cox, D. R., and D. Oakes. 1984. Analysis of Survival Data. London: Chapman & Hall/CRC.

Dupont, W. D. 2009. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the Analysis of
Complex Data. 2nd ed. Cambridge: Cambridge University Press.

Greenwood, M. 1926. The natural duration of cancer. Reports on Public Health and Medical Subjects 33: 1–26.

Hogben, L. T. 1950. Major Greenwood, 1880–1949. Obituary Notices of Fellows of the Royal Society 7: 139–154.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

Kaplan, E. L., and P. Meier. 1958. Nonparametric estimation from incomplete observations. Journal of the American
Statistical Association 53: 457–481.

Klein, J. P., and M. L. Moeschberger. 2003. Survival Analysis: Techniques for Censored and Truncated Data. 2nd
ed. New York: Springer.

Linhart, J. M., J. S. Pitblado, and J. F. Hassell. 2004. From the help desk: Kaplan–Meier plots with stsatrisk. Stata
Journal 4: 56–65.

Lo, S.-H., and D. Madigan. 2012. Obituary: Paul Meier 1924–2011. IMS Bulletin 41(1): 6.

Marks, H. M. 2004. A conversation with Paul Meier. Clinical Trials 1: 131–138.

Nelson, W. 1972. Theory and applications of hazard plotting for censored failure data. Technometrics 14: 945–966.

http://www.stata-journal.com/article.html?article=st0326
http://www.stata.com/products/stb/journals/stb50.pdf
http://www.stata.com/bookstore/smbr.html
http://www.stata.com/bookstore/smbr.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0058

sts — Generate, graph, list, and test the survivor and cumulative hazard functions 301

Newman, S. C. 2001. Biostatistical Methods in Epidemiology. New York: Wiley.

Oliveira, A. G. 2013. Biostatistics Decoded. Chichester, UK: Wiley.

Pagano, M., and K. Gauvreau. 2000. Principles of Biostatistics. 2nd ed. Belmont, CA: Duxbury.

Smythe, B. 2006. Obituary: Edward Kaplan 1920–2006. IMS Bulletin 35(10): 7.

Wilkinson, L. 1998. Greenwood, Major. In Vol. 2 of Encyclopedia of Biostatistics, ed. P. Armitage and T. Colton,
1778–1780. Chichester, UK: Wiley.� �
Major Greenwood (1880–1949) was born in London to a medical family. His given name,
“Major”, was also that of his father and grandfather. Greenwood trained as a doctor but followed
a career in medical research, learning statistics from Karl Pearson. He worked as a medical
statistician and epidemiologist at the Lister Institute, the Ministry of Health, and the London
School of Hygiene and Tropical Medicine. With interests ranging from clinical trials to historical
subjects, Greenwood played a major role in developing biostatistics in the first half of the
twentieth century.

Edward Lynn Kaplan (1920–2006) was working at Bell Telephone Laboratories on the lifetimes
of vacuum tubes when, through John W. Tukey, he became aware of the work of Paul Meier
on essentially the same statistical problem. They had both previously been graduate students at
Princeton. Their two separate papers were merged and the result was published after some years.
Kaplan became a professor of mathematics at Oregon State University, where he wrote a book
on mathematical programming and games.

Paul Meier (1924–2011) was born in Newark, New Jersey; took degrees at Oberlin and Princeton;
and then served on the faculty at Lehigh, Johns Hopkins, Chicago, and Columbia. In addition
to his key contribution with Kaplan, the most cited paper in statistical science, he worked as a
biostatistician, making many theoretical and applied contributions in the area of clinical trials,
especially through his early and sustained advocacy of randomization.

Wayne B. Nelson (1936–) was born in Chicago and received degrees in physics and statistics
from Caltech and the University of Illinois. A longtime employee of General Electric, he now
works as a consultant, specializing in reliability analysis and accelerated testing.

Odd Olai Aalen (1947–) was born in Oslo, Norway, and studied there and at Berkeley, where
he was awarded a PhD in 1975 for a thesis on counting processes. He is a professor of statistics
at the University of Oslo and works on survival and event history analysis. Aalen was one of
the prime movers in introducing martingale ideas to this branch of statistics.

Nelson and Aalen met for the first time at a conference at the University of South Carolina in
2003.� �

Also see
[ST] stci — Confidence intervals for means and percentiles of survival time

[ST] stcox — Cox proportional hazards model

[ST] sts generate — Create variables containing survivor and related functions

[ST] sts graph — Graph the survivor, hazard, or cumulative hazard function

[ST] sts list — List the survivor or cumulative hazard function

[ST] sts test — Test equality of survivor functions

[ST] stset — Declare data to be survival-time data

[ST] survival analysis — Introduction to survival analysis

http://www.stata.com/bookstore/biostatistics-decoded/
http://www.stata.com/giftshop/bookmarks/series4/greenwood/

Title

sts generate — Create variables containing survivor and related functions

Description Quick start Menu Syntax
Functions Options Remarks and examples Methods and formulas
References Also see

Description

sts generate creates new variables containing the estimated survivor (failure) function, the
Nelson–Aalen cumulative hazard (integrated hazard) function, and related functions. See [ST] sts for
an introduction to this command.

sts generate can be used with single- or multiple-record or single- or multiple-failure st data.

Quick start
Create new variable surv containing the Kaplan–Meier survivor function using stset data

sts generate surv = s

Create sesurv containing the pointwise standard error for the survivor function
sts generate sesurv = se(s)

Create surv2 with separate survivor functions for each level of v1
sts generate surv2 = s, by(v1)

Create surv3 with survivor function adjusted for v2 = 0
sts generate surv3 = s, adjustfor(v2)

As above, but create surv4 with stratification by levels of svar
sts generate surv3 = s, adjustfor(v2) strata(svar)

Create cumhaz containing the Nelson–Aalen estimate of the cumulative hazard function
sts generate cumhaz = na

Menu
Statistics > Survival analysis > Summary statistics, tests, and tables > Create survivor, hazard, and other variables

302

sts generate — Create variables containing survivor and related functions 303

Syntax

sts generate newvar ={
s | se(s) | h | se(lls) | lb(s) | ub(s) | na | se(na) | lb(na) | ub(na) | n | d

}
[

newvar =
{
. . .
}
. . .
] [

if
] [

in
] [

, options
]

options Description

Options

by(varlist) calculate separately for each group formed by varlist
adjustfor(varlist) adjust the estimates to zero values of varlist
strata(varlist) stratify on different groups of varlist
level(#) set confidence level; default is level(95)

You must stset your data before using sts generate; see [ST] stset.

Functions

� � �
Main �

s produces the Kaplan–Meier product-limit estimate of the survivor function, Ŝ(t), or, if adjustfor()
is specified, the baseline survivor function from a Cox regression model on the adjustfor()
variables.

se(s) produces the Greenwood, pointwise standard error, ŝe{Ŝ(t)}. This option may not be used
with adjustfor().

h produces the estimated hazard component, ∆Hj = H(tj) − H(tj−1), where tj is the current
failure time and tj−1 is the previous one. This is mainly a utility function used to calculate the
estimated cumulative hazard, H(tj), yet you can estimate the hazard via a kernel smooth of the
∆Hj ; see [ST] sts graph. It is recorded at all the points at which a failure occurs and is computed
as dj/nj , where dj is the number of failures occurring at time tj and nj is the number at risk at
tj before the occurrence of the failures.

se(lls) produces σ̂(t), the standard error of ln{−ln Ŝ(t)}. This option may not be used with
adjustfor().

lb(s) produces the lower bound of the confidence interval for Ŝ(t) based on ln{−ln Ŝ(t)}:
Ŝ(t) exp(−zα/2σ̂(t)), where zα/2 is the (1 − α/2) quantile of the standard normal distribution.
This option may not be used with adjustfor().

ub(s) produces the upper bound of the confidence interval for Ŝ(t) based on ln{−ln Ŝ(t)}:
Ŝ(t) exp(zα/2σ̂(t)), where zα/2 is the (1 − α/2) quantile of the standard normal distribution.
This option may not be used with adjustfor().

na produces the Nelson–Aalen estimate of the cumulative hazard function. This option may not be
used with adjustfor().

se(na) produces pointwise standard error for the Nelson–Aalen estimate of the cumulative hazard
function, Ĥ(t). This option may not be used with adjustfor().

lb(na) produces the lower bound of the confidence interval for Ĥ(t) based on the log-transformed
cumulative hazard function. This option may not be used with adjustfor().

304 sts generate — Create variables containing survivor and related functions

ub(na) produces the corresponding upper bound. This option may not be used with adjustfor().

n produces nj , the number at risk just before time tj . This option may not be used with adjustfor().

d produces dj , the number failing at time tj . This option may not be used with adjustfor().

Options� � �
Options �

by(varlist) performs a separate calculation for each by-group. By-groups are identified by equal
values of the variables in varlist. by() may not be combined with strata().

adjustfor(varlist) adjusts the estimate of the survivor (failure) or hazard function to that for 0
values of varlist. This option is available only with functions s or h. See [ST] sts graph for an
example of how to adjust for values different from 0.

If you specify adjustfor() with by(), sts fits separate Cox regression models for each
group, using the adjustfor() variables as covariates. The separately calculated baseline survivor
functions are then retrieved.

If you specify adjustfor() with strata(), sts fits a stratified-on-group Cox regression model
using the adjustfor() variables as covariates. The stratified, baseline survivor function is then
retrieved.

strata(varlist) requests estimates of the survivor (failure) or hazard functions stratified on variables
in varlist. It requires specifying adjustfor() and may not be combined with by().

level(#) specifies the confidence level, as a percentage, for the lb(s), ub(s), lb(na), and ub(na)
functions. The default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

Remarks and examples

sts generate is a seldom-used command that gives you access to the calculations listed by sts
list and graphed by sts graph.

Use of this command is demonstrated in [ST] sts.

Methods and formulas
See [ST] sts.

References
See [ST] sts for references.

Also see
[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] sts graph — Graph the survivor, hazard, or cumulative hazard function

[ST] sts list — List the survivor or cumulative hazard function

[ST] sts test — Test equality of survivor functions

[ST] stset — Declare data to be survival-time data

Title

sts graph — Graph the survivor, hazard, or cumulative hazard function

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

sts graph graphs the estimated survivor (failure) function, the Nelson–Aalen estimated cumulative
(integrated) hazard function, or the estimated hazard function. See [ST] sts for an introduction to this
command.

sts graph can be used with single- or multiple-record or single- or multiple-failure st data.

Quick start
Graph the Kaplan–Meier survivor function using stset data

sts graph

Estimate and graph separate survivor functions for each level of v1
sts graph, by(v1)

As above, and show number lost due to censoring at each time point on the plot
sts graph, by(v1) lost

Add a table below the graph with number at risk in each group at times 0, 10, 20, and 30
sts graph, by(v1) risktable(0(10)30)

Specify the color for each line
sts graph, by(v1) plot1opts(lcolor(green)) plot2opts(lcolor(blue))

Graph the Nelson–Aalen cumulative hazard functions for each level of v1
sts graph, by(v1) cumhaz

As above, and save the graph as mygraph.gph

sts graph, by(v1) cumhaz saving(mygraph)

Graph the estimated hazard function
sts graph, hazard

As above, but use the Gaussian kernel function for the kernel density estimate
sts graph, hazard kernel(gaussian)

Menu
Statistics > Survival analysis > Graphs > Survivor and cumulative hazard functions

305

306 sts graph — Graph the survivor, hazard, or cumulative hazard function

Syntax
sts graph

[
if
] [

in
] [

, options
]

options Description

Main

survival graph Kaplan–Meier survivor function; the default
failure graph Kaplan–Meier failure function
cumhaz graph Nelson–Aalen cumulative hazard function
hazard graph smoothed hazard estimate
by(varlist) estimate and graph separate functions for each group

formed by varlist
adjustfor(varlist) adjust the estimates to zero values of varlist
strata(varlist) stratify on different groups of varlist
separate show curves on separate graphs; default is to show

curves one on top of another
ci show pointwise confidence bands

At-risk table

risktable show table of number at risk beneath graph
risktable(risk spec) show customized table of number at risk beneath graph

Options

level(#) set confidence level; default is level(95)

per(#) units to be used in reported rates
noshow do not show st setting information
tmax(#) show graph for t ≤ #
tmin(#) show graph for t ≥ #
noorigin begin survival (failure) curve at first exit time;

default is to begin at t = 0
width(#

[
#. . .

]
) override default bandwidth(s)

kernel(kernel) kernel function; use with hazard

noboundary no boundary correction; use with hazard

lost show number lost
enter show number entered and number lost
atrisk show numbers at risk at beginning of each interval
censored(single) show one hash mark at each censoring time, no matter

what number is censored
censored(number) show one hash mark at each censoring time and number

censored above hash mark
censored(multiple) show multiple hash marks for multiple censoring at the

same time
censopts(hash options) affect rendition of hash marks
lostopts(marker label options) affect rendition of numbers lost
atriskopts(marker label options) affect rendition of numbers at risk

sts graph — Graph the survivor, hazard, or cumulative hazard function 307

Plot

plotopts(cline options) affect rendition of the plotted lines
plot#opts(cline options) affect rendition of the #th plotted line; may not be

combined with separate

CI plot

ciopts(area options) affect rendition of the confidence bands
ci#opts(area options) affect rendition of the #th confidence band;

may not be combined with separate

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options documented in [G-3] twoway options
byopts(byopts) how subgraphs are combined, labeled, etc.

where risk spec is[
numlist

][
, table options group(group)

]
numlist specifies the points at which the number at risk is to be evaluated, table options customizes
the table of number at risk, and group(group) specifies a specific group/row for table options to
be applied.

table options Description

Main

axis label options control table by using axis labeling options; seldom used
order(order spec) select which rows appear and their order
righttitles place titles on right side of the table
failevents show number failed in the at-risk table
text options affect rendition of table elements and titles

Row titles

rowtitle(
[

text
][
, rtext options

]
) change title for a row

Title

title(
[

text
][
, ttext options

]
) change overall table title

where order spec is

#
[
"text"

[
"text" . . .

]] [
. . .
]

308 sts graph — Graph the survivor, hazard, or cumulative hazard function

text options Description

size(textsizestyle) size of text
color(colorstyle) color of text
justification(justificationstyle) text left-justified, centered, or right-justified
format(% fmt) format values per % fmt
topgap(relativesize) margin above rows
bottomgap(relativesize) margin beneath rows

style(textstyle) overall style of text

style() does not appear in the dialog box.

rtext options Description

size(textsizestyle) size of text
color(colorstyle) color of text
justification(justificationstyle) text left-justified, centered, or right-justified
at(#) override x position of titles
topgap(relativesize) margin above rows

style(textstyle) overall style of text

style() does not appear in the dialog box.

ttext options Description

size(textsizestyle) size of text
color(colorstyle) color of text
justification(justificationstyle) text left-justified, centered, or right-justified
at(#) override x position of titles
topgap(relativesize) margin above rows
bottomgap(relativesize) margin beneath rows

style(textstyle) overall style of text

style() does not appear in the dialog box.

group Description

#rownum specify group by row number in table
value specify group by value of group
label specify group by text of value label associated with group

hash options Description

line options change look of dropped lines
marker label options add marker labels; any options documented in

[G-3] marker label options, except mlabel()

risktable() may be repeated and is merged-explicit; see [G-4] concept: repeated options.
You must stset your data before using sts graph; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

sts graph — Graph the survivor, hazard, or cumulative hazard function 309

Options

� � �
Main �

survival, failure, cumhaz, and hazard specify the function to graph.

survival specifies that the Kaplan–Meier survivor function be plotted. This option is the default
if a function is not specified.

failure specifies that the Kaplan–Meier failure function, 1− S(t+ 0), be plotted.

cumhaz specifies that the Nelson–Aalen estimate of the cumulative hazard function be plotted.

hazard specifies that an estimate of the hazard function be plotted. This estimate is calculated
as a weighted kernel-density estimate using the estimated hazard contributions, ∆Ĥ(tj) =

Ĥ(tj)−Ĥ(tj−1). These hazard contributions are the same as those obtained by sts generate
newvar = h.

by(varlist) estimates a separate function for each by-group and plots all the functions on one graph.
By-groups are identified by equal values of the variables in varlist. by() may not be combined
with strata().

adjustfor(varlist) adjusts the estimate of the survivor or hazard functions to that for 0 values
of varlist. If you want to adjust the function to values different from 0, you need to center the
variables around those values before issuing the command. Say that you want to plot the survivor
function adjusted to age of patients and the ages in your sample are 40–60 years. Then

. sts graph, adjustfor(age)

will graph the survivor function adjusted to age 0. If you want to adjust the function to age 40,
type

. generate age40 = age - 40

. sts graph, adjustfor(age40)

adjustfor() is not available with cumhaz or ci.

If you specify adjustfor() with by(), sts fits separate Cox regression models for each
group, using the adjustfor() variables as covariates. The separately calculated baseline survivor
functions are then retrieved.

If you specify adjustfor() with strata(), sts fits a stratified-on-group Cox regression model
using the adjustfor() variables as covariates. The stratified, baseline survivor function is then
retrieved.

strata(varlist) produces estimates of the survivor (failure) or hazard functions stratified on variables
in varlist and plots all the groups on one graph. It requires specifying adjustfor() and may not
be combined with by().

If you have more than one strata() variable but need only one, use egen to create it; see
[D] egen.

separate is meaningful only with by() or strata(); it requests that each group be placed on its
own graph rather than one on top of the other. Sometimes curves have to be placed on separate
graphs—such as when you specify ci—because otherwise it would be too confusing.

ci includes pointwise confidence bands. The default is not to produce these bands. ci is not allowed
with adjustfor() or pweights.

310 sts graph — Graph the survivor, hazard, or cumulative hazard function

� � �
At-risk table �

risktable
[
(
[

numlist
][
, table options

]
)
]

displays a table showing the number at risk beneath
the plot. risktable may not be used with separate or adjustfor().

risktable displays the table in the default format with number at risk shown for each time
reported on the x axis.

risktable(
[

numlist
][
, table options

]
) specifies that the number at risk be evaluated at the

points specified in numlist or that the rendition of the table be changed by table options.

There are two ways to change the points at which the numbers at risk are evaluated.

1. The x axis of the graph may be altered. For example:

. sts graph, xlabel(0(5)40) risktable

2. A numlist can be specified directly in the risktable() option, which affects only the
at-risk table. For example:

. sts graph, risktable(0(5)40)

The two examples produce the same at-risk table, but the first also changes the time labels on the
graph’s x axis.

table options affect the rendition of the at-risk table and may be any of the following:

group(#rownum | value | label) specifies that all the suboptions specified in the risktable()
apply only to the specified group. Because the risktable() option may be repeated, this
option allows different rows of the at-risk table to be displayed with different colors, font
sizes, etc.

When both a value and a value label are matched, the value label takes precedence.

risktable() may be specified with or without the group() suboption. When specified without
group(), each suboption is applied to all available groups or rows. risktable() specified
without group() is considered to be global and is itself merged-explicit. See [G-4] concept:
repeated options for more information on how repeated options are merged.

Consider the following example:

. sts graph, by(drug) risktable(, color(red) size(small))
> risktable(, color(navy))

The example above would produce a table where all rows are colored navy with small text.

Combining global risktable() options with group-specific risktable() options can be
useful. When global options are combined with group-specific options, group-specific options
always take precedence.

Consider the following example:

. sts graph, by(drug) risktable(, color(navy))
> risktable(, color(red) group(#1))

The example above would produce a table with the first row colored red and all remaining
rows colored navy.� � �

Main �
axis label options control the table by using axis labeling options. These options are seldom

used. See [G-3] axis label options.

sts graph — Graph the survivor, hazard, or cumulative hazard function 311

order() specifies which and in what order rows are to appear in the at-risk table. Optionally,
order() can be used to override the default text.

order(# # # . . .) is the syntax used for identifying which rows to display and their order.
order(1 2 3) would specify that row 1 is to appear first in the table, followed by row 2,
followed by row 3. order(1 2 3) is the default if there are three groups. If there were four
groups, order(1 2 3 4) would be the default, and so on. If there were four groups and you
specified order(1 2 3), the fourth row would not appear in the at-risk table. If you specified
order(2 1 3), row 2 would appear first, followed by row 1, followed by row 3.

order(# "text" # "text" . . .) is the syntax used for specifying the row order and alternate
row titles.

Consider the following at-risk table:

drug = 1 20 8 2
drug = 2 14 10 4 1
drug = 3 14 13 10 5

Specifying order(1 "Placebo" 3 2) would produce

Placebo 20 8 2
drug = 3 14 13 10 5
drug = 2 14 10 4 1

and specifying order(1 "Placebo" 3 "Drug 2" 2 "Drug 1") would produce

Placebo 20 8 2
Drug 2 14 13 10 5
Drug 1 14 10 4 1

righttitles specifies that row titles be placed to the right of the at-risk values. The default
is to place row titles to the left of the at-risk values.

failevents specifies that the number of failure events be shown in parentheses, after the time
in which the risk values were calculated.

text options affect the rendition of both row titles and number at risk and may be any of the
following:

size(textsizestyle) specifies the size of text.

color(colorstyle) specifies the color of text.

justification(justificationstyle) specifies how text elements are to be justified.

format(% fmt) specifies how numeric values are to be formatted.

topgap(relativesize) specifies how much space is to be placed above each row.

bottomgap(relativesize) specifies how much space is to be placed beneath each row.

style(textstyle) specifies the style of text. This option does not appear in the dialog box.� � �
Row titles �

rowtitle(
[

text
][
, rtext options

]
) changes the default text or rendition of row titles. Spec-

ifying rowtitle(, color(navy)) would change the color of all row titles to navy.

312 sts graph — Graph the survivor, hazard, or cumulative hazard function

rowtitle() is often combined with group() to change the text or rendition of a title.
Specifying rowtitle(Placebo) group(#2) would change the title of the second row to
Placebo. Specifying rowtitle(, color(red)) group(#3) would change the color of the
row title for the third row to red.

Row titles may include more than one line. Lines are specified one after the other, each enclosed
in double quotes. Specifying rowtitle("Experimental drug") group(#1) would produce
a one-line row title, and specifying rowtitle("Experimental" "Drug") group(#1) would
produce a multiple-line row title.

rtext options affect the rendition of both row titles and number at risk and may be any of the
following:

size(textsizestyle) specifies the size of text.

color(colorstyle) specifies the color of text.

justification(justificationstyle) specifies how text elements are to be justified.

at(#) allows you to reposition row titles or the overall table title to align with a specific
location on the x axis.

topgap(relativesize) specifies how much space is to be placed above each row.

style(textstyle) specifies the style of text. This option does not appear on the dialog
box.� � �

Title �
title(

[
title

][
, ttext options

]
) may be used to override the default title for the at-risk table

and affect the rendition of its text.

Titles may include one line of text or multiple lines. title("At-risk table") will produce
a one-line title, and title("At-risk" "table") will produce a multiple-line title.

ttext options affect the rendition of both row titles and number at risk and may be any of the
following:

size(textsizestyle) specifies the size of text.

color(colorstyle) specifies the color of text.

justification(justificationstyle) specifies how text elements are to be justified.

at(#) allows you to reposition row titles or the overall table title to align with a specific
location on the x axis.

at(rowtitles) places the overall table title at the default position calculated for the row
titles. This option is sometimes useful for alignment when the default justification has
not been used.

topgap(relativesize) specifies how much space is to be placed above each row.

bottomgap(relativesize) specifies how much space is to be placed beneath each row.

style(textstyle) specifies the style of text. This option does not appear on the dialog
box.

� � �
Options �

level(#) specifies the confidence level, as a percentage, for the pointwise confidence interval around
the survivor, failure, or cumulative hazard function; see [U] 20.7 Specifying the width of confidence
intervals.

sts graph — Graph the survivor, hazard, or cumulative hazard function 313

per(#) specifies the units used to report the survival or failure rates. For example, if the analysis
time is in years, specifying per(100) results in rates per 100 person-years.

noshow prevents sts graph from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

tmax(#) specifies that the plotted curve be graphed only for t ≤ #. This option does not affect the
calculation of the function, rather the portion that is displayed.

tmin(#) specifies that the plotted curve be graphed only for t ≥ #. This option does not affect the
calculation of the function, rather the portion that is displayed.

noorigin requests that the plot of the survival (failure) curve begin at the first exit time instead of
beginning at t = 0 (the default). This option is ignored when cumhaz or hazard is specified.

width(# [#. . .]) is for use with hazard and specifies the bandwidth to be used in the kernel smooth
used to plot the estimated hazard function. If width() is not specified, a default bandwidth is used
as described in [R] kdensity. If it is used with by(), multiple bandwidths may be specified, one
for each group. If there are more groups than the k bandwidths specified, the default bandwidth
is used for the k + 1, . . . remaining groups. If any bandwidth is specified as . (dot), the default
bandwidth is used for that group.

kernel(kernel) is for use with hazard and specifies the kernel function to be used in calculating
the weighted kernel-density estimate required to produce a smoothed hazard-function estimator.
The default kernel is Epanechnikov, yet kernel may be any of the kernels supported by kdensity;
see [R] kdensity.

noboundary is for use with hazard. It specifies that no boundary-bias adjustments are to be made
when calculating the smoothed hazard-function estimator. By default, the smoothed hazards are
adjusted near the boundaries. If the epan2, biweight, or rectangular kernel is used, the bias
correction near the boundary is performed using boundary kernels. For other kernels, the plotted
range of the smoothed hazard function is restricted to be within one bandwidth of each endpoint.
For these other kernels, specifying noboundary merely removes this range restriction.

lost specifies that the numbers lost be shown on the plot. These numbers are shown as small numbers
over the flat parts of the function.

If enter is not specified, the numbers displayed are the number censored minus the number
who enter. If you do specify enter, the numbers displayed are the pure number censored. The
underlying logic is described in [ST] sts.

lost may not be used with hazard.

enter specifies that the number who enter be shown on the graph, as well as the number lost. The
number who enter are shown as small numbers beneath the flat parts of the plotted function.

enter may not be used with hazard.

atrisk specifies that the numbers at risk at the beginning of each interval be shown on the plot.
The numbers at risk are shown as small numbers beneath the flat parts of the plotted function.

atrisk may not be used with hazard.

censored(single | number | multiple) specifies that hash marks be placed on the graph to indicate
censored observations.

censored(single) places one hash mark at each censoring time, regardless of the number of
censorings at that time.

314 sts graph — Graph the survivor, hazard, or cumulative hazard function

censored(number) places one hash mark at each censoring time and displays the number of
censorings about the hash mark.

censored(multiple) places multiple hash marks for multiple censorings at the same time. For
instance, if 3 observations are censored at time 5, three hash marks are placed at time 5.
censored(multiple) is intended for use when there are few censored observations; if there
are too many censored observations, the graph can look bad. In such cases, we recommend
that censored(number) be used.

censored() may not be used with hazard.

censopts(hash options) specifies options that affect how the hash marks for censored observations
are rendered; see [G-3] line options. When combined with censored(number), censopts()
also specifies how the count of censoring is rendered; see [G-3] marker label options, except
mlabel() is not allowed.

lostopts(marker label options) specifies options that affect how the numbers lost are rendered;
see [G-3] marker label options. This option implies the lost option.

atriskopts(marker label options) specifies options that affect how the numbers at risk are rendered;
see [G-3] marker label options. This option implies the atrisk option.

� � �
Plot �

plotopts(cline options) affects the rendition of the plotted lines; see [G-3] cline options. This
option may not be combined with by(varlist) or strata(varlist), unless separate is also
specified.

plot#opts(cline options) affects the rendition of the #th plotted line; see [G-3] cline options. This
option may not be combined with separate.

� � �
CI plot �

ciopts(area options) affects the rendition of the confidence bands; see [G-3] area options. This
option may not be combined with by(varlist) or strata(varlist), unless separate is also
specified.

ci#opts(area options) affects the rendition of the #th confidence band; see [G-3] area options.
This option may not be combined with separate.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options. These include options for
titling the graph (see [G-3] title options) and for saving the graph to disk (see [G-3] saving option).

byopts(byopts) affects the appearance of the combined graph when by() or adjustfor() is
specified, including the overall graph title and the organization of subgraphs. byopts() may not
be specified with separate. See [G-3] by option.

sts graph — Graph the survivor, hazard, or cumulative hazard function 315

Remarks and examples

Remarks are presented under the following headings:

Including the number lost on the graph
Graphing the Nelson–Aalen cumulative hazard function
Graphing the hazard function
Adding an at-risk table
On boundary bias for smoothed hazards
Video example

If you have not read [ST] sts, please do so.

By default, sts graph displays the Kaplan–Meier product-limit estimate of the survivor (failure)
function. Only one of sts graph’s options, adjustfor(), modifies the calculation. All the other
options merely determine how the results of the calculation are graphed.

We demonstrate many of sts graph’s features in [ST] sts. This discussion picks up where that
entry leaves off.

See Cefalu (2011) for covariate-adjusted estimates and confidence intervals.

Including the number lost on the graph

In Adjusted estimates in [ST] sts, we introduced a simple drug-trial dataset with 1 observation
per subject. Here is a graph of the survivor functions, by drug, including the number lost because of
censoring:

. use http://www.stata-press.com/data/r14/drug2
(Patient Survival in Drug Trial)

. sts graph, by(drug) lost

failure _d: died
analysis time _t: studytime

1
1

1

2
1

4

1

3

2 1

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 10 20 30 40
analysis time

drug = 0 drug = 1

Kaplan−Meier survival estimates

There is no late entry in these data, so we modify the data so that a few subjects entered late. Here
is the same graph on the modified data:

316 sts graph — Graph the survivor, hazard, or cumulative hazard function

. use http://www.stata-press.com/data/r14/drug2b
(Patient Survival in Drug Trial)

. sts graph, by(drug) lost

failure _d: died
analysis time _t: studytime

1

−1

1

−1

2

4

1

3

2 1

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 10 20 30 40
analysis time

drug = 0 drug = 1

Kaplan−Meier survival estimates

Note the negative numbers. These occur because, by default, lost means censored minus entered.
Here −1 means that 1 entered, or 2 entered and 1 was lost, etc. If we specify the enter option, we
will see the censored and entered separately:

. sts graph, by(drug) lost enter

failure _d: died
analysis time _t: studytime

1
1

1

2
1

4

1

3

2 1

17 27

1

2

1

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 10 20 30 40
analysis time

drug = 0 drug = 1

Kaplan−Meier survival estimates

Although it might appear that specifying enter with lost is a good idea, that is not always true.

We have yet another version of the data—the correct data not adjusted to have late entry—but in
this version we have multiple records per subject. The data are the same, but where there was one
record in the first dataset, sometimes there are now two because we have a covariate that is changing
over time. From this dataset, here is the graph with the number lost shown:

sts graph — Graph the survivor, hazard, or cumulative hazard function 317

. use http://www.stata-press.com/data/r14/drug2c
(Patient Survival in Drug Trial)

. sts graph, by(drug) lost

failure _d: died
analysis time _t: studytime

id: id

1
1

1

2
1

4

1

3

2 1

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 10 20 30 40
analysis time

drug = 0 drug = 1

Kaplan−Meier survival estimates

This looks just like the first graph we presented, as indeed it should. Again we emphasize that the
data are logically, if not physically, equivalent. If, however, we graph the number lost and entered,
we get a graph showing a lot of activity:

. sts graph, by(drug) lost enter

failure _d: died
analysis time _t: studytime

id: id

2
4

8

4

2

5

6

2

8

2

3
10

1

3

2 1

20

2
4

36

4

5

1
5

1

6

2

2
6

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

0 10 20 30 40
analysis time

drug = 0 drug = 1

Kaplan−Meier survival estimates

All of that activity goes by the name thrashing—subjects are being censored to enter the data again,
but with different covariates. This graph was better when we did not specify enter because the
censored-minus-entered calculation smoothed out the thrashing.

318 sts graph — Graph the survivor, hazard, or cumulative hazard function

Graphing the Nelson–Aalen cumulative hazard function

We can plot the Nelson–Aalen estimate of the cumulative (integrated) hazard function by specifying
the cumhaz option. For example, from the 1-observation-per-subject drug-trial dataset, here is a graph
of the cumulative hazard functions by drug:

. use http://www.stata-press.com/data/r14/drug2
(Patient Survival in Drug Trial)

. stset, noshow

. sts graph, cumhaz by(drug)

0
.0

0
1

.0
0

2
.0

0
3

.0
0

4
.0

0

0 10 20 30 40
analysis time

drug = 0 drug = 1

Nelson−Aalen cumulative hazard estimates

And here is a plot including the number lost because of censoring:

. sts graph, cumhaz by(drug) lost

1 1

1

2 1 4

1
3

2 1

0
.0

0
1

.0
0

2
.0

0
3

.0
0

4
.0

0

0 10 20 30 40
analysis time

drug = 0 drug = 1

Nelson−Aalen cumulative hazard estimates

sts graph — Graph the survivor, hazard, or cumulative hazard function 319

Graphing the hazard function

sts graph may also be used to plot an estimate of the hazard function. This graph is based on a
weighted kernel smooth of the estimated hazard contributions, ∆Ĥ(tj) = Ĥ(tj)−Ĥ(tj−1), obtained
by sts generate newvar = h. There are thus issues associated with selecting a kernel function and
a bandwidth, although sts graph will use defaults if we do not want to worry about this.

. sts graph, hazard by(drug)
0

.0
5

.1
.1

5

0 10 20 30 40
analysis time

drug = 0 drug = 1

Smoothed hazard estimates

We can also adjust and customize the kernel smooth.

. sts graph, hazard by(drug) kernel(gauss) width(5 7)
> title(Comparison of hazard functions)

0
.0

5
.1

.1
5

0 10 20 30 40
analysis time

drug = 0 drug = 1

Comparison of hazard functions

320 sts graph — Graph the survivor, hazard, or cumulative hazard function

Adding an at-risk table

A table showing the number at risk may be added beneath a survivor, failure, or Nelson–Aalen
cumulative hazard plot.

. sts graph, by(drug) risktable

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

28 23 14 6 0drug = 1
20 8 2 0 0drug = 0

Number at risk

0 10 20 30 40
analysis time

drug = 0 drug = 1

Kaplan−Meier survival estimates

By default, both the legend and the at-risk table share space at the bottom of the graph. Placing
the legend in an empty area inside the plot may often be desirable.

. sts graph, by(drug) risktable legend(ring(0) position(2) rows(2))

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

28 23 14 6 0drug = 1
20 8 2 0 0drug = 0

Number at risk

0 10 20 30 40
analysis time

drug = 0

drug = 1

Kaplan−Meier survival estimates

By default, row titles are placed on the left of the at-risk table and are right-justified. We can
illustrate this by changing the text of the row titles to have an unequal length.

sts graph — Graph the survivor, hazard, or cumulative hazard function 321

. sts graph, by(drug) risktable(, order(1 "Placebo" 2 "Test drug"))

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

28 23 14 6 0Test drug
20 8 2 0 0Placebo

Number at risk

0 10 20 30 40
analysis time

drug = 0 drug = 1

Kaplan−Meier survival estimates

If desired, the text of row titles can be left-justified.

. sts graph, by(drug) risktable(, order(1 "Placebo" 2 "Test drug")
> rowtitle(, justification(left)))

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

28 23 14 6 0Test drug
20 8 2 0 0Placebo

Number at risk

0 10 20 30 40
analysis time

drug = 0 drug = 1

Kaplan−Meier survival estimates

In addition to left justification, the table title can be aligned with the row titles.

322 sts graph — Graph the survivor, hazard, or cumulative hazard function

. sts graph, by(drug) risktable(, order(1 "Placebo" 2 "Test drug")
> rowtitle(, justification(left)) title(, at(rowtitle)))

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

28 23 14 6 0Test drug
20 8 2 0 0Placebo

Number at risk

0 10 20 30 40
analysis time

drug = 0 drug = 1

Kaplan−Meier survival estimates

On boundary bias for smoothed hazards

sts graph uses the usual smoothing kernel technique to estimate the hazard function. Kernel
estimators commonly encounter bias when estimating near the boundaries of the data range, and
therefore estimates of the hazard function in the boundary regions are generally less reliable. To
alleviate this problem, estimates that use the epan2, biweight, and rectangular kernels are
adjusted at the boundaries with what are known as boundary kernels (for example, Müller and
Wang [1994]; Hess, Serachitopol, and Brown [1999]). For estimates using other kernels, no boundary
adjustment is made. Instead, the default graphing range is constrained to be the range [L+ b, R− b],
where L and R are the respective minimum and maximum analysis times at which failure occurred
and b is the bandwidth.

Video example

How to graph survival curves

Methods and formulas
See [ST] sts.

The estimated hazard is calculated as a kernel smooth of the estimated hazard contributions,
∆Ĥ(tj) = Ĥ(tj)− Ĥ(tj−1), using

ĥ(t) = b−1
D∑
j=1

Kt

(
t− tj
b

)
∆Ĥ(tj)

where Kt() is the kernel (Müller and Wang 1994) function, b is the bandwidth, and the summation
is over the D times at which failure occurs (Klein and Moeschberger 2003, 167). If adjustfor() is
specified, the ∆Ĥ(tj) are instead obtained from stcox as the estimated baseline contributions from
a Cox model; see [ST] stcox for details on how the ∆Ĥ(tj) are calculated in this case.

https://www.youtube.com/watch?v=3MoWoZQCrUI&list=UUVk4G4nEtBS4tLOyHqustDA

sts graph — Graph the survivor, hazard, or cumulative hazard function 323

Pointwise confidence bands for smoothed hazard functions are calculated using the method based
on a log transformation,

ĥ(t) exp

[
±
Z1−α/2σ{ĥ(t)}

ĥ(t)

]
See Klein and Moeschberger (2003, 168) for details.

References
Cefalu, M. S. 2011. Pointwise confidence intervals for the covariate-adjusted survivor function in the Cox model.

Stata Journal 11: 64–81.

Hess, K. R., D. M. Serachitopol, and B. W. Brown. 1999. Hazard function estimators: A simulation study. Statistics
in Medicine 18: 3075–3088.

Klein, J. P., and M. L. Moeschberger. 2003. Survival Analysis: Techniques for Censored and Truncated Data. 2nd
ed. New York: Springer.

Müller, H.-G., and J.-L. Wang. 1994. Hazard rate estimation under random censoring with varying kernels and
bandwidths. Biometrics 50: 61–76.

Also see [ST] sts for more references.

Also see
[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] sts generate — Create variables containing survivor and related functions

[ST] sts list — List the survivor or cumulative hazard function

[ST] sts test — Test equality of survivor functions

[ST] stset — Declare data to be survival-time data

[R] kdensity — Univariate kernel density estimation

http://www.stata-journal.com/sjpdf.html?articlenum=st0217

Title

sts list — List the survivor or cumulative hazard function

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

sts list lists the estimated survivor (failure) or the Nelson–Aalen estimated cumulative (integrated)
hazard function. See [ST] sts for an introduction to this command.

sts list can be used with single- or multiple-record or single- or multiple-failure st data.

Quick start
Kaplan–Meier survivor function using stset data

sts list

Survivor function for each level of v1
sts list, by(v1)

Results of above saved in mydata.dta

sts list, by(v1) saving(mydata)

Show only survivor functions for groups of v1 at specified times
sts list, by(v1) at(10 20 30 40 50)

As above, but report groups side-by-side
sts list, by(v1) at(10 20 30 40 50) compare

Failure function
sts list, failure

Failure function adjusted for v2 = 0
sts list, failure adjustfor(v2)

As above, but with stratification on levels of svar
sts list, failure adjustfor(v2) strata(svar)

Menu
Statistics > Survival analysis > Summary statistics, tests, and tables > List survivor and cumulative hazard functions

324

sts list — List the survivor or cumulative hazard function 325

Syntax
sts list

[
if
] [

in
] [

, options
]

options Description

Main

survival report Kaplan–Meier survivor function; the default
failure report Kaplan–Meier failure function
cumhaz report Nelson–Aalen cumulative hazard function
by(varlist) estimate separate functions for each group formed by varlist
adjustfor(varlist) adjust the estimates to zero values of varlist
strata(varlist) stratify on different groups of varlist

Options

level(#) set confidence level; default is level(95)

at(# | numlist) report estimated survivor/cumulative hazard function at specified
times; default is to report at all unique time values

enter report number lost as pure censored instead of censored minus
lost

noshow do not show st setting information
compare report groups of survivor/cumulative hazard functions side by

side
saving(filename

[
, replace

]
) save results to filename; use replace to overwrite existing

filename

You must stset your data before using sts list; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options

� � �
Main �

survival, failure, and cumhaz specify the function to report.

survival specifies that the Kaplan–Meier survivor function be listed. This option is the default
if a function is not specified.

failure specifies that the Kaplan–Meier failure function 1− S(t+ 0) be listed.

cumhaz specifies that the Nelson–Aalen estimate of the cumulative hazard function be listed.

by(varlist) estimates a separate function for each by-group. By-groups are identified by equal values
of the variables in varlist. by() may not be combined with strata().

adjustfor(varlist) adjusts the estimate of the survivor (failure) function to that for 0 values of
varlist. This option is not available with the Nelson–Aalen function. See [ST] sts graph for an
example of how to adjust for values different from 0.

If you specify adjustfor() with by(), sts fits separate Cox regression models for each
group, using the adjustfor() variables as covariates. The separately calculated baseline survivor
functions are then retrieved.

If you specify adjustfor() with strata(), sts fits a stratified-on-group Cox regression model,
using the adjustfor() variables as covariates. The stratified, baseline survivor function is then
retrieved.

326 sts list — List the survivor or cumulative hazard function

strata(varlist) requests estimates of the survivor (failure) function stratified on variables in varlist.
It requires specifying adjustfor() and may not be combined with by().

� � �
Options �

level(#) specifies the confidence level, as a percentage, for the Greenwood pointwise confidence
interval of the survivor (failure) or for the pointwise confidence interval of the Nelson–Aalen
cumulative hazard function; see [U] 20.7 Specifying the width of confidence intervals.

at(# | numlist) specifies the time values at which the estimated survivor (failure) or cumulative hazard
function is to be listed.

The default is to list the function at all the unique time values in the data, or if functions are being
compared, at about 10 times chosen over the observed interval. In any case, you can control the
points chosen.

at(5 10 20 30 50 90) would display the function at the designated times.

at(10 20 to 100) would display the function at times 10, 20, 30, 40, . . . , 100.

at(0 5 10 to 100 200) would display the function at times 0, 5, 10, 15, . . . , 100, and 200.

at(20) would display the curve at (roughly) 20 equally spaced times over the interval observed in
the data. We say roughly because Stata may choose to increase or decrease your number slightly
if that would result in rounder values of the chosen times.

enter specifies that the table contain the number who enter and, correspondingly, that the number
lost be displayed as the pure number censored rather than censored minus entered. The logic
underlying this is explained in [ST] sts.

noshow prevents sts list from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

compare is specified only with by() or strata(). It compares the survivor (failure) or cumulative
hazard functions and lists them side by side rather than first one and then the next.

saving(filename
[
, replace

]
) saves the results in a Stata data file (.dta file).

replace specifies that filename be overwritten if it exists.

Remarks and examples
Only one of sts list’s options—adjustfor()—modifies the calculation. All the other options

merely determine how the results of the calculation are displayed.

If you do not specify adjustfor() or cumhaz, sts list displays the Kaplan–Meier product-limit
estimate of the survivor (failure) function. Specify by() to perform the calculation separately on the
different groups.

Specify adjustfor() to calculate an adjusted survival curve. Now if you specify by() or
strata(), this further modifies how the adjustment is made.

sts list, cumhaz displays the Nelson–Aalen estimate of the cumulative hazard function.

We demonstrate many of sts list’s features in [ST] sts. This discussion picks up where that
entry leaves off.

By default, sts list will bury you in output. With the Stanford heart transplant data introduced
in [ST] stset, the following commands produce 154 lines of output.

sts list — List the survivor or cumulative hazard function 327

. use http://www.stata-press.com/data/r14/stan3
(Heart transplant data)

. stset, noshow

. sts list, by(posttran)

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]

posttran=0
1 103 1 3 0.9903 0.0097 0.9331 0.9986
2 99 3 3 0.9603 0.0195 0.8976 0.9849
3 93 3 3 0.9293 0.0258 0.8574 0.9657

(output omitted)
1400 1 0 1 0.2359 0.1217 0.0545 0.4882

posttran=1
1 0 0 -3 1.0000 . . .
2 3 0 -3 1.0000 . . .

(output omitted)
5.1 14 1 0 0.9286 0.0688 0.5908 0.9896

6 13 0 -1 0.9286 0.0688 0.5908 0.9896
(output omitted)
1799 1 0 1 0.1420 0.0546 0.0566 0.2653

at() and compare are the solutions. Here is another detailed, but more useful, view of the heart
transplant data:

. sts list, at(10 40 to 170) by(posttran)

Beg. Survivor Std.
Time Total Fail Function Error [95% Conf. Int.]

posttran=0
10 74 12 0.8724 0.0346 0.7858 0.9256
40 31 11 0.6781 0.0601 0.5446 0.7801
70 17 2 0.6126 0.0704 0.4603 0.7339

100 11 1 0.5616 0.0810 0.3900 0.7022
130 10 1 0.5054 0.0903 0.3199 0.6646
160 7 1 0.4422 0.0986 0.2480 0.6204

posttran=1
10 16 1 0.9286 0.0688 0.5908 0.9896
40 43 6 0.7391 0.0900 0.5140 0.8716
70 45 9 0.6002 0.0841 0.4172 0.7423

100 40 9 0.4814 0.0762 0.3271 0.6198
130 38 1 0.4687 0.0752 0.3174 0.6063
160 36 1 0.4561 0.0742 0.3076 0.5928

Note: Survivor function is calculated over full data and evaluated at
indicated times; it is not calculated from aggregates shown at left.

We specified at(10 40 to 170) when that is not strictly correct; at(10 40 to 160) would make
sense and so would at(10 40 to 180), but sts list is not picky.

Technical note

When used with at(), sts list is designed to give you only a snapshot of the full Kaplan–Meier
curve. That is, the Beg. Total information is that for the last observed failure time (before the
failures occur).

328 sts list — List the survivor or cumulative hazard function

When the at() option is used, the Beg. Total column in the output does not contain the number
at risk at the time indicated in the Time column. It shows the number at risk at the time just before
the previous failure.

Similar output for the Nelson–Aalen estimated cumulative hazard can be produced by specifying
the cumhaz option:

. sts list, cumhaz at(10 40 to 170) by(posttran)

Beg. Nelson-Aalen Std.
Time Total Fail Cum. Haz. Error [95% Conf. Int.]

posttran=0
10 74 12 0.1349 0.0391 0.0764 0.2382
40 31 11 0.3824 0.0871 0.2448 0.5976
70 17 2 0.4813 0.1124 0.3044 0.7608

100 11 1 0.5646 0.1400 0.3473 0.9178
130 10 1 0.6646 0.1720 0.4002 1.1037
160 7 1 0.7896 0.2126 0.4658 1.3385

posttran=1
10 16 1 0.0714 0.0714 0.0101 0.5071
40 43 6 0.2929 0.1176 0.1334 0.6433
70 45 9 0.4981 0.1360 0.2916 0.8507

100 40 9 0.7155 0.1542 0.4691 1.0915
130 38 1 0.7418 0.1564 0.4908 1.1214
160 36 1 0.7689 0.1587 0.5130 1.1523

Note: Nelson-Aalen function is calculated over full data and evaluated at
indicated times; it is not calculated from aggregates shown at left.

Here is the result of the survivor functions with the compare option:

. sts list, at(10 40 to 170) by(posttran) compare

Survivor Function
posttran 0 1

time 10 0.8724 0.9286
40 0.6781 0.7391
70 0.6126 0.6002

100 0.5616 0.4814
130 0.5054 0.4687
160 0.4422 0.4561

And here is the result of the cumulative hazard functions with the compare option:

. sts list, cumhaz at(10 40 to 170) by(posttran) compare

Nelson-Aalen Cum. Haz.
posttran 0 1

time 10 0.1349 0.0714
40 0.3824 0.2929
70 0.4813 0.4981

100 0.5646 0.7155
130 0.6646 0.7418
160 0.7896 0.7689

sts list — List the survivor or cumulative hazard function 329

Video example

How to calculate the Kaplan-Meier survivor and Nelson-Aalen cumulative hazard functions

Methods and formulas
See [ST] sts.

References
See [ST] sts for references.

Also see
[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] sts generate — Create variables containing survivor and related functions

[ST] sts graph — Graph the survivor, hazard, or cumulative hazard function

[ST] sts test — Test equality of survivor functions

[ST] stset — Declare data to be survival-time data

https://www.youtube.com/watch?v=9XZR32zElZ8&list=UUVk4G4nEtBS4tLOyHqustDA

Title

sts test — Test equality of survivor functions

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

sts test tests the equality of survivor functions across two or more groups. The log-rank,
Cox, Wilcoxon–Breslow–Gehan, Tarone–Ware, Peto–Peto–Prentice, and Fleming–Harrington tests
are provided, in both unstratified and stratified forms.

sts test also provides a test for trend.

sts test can be used with single- or multiple-record or single- or multiple-failure st data.

Quick start
Log-rank test for the equality of survivor functions across levels of v1 using stset data

sts test v1

Stratified log-rank test for equality of survivor functions across v1 with strata svar

sts test v1, strata(svar)

As above, and show tests for each stratum
sts test v1, strata(svar) detail

Log-rank test for equality and test for a trend in survivor functions for v1
sts test v1, trend

Test equality of survivor functions using the Wilcoxon–Breslow–Gehan test
sts test v1, wilcoxon

Likelihood-ratio test for the equality of survivor functions based on the Cox model
sts test v1, cox

Stratified Cox test of equality of survivor functions with strata svar

sts test v1, cox strata(svar)

Test equality of survivor functions using the Tarone–Ware test
sts test v1, tware

As above, and test for a trend using the same weights as used in the Tarone–Ware test
sts test v1, tware trend

Menu
Statistics > Survival analysis > Summary statistics, tests, and tables > Test equality of survivor functions

330

sts test — Test equality of survivor functions 331

Syntax

sts test varlist
[

if
] [

in
] [

, options
]

options Description

Main

logrank perform log-rank test of equality; the default
cox perform Cox test of equality
wilcoxon perform Wilcoxon–Breslow–Gehan test of equality
tware perform Tarone–Ware test of equality
peto perform Peto–Peto–Prentice test of equality
fh(p q) perform generalized Fleming–Harrington test of equality
trend test trend of the survivor function across three or more ordered groups
strata(varlist) perform stratified test on varlist, displaying overall test results
detail display individual test results; modifies strata()

Options

mat(mname1 mname2) store vector u in mname1 and matrix V in mname2

noshow do not show st setting information
notitle suppress title

You must stset your data before using sts test; see [ST] stset.
Note that fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options

� � �
Main �

logrank, cox, wilcoxon, tware, peto, and fh(p q) specify the test of equality desired. logrank
is the default, unless the data are pweighted, in which case cox is the default and is the only
possibility.

wilcoxon specifies the Wilcoxon–Breslow–Gehan test; tware, the Tarone–Ware test; peto,
the Peto–Peto–Prentice test; and fh(), the generalized Fleming–Harrington test. The Fleming–
Harrington test requires two arguments, p and q. When p = 0 and q = 0, the Fleming–Harrington
test reduces to the log-rank test; when p = 1 and q = 0, the test reduces to the Mann–Whitney–
Wilcoxon test.

trend specifies that a test for trend of the survivor function across three or more ordered groups be
performed.

strata(varlist) requests that a stratified test be performed.

detail modifies strata(); it requests that, in addition to the overall stratified test, the tests for the
individual strata be reported. detail is not allowed with cox.

� � �
Options �

mat(mname1 mname2) requests that the vector u be stored in mname1 and that matrix V be stored
in mname2. The other tests are rank tests of the form u′V−1u. This option may not be used with
cox.

332 sts test — Test equality of survivor functions

noshow prevents sts test from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

notitle requests that the title printed above the test be suppressed.

Remarks and examples
Remarks are presented under the following headings:

The log-rank test
The Wilcoxon (Breslow–Gehan) test
The Tarone–Ware test
The Peto–Peto–Prentice test
The generalized Fleming–Harrington tests
The “Cox” test
The trend test
Video example

sts test tests the equality of the survivor function across groups. With the exception of the Cox
test, these tests are members of a family of statistical tests that are extensions to censored data of
traditional nonparametric rank tests for comparing two or more distributions. A technical description
of these tests can be found in the Methods and formulas section of this entry. Simply, at each distinct
failure time in the data, the contribution to the test statistic is obtained as a weighted standardized
sum of the difference between the observed and expected number of deaths in each of the k groups.
The expected number of deaths is obtained under the null hypothesis of no differences between the
survival experience of the k groups.

The weights or weight function used determines the test statistic. For example, when the weight
is 1 at all failure times, the log-rank test is computed, and when the weight is the number of subjects
at risk of failure at each distinct failure time, the Wilcoxon–Breslow–Gehan test is computed.

The following table summarizes the weights used for each statistical test.

Weight at each distinct
Test failure time (ti)

Log-rank 1

Wilcoxon–Breslow–Gehan ni

Tarone–Ware
√
ni

Peto–Peto–Prentice S̃(ti)

Fleming–Harrington Ŝ(ti−1)p
{

1− Ŝ(ti−1)
}q

where Ŝ(ti) is the estimated Kaplan–Meier survivor-function value for the combined
sample at failure time ti, S̃(ti) is a modified estimate of the overall survivor function
described in Methods and formulas, and ni is the number of subjects in the risk pool at
failure time ti.

These tests are appropriate for testing the equality of survivor functions across two or more groups.
Up to 800 groups are allowed.

The “Cox” test is related to the log-rank test but is performed as a likelihood-ratio test (or,
alternatively, as a Wald test) on the results from a Cox proportional hazards regression. The log-rank
test should be preferable to what we have labeled the Cox test, but with pweighted data the log-rank
test is not appropriate. Whether you perform the log-rank or Cox test makes little substantive difference
with most datasets.

sts test — Test equality of survivor functions 333

sts test, trend can be used to test against the alternative hypothesis that the failure rate
increases or decreases as the level of the k groups increases or decreases. This test is appropriate only
when there is a natural ordering of the comparison groups, for example, when each group represents
an increasing or decreasing level of a therapeutic agent.

trend is not valid when cox is specified.

The log-rank test

sts test, by default, performs the log-rank test, which is, to be clear, the exponential scores test
(Savage 1956; Mantel and Haenszel 1959; Mantel 1963, 1966). This test is most appropriate when
the hazard functions are thought to be proportional across the groups if they are not equal.

This test statistic is constructed by giving equal weights to the contribution of each failure time
to the overall test statistic.

In Testing equality of survivor functions in [ST] sts, we demonstrated the use of this command
with the heart transplant data, a multiple-record, single-failure st dataset.

. use http://www.stata-press.com/data/r14/stan3
(Heart transplant data)

. sts test posttran

failure _d: died
analysis time _t: t1

id: id

Log-rank test for equality of survivor functions

Events Events
posttran observed expected

0 30 31.20
1 45 43.80

Total 75 75.00

chi2(1) = 0.13
Pr>chi2 = 0.7225

We cannot reject the hypothesis that the survivor functions are the same.

sts test, logrank can also perform the stratified log-rank test. Say that it is suggested that
calendar year of acceptance also affects survival and that there are three important periods: 1967–1969,
1970–1972, and 1973–1974. Therefore, a stratified test should be performed:

. stset, noshow

. generate group = 1 if year <= 69
(117 missing values generated)

. replace group=2 if year>=70 & year<=72
(78 real changes made)

. replace group=3 if year>=73
(39 real changes made)

334 sts test — Test equality of survivor functions

. sts test posttran, strata(group)

Stratified log-rank test for equality of survivor functions

Events Events
posttran observed expected(*)

0 30 31.51
1 45 43.49

Total 75 75.00

(*) sum over calculations within group

chi2(1) = 0.20
Pr>chi2 = 0.6547

Still finding nothing, we ask Stata to show the within-stratum tests:
. sts test posttran, strata(group) detail

Stratified log-rank test for equality of survivor functions

-> group = 1

Events Events
posttran observed expected

0 14 13.59
1 17 17.41

Total 31 31.00

chi2(1) = 0.03
Pr>chi2 = 0.8558

-> group = 2

Events Events
posttran observed expected

0 13 13.63
1 20 19.37

Total 33 33.00

chi2(1) = 0.09
Pr>chi2 = 0.7663

-> group = 3

Events Events
posttran observed expected

0 3 4.29
1 8 6.71

Total 11 11.00

chi2(1) = 0.91
Pr>chi2 = 0.3410

-> Total

Events Events
posttran observed expected(*)

0 30 31.51
1 45 43.49

Total 75 75.00

(*) sum over calculations within group

chi2(1) = 0.20
Pr>chi2 = 0.6547

sts test — Test equality of survivor functions 335

The Wilcoxon (Breslow–Gehan) test

sts test, wilcoxon performs the generalized Wilcoxon test of Breslow (1970) and Gehan (1965).
This test is appropriate when hazard functions are thought to vary in ways other than proportionally
and when censoring patterns are similar across groups.

The Wilcoxon test statistic is constructed by weighting the contribution of each failure time to
the overall test statistic by the number of subjects at risk. Thus it gives heavier weights to earlier
failure times when the number at risk is higher. As a result, this test is susceptible to differences in
the censoring pattern of the groups.

sts test, wilcoxon works the same way as sts test, logrank:

. sts test posttran, wilcoxon

Wilcoxon (Breslow) test for equality of survivor functions

Events Events Sum of
posttran observed expected ranks

0 30 31.20 -85
1 45 43.80 85

Total 75 75.00 0

chi2(1) = 0.14
Pr>chi2 = 0.7083

With the strata() option, sts test, wilcoxon performs the stratified test:

. sts test posttran, wilcoxon strata(group)

Stratified Wilcoxon (Breslow) test for equality of survivor functions

Events Events Sum of
posttran observed expected(*) ranks(*)

0 30 31.51 -40
1 45 43.49 40

Total 75 75.00 0

(*) sum over calculations within group

chi2(1) = 0.22
Pr>chi2 = 0.6385

As with sts test, logrank, you can also specify the detail option to see the within-stratum tests.

The Tarone–Ware test
sts test, tware performs a test suggested by Tarone and Ware (1977), with weights equal to

the square root of the number of subjects in the risk pool at time ti.

Like Wilcoxon’s test, this test is appropriate when hazard functions are thought to vary in ways
other than proportionally and when censoring patterns are similar across groups. The test statistic
is constructed by weighting the contribution of each failure time to the overall test statistic by the
square root of the number of subjects at risk. Thus, like the Wilcoxon test, it gives heavier weights,
although not as large, to earlier failure times. Although less susceptible to the failure and censoring
pattern in the data than Wilcoxon’s test, this could remain a problem if large differences in these
patterns exist between groups.

336 sts test — Test equality of survivor functions

sts test, tware works the same way as sts test, logrank:

. sts test posttran, tware

Tarone-Ware test for equality of survivor functions

Events Events Sum of
posttran observed expected ranks

0 30 31.20 -9.3375685
1 45 43.80 9.3375685

Total 75 75.00 0

chi2(1) = 0.12
Pr>chi2 = 0.7293

With the strata() option, sts test, tware performs the stratified test:

. sts test posttran, tware strata(group)

Stratified Tarone-Ware test for equality of survivor functions

Events Events Sum of
posttran observed expected(*) ranks(*)

0 30 31.51 -7.4679345
1 45 43.49 7.4679345

Total 75 75.00 0

(*) sum over calculations within group

chi2(1) = 0.21
Pr>chi2 = 0.6464

As with sts test, logrank, you can also specify the detail option to see the within-stratum tests.

The Peto–Peto–Prentice test
sts test, peto performs an alternative to the Wilcoxon test proposed by Peto and Peto (1972)

and Prentice (1978). The test uses as the weight function an estimate of the overall survivor function,
which is similar to that obtained using the Kaplan–Meier estimator. See Methods and formulas for
details.

This test is appropriate when hazard functions are thought to vary in ways other than proportionally,
but unlike the Wilcoxon–Breslow–Gehan test, it is not affected by differences in censoring patterns
across groups.

sts test, peto works the same way as sts test, logrank:

. sts test posttran, peto

Peto-Peto test for equality of survivor functions

Events Events Sum of
posttran observed expected ranks

0 30 31.20 -.86708453
1 45 43.80 .86708453

Total 75 75.00 0

chi2(1) = 0.15
Pr>chi2 = 0.6979

sts test — Test equality of survivor functions 337

With the strata() option, sts test, peto performs the stratified test:

. sts test posttran, peto strata(group)

Stratified Peto-Peto test for equality of survivor functions

Events Events Sum of
posttran observed expected(*) ranks(*)

0 30 31.51 -1.4212233
1 45 43.49 1.4212233

Total 75 75.00 0

(*) sum over calculations within group

chi2(1) = 0.43
Pr>chi2 = 0.5129

As with the previous tests, you can also specify the detail option to see the within-stratum tests.

The generalized Fleming–Harrington tests

sts test, fh(p q) performs the Harrington and Fleming (1982) class of test statistics. The
weight function at each distinct failure time, t, is the product of the Kaplan–Meier survivor estimate
at time t− 1 raised to the p power and 1 − the Kaplan–Meier survivor estimate at time t− 1 raised
to the q power. Thus, when specifying the Fleming and Harrington option, you must specify two
nonnegative arguments, p and q.

When p > q, the test gives more weights to earlier failures than to later ones. When p < q, the
opposite is true, and more weight is given to later failures than to earlier ones. When p and q are
both zero, the weight is 1 at all failure times and the test reduces to the log-rank test.

sts test, fh(p q) works the same way as sts test, logrank. If we specify p = 0 and q = 0
we will get the same results as the log-rank test:

. sts test posttran, fh(0 0)

Fleming-Harrington test for equality of survivor functions

Events Events Sum of
posttran observed expected ranks

0 30 31.20 -1.1995511
1 45 43.80 1.1995511

Total 75 75.00 0

chi2(1) = 0.13
Pr>chi2 = 0.7225

We could, for example, give more weight to later failures than to earlier ones.

. sts test posttran, fh(0 3)

Fleming-Harrington test for equality of survivor functions

Events Events Sum of
posttran observed expected ranks

0 30 31.20 -.10288411
1 45 43.80 .10288411

Total 75 75.00 0

chi2(1) = 0.01
Pr>chi2 = 0.9065

338 sts test — Test equality of survivor functions

Similarly to the previous tests, with the strata() option, sts test, fh() performs the stratified
test:

. sts test posttran, fh(0 3) strata(group)

Stratified Fleming-Harrington test for equality of survivor functions

Events Events Sum of
posttran observed expected(*) ranks(*)

0 30 31.51 -.05315105
1 45 43.49 .05315105

Total 75 75.00 0

(*) sum over calculations within group

chi2(1) = 0.00
Pr>chi2 = 0.9494

As with the other tests, you can also specify the detail option to see the within-stratum tests.

The “Cox” test
The term Cox test is our own, and this test is a variation on the log-rank test using Cox regression.

One way of thinking about the log-rank test is as a Cox proportional hazards model on indicator
variables for each of the groups. The log-rank test is a test that the coefficients are zero or, if you
prefer, that the hazard ratios are one. The log-rank test is, in fact, a score test of that hypothesis
performed on a slightly different (partial) likelihood function that handles ties more accurately.

Many researchers think that a (less precise) score test on the precise likelihood function is preferable
to a (more precise) likelihood-ratio test on the approximate likelihood function used in Cox regression
estimation. In our experience, it makes little difference:

. sts test posttran, cox

Cox regression-based test for equality of survival curves

Events Events Relative
posttran observed expected hazard

0 30 31.20 0.9401
1 45 43.80 1.0450

Total 75 75.00 1.0000

LR chi2(1) = 0.13
Pr>chi2 = 0.7222

By comparison, sts test, logrank also reported χ2 = 0.13, although the significance level was
0.7225, meaning that the χ2 values differed in the fourth digit. As mentioned by Kalbfleisch and
Prentice (2002, 20), a primary advantage of the log-rank test is the ease with which it can be
explained to nonstatisticians, because the test statistic is the difference between the observed and
expected number of failures within groups.

Our purpose in offering sts test, cox is not to promote its use instead of the log-rank test but
to provide a test for researchers with sample-weighted data.

If you have sample weights (if you specified pweights when you stset the data), you cannot
run the log-rank or Wilcoxon tests. The Cox regression model, however, has been generalized to
sample-weighted data, and Stata’s stcox can fit models with such data. In sample-weighted data, the
likelihood-ratio statistic is no longer appropriate, but the Wald test based on the robust estimator of
variance is.

sts test — Test equality of survivor functions 339

Thus if we treated these data as sample-weighted data, we would obtain

. generate one = 1

. stset t1 [pw=one], id(id) time0(_t0) failure(died) noshow

id: id
failure event: died != 0 & died < .

obs. time interval: (_t0, t1]
exit on or before: failure

weight: [pweight=one]

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

31938.1 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 1799

. sts test posttran, cox

Cox regression-based test for equality of survival curves

Events Events Relative
posttran observed expected hazard

0 30.00 31.20 0.9401
1 45.00 43.80 1.0450

Total 75.00 75.00 1.0000

Wald chi2(1) = 0.13
Pr>chi2 = 0.7181

sts test, cox now reports the Wald statistic, which is, to two digits, 0.13, just like all the others.

The trend test
When the groups to be compared have a natural order, such as increasing or decreasing age groups

or drug dosage, you may want to test the null hypothesis that there is no difference in failure rate
among the groups versus the alternative hypothesis that the failure rate increases or decreases as you
move from one group to the next.

We illustrate this test with a dataset from a carcinogenesis experiment reprinted in Marubini and
Valsecchi (1995, 126). Twenty-nine experimental animals were exposed to three levels (0, 1.5, 2.0)
of a carcinogenic agent. The time in days to tumor formation was recorded. Here are a few of the
observations:

340 sts test — Test equality of survivor functions

. use http://www.stata-press.com/data/r14/marubini, clear

. list time event group dose in 1/9

time event group dose

1. 67 1 2 1.5
2. 150 1 2 1.5
3. 47 1 3 2
4. 75 0 1 0
5. 58 1 3 2

6. 136 1 2 1.5
7. 58 1 3 2
8. 150 1 2 1.5
9. 43 0 2 1.5

In these data, there are two variables that indicate exposure level. The group variable is coded 1,
2, and 3, indicating a one-unit separation between exposures. The dose variable records the actual
exposure dosage. To test the null hypothesis of no difference among the survival experience of the
three groups versus the alternative hypothesis that the survival experience of at least one of the groups
is different, it does not matter if we use group or dose.

. stset time, fail(event) noshow

failure event: event != 0 & event < .
obs. time interval: (0, time]
exit on or before: failure

29 total observations
0 exclusions

29 observations remaining, representing
15 failures in single-record/single-failure data

2564 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 246

. sts test group

Log-rank test for equality of survivor functions

Events Events
group observed expected

1 4 6.41
2 6 6.80
3 5 1.79

Total 15 15.00

chi2(2) = 8.05
Pr>chi2 = 0.0179

sts test — Test equality of survivor functions 341

. sts test dose

Log-rank test for equality of survivor functions

Events Events
dose observed expected

0 4 6.41
1.5 6 6.80
2 5 1.79

Total 15 15.00

chi2(2) = 8.05
Pr>chi2 = 0.0179

For the trend test, however, the distance between the values is important, so using group or dose
will produce different results.

. sts test group, trend

Log-rank test for equality of survivor functions

Events Events
group observed expected

1 4 6.41
2 6 6.80
3 5 1.79

Total 15 15.00

chi2(2) = 8.05
Pr>chi2 = 0.0179

Test for trend of survivor functions

chi2(1) = 5.87
Pr>chi2 = 0.0154

. sts test dose, trend

Log-rank test for equality of survivor functions

Events Events
dose observed expected

0 4 6.41
1.5 6 6.80
2 5 1.79

Total 15 15.00

chi2(2) = 8.05
Pr>chi2 = 0.0179

Test for trend of survivor functions

chi2(1) = 3.66
Pr>chi2 = 0.0557

Although the above trend test was constructed using the log-rank test, any of the previously
mentioned weight functions can be used. For example, a trend test on the data can be performed
using the same weights as the Peto–Peto–Prentice test by specifying the peto option.

342 sts test — Test equality of survivor functions

. sts test dose, trend peto

Peto-Peto test for equality of survivor functions

Events Events Sum of
dose observed expected ranks

0 4 6.41 -1.2792221
1.5 6 6.80 -1.3150418
2 5 1.79 2.5942639

Total 15 15.00 0

chi2(2) = 8.39
Pr>chi2 = 0.0150

Test for trend of survivor functions

chi2(1) = 2.85
Pr>chi2 = 0.0914

Video example

How to test the equality of survivor functions using nonparametric tests

Stored results
sts test stores the following in r():

Scalars
r(df) degrees of freedom r(chi2) χ2

r(df tr) degrees of freedom, trend test r(chi2 tr) χ2, trend test

Methods and formulas
Let t1 < t2 < · · · < tk denote the ordered failure times; let dj be the number of failures at tj

and nj be the population at risk just before tj ; and let dij and nij denote the same things for group
i, i = 1, . . . , r.

We are interested in testing the null hypothesis

H0 : λ1(t) = λ2(t) = · · · = λr(t)

where λ(t) is the hazard function at time t, against the alternative hypothesis that at least one of the
λi(t) is different for some tj .

As described in Klein and Moeschberger (2003, 205–216), Kalbfleisch and Prentice (2002, 20–22),
and Collett (2003, 48–49), if the null hypothesis is true, the expected number of failures in group i
at time tj is eij = nijdj/nj , and the test statistic

u′ =

k∑
j=1

W (tj)(d1j − e1j , . . . , drj − erj)

https://www.youtube.com/watch?v=W1uympJV7Ko&list=UUVk4G4nEtBS4tLOyHqustDA

sts test — Test equality of survivor functions 343

is formed. W (tj) is a positive weight function defined as zero when nij is zero. The various test
statistics are obtained by selecting different weight functions, W (tj). See the table in the Remarks
and examples section of this entry for a list of these weight functions. For the Peto–Peto–Prentice
test,

W (tj) = S̃(tj) =
∏

`:t`≤tj

(
1− d`

n` + 1

)

The variance matrix V for u has elements

Vil =

k∑
j=1

W (tj)
2nijdj(nj − dj)
nj(nj − 1)

(
δil −

nij
nj

)
where δil = 1 if i = l and δil = 0, otherwise.

For the unstratified test, statistic u′V−1u is distributed as χ2 with r − 1 degrees of freedom.

For the stratified test, let us and Vs be the results of performing the above calculation separately
within stratum, and define u =

∑
s us and V =

∑
sVs. The χ2 test is given by u′V−1u redefined

in this way.

The “Cox” test is performed by fitting a (possibly stratified) Cox regression using stcox on r− 1
indicator variables, one for each group with one of the indicators omitted. The χ2 test reported is then
the likelihood-ratio test (no pweights) or the Wald test (based on the robust estimate of variance);
see [ST] stcox.

The reported relative hazards are the exponentiated coefficients from the Cox regression renor-
malized, and the renormalization plays no role in calculating the test statistic. The renormalization
is chosen so that the expected-number-of-failures-within-group weighted average of the regression
coefficients is 0 (meaning that the hazard is 1). Let bi, i = 1, . . . , r−1, be the estimated coefficients,
and define br = 0. The constant K is then calculated with

K =

r∑
i=1

eibi/d

where ei =
∑
j eij is the expected number of failures for group i, d is the total number of failures

across all groups, and r is the number of groups. The reported relative hazards are exp(bi −K).

The trend test assumes that there is natural ordering of the r groups, r > 2. Here we are interested
in testing the null hypothesis

H0 : λ1(t) = λ2(t) = · · · = λr(t)

against the alternative hypothesis

Ha : λ1(t) ≤ λ2(t) ≤ · · · ≤ λr(t)

The test uses u as previously defined with any of the available weight functions. The test statistic
is given by

(∑r
i=1 aiui

)2

a′Va

344 sts test — Test equality of survivor functions

where a1 ≤ a2 ≤ · · · ≤ ar are scores defining the relationship of interest. A score is assigned to
each comparison group, equal to the value of the grouping variable for that group. a is the vector of
these scores.

References
Breslow, N. E. 1970. A generalized Kruskal–Wallis test for comparing K samples subject to unequal patterns of

censorship. Biometrika 57: 579–594.

Collett, D. 2003. Modelling Survival Data in Medical Research. 2nd ed. London: Chapman & Hall/CRC.

Gehan, E. A. 1965. A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 52:
203–223.

Harrington, D. P., and T. R. Fleming. 1982. A class of rank test procedures for censored survival data. Biometrika
69: 553–566.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

Klein, J. P., and M. L. Moeschberger. 2003. Survival Analysis: Techniques for Censored and Truncated Data. 2nd
ed. New York: Springer.

Mantel, N. 1963. Chi-square tests with one degree of freedom; extensions of the Mantel–Haenszel procedure. Journal
of the American Statistical Association 58: 690–700.

. 1966. Evaluation of survival data and two new rank-order statistics arising in its consideration. Cancer
Chemotherapy Reports 50: 163–170.

Mantel, N., and W. Haenszel. 1959. Statistical aspects of the analysis of data from retrospective studies of disease.
Journal of the National Cancer Institute 22: 719–748. Reprinted in Evolution of Epidemiologic Ideas: Annotated
Readings on Concepts and Methods, ed. S. Greenland, pp. 112–141. Newton Lower Falls, MA: Epidemiology
Resources.

Marubini, E., and M. G. Valsecchi. 1995. Analysing Survival Data from Clinical Trials and Observational Studies.
New York: Wiley.

Peto, R., and J. Peto. 1972. Asymptotically efficient rank invariant test procedures. Journal of the Royal Statistical
Society, Series A 135: 185–207.

Prentice, R. L. 1978. Linear rank tests with right censored data. Biometrika 65: 167–179.

Savage, I. R. 1956. Contributions to the theory of rank-order statistics—the two-sample case. Annals of Mathematical
Statistics 27: 590–615.

Tarone, R. E., and J. H. Ware. 1977. On distribution-free tests for equality of survival distributions. Biometrika 64:
156–160.

White, I. R., S. Walker, and A. G. Babiker. 2002. strbee: Randomization-based efficacy estimator. Stata Journal 2:
140–150.

Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics 1: 80–83.

Also see
[ST] stcox — Cox proportional hazards model

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] sts generate — Create variables containing survivor and related functions

[ST] sts graph — Graph the survivor, hazard, or cumulative hazard function

[ST] sts list — List the survivor or cumulative hazard function

[ST] stset — Declare data to be survival-time data

[PSS] power exponential — Power analysis for the exponential test

[PSS] power logrank — Power analysis for the log-rank test

http://www.stata-journal.com/sjpdf.html?articlenum=st0012

Title

stset — Declare data to be survival-time data

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
st refers to survival-time data, which are fully described below.

stset declares the data in memory to be st data, informing Stata of key variables and their roles
in a survival-time analysis. When you stset your data, stset runs various data consistency checks
to ensure that what you have declared makes sense. If the data are weighted, you specify the weights
when you stset the data, not when you issue the individual st commands.

streset changes how the st dataset is declared. In multiple-record data, streset can also
temporarily set the sample to include records from before the time at risk (called the past) and records
after failure (called the future). Then typing streset without arguments resets the sample back to
the analysis sample.

st displays how the dataset is currently declared.

Whenever you type stset or streset, Stata runs or reruns data consistency checks to ensure
that what you are now declaring (or declared in the past) makes sense. Thus if you have made any
changes to your data or simply wish to verify how things are, you can type streset with no options.

stset, clear is for use by programmers. It causes Stata to forget the st markers, making the
data no longer st data to Stata. The data remain unchanged. It is not necessary to stset, clear
before doing another stset.

Quick start
Single-record-per-subject survival data

Specify time of failure, recorded in tvar, for data without censoring
stset tvar

Specify time of censoring or failure, tvar, and specify that event = 2 represents a failure
stset tvar, failure(event==2)

Specify that event = 2 and event = 3 represent failures
stset tvar, failure(event==2 3)

Specify failure using indicator variable fail

stset tvar, failure(fail)

As above, and specify that subjects become at risk at time torig

stset tvar, failure(fail) origin(time torig)

Specify that subjects become at risk at time 0 but enter the study at time tenter

stset tvar, fail(failure) enter(time tenter)

345

346 stset — Declare data to be survival-time data

Specify subjects become at risk at time torig and enter the study at time tenter

stset tvar, fail(failure) origin(time torig) enter(time tenter)

As above, but specify analysis time in years when time variables are measured in days
stset tvar, fail(failure) origin(time torig) enter(time tenter) ///

scale(365.25)

Convert analysis time units back to days
streset, scale(1)

Display previous st settings and verify that any changes to data correspond to settings
stset

Multiple-record-per-subject survival data

Specify analysis-time variable tvar with failure indicator fail and subject identifier idvar
stset tvar, failure(fail) id(idvar)

As above, and specify that subjects become at risk at time torig

stset tvar, failure(fail) id(idvar) origin(time torig)

As above, and specify that subjects enter the study at time tenter

stset tvar, failure(fail) id(idvar) origin(time torig) ///
enter(time tenter)

As above, and specify that subjects exit the study at time texit

stset tvar, failure(fail) id(idvar) origin(time torig) ///
enter(time tenter) exit(time texit)

Menu
Statistics > Survival analysis > Setup and utilities > Declare data to be survival-time data

stset — Declare data to be survival-time data 347

Syntax

Single-record-per-subject survival data

stset timevar
[

if
] [

weight
] [

, single options
]

streset
[

if
] [

weight
] [

, single options
]

st
[
, nocmd notable

]
stset, clear

Multiple-record-per-subject survival data

stset timevar
[

if
] [

weight
]
, id(idvar) failure(failvar

[
==numlist

]
)[

multiple options
]

streset
[

if
] [

weight
] [

, multiple options
]

streset, { past | future | past future }

st
[
, nocmd notable

]
stset, clear

single options Description

Main

failure(failvar
[
==numlist

]
) failure event

noshow prevent other st commands from showing st setting information

Options

origin(time exp) define when a subject becomes at risk
scale(#) rescale time value
enter(time exp) specify when subject first enters study
exit(time exp) specify when subject exits study

Advanced

if(exp) select records for which exp is true; recommended rather
than if exp

time0(varname) mechanical aspect of interpretation about records in dataset;
seldom used

348 stset — Declare data to be survival-time data

multiple options Description

Main
∗id(idvar) multiple-record ID variable
∗failure(failvar

[
==numlist

]
) failure event

noshow prevent other st commands from showing st
setting information

Options

origin(
[

varname==numlist
]
time exp | min) define when a subject becomes at risk

scale(#) rescale time value
enter(

[
varname==numlist

]
time exp) specify when subject first enters study

exit(failure |
[

varname==numlist
]
time exp) specify when subject exits study

Advanced

if(exp) select records for which exp is true;
recommended rather than if exp

ever(exp) select subjects for which exp is ever true
never(exp) select subjects for which exp is never true
after(exp) select records within subject on or after

the first time exp is true
before(exp) select records within subject before the

first time exp is true
time0(varname) mechanical aspect of interpretation about

records in dataset; seldom used
∗ id() and failure() are required with stset multiple-record-per-subject survival data.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Examples
. stset ftime (time measured from 0, all failed)
. stset ftime, failure(died) (time measured from 0, censoring)
. stset ftime, failure(died) id(id) (time measured from 0, censoring & ID)
. stset ftime, failure(died==2,3) (time measured from 0, failure codes)
. stset ftime, failure(died) origin(time dob) (time measured from dob, censoring)

You cannot harm your data by using stset, so feel free to experiment.

Options
Options are presented under the following headings:

Options for use with stset and streset
Options unique to streset
Options for st

stset — Declare data to be survival-time data 349

Options for use with stset and streset

� � �
Main �

id(idvar) specifies the subject-ID variable; observations with equal, nonmissing values of idvar are
assumed to be the same subject. idvar may be string or numeric. Observations for which idvar is
missing (. or "") are ignored.

When id() is not specified, each observation is assumed to represent a different subject and thus
constitutes a one-record-per-subject survival dataset.

When you specify id(), the data are said to be multiple-record data, even if it turns out that there
is only one record per subject. Perhaps they would better be called potentially multiple-record
data.

If you specify id(), stset requires that you specify failure().

Specifying id() never hurts; we recommend it because a few st commands, such as stsplit,
require an ID variable to have been specified when the dataset was stset.

failure(failvar[==numlist]) specifies the failure event.

If failure() is not specified, all records are assumed to end in failure. This is allowed with
single-record data only.

If failure(failvar) is specified, failvar is interpreted as an indicator variable; 0 and missing
mean censored, and all other values are interpreted as representing failure.

If failure(failvar==numlist) is specified, records with failvar taking on any of the values in
numlist are assumed to end in failure, and all other records are assumed to be censored.

noshow prevents other st commands from showing the key st variables at the top of their output.

� � �
Options �

origin([varname==numlist] time exp | min) and scale(#) define analysis time; that is, origin()
defines when a subject becomes at risk. Subjects become at risk when time = origin(). All
analyses are performed in terms of time since becoming at risk, called analysis time.

Let us use the terms time for how time is recorded in the data and t for analysis time. Analysis
time t is defined

t =
time− origin()

scale()

t is time from origin in units of scale.

By default, origin(time 0) and scale(1) are assumed, meaning that t = time. Then you must
ensure that time in your data is measured as time since becoming at risk. Subjects are exposed
at t = time = 0 and later fail. Observations with t = time ≤ 0 are ignored because information
before becoming at risk is irrelevant.

origin() determines when the clock starts ticking. scale() plays no substantive role, but it can
be handy for making t units more readable (such as converting days to years).

origin(time exp) sets the origin to exp. For instance, if time were recorded as dates, such as
05jun1998, in your data and variable expdate recorded the date when subjects were exposed, you
could specify origin(time expdate). If instead all subjects were exposed on 12nov1997, you
could specify origin(time mdy(11,12,1997)).

origin(time exp) may be used with single- or multiple-record data.

350 stset — Declare data to be survival-time data

origin(varname==numlist) is for use with multiple-record data; it specifies the origin indirectly.
If time were recorded as dates in your data, variable obsdate recorded the (ending) date
associated with each record, and subjects became at risk upon, say, having a certain operation—
and that operation were indicated by code==217—then you could specify origin(code==217).
origin(code==217) would mean, for each subject, that the origin time is the earliest time at
which code==217 is observed. Records before that would be ignored (because t < 0). Subjects
who never had code==217 would be ignored entirely.

origin(varname==numlist time exp) sets the origin to the later of the two times determined by
varname==numlist and exp.

origin(min) sets origin to the earliest time observed, minus 1. This is an odd thing to do and
is described in example 10.

origin() is an important concept; see Key concepts, Two concepts of time, and The substantive
meaning of analysis time.

scale() makes results more readable. If you have time recorded in days (such as Stata dates, which
are really days since 01jan1960), specifying scale(365.25) will cause results to be reported in
years.

enter([varname==numlist] time exp) specifies when a subject first comes under observation, meaning
that any failures, were they to occur, would be recorded in the data.

Do not confuse enter() and origin(). origin() specifies when a subject first becomes at
risk. In many datasets, becoming at risk and coming under observation are coincident. Then it is
sufficient to specify origin().

enter(time exp), enter(varname==numlist), and enter(varname==numlist time exp) follow
the same syntax as origin(). In multiple-record data, both varname==numlist and time exp are
interpreted as the earliest time implied, and if both are specified, the later of the two times is used.

exit(failure | [varname==numlist] time exp) specifies the latest time under which the subject is
both under observation and at risk. The emphasis is on latest; obviously, subjects also exit the risk
pool when their data run out.

exit(failure) is the default. When the first failure event occurs, the subject is removed from
the analysis risk pool, even if the subject has subsequent records in the data and even if some
of those subsequent records document other failure events. Specify exit(time .) if you wish to
keep all records for a subject after failure. You want to do this if you have multiple-failure data.

exit(varname==numlist), exit(time exp), and exit(varname==numlist time exp) follow the
same syntax as origin() and enter(). In multiple-record data, both varname==numlist and
time exp are interpreted as the earliest time implied. exit differs from origin() and enter()
in that if both are specified, the earlier of the two times is used.

� � �
Advanced �

if(exp), ever(exp), never(exp), after(exp), and before(exp) select relevant records.

if(exp) selects records for which exp is true. We strongly recommend specifying this if() option
rather than if exp following stset or streset. They differ in that if exp removes the data
from consideration before calculating beginning and ending times and other quantities. The if()
option, on the other hand, sets the restriction after all derived variables are calculated. See if()
versus if exp.

if() may be specified with single- or multiple-record data. The remaining selection options are
for use with multiple-record data only.

stset — Declare data to be survival-time data 351

ever(exp) selects only subjects for which exp is ever true.

never(exp) selects only subjects for which exp is never true.

after(exp) selects records within subject on or after the first time exp is true.

before(exp) selects records within subject before the first time exp is true.

time0(varname) is seldom specified because most datasets do not contain this information. time0()
should be used exclusively with multiple-record data, and even then you should consider whether
origin() or enter() would be more appropriate.

time0() specifies a mechanical aspect of interpretation about the records in the dataset, namely,
the beginning of the period spanned by each record. See Intermediate exit and reentry times (gaps).

Options unique to streset

past expands the stset sample to include the entire recorded past of the relevant subjects, meaning
that it includes observations before becoming at risk and those excluded because of after(), etc.

future expands the stset sample to include the records on the relevant subjects after the last record
that previously was included, if any, which typically means to include all observations after failure
or censoring.

past future expands the stset sample to include all records on the relevant subjects.

Typing streset without arguments resets the sample to the analysis sample. See Past and future
records for more information.

Options for st

nocmd suppresses displaying the last stset command.

notable suppresses displaying the table summarizing what has been stset.

Remarks and examples
Remarks are presented under the following headings:

What are survival-time data?
Key concepts
Survival-time datasets
Using stset
Two concepts of time
The substantive meaning of analysis time
Setting the failure event
Setting multiple failures
First entry times
Final exit times
Intermediate exit and reentry times (gaps)
if() versus if exp
Past and future records
Using streset
Performance and multiple-record-per-subject datasets
Sequencing of events within t
Weights
Data warnings and errors flagged by stset
Using survival-time data in Stata
Video example

352 stset — Declare data to be survival-time data

What are survival-time data?

Survival-time data—what we call st data—document spans of time ending in an event. For instance,

died
x1=17
x2=22

< >
> t

0 9

which indicates x1 = 17 and x2 = 22 over the time span 0 to 9, and died = 1. More formally, it
means x1 = 17 and x2 = 22 for 0 < t ≤ 9, which we often write as (0, 9]. However you wish to
say it, this information might be recorded by the observation

id end x1 x2 died
101 9 17 22 1

and we call this single-record survival data.

The data can be more complicated. For instance, we might have

died
x1=17 x1=12
x2=22 x2=22

< > < >
> t

0 4 9

meaning
x1 = 17 and x2 = 22 during (0, 4]
x1 = 12 and x2 = 22 during (4, 9], and then died = 1.

and this would be recorded by the data

id begin end x1 x2 died
101 0 4 17 22 0
101 4 9 12 22 1

We call this multiple-record survival data.

These two formats allow you to record many different possibilities. The last observation on a
person need not be failure,

lost due to censoring
x1=17
x2=22

< >
> t

0 9

id end x1 x2 died
101 9 17 22 0

or

lost due to censoring
x1=17 x1=12
x2=22 x2=22

< > < >
> t

0 4 9

id begin end x1 x2 died
101 0 4 17 22 0
101 4 9 12 22 0

stset — Declare data to be survival-time data 353

Multiple-record data might have gaps,

died
x1=17 x1=12
x2=22 x2=22

< > (not observed) < >
> t

0 4 9 14

id begin end x1 x2 died
101 0 4 17 22 0
101 9 14 12 22 1

or subjects might not be observed from the onset of risk,

exposure died
x1=17
x2=22

< >
> t

0 2 9

begin end x1 x2 died
2 9 17 22 1

and

exposure died
x1=17 x1=12
x2=22 x2=22

< > < >
> t

0 1 4 9

id begin end x1 x2 died
101 1 4 17 22 0
101 4 9 12 22 1

The failure event might not be death but instead something that can be repeated:

1st 2nd
infarction infarction

x1=17 x1=12 x1=10
x2=22 x2=22 x2=22

< > < > < >
> t

0 4 9 13

id begin end x1 x2 infarc
101 0 4 17 22 1
101 4 9 12 22 0
101 9 13 10 22 1

Our data may be in different time units; rather than t where t = 0 corresponds to the onset of risk,
we might have time recorded as age,

died
x1=17
x2=22

< >
> age

20 29

id age0 age1 x1 x2 died
101 20 29 17 22 1

354 stset — Declare data to be survival-time data

or time recorded as calendar dates:
died

x1=17 x1=12
x2=22 x2=22

< > < >
> date

01jan1998 02may1998 15oct1998

id bdate edate x1 x2 died
101 01jan1998 02may1998 17 22 0
101 02may1998 15oct1998 12 22 1

Finally, we can mix these diagrams however we wish, so we might have time recorded according to
the calendar, unobserved periods after the onset of risk, subsequent gaps, and multiple failure events.

The st commands analyze data like these, and the first step is to tell st about your data by using
stset. You do not change your data to fit some predefined mold; you describe your data with stset,
and the rest of the st commands just do the right thing.

Before we discuss using stset, let’s describe one more style of recording time-to-event data
because it is common and is inappropriate for use with st. It is inappropriate, but it is easy to convert
to the survival-time form. It is called snapshot data, which are data for which you do not know spans
of time but you have information recorded at various points in time:

x1=17 x1=12
x2=22 x2=22 died

(unobserved) (unobserved)
> t

0 4 9

id t x1 x2 died
101 0 17 22 0
101 4 12 22 0
101 9 . . 1

In this snapshot dataset, all we know are the values of x1 and x2 at t = 0 and t = 4, and we know
that the subject died at t = 9. Snapshot data can be converted to survival-time data if we are willing
to assume that x1 and x2 remained constant between times:

died
x1=17 x1=12
x2=22 x2=22

< > < >
>

0 4 9

id begin end x1 x2 died
101 0 4 17 22 0
101 4 9 12 22 1

The snapspan command makes this conversion. If you have snapshot data, first see [ST] snapspan to
convert it to survival-time data and then use stset to tell st about the converted data; see example 10
first.

Key concepts

time, or, better, time units, is how time is recorded in your data. It might be numbers (such as 0, 1,
2, . . . , with time = 0 corresponding to some exposure event), a subject’s age, or calendar time.

events are things that happen at an instant in time, such as being exposed to an environmental hazard,
being diagnosed as myopic, becoming employed, being promoted, becoming unemployed, having
a heart attack, and dying.

stset — Declare data to be survival-time data 355

failure event is the event indicating failure as it is defined for analysis. This can be a single or
compound event. The failure event might be when variable dead is 1, or it might be when variable
diag is any of 115, 121, or 133.

at risk means the subject is at risk of the failure event occurring. For instance, if the failure event
is becoming unemployed, a person must be employed. The subject is not at risk before being
employed. Once employed, the subject becomes at risk; once again, the subject is no longer at
risk once the failure event occurs. If subjects become at risk upon the occurrence of some event,
it is called the exposure event. Gaining employment is the exposure event in our example.

origin is the time when the subject became at risk. If time is recorded as numbers such as 0, 1, 2, . . . ,
with time = 0 corresponding to the exposure event, then origin = 0. Alternatively, origin might
be the age of the subject when diagnosed or the date when the subject was exposed. Regardless,
origin is expressed in time units.

scale is just a fixed number, typically 1, used in mapping time to analysis time t.

t, or analysis time, is (time− origin)/scale, meaning the time since onset of being at risk measured
in scale units.

t = 0 corresponds to the onset of risk, and scale just provides a way to make the units of t more
readable. You might have time recorded in days from 01jan1960 and want t recorded in years, in
which case scale would be 365.25.

Time is how time is recorded in your data, and t is how time is reported in the analysis.

under observation means that, should the failure event occur, it would be observed and recorded in
the data. Sometimes subjects are under observation only after they are at risk. This would be the
case, for instance, if subjects enrolled in a study after being diagnosed with cancer and if, to enroll
in the study, subjects were required to be diagnosed with cancer.

Being under observation does not mean that the subject is necessarily at risk. A subject may come
under observation before being at risk, and in fact, a subject under observation may never become
at risk.

entry time and exit time mark when a subject is first and last under observation. The emphasis here
is on the words first and last; entry time and exit time do not record observational gaps; there is
only one entry time and one exit time per subject.

Entry time and exit time might be expressed as times (recorded in time units), or they might
correspond to the occurrence of some event (such as enrolling in the study).

Often the entry time corresponds to t = 0; that is, because t = (time−origin)/scale, time = origin,
meaning that time equals when the subject became at risk.

Often the exit time corresponds to when the failure event occurs or, failing that, the end of data
for the subject.

delayed entry means that entry time corresponds to t > 0; the subject became at risk before coming
under observation.

ID refers to a subject identification variable; equal values of ID indicate that the records are on the
same subject. An ID variable is required for multiple-record data and is optional, but recommended,
with single-record data.

time0 refers to the beginning time (recorded in time units) of a record. Some datasets have this
variable, but most do not. If the dataset does not contain the beginning time for each record,
subsequent records are assumed to begin where previous records ended. A time0 variable may be
created for these datasets by using the snapspan command; see [ST] snapspan. Do not confuse
time0—a mechanical aspect of datasets—with entry time—a substantive aspect of analysis.

356 stset — Declare data to be survival-time data

gaps refer to gaps in observation between entry time and exit time. During a gap, a subject is not
under observation. Gaps can arise only if the data contain a time0 variable, because otherwise
subsequent records beginning when previous records end would preclude there being gaps in the
data. Gaps are distinct from delayed entry.

past history is a term we use to mean information recorded in the data before the subject was both at
risk and under observation. Complex datasets can contain such observations. Say that the dataset
contains histories on subjects from birth to death. You might tell st that a subject becomes at risk
once diagnosed with a particular kind of cancer. The past history on the subject would then refer
to records before the subject was diagnosed.

The word history is often dropped, and the term simply becomes past. For instance, we might
want to know whether the subject smoked in the past.

future history is a term meaning information recorded in the data after the subject is no longer at
risk. Perhaps the failure event is not so serious as to preclude the possibility of data after failure.

The word history is often dropped, and the term simply becomes future. Perhaps the failure event
is cardiac infarction, and you want to know whether the subject died soon in the future so that
you can exclude the subject.

Survival-time datasets
In survival-time datasets, observations (records) document a span of time. The span might be

explicitly indicated, such as

begin end x1 x2
3 9 17 22 <- spans (3,9]

or it might be implied that the record begins at 0,

end x1 x2
9 17 22 <- spans (0,9]

or it might be implied because there are multiple records per subject:

id end x1 x2
1 4 17 22 <- spans (0,4]
1 9 12 22 <- spans (4,9]

Records may have an event indicator:

begin end x1 x2 died
3 9 17 22 1 <- spans (3,9], died at t=9

end x1 x2 died
9 17 22 1 <- spans (0,9], died at t=9

id end x1 x2 died
1 4 17 22 0 <- spans (0,4],
1 9 12 22 1 <- spans (4,9], died at t=9

The first two examples are called single-record survival-time data because there is one record per
subject.

The final example is called multiple-record survival-time data. There are two records for the subject
with id = 1.

Either way, survival-time data document time spans. Characteristics are assumed to remain constant
over the span, and the event is assumed to occur at the end of the span.

stset — Declare data to be survival-time data 357

Using stset

Once you have stset your data, you can use the other st commands.

If you save your data after stsetting, you will not have to re-stset in the future; Stata will
remember.

stset declares your data to be survival-time data. It does not change the data, although it does
add a few variables to your dataset.

This means that you can re-stset your data as often as you wish. In fact, the streset command
encourages this. Using complicated datasets often requires typing long stset commands, such as

. stset date, fail(event==27 28) origin(event==15) enter(event==22)

Later, you might want to try fail(event==27). You could retype the stset command, making the
substitution, or you could type

. streset, fail(event==27)

streset takes what you type, merges it with what you have previously declared with stset, and
performs the combined stset command.

Example 1: Single-record data

Generators are run until they fail. Here is some of our dataset:

. use http://www.stata-press.com/data/r14/kva
(Generator experiment)

. list in 1/3

failtime load bearings

1. 100 15 0
2. 140 15 1
3. 97 20 0

The stset command for this dataset is

. stset failtime

failure event: (assumed to fail at time=failtime)
obs. time interval: (0, failtime]
exit on or before: failure

12 total observations
0 exclusions

12 observations remaining, representing
12 failures in single-record/single-failure data

896 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 140

When you type stset timevar, timevar is assumed to be the time of failure. More generally, you
will learn, timevar is the time of failure or censoring. Here timevar is failtime.

358 stset — Declare data to be survival-time data

. describe

Contains data from http://www.stata-press.com/data/r14/kva.dta
obs: 12 Generator experiment

vars: 7 8 Jan 2015 15:59
size: 108

storage display value
variable name type format label variable label

failtime int %9.0g Time until failure (hrs.)
load byte %9.0g Overload (kVA)
bearings byte %9.0g Has new bearings
_st byte %8.0g 1 if record is to be used; 0

otherwise
_d byte %8.0g 1 if failure; 0 if censored
_t int %10.0g analysis time when record ends
_t0 byte %10.0g analysis time when record begins

Sorted by:

When you stset this dataset, Stata added the system variables st, d, t, and t0 to your
data.

Example 2: Single-record data with censoring

Generators are run until they fail, but during the experiment, the room flooded, so some generators
were run only until the flood. Here are some of our data:

. use http://www.stata-press.com/data/r14/kva2
(Generator experiment)

. list in 1/4

failtime load bearings failed

1. 100 15 0 1
2. 140 15 1 0
3. 97 20 0 1
4. 122 20 1 1

Here the second generator did not fail at time 140; the experiment was merely discontinued then.
The stset command for this dataset is

. stset failtime, failure(failed)

failure event: failed != 0 & failed < .
obs. time interval: (0, failtime]
exit on or before: failure

12 total observations
0 exclusions

12 observations remaining, representing
11 failures in single-record/single-failure data

896 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 140

stset — Declare data to be survival-time data 359

When you type stset timevar, failure(failvar), timevar is interpreted as the time of failure or
censoring, which is determined by the value of failvar. failvar = 0 and failvar = . (missing) indicate
censorings, and all other values indicate failure.

Example 3: Multiple-record data

Assume that we are analyzing survival time of patients with a particular kind of cancer. In this
dataset, the characteristics of patients vary over time, perhaps because new readings were taken or
because the drug therapy was changed. Some of the data are

. list, separator(0)

patid t died x1 x2

1. 90 100 0 1 0
2. 90 150 1 0 0
3. 91 50 1 1 1
4. 92 100 0 0 0
5. 92 150 0 0 1
6. 92 190 0 0 0
7. 93 100 0 0 0

(output omitted)

There are two records for patient 90, and died is 0 in the first record but 1 in the second. The
interpretation of these two records is

Interval (0,100]: x1 = 1 and x2 = 0
Interval (100,150]: x1 = 0 and x2 = 0
at t = 150: the patient died

Similarly, here is how you interpret the other records:
Patient 91:
Interval (0, 50]: x1 = 1 and x2 = 1
at t = 50: the patient died

Patient 92:
Interval (0,100]: x1 = 0 and x2 = 0
Interval (100,150]: x1 = 0 and x2 = 1
Interval (150,190]: x1 = 0 and x2 = 0
at t = 190: the patient was lost because of censoring

Look again at patient 92’s data:

patid t died x1 x2
92 100 0 0 0
92 150 0 0 1
92 190 0 0 0

died = 0 for the first event. Mechanically, this removes the subject from the data at t = 100—the
patient is treated as censored. The next record, however, adds the patient back into the data (at
t = 100) with new characteristics.

360 stset — Declare data to be survival-time data

The stset command for this dataset is

. stset t, id(patid) failure(died)

id: patid
failure event: died != 0 & died < .

obs. time interval: (t[_n-1], t]
exit on or before: failure

126 total observations
0 exclusions

126 observations remaining, representing
40 subjects
26 failures in single-failure-per-subject data

2989 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 139

When you have multiple-record data, you specify stset’s id(idvar) option. When you type stset
timevar, id(idvar) failure(failvar), timevar denotes the end of the period (just as it does in
single-record data). The first record within idvar is assumed to begin at time 0, and later records are
assumed to begin where the previous record left off. failvar should contain 0 on all but, possibly, the
last record within idvar, unless your data contain multiple failures (in which case you must specify
the exit() option; see Setting multiple failures below).

Example 4: Multiple-record data with multiple events

We have the following data on hospital patients admitted to a particular ward:

patid day sex x1 x2 code
101 5 1 10 10 177
101 13 1 20 8 286
101 21 1 16 11 208
101 24 1 11 17 401
102 8 0 20 19 204
102 18 0 19 1 401
103 etc.

stset — Declare data to be survival-time data 361

Variable code records various actions; code 401 indicates being discharged alive, and 402 indicates
death. We stset this dataset by typing

. stset day, id(patid) fail(code==402)

id: patid
failure event: code == 402

obs. time interval: (day[_n-1], day]
exit on or before: failure

243 total observations
0 exclusions

243 observations remaining, representing
40 subjects
15 failures in single-failure-per-subject data

1486 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 62

When you specify failure(eventvar == #), the failure event is as specified. You may include a
list of numbers following the equal signs. If failure were codes 402 and 403, you could specify
failure(code == 402 403). If failure were codes 402, 403, 404, 405, 406, 407, and 409, you could
specify failure(code == 402/407 409).

Example 5: Multiple-record data recording time rather than t

More reasonably, the hospital data in the above example would not contain days since admission
but would contain admission and current dates. In the dataset below, adday contains the day of
admission, and curday contains the ending date of the record, both recorded as number of days since
the ward opened:

patid adday curday sex x1 x2 code
101 287 292 1 10 10 177
101 . 300 1 20 8 286
101 . 308 1 16 11 208
101 . 311 1 11 17 401
102 289 297 0 20 19 204
102 . 307 0 19 1 401
103 etc.

362 stset — Declare data to be survival-time data

This is the same dataset as shown in example 4. Previously, the first record on patient 101 was
recorded 5 days after admission. In this dataset, 292 − 287 = 5. We would stset this dataset by
typing

. stset curday, id(patid) fail(code==402) origin(time adday)

id: patid
failure event: code == 402

obs. time interval: (curday[_n-1], curday]
exit on or before: failure

t for analysis: (time-origin)
origin: time adday

243 total observations
0 exclusions

243 observations remaining, representing
40 subjects
15 failures in single-failure-per-subject data

1486 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 62

origin() sets when a subject becomes at risk. It does this by defining analysis time.

When you specify stset timevar, . . . origin(time originvar), analysis time is defined as
t = (timevar − originvar)/scale(). In analysis-time units, subjects become at risk at t = 0. See
Two concepts of time and The substantive meaning of analysis time below.

Example 6: Multiple-record data with time recorded as a date

Even more reasonably, dates would not be recorded as integers 428, 433, and 453, meaning the
number of days since the ward opened. The dates would be recorded as dates:

patid addate curdate sex x1 x2 code
101 18aug1998 23aug1998 1 10 10 177
101 . 31aug1998 1 20 8 286
101 . 08sep1998 1 16 11 208
101 . 11sep1998 1 11 17 401
102 20aug1998 28aug1998 0 20 19 204
102 . 07sep1998 0 19 1 401
103 etc.

That, in fact, changes nothing. We still type what we previously typed:
. stset curdate, id(patid) fail(code==402) origin(time addate)

Stata dates are, in fact, integers—they are the number of days since 01jan1960—and it is merely
Stata’s %td display format that makes them display as dates.

Example 7: Multiple-record data with extraneous information

Perhaps we wish to study the outcome after a certain operation, said operation being indicated by
code 286. Subjects become at risk when the operation is performed. Here we do not type

. stset curdate, id(patid) fail(code==402) origin(time addate)

We instead type
. stset curdate, id(patid) fail(code==402) origin(code==286)

stset — Declare data to be survival-time data 363

The result of typing this would be to set analysis time t to

t = curdate− (the value of curdate when code==286)

Let’s work through this for the first patient:

patid addate curdate sex x1 x2 code
101 18aug1998 23aug1998 1 10 10 177
101 . 31aug1998 1 20 8 286
101 . 08sep1998 1 16 11 208
101 . 11sep1998 1 11 17 401

The event 286 occurred on 31aug1998, and thus the values of t for the four records are

t1 = curdate1 − 31aug1998 = 23aug1998− 31aug1998 = −8

t2 = curdate2 − 31aug1998 = 31aug1998− 31aug1998 = 0

t3 = curdate3 − 31aug1998 = 08sep1998− 31aug1998 = 8

t4 = curdate4 − 31aug1998 = 11sep1998− 31aug1998 = 11

Information prior to t = 0 is not relevant because the subject is not yet at risk. Thus the relevant
data on this subject are

t in (0, 8] sex = 1, x1 = 16, x2 = 11
t in (8, 11] sex = 1, x1 = 11, x2 = 17, and the subject is censored (code 6= 402)

That is precisely the logic that stset went through. For your information, stset quietly creates the
variables

st 1 if the record is to be used, 0 if ignored
t0 analysis time when record begins
t analysis time when record ends
d 1 if failure, 0 if censored

You can examine these variables after issuing the stset command:

. list _st _t0 _t _d

_st _t0 _t _d

1. 0 . . .
2. 0 . . .

203. 1 0 8 0
204. 1 8 11 0

Results are just as we anticipated. Do not let the observation numbers bother you; stset sorts the
data in a way it finds convenient. Feel free to re-sort the data; if any of the st commands need the
data in a different order, they will sort it themselves.

There are two ways of specifying origin():

origin(time timevar) or origin(time exp)
origin(eventvar == numlist)

In the first syntax—which is denoted by typing the word time—you directly specify when a subject
becomes at risk. In the second syntax—which is denoted by typing a variable name and equal
signs—you specify the same thing indirectly. The subject becomes at risk when the specified event
occurs (which may be never).

364 stset — Declare data to be survival-time data

Information prior to origin() is ignored. That information composes what we call the past
history.

Example 8: Multiple-record data with delayed entry

In another analysis, we want to use the above data to analyze all patients, not just those undergoing
a particular operation. In this analysis, subjects become at risk when they enter the ward. For this
analysis, however, we need information from a particular test, and that information is available only
if the test is administered to the patient. Even if the test is administered, some amount of time passes
before that. Assume that when the test is administered, code==152 is inserted into the patient’s
hospital record.

To summarize, we want origin(time addate), but patients do not enter our sample until
code==152. The way to stset these data is

. stset curdate, id(patid) fail(code==402) origin(time addate) enter(code==152)

Patient 107 has code 152:

patid addate curdate sex x1 x2 code
107 22aug1998 25aug1998 1 9 13 274
107 . 28aug1998 1 19 19 152
107 . 30aug1998 1 18 12 239
107 . 07sep1998 1 12 11 401

In analysis time, t = 0 corresponds to 22aug1998. The test was not administered, however, until 6
days later. The analysis times for these records are

t1 = curdate1 − 22aug1998 = 25aug1998− 22aug1998 = 3

t2 = curdate2 − 22aug1998 = 28aug1998− 22aug1998 = 6

t3 = curdate3 − 22aug1998 = 30aug1998− 22aug1998 = 8

t4 = curdate4 − 22aug1998 = 07sep1998− 22aug1998 = 16

and the data we want in our sample are

t in (6, 8] sex = 1, x1 = 18, x2 = 12
t in (8, 16] sex = 1, x1 = 12, x2 = 11, and patient was censored (code 6= 402)

The above stset command produced this:

. list _st _t0 _t _d

_st _t0 _t _d

1. 0 . . .
2. 0 . . .

39. 1 6 8 0
40. 1 8 16 0

stset — Declare data to be survival-time data 365

Example 9: Multiple-record data with extraneous information and delayed entry

The origin() and enter() options can be combined. For instance, we want to analyze patients
receiving a particular operation (time at risk begins upon code == 286, but patients may not enter the
sample before a test is administered, denoted by code == 152). We type

. stset curdate, id(patid) fail(code==402) origin(code==286) enter(code==152)

If we typed the above commands, it would not matter whether the test was performed before or after
the operation.

A patient who had the test and then the operation would enter at analysis time t = 0.

A patient who had the operation and then the test would enter at analysis time t > 0, the analysis
time being the time the test was performed.

If we wanted to require that the operation be performed after the test, we could type

. stset curdate, id(patid) fail(code==402) origin(code==286) after(code==152)

Admittedly, this can be confusing. The way to proceed is to find a complicated case in your data
and then list st t0 t d for that case after you stset the data.

Example 10: Real data

All of our hospital ward examples are artificial in one sense: it is unlikely the data would have
come to us in survival-time form:

patid addate curdate sex x1 x2 code
101 18aug1998 23aug1998 1 10 10 177
101 . 31aug1998 1 20 8 286
101 . 08sep1998 1 16 11 208
101 . 11sep1998 1 11 17 401
102 20aug1998 28aug1998 0 20 19 204
102 . 07sep1998 0 19 1 401
103 etc.

Rather, we would have received a snapshot dataset:

patid date sex x1 x2 code
101 18aug1998 1 10 10 22
101 23aug1998 . 20 8 177
101 31aug1998 . 16 11 286
101 08sep1998 . 11 17 208
101 11sep1998 . . . 401
102 20aug1998 0 20 19 22
102 28aug1998 . 19 1 204
102 07sep1998 . . . 401
103 etc.

In a snapshot dataset, we have a time (here a date) and values of the variables as of that instant.

This dataset can be converted to the appropriate form by typing

. snapspan patid date code

366 stset — Declare data to be survival-time data

The result would be as follows:

patid date sex x1 x2 code
101 18aug1998 . . . 22
101 23aug1998 1 10 10 177
101 31aug1998 . 20 8 286
101 08sep1998 . 16 11 208
101 11sep1998 . 11 17 401
102 20aug1998 . . . 22
102 28aug1998 0 20 19 204
102 07sep1998 . 19 1 401

This is virtually the same dataset with which we have been working, but it differs in two ways:

1. The variable sex is not filled in for all the observations because it was not filled in on the original
form. The hospital wrote down the sex on admission and then never bothered to document it
again.

2. We have no admission date (addate) variable. Instead, we have an extra first record for each
patient with code = 22 (22 is the code the hospital uses for admissions).

The first problem is easily fixed, and the second, it turns out, is not a problem because we can vary
what we type when we stset the data.

First, let’s fix the problem with variable sex. There are two ways to proceed. One would be simply
to fill in the variable ourselves:

. by patid (date), sort: replace sex = sex[_n-1] if sex>=.

We could also perform a phony stset that is good enough to set all the data and then use stfill
to fill in the variable for us. Let’s begin with the phony stset:

. stset date, id(patid) origin(min) fail(code==-1)

id: patid
failure event: code == -1

obs. time interval: (date[_n-1], date]
exit on or before: failure

t for analysis: (time-origin)
origin: min

283 total observations
0 exclusions

283 observations remaining, representing
40 subjects
0 failures in single-failure-per-subject data

2224 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 89

Typing stset date, id(patid) origin(min) fail(code == -1) does not produce anything we
would want to use for analysis. This is a trick to get the dataset temporarily stset so that we can
use some st data management commands on it.

The first part of the trick is to specify origin(min). This defines the analysis time as t = 0,
corresponding to the minimum observed value of the time variable minus 1. The time variable is
date here. Why the minimum minus 1? Because st ignores observations for which analysis time
t < 0. origin(min) provides a phony definition of t that ensures t > 0 for all observations.

stset — Declare data to be survival-time data 367

The second part of the trick is to specify fail(code == -1), and you might have to vary what
you type. We just wanted to choose an event that we know never happens, thus ensuring that no
observations are ignored after failure.

Now that we have the dataset stset, we can use the other st commands. Do not use the st analysis
commands unless you want ridiculous results, but one of the st data management commands is just
what we want:

. stfill sex, forward

failure _d: code == -1
analysis time _t: (date-origin)

origin: min
id: patid

replace missing values with previously observed values:
sex: 203 real changes made

Problem one solved.

The second problem concerns the lack of an admission-date variable. That is not really a problem
because we have a new first observation with code = 22 recording the date of admission, so every
place we previously coded origin(time addate), we substitute origin(code == 22).

Problem two solved.

We also solved the big problem—converting a snapshot dataset into a survival-time dataset; see
[ST] snapspan.

Two concepts of time

The st system has two concepts of time. The first is time in italics, which corresponds to how time
is recorded in your data. The second is analysis time, which we write as t. Substantively, analysis
time is time at risk. stset defines analysis time in terms of time via

t =
time− origin()

scale()

t and time can be the same thing, and by default they are because, by default, origin() is 0 and
scale() is 1.

All the st analysis commands work with analysis time, t.

By default, if you do not specify the origin() and scale() options, your time variables
are expected to be the analysis-time variables. This means that time = 0 corresponds to
when subjects became at risk, and that means, among other things, that observations for
which time < 0 are ignored because survival analysis concerns persons who are at risk,
and no one is at risk before t = 0.

origin determines when the clock starts ticking. If you do not specify origin(),
origin(time 0) is assumed, meaning that t = time and that persons are at risk from
t = time = 0.

time and t will often differ. time might be calendar time and t the length of time since some event,
such as being born or being exposed to some risk factor. origin() sets when t = 0. scale()
merely sets a constant that makes t more readable.

368 stset — Declare data to be survival-time data

The syntax for the origin() option makes it look more complicated than it really is

origin(
[

varname == numlist
]
time exp | min)

This says that there are four different ways to specify origin():

origin(time exp)
origin(varname == numlist)
origin(varname == numlist time exp)
origin(min)

The first syntax can be used with single- or multiple-record data. It states that the origin is given
by exp, which can be a constant for all observations, a variable (and hence may vary subject by
subject), or even an expression composed of variables and constants. Perhaps the origin is a fixed
date or a date recorded in the data when the subject was exposed or when the subject turned 18.

The second and third syntaxes are for use with multiple-record data. The second states that the
origin corresponds to the (earliest) time when the designated event occurred. Perhaps the origin is
when an operation was performed. The third syntax calculates the origin both ways and then selects
the later one.

The fourth syntax does something odd; it sets the origin to the minimum time observed minus
1. This is not useful for analysis but is sometimes useful for playing data management tricks; see
example 10 above.

Let’s start with the first syntax. Say that you had the data

faildate x1 x2
28dec1997 12 22
12nov1997 15 22
03feb1998 55 22

and that all the observations came at risk on the same date, 01nov1997. You could type

. stset faildate, origin(time mdy(11,1,1997))

Remember that stset adds t0 and t to your dataset and that they contain the time span for each
record, documented in analysis-time units. After typing stset, you can list the results:

. list faildate x1 x2 _t0 _t

faildate x1 x2 _t0 _t

1. 28dec1997 12 22 0 57
2. 12nov1997 15 22 0 11
3. 03feb1998 55 22 0 94

Record 1 reflects the period (0, 57] in analysis-time units, which are days here. stset calculated the
57 from 28dec1997− 01nov1997 = 13,876− 13,819 = 57. (Dates such as 28dec1997 are really just
integers containing the number of days from 01jan1960, and Stata’s %td display format makes them
display nicely. 28dec1997 is really the number 13,876.)

As another example, we might have data recording exposure and failure dates:

expdate faildate x1 x2
07may1998 22jun1998 12 22
02feb1998 11may1998 11 17

stset — Declare data to be survival-time data 369

The way to stset this dataset is

. stset faildate, origin(time expdate)

and the result, in analysis units, is

. list expdate faildate x1 x2 _t0 _t

expdate faildate x1 x2 _t0 _t

1. 07may1998 22jun1998 12 22 0 46
2. 02feb1998 11may1998 11 17 0 98

There is nothing magical about dates. Our original data could just as well have been

expdate faildate x1 x2
32 78 12 22
12 110 11 17

and the result would still be the same because 78− 32 = 46 and 110− 12 = 98.

Specifying an expression can sometimes be useful. Suppose that your dataset has the variable
date recording the date of event and variable age recording the subject’s age as of date. You
want to make t = 0 correspond to when the subject turned 18. You could type origin(time
date-int((age-18)*365.25)).

origin(varname == numlist) is for use with multiple-record data. It states when each subject
became at risk indirectly; the subject became at risk at the earliest time that varname takes on any
of the enumerated values. Say that you had

patid date x1 x2 event
101 12nov1997 15 22 127
101 28dec1997 12 22 155
101 03feb1998 55 22 133
101 05mar1998 14 22 127
101 09apr1998 12 22 133
101 03jun1998 13 22 101
102 22nov1997 . . .

and assume event = 155 represents the onset of exposure. You might stset this dataset by typing

. stset date, id(patid) origin(event==155) . . .

If you did that, the information for patient 101 before 28dec1997 would be ignored in subsequent
analysis. The prior information would not be removed from the dataset; it would just be ignored.
Probably something similar would happen for patient 102, or if patient 102 has no record with
event = 155, all the records on the patient would be ignored.

For analysis time, t = 0 would correspond to when event 155 occurred. Here are the results in
analysis-time units:

patid date x1 x2 event _t0 _t
101 12nov1997 15 22 127 . .
101 28dec1997 12 22 155 . .
101 03feb1998 55 22 133 0 37
101 05mar1998 14 22 127 37 67
101 09apr1998 12 22 133 67 102
101 03jun1998 13 22 101 102 157
102 22nov1997

370 stset — Declare data to be survival-time data

Patient 101’s second record is excluded from the analysis. That is not a mistake. Records document
durations, date reflects the end of the period, and events occur at the end of periods. Thus event
155 occurred at the instant date = 28dec1997, and the relevant first record for the patient is
(28dec1997, 03feb1998] in time units, which is (0, 37] in t units.

The substantive meaning of analysis time

In specifying origin(), you must ask yourself whether two subjects with identical characteristics
face the same risk of failure. The answer is that they face the same risk when they have the same
value of t = (time − origin())/scale() or, equivalently, when the same amount of time has
elapsed from origin().

Say that we have the following data on smokers who have died:

ddate x1 x2 reason
11mar1984 23 11 2
15may1994 21 9 1
22nov1993 22 13 2
etc.

We wish to analyze death due to reason==2. However, typing

. stset ddate, fail(reason==2)

would probably not be adequate. We would be saying that smokers were at risk of death from
01jan1960. Would it matter? It would if we planned on doing anything parametric because parametric
hazard functions, except for the exponential, are functions of analysis time, and the location of 0
makes a difference.

Even if we were thinking of performing nonparametric analysis, there would probably be difficulties.
We would be asserting that two “identical” persons (in terms of x1 and x2) face the same risk on the
same calendar date. Does the risk of death due to smoking really change as the calendar changes?

It would be more reasonable to assume that the risk changes with how long a subject has been
smoking and that our data would probably include that date. We would type

. stset ddate, fail(reason==2) origin(time smdate)

if smdate were the name of the date-started-smoking variable. We would now be saying that the risk
is equal when the number of days smoked is the same. We might prefer to see t in years,

. stset ddate, fail(reason==2) origin(time smdate) scale(365.25)

but that would make no substantive difference.

Consider single-record data on firms that went bankrupt:

incorp bankrupt x1 x2 btype
22jan1983 11mar1984 23 11 2
17may1992 15may1994 21 9 1
03nov1991 22nov1993 22 13 2
etc.

Say that we wish to examine the risk of a particular kind of bankruptcy, btype == 2, among firms
that become bankrupt. Typing

. stset bankrupt, fail(btype==2)

stset — Declare data to be survival-time data 371

would be more reasonable than it was in the smoking example. It would not be reasonable if we were
thinking of performing any sort of parametric analysis, of course, because then location of t = 0
would matter, but it might be reasonable for semiparametric analysis. We would be asserting that
two “identical” firms (with respect to the characteristics we model) have the same risk of bankruptcy
when the calendar dates are the same. We would be asserting that the overall state of the economy
matters.

It might be reasonable to instead measure time from the date of incorporation:

. stset bankrupt, fail(btype==2) origin(time incorp)

Understand that the choice of origin() is a substantive decision.

Setting the failure event

You set the failure event by using the failure() option.

In single-record data, if failure() is not specified, every record is assumed to end in a failure.
For instance, with

failtime load bearings
1. 100 15 0
2. 140 15 1
etc.

you would type stset failtime, and the first observation would be assumed to fail at time = 100;
the second, at time = 140; and so on.

failure(varname) specifies that a failure occurs whenever varname is not zero and is not missing.
For instance, with

failtime load bearings burnout
1. 100 15 0 1
2. 140 15 1 0
3. 97 20 0 1
4. 122 20 1 0
5. 84 25 0 1
6. 100 25 1 1
etc.

you might type stset failtime, failure(burnout). Observations 1, 3, 5, and 6 would be
assumed to fail at times 100, 97, 84, and 100, respectively; observations 2 and 4 would be assumed
to be censored at times 140 and 122.

Similarly, if the data were

failtime load bearings burnout
1. 100 15 0 1
2. 140 15 1 0
3. 97 20 0 2
4. 122 20 1 .
5. 84 25 0 2
6. 100 25 1 3
etc.

the result would be the same. Nonzero, nonmissing values of the failure variable are assumed to
represent failures. (Perhaps burnout contains a code on how the burnout occurred.)

failure(varname == numlist) specifies that a failure occurs whenever varname takes on any of
the values of numlist. In the above example, specifying

. stset failtime, failure(burnout==1 2)

372 stset — Declare data to be survival-time data

would treat observation 6 as censored.
. stset failtime, failure(burnout==1 2 .)

would also treat observation 4 as a failure.
. stset failtime, failure(burnout==1/3 6 .)

would treat burnout==1, burnout==2, burnout==3, burnout==6, and burnout==. as representing
failures and all other values as representing censorings. (Perhaps we want to examine “failure due to
meltdown”, and these are the codes that represent the various kinds of meltdown.)

failure() is treated the same way in both single- and multiple-record data. Consider
patno t x1 x2 died

1. 1 4 23 11 1
2. 2 5 21 9 0
3. 2 8 22 13 1
4. 3 7 20 5 0
5. 3 9 22 5 0
6. 3 11 21 5 0
7. 4 ...

Typing
. stset t, id(patno) failure(died)

would treat
patno==1 as dying at t==4
patno==2 as dying at t==8
patno==3 as being censored at t==11

Intervening records on the same subject are marked as “censored”. Technically, they are not really
censored if you think about it carefully; they are simply marked as not failing. Look at the data for
subject 3:

patno t x1 x2 died
3 9 22 5 0
3 11 21 5 0

The subject is not censored at t = 9 because there are more data on the subject; it is merely the case
that the subject did not die at that time. At t = 9, x1 changed from 22 to 21. The subject is really
censored at t = 11 because the subject did not die and there are no more records on the subject.

Typing stset t, id(patno) failure(died) would mark the same persons as dying and the
same persons as censored, as in the previous case. If died contained not 0 and 1, but 0 and nonzero,
nonmissing codes for the reason for death would be

patno t x1 x2 died
1. 1 4 23 11 103
2. 2 5 21 9 0
3. 2 8 22 13 207
4. 3 7 20 5 0
5. 3 9 22 5 0
6. 3 11 21 5 0
7. 4 ...

Typing
. stset t, id(patno) failure(died)

or
. stset t, id(patno) failure(died==103 207)

would yield the same results; subjects 1 and 2 would be treated as dying and subject 3 as censored.

stset — Declare data to be survival-time data 373

Typing

. stset t, id(patno) failure(died==207)

would treat subject 2 as dying and subjects 1 and 3 as censored. Thus when you specify the values
for the code, the code variable need not ever contain 0. In

patno t x1 x2 died
1. 1 4 23 11 103
2. 2 5 21 9 13
3. 2 8 22 13 207
4. 3 7 20 5 11
5. 3 9 22 5 12
6. 3 11 21 5 12
7. 4 ...

typing

. stset t, id(patno) failure(died==207)

treats patient 2 as dying and 1 and 3 as censored. Typing

. stset t, id(patno) failure(died==103 207)

treats patients 1 and 2 as dying and 3 as censored.

Setting multiple failures

In multiple-record data, records after the first failure event are ignored unless you specify the
exit() option. Consider the following data:

patno t x1 x2 code
1. 1 4 21 7 14
2. 1 5 21 7 11
3. 1 7 20 7 17
4. 1 8 22 7 22
5. 1 9 22 7 22
6. 1 11 21 7 29
7. 2 ...

Perhaps code 22 represents the event of interest—say, the event “visited the doctor”. Were you to
type stset t, id(patno) failure(code == 22), the result would be as if the data contained

patno t x1 x2 code
1. 1 4 21 7 14
2. 1 5 21 7 11
3. 1 7 20 7 17
4. 1 8 22 7 22

Records after the first occurrence of the failure event are ignored. If you do not want this, you must
specify the exit() option. Probably you would want to specify exit(time .), here meaning that
subjects are not to exit the risk group until their data run out. Alternatively, perhaps code 142 means
“entered the nursing home” and, once that event happens, you no longer want them in the risk group.
Then you would code exit(code == 142); see Final exit times below.

374 stset — Declare data to be survival-time data

First entry times

Do not confuse enter() with origin(). origin() specifies when a subject first becomes at
risk. enter() specifies when a subject first comes under observation. In most datasets, becoming at
risk and coming under observation are coincident. Then it is sufficient to specify origin() alone,
although you could specify both options.

Some persons enter the data after they have been at risk of failure. Say that we are studying deaths
due to exposure to substance X and we know the date at which a person was first exposed to the
substance. We are willing to assume that persons are at risk from the date of exposure forward. A
person arrives at our door who was exposed 15 years ago. Can we add this person to our data? The
statistical issue is labeled left-truncation, and the problem is that had the person died before arriving
at our door, we would never have known about her. We can add her to our data, but we must be
careful to treat her subsequent survival time as conditional on having already survived 15 years.

Say that we are examining visits to the widget repair facility, “failure” being defined as a visit
(so failures can be repeated). The risk begins once a person buys a widget. We have a woman who
bought a widget 3 years ago, and she has no records on when she has visited the facility in the last
3 years. Can we add her to our data? Yes, as long as we are careful to treat her subsequent behavior
as already being 3 years after she first became at risk.

The jargon for this is “under observation”. All this means is that any failures would be observed.
Before being under observation, failure would not be observed.

If enter() is not specified, we assume that subjects are under observation at the time they enter
the risk group as specified by origin(), 0 if origin() is not specified, or possibly time0(). To
be precise, subject i is assumed to first enter the analysis risk pool at

timei = max
(
earliest time0() for i, enter(), origin()

)
Say that we have multiple-record data recording “came at risk” (mycode == 1), “enrolled in our study”
(mycode == 2), and “failed due to risk” (mycode == 3). We stset this dataset by typing

. stset time, id(id) origin(mycode==1) enter(mycode==2) failure(mycode==3)

The above stset correctly handles the came at risk/came under observation problem regardless of
the order of events 1, 2, and 3. For instance, if the subject comes under observation before he or she
becomes at risk, the subject will be treated as entering the analysis risk pool at the time he or she
came at risk.

Say that we have the same data in single-record format: variable riskdate documents becoming
at risk and variable enr date the date of enrollment in our study. We would stset this dataset by
typing

. stset time, origin(time riskdate) enter(time enr_date) failure(mycode==3)

For a final example, let’s return to the multiple-record way of recording our data and say that we
started enrolling people in our study on 12jan1998 but that, up until 16feb1998, we do not trust that
our records are complete (we had start-up problems). We would stset that dataset by typing

. stset time, origin(mycode==1) enter(mycode==2 time mdy(2,16,1998))
> fail(mycode==3)

enter(varname==numlist time exp) is interpreted as

max(time of earliest event in numlist, exp)

Thus persons having mycode == 2 occurring before 16feb1998 are assumed to be under observation
from 16feb1998, and those having mycode == 2 thereafter are assumed to be under observation from
the time of mycode == 2.

stset — Declare data to be survival-time data 375

Final exit times
exit() specifies the latest time under which the subject is both under observation and at risk of

the failure event. The emphasis is on latest; obviously subjects also exit the data when their data run
out.

When you type
. stset . . ., . . . failure(outcome==1/3 5) . . .

the result is as if you had typed
. stset . . ., . . . failure(outcome==1/3 5) exit(failure) . . .

which, in turn, is the same as
. stset . . ., . . . failure(outcome==1/3 5) exit(outcome==1/3 5) . . .

When are people to be removed from the analysis risk pool? When their data end, of course, and
when the event 1, 2, 3, or 5 first occurs. How are they to be removed? According to their status at
that time. If the event is 1, 2, 3, or 5 at that instant, they exit as a failure. If the event is something
else, they exit as censored.

Perhaps events 1, 2, 3, and 5 represent death due to heart disease, and that is what we are studying.
Say that outcome == 99 represents death for some other reason. Obviously, once the person dies, she
is no longer at risk of dying from heart disease, so we would want to specify

. stset . . ., . . . failure(outcome==1/3 5) exit(outcome==1/3 5 99) . . .

When we explicitly specify exit(), we must list all the reasons for which a person is to be removed
other than simply running out of data. Here it would have been a mistake to specify just exit(99)
because that would have left persons in the analysis risk pool who died for reasons 1, 2, 3, and 5.
We would have treated those people as if they were still at risk of dying.

In fact, it probably would not have mattered had we specified exit(99) because, once a person
is dead, he or she is unlikely to have any subsequent records anyway. By that logic, we did not even
have to specify exit(99) because death is death and there should be no records following it.

For other kinds of events, however, exit() becomes important. Let’s assume that the failure event
is to be diagnosed with heart disease. A person may surely have records following diagnosis, but
even so,

. stset . . ., . . . failure(outcome==22) . . .

would be adequate because, by not specifying exit(), we are accepting the default that exit()
is equivalent to failure(). Once outcome 22 occurs, subsequent records on the subject will be
ignored—they constitute the future history of the subject.

Say, however, that we wish to treat as censored persons diagnosed with kidney disease. We would
type

. stset . . ., . . . failure(outcome==22) exit(outcome==22 29) . . .

assuming that outcome = 29 is “diagnosed with kidney disease”. It is now of great importance that
we specified exit(outcome==22 29) and not just exit(outcome==29) because, had we omitted
code 22, persons would have remained in the analysis risk pool even after the failure event, that is,
being diagnosed with heart disease.

If, in addition, our data were untrustworthy after 22nov1998 (perhaps not all the data have been
entered yet), we would type

. stset . . . , . . . failure(outcome==22) exit(outcome==22 29 time
> mdy(11,22,1998)) . . .

376 stset — Declare data to be survival-time data

If we type exit(varname==numlist time exp), the exit time is taken to be

min(time of earliest event in numlist, exp)

For some analyses, repeated failures are possible. If you have repeated failure data, you specify the
exit() option and include whatever reasons, if any, that would cause the person to be removed. If
there are no such reasons and you wish to retain all observations for the person, you type

. stset . . ., . . . exit(time .) . . .

exit(time .) specifies that the maximum time a person can be in the risk pool is infinite; thus
subjects will not be removed until their data run out.

Intermediate exit and reentry times (gaps)

Gaps arise when a subject is temporarily not under observation. The statistical importance of gaps
is that, if failure is death and if the person died during such a gap, he would not have been around to be
found again. The solution to this is to remove the person from the risk pool during the observational
gap.

To determine that you have gaps, your data must provide starting and ending times for each record.
Most datasets provide only ending times, making it impossible to know that you have gaps.

You use time0() to specify the beginning times of records. time0() specifies a mechanical
aspect of interpreting the records in the dataset, namely, the beginning of the period spanned by each
record. Do not confuse time0() with origin(), which specifies when a subject became at risk, or
with enter(), which specifies when a subject first comes under observation.

time0() merely identifies the beginning of the time span covered by each record. Say that we
had two records on a subject, the first covering the span (40,49] and the second, (49,57]:

< record 1 > < record 2 >
> time

40 49 57

A time0() variable would contain
40 in record 1
49 in record 2

and not, for instance, 40 and 40. A time0() variable varies record by record for a subject.

Most datasets merely provide an end-of-record time value, timevar, which you specify by typing
stset timevar, When you have multiple records per subject and you do not specify a time0()
variable, stset assumes that each record begins where the previous one left off.

if() versus if exp

Both the if exp and if(exp) options select records for which exp is true. We strongly recommend
specifying the if() option in preference to if exp. They differ in that if exp removes data from
consideration before calculating beginning and ending times, and other quantities as well. The if()
option, on the other hand, sets the restriction after all derived variables are calculated. To appreciate
this difference, consider the following multiple-record data:

patno t x1 x2 code
3 7 20 5 14
3 9 22 5 23
3 11 21 5 29

stset — Declare data to be survival-time data 377

Consider the difference in results between typing
. stset t if x1!=22, failure(code==14)

and
. stset t, if(x1!=22) failure(code==14)

The first would remove record 2 from consideration at the outset. In constructing beginning and
ending times, stset and streset would see

patno t x1 x2 code
3 7 20 5 14
3 11 21 5 29

and would construct the result:
x1=20 x1=21
x2= 5 x2= 5

< > < >

0 7 11

In the second case, the result would be
x1=20 x1=21
x2= 5 x2= 5

< > (gap) < >

0 7 9 11

The latter result is correct and the former incorrect because x1 = 21 is not true in the interval (7, 9).

The only reason to specify if exp is to ignore errors in the data—observations that would confuse
stset and streset—without actually dropping the offending observations from the dataset.

You specify the if() option to ignore information in the data that are not themselves errors.
Specifying if() yields the same result as specifying if exp on the subsequent st commands after
the dataset has been stset.

Past and future records

Consider the hospital ward data that we have seen before:
patid addate curdate sex x1 x2 code

101 18aug1998 23aug1998 1 10 10 177
101 . 31aug1998 1 20 8 286
101 . 08sep1998 1 16 11 208
101 . 11sep1998 1 11 17 401
etc.

Say that you stset this dataset such that you selected the middle two records. Perhaps you typed
. stset curdate, id(patid) origin(time addate) enter(code==286) failure(code==208)

The first record for the subject, because it was not selected, is called a past history record. Any
earlier records that were not selected would also be called past history records.

The last record for the subject, because it was not selected, is called a future history record. Any
later records that were not selected would also be called future history records.

If you typed
. streset, past

the first three records for this subject would be selected.

378 stset — Declare data to be survival-time data

Typing

. streset, future

would select the last three records for this subject.

If you typed

. streset, past future

all four records for this subject would be selected.

If you then typed

. streset

the original two records would be selected, and things would be back just as they were before.

After typing streset, past; streset, future; or streset, past future, you would not want
to use any analysis commands. streset did some strange things, especially with the analysis-time
variable, to include the extra records. It would be the wrong sample, anyway.

You might, however, want to use certain data management commands on the data, especially those
for creating new variables.

Typically, streset, past is of greater interest than the other commands. Past records—records
prior to being at risk or excluded for other reasons—are not supposed to play a role in survival
analysis. stset makes sure they do not. But it is sometimes reasonable to ask questions about them
such as, was the subject ever on the drug cisplatin? Has the subject ever been married? Did the
subject ever have a heart attack?

To answer questions like that, you sometimes want to dig into the past. Typing streset, past
makes that easy, and once the past is set, the data can be used with stgen and st is 2. You might
well type the following:

. stset curdate, id(patid) origin(addate) enter(code==286) failure(code==208)

. streset, past

. stgen attack = ever(code==177)

. streset

. stcox attack . . .

Do not be concerned about doing something inappropriate while having the past or future set; st will
not let you:

. stset curdate, id(patid) origin(time addate) enter(code==286) failure(code==208)
(output omitted)

. streset, past
(output omitted)

. stcox x1
you last streset, past
you must type streset to restore the analysis sample
r(119);

Using streset

streset is a useful tool for gently modifying what you have previously stset. Rather than typing
the whole stset command, you can type streset followed just by what has changed.

For instance, you might type

. stset curdate, id(patid) origin(time addate) enter(code==286) failure(code==208)

stset — Declare data to be survival-time data 379

and then later want to restrict the analysis to subjects who ever have x1>20. You could retype the
whole stset command and add ever(x1>20), but it would be easier to type

. streset, ever(x1>20)

If later you decide you want to remove the restriction, type
. streset, ever(.)

That is the general rule for resetting options to the default: type ‘.’ as the option’s argument.

Be careful using streset because you can make subtle mistakes. In another analysis with another
dataset, consider the following:

. stset date, fail(code==2) origin(code==1107)

. . . .

. streset date, fail(code==9) origin(code==1422) after(code==1423)

. . . .

. streset, fail(code==2) origin(code==1107)

If, in the last step, you are trying to get back to the results of the first stset, you will fail. The last
streset is equivalent to

. stset date, fail(code==9) origin(code==1107) after(code==1423)

streset() remembers the previously specified options and uses them if you do not override them.
Both stset and streset display the current command line. Make sure that you verify that the
command is what you intended.

Performance and multiple-record-per-subject datasets

stset and streset do not drop data; they simply mark data to be excluded from consideration.
Some survival-time datasets can be large, although the relevant subsamples are small. In such cases,
you can reduce memory requirements and speed execution by dropping the irrelevant observations.

stset and streset mark the relevant observations by creating a variable named st (it is always
named this) containing 1 and 0; st = 1 marks the relevant observations and st = 0 marks the
irrelevant ones. If you type

. drop if _st==0

or equivalently
. keep if _st==1

or equivalently
. keep if _st

you will drop the irrelevant observations. All st commands produce the same results whether you do
this or not. Be careful, however, if you are planning future stsets or stresets. Observations that
are irrelevant right now might be relevant later.

One solution to this conundrum is to keep only those observations that are relevant after setting
the entire history:

. stset date, fail(code==9) origin(code==1422) after(code==1423)

. streset, past future

. keep if _st

. streset

As a final note, you may drop the irrelevant observations as marked by st = 0, but do not drop
the st variable itself. The other st commands expect to find variable st.

380 stset — Declare data to be survival-time data

Sequencing of events within t

Consider the following bit of data:

etime failtime fail
0 5 1
0 5 0
5 7 1

Note all the different events happening at time 5: the first observation fails, the second is censored,
and the third enters.

What does it mean for something to happen at time 5? In particular, is it at least potentially
possible for the second observation to have failed at time 5; that is, was it in the risk group when
the first observation failed? How about the third observation? Was it in the risk group, and could it
have potentially failed at time 5?

Stata sequences events within a time as follows:

first, at time t the failures occur
then, at time t+ 0 the censorings are removed from the risk group
finally, at time t+ 0 + 0 the new entries are added to the risk group

Thus, to answer the questions:

Could the second observation have potentially failed at time 5? Yes.

Could the third observation have potentially failed at time 5? No, because it was not yet in the
risk group.

By this logic, the following makes no sense:

etime failtime fail
5 5 1

This would mark a subject as failing before being at risk. It would make no difference if fail were
0—the subject would then be marked as being censored too soon. Either way, stset would flag this
as an error. If you had a subject who entered and immediately exited, you would code this as

etime failtime fail
4.99 5 1

Weights

stset allows you to specify fweights, pweights, and iweights.

fweights are Stata’s frequency or replication weights. Consider the data

failtime load bearings count
100 15 0 3
140 15 1 2
97 20 0 1

stset — Declare data to be survival-time data 381

and the stset command

. stset failtime [fw=count]

failure event: (assumed to fail at time=failtime)
obs. time interval: (0, failtime]
exit on or before: failure

weight: [fweight=count]

3 total observations
0 exclusions

3 physical observations remaining, equal to
6 weighted observations, representing
6 failures in single-record/single-failure data

677 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 140

This combination is equivalent to the expanded data

failtime load bearings
100 15 0
100 15 0
100 15 0
140 15 1
140 15 1
97 20 0

and the command

. stset failtime

pweights are Stata’s sampling weights—the inverse of the probability that the subject was chosen
from the population. pweights are typically integers, but they do not have to be. For instance, you
might have

time0 time died sex reps
0 300 1 0 1.50
0 250 0 1 4.50

30 147 1 0 2.25

Here reps is how many patients each observation represents in the underlying population—perhaps
when multiplied by 10. The stset command for these data is

. stset time [pw=reps], origin(time time0) failure(died)

For variance calculations, the scale of the pweights does not matter. reps in the 3 observations
shown could just as well be 3, 9, and 4.5. Nevertheless, the scale of the pweights is used when you
ask for counts. For instance, stsum would report the person-time at risk as

(300− 0) 1.5 + (250− 0) 4.5 + (147− 30) 2.25 = 1,838.25

for the 3 observations shown. stsum would count that 1.5 + 2.25 = 3.75 persons died, and so the
incidence rate for these 3 observations would be 3.75/1,838.25 = 0.0020. The incidence rate is thus
unaffected by the scale of the weights. Similarly, the coefficients and confidence intervals reported
by, for instance, streg, dist(exponential) would be unaffected. The 95% confidence interval
for the incidence rate would be [0.0003, 0.0132], regardless of the scale of the weights.

If these 3 observations were examined unweighted, the incidence rate would be 0.0030 and the
95% confidence interval would be [0.0007, 0.0120].

382 stset — Declare data to be survival-time data

Finally, stset allows you to set iweights, which are Stata’s “importance” weights, but we
recommend that you do not. iweights are provided for those who wish to create special effects
by manipulating standard formulas. The st commands treat iweights just as they would fweights,
although they do not require that the weights be integers, and push their way through conventional
variance calculations. Thus results—counts, rates, and variances—depend on the scale of these
weights.

Data warnings and errors flagged by stset

When you stset your data, stset runs various checks to verify that what you are setting makes
sense. stset refuses to set the data only if, in multiple-record, weighted data, weights are not constant
within ID. Otherwise, stset merely warns you about any inconsistencies that it identifies.

Although stset will set the data, it will mark out records that it cannot understand; for instance,

. stset curdate, origin(time addate) failure(code==402) id(patid)

id: patid
failure event: code == 402

obs. time interval: (curdate[_n-1], curdate]
exit on or before: failure

t for analysis: (time-origin)
origin: time addate

243 total observations
1 event time missing (curdate>=.) PROBABLE ERROR
4 multiple records at same instant PROBABLE ERROR

(curdate[_n-1]==curdate)

238 observations remaining, representing
40 subjects
15 failures in single failure-per-subject data

1478 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 62

You must ensure that the result, after exclusions, is correct.

The warnings stset might issue include

ignored because patid missing
event time missing PROBABLE ERROR
entry time missing PROBABLE ERROR
entry on or after exit (etime>t) PROBABLE ERROR
obs. end on or before enter()
obs. end on or before origin()
multiple records at same instant (t[n-1]==t) PROBABLE ERROR
overlapping records (t[n-1]>entry time) PROBABLE ERROR
weights invalid PROBABLE ERROR

stset sets st = 0 when observations are excluded for whatever reason. Thus observations with
any of the above problems can be found among the st = 0 observations.

stset — Declare data to be survival-time data 383

Using survival-time data in Stata

In the examples above, we have shown you how Stata expects survival-time data to be recorded. To
summarize:

• Each subject’s history is represented by 1 or more observations in the dataset.

• Each observation documents a span of time. The observation must contain when the span ends
(exit time) and may optionally contain when the span begins (entry time). If the entry time is
not recorded, it is assumed to be 0 or, in multiple-record data, the exit time of the subject’s
previous observation, if there is one. By previous , we mean that the data have already been
temporally ordered on exit times within subject. The physical order of the observations in your
dataset does not matter.

• Each observation documents an outcome associated with the exit time. Unless otherwise specified
with failure(), 0 and missing mean censored, and nonzero means failed.

• Each observation contains other variables (called covariates) that are assumed to be constant
over the span of time recorded by the observation.

Data rarely arrive in this neatly organized form. For instance, Kalbfleisch and Prentice (2002, 4–5)
present heart transplant survival data from Stanford (Crowley and Hu 1977). These data can be
converted into the correct st format in at least two ways. The first method is shown in example 11.
A second, shorter, method using the st commands is described in example 3 of [ST] stsplit.

Example 11

Here we will describe the process that uses the standard Stata commands.

. use http://www.stata-press.com/data/r14/stan2, clear
(Heart transplant data)

. describe

Contains data from http://www.stata-press.com/data/r14/stan2.dta
obs: 103 Heart transplant data

vars: 5 30 Nov 2014 11:14
size: 1,030

storage display value
variable name type format label variable label

id int %8.0g Patient Identifier
died byte %8.0g Survival Status (1=dead)
stime float %8.0g Survival Time (Days)
transplant byte %8.0g Heart Transplant
wait int %8.0g Waiting Time

Sorted by:

The data are from 103 patients selected as transplantation candidates. There is one record on each
patient, and the important variables, from an st-command perspective, are

id the patient’s ID number
transplant whether the patient received a transplant
wait when (after acceptance) the patient received the transplant
stime when (after acceptance) the patient died or was censored
died the patient’s status at stime

384 stset — Declare data to be survival-time data

To better understand, let’s examine two records from this dataset:

. list id transplant wait stime died if id==44 | id==16

id transp~t wait stime died

33. 44 0 0 40 1
71. 16 1 28 308 1

Patient 44 never did receive a new heart; he or she died 40 days after acceptance while still on the
waiting list. Patient 16 did receive a new heart—28 days after acceptance—yet died 308 days after
acceptance.

Our goal is to turn this into st data that contain the histories of each of these patients. That is, we
want records that appear as

id t1 died posttran
16 28 0 0
16 308 1 1
44 40 1 0

or, even more explicitly, as

id t0 t1 died posttran
16 0 28 0 0
16 28 308 1 1
44 0 40 1 0

The new variable, posttran, would be 0 before transplantation and 1 afterward.

Patient 44 would have one record in this new dataset recording that he or she died at time 40 and
that posttran was 0 over the entire interval.

Patient 16, however, would have two records: one documenting the duration (0, 28], during which
posttran was 0, and one documenting the duration (28, 308], during which posttran was 1.

Our goal is to take the first dataset and convert it into the second, which we can then stset. We
make the transformation by using Stata’s other data management commands. One way we could do
this is by typing

. expand 2 if transplant
(69 observations created)

. by id, sort: gen byte posttran = (_n==2)

. by id: gen t1 = stime if _n==_N
(69 missing values generated)

. by id: replace t1 = wait if _n==1 & transplant
(69 real changes made)

. by id: replace died=0 if _n==1 & transplant
(45 real changes made)

expand 2 if transplant duplicated the observations for patients who had transplant 6= 0.
Considering our two sample patients, we would now have the following data:

id transp~t wait stime died
44 0 0 40 1
16 1 28 308 1
16 1 28 308 1

We would have 1 observation for patient 44 and 2 identical observations for patient 16.

stset — Declare data to be survival-time data 385

We then by id, sort: gen posttran = (n==2), resulting in

id transp~t wait stime died posttran
16 1 28 308 1 0
16 1 28 308 1 1
44 0 0 40 1 0

This type of trickiness is discussed in [U] 13.7 Explicit subscripting. Statements such as n==2
produce values 1 (meaning true) and 0 (meaning false), so new variable posttran will contain 1 or
0 depending on whether n is or is not 2. n is the observation counter and, combined with by id:,
becomes the observation-within-ID counter. Thus we set posttran to 1 on second records and to 0
on all first records.

Finally, we produce the exit-time variable. Final exit time is just stime, and that is handled by
the command by id: gen t1 = stime if n== N. n is the observation-within-ID counter and N
is the total number of observations within id, so we just set the last observation on each patient to
stime. Now we have

id transp~t wait stime died posttran t1
16 1 28 308 1 0 .
16 1 28 308 1 1 308
44 0 0 40 1 0 40

All that is left to do is to fill in t1 with the value from wait on the interim records, meaning replace
t1=wait if it is an interim record.

There are many ways we could identify the interim records. In the output above, we did it by

. by id: replace t1 = wait if _n==1 & transplant

meaning that an interim record is a first record of a person who did receive a transplant. More easily,
but with more trickery, we could have just said

. replace t1=wait if t1>=.

because the only values of t1 left to be filled in are the missing ones. Another alternative would be

. by id: replace t1 = wait if _n==1 & _N==2

which would identify the first record of two-record pairs. There are many alternatives, but they would
all produce the same thing:

id transp~t wait stime died posttran t1
16 1 28 308 1 0 28
16 1 28 308 1 1 308
44 0 0 40 1 0 40

There is one more thing we must do, which is to reset died to contain 0 on the interim records:

. by id: replace died=0 if _n==1 & transplant

The result is

id transp~t wait stime died posttran t1
16 1 28 308 0 0 28
16 1 28 308 1 1 308
44 0 0 40 1 0 40

386 stset — Declare data to be survival-time data

We now have the desired result and are ready to stset our data:

. stset t1, failure(died) id(id)

id: id
failure event: died != 0 & died < .

obs. time interval: (t1[_n-1], t1]
exit on or before: failure

172 total observations
2 multiple records at same instant PROBABLE ERROR

(t1[_n-1]==t1)

170 observations remaining, representing
102 subjects
74 failures in single-failure-per-subject data

31933 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 1799

Well, something went wrong. Two records were excluded. There are few enough data here that we
could just list the dataset and look for the problem, but let’s pretend otherwise. We want to find the
records that, within patient, are marked as exiting at the same time:

. by id: gen problem = t1==t1[_n-1]

. sort id died

. list id if problem

id

61. 38

. list id transplant wait stime died posttran t1 if id==38

id transp~t wait stime died posttran t1

60. 38 1 5 5 0 0 5
61. 38 1 5 5 1 1 5

There is no typographical error in these data—we checked that variables transplant, wait, and
stime contain what the original source published. Those variables indicate that patient 38 waited 5
days for a heart transplant, received one on the fifth day, and then died on the fifth day, too.

That makes perfect sense, but not to Stata, which orders events within t as failures, followed by
censorings, followed by entries. Reading t1, Stata went for this literal interpretation: patient 38 was
censored at time 5 with posttran = 0; then, at time 5, patient 38 died; and then, at time 5, patient
38 reentered the data, but this time with posttran = 1. That made no sense to Stata.

Stata’s sequencing of events may surprise you, but trust us, there are good reasons for it, and
really, the ordering convention does not matter. To fix this problem, we just have to put a little time
between the implied entry at time 5 and the subsequent death:

stset — Declare data to be survival-time data 387

. replace t1 = 5.1 in 61
(1 real change made)

. list id transplant wait stime died posttran t1 if id==38

id transp~t wait stime died posttran t1

60. 38 1 5 5 0 0 5
61. 38 1 5 5 1 1 5.1

Now the data make sense both to us and to Stata: until time 5, the patient had posttran = 0; then,
at time 5, the value of posttran changed to 1; and then, at time 5.1, the patient died.

. stset t1, id(id) failure(died)

id: id
failure event: died != 0 & died < .

obs. time interval: (t1[_n-1], t1]
exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

31938.1 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 1799

This dataset is now ready for use with all the other st commands. Here is an illustration:

. use http://www.stata-press.com/data/r14/stan3, clear
(Heart transplant data)

. stset, noshow

. stsum, by(posttran)

incidence no. of Survival time
posttran time at risk rate subjects 25% 50% 75%

0 5936 .0050539 103 36 149 340
1 26002.1 .0017306 69 39 96 979

total 31938.1 .0023483 103 36 100 979

388 stset — Declare data to be survival-time data

. stcox age posttran surgery year

Iteration 0: log likelihood = -298.31514
Iteration 1: log likelihood = -289.7344
Iteration 2: log likelihood = -289.53498
Iteration 3: log likelihood = -289.53378
Iteration 4: log likelihood = -289.53378
Refining estimates:
Iteration 0: log likelihood = -289.53378

Cox regression -- Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31938.1

LR chi2(4) = 17.56
Log likelihood = -289.53378 Prob > chi2 = 0.0015

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.030224 .0143201 2.14 0.032 1.002536 1.058677
posttran .9787243 .3032597 -0.07 0.945 .5332291 1.796416
surgery .3738278 .163204 -2.25 0.024 .1588759 .8796

year .8873107 .059808 -1.77 0.076 .7775022 1.012628

Video example

Learn how to set up your data for survival analysis

References
Cleves, M. A. 1999. ssa13: Analysis of multiple failure-time data with Stata. Stata Technical Bulletin 49: 30–39.

Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 338–349. College Station, TX: Stata Press.

Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3
ed. College Station, TX: Stata Press.

Crowley, J., and M. Hu. 1977. Covariance analysis of heart transplant survival data. Journal of the American Statistical
Association 72: 27–36.

Hills, M., and B. L. De Stavola. 2012. A Short Introduction to Stata for Biostatistics: Updated to Stata 12. London:
Timberlake.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

Also see
[ST] snapspan — Convert snapshot data to time-span data

[ST] stdescribe — Describe survival-time data

https://www.youtube.com/watch?v=I53Ji4lXoyg
http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata-press.com/books/survival-analysis-stata-introduction/

Title

stsplit — Split and join time-span records

Description Quick start Menu Syntax
Options for stsplit Option for stjoin Remarks and examples Acknowledgments
References Also see

Description

stsplit with the at(numlist) or every(#) option splits episodes into two or more episodes at
the implied time points since being at risk or after a time point specified by after(). Each resulting
record contains the follow-up on one subject through one time band. Expansion on multiple time
scales may be obtained by repeatedly using stsplit. newvar specifies the name of the variable to
be created containing the observation’s category. The new variable records the interval to which each
new observation belongs and is bottom coded.

stsplit, at(failures) performs episode splitting at the failure times (per stratum).

stjoin performs the reverse operation, namely, joining episodes back together when such can be
done without losing information.

Quick start
Split episodes in stset data at analysis times 5, 10, and 15 and create new time category identifier

timecat

stsplit timecat, at(5 10 15)

Split episodes at the value in startvar

stsplit timecat, at(0) after(time=startvar)

Split data at 30, 40, and 50 time units after the value in startvar

stsplit timecat, at(30 40 50) after(time=startvar)

Split data every 10 time units after startvar
stsplit timecat, every(10) after(time=startvar)

Split data at failure times
stsplit, at(failures)

As above, and create risk-set identifier variable riskvar

stsplit, at(failures) riskset(riskvar)

Menu
stsplit

Statistics > Survival analysis > Setup and utilities > Split time-span records

stjoin

Statistics > Survival analysis > Setup and utilities > Join time-span records

389

390 stsplit — Split and join time-span records

Syntax

Split at designated times

stsplit newvar
[

if
]
,
{
at(numlist) | every(#)

} [
stsplitDT options

]
Split at failure times

stsplit
[

if
]
, at(failures)

[
stsplitFT options

]
Join episodes

stjoin
[
, censored(numlist)

]
stsplitDT options Description

Main
∗at(numlist) split records at specified analysis times
∗every(#) split records when analysis time is a multiple of #
after(spec) use time since spec for at() or every() rather than time since

onset of risk; see Options
trim exclude observations outside of range

nopreserve do not save original data; programmer’s option

∗Either at(numlist) or every(#) is required with stsplit at designated times.

stsplitFT options Description

Main
∗at(failures) split at observed failure times
strata(varlist) restrict splitting to failures within stratum defined by varlist
riskset(newvar) create a risk-set ID variable named newvar

nopreserve do not save original data; programmer’s option

∗at(failures) is required with stsplit at failure times.

You must stset your dataset using the id() option before using stsplit and stjoin; see [ST] stset.
nopreserve does not appear in the dialog box.

Options for stsplit

� � �
Main �

at(numlist) or every(#) is required in syntax one; at(failures) is required for syntax two.
These options specify the analysis times at which the records are to be split.

at(5(5)20) splits records at t = 5, t = 10, t = 15, and t = 20.

stsplit — Split and join time-span records 391

If at(
[
. . .
]
max) is specified, max is replaced by a suitably large value. For instance, to split

records every five analysis-time units from time zero to the largest follow-up time in our data, we
could find out what the largest time value is by typing summarize t and then explicitly typing
it into the at() option, or we could just specify at(0(5)max).

every(#) is a shorthand for at(#(#)max); that is, episodes are split at each positive multiple of
#.

after(spec) specifies the reference time for at() or every(). Syntax one can be thought of as
corresponding to after(time of onset of risk), although you cannot really type this. You could
type, however, after(time=birthdate) or after(time=marrydate) or after(marrydate).

spec has syntax [
{time | t | t} =

]
{exp | min(exp) | asis(exp)}

where

time specifies that the expression be evaluated in the same time units as timevar in stset timevar,
. . . . This is the default.

t and t specify that the expression be evaluated in units of analysis time. t and t are synonyms;
it makes no difference whether you specify one or the other.

exp specifies the reference time. For multiepisode data, exp should be constant within subject ID.

min(exp) specifies that for multiepisode data, the minimum of exp be taken within ID.

asis(exp) specifies that for multiepisode data, exp be allowed to vary within ID.

trim specifies that observations with values less than the minimum or greater than the maximum
value listed in at() be excluded from subsequent analysis. Such observations are not dropped
from the data; trim merely sets their value of variable st to 0 so that they will not be used, yet
they can still be retrieved the next time the dataset is stset.

strata(varlist) specifies up to five strata variables. Observations with equal values of the variables
are assumed to be in the same stratum. strata() restricts episode splitting to failures that occur
within the stratum, and memory requirements are reduced when strata are specified.

riskset(newvar) specifies the name for a new variable recording the unique risk set in which an
episode occurs, and missing otherwise.

The following option is available with stsplit but is not shown in the dialog box:

nopreserve is intended for use by programmers. It speeds the transformation by not saving the
original data, which can be restored should things go wrong or if you press Break. Programmers
often specify this option when they have already preserved the original data. nopreserve does
not affect the transformation.

Option for stjoin

censored(numlist) specifies values of the failure variable, failvar, from
stset . . ., failure(failvar =. . .) that indicate “no event” (censoring).

If you are using stjoin to rejoin records after stsplit, you do not need to specify censored().
Just do not forget to drop the variable created by stsplit before typing stjoin. See example 4
below.

Neither do you need to specify censored() if, when you stset your dataset, you specified
failure(failvar) and not failure(failvar =. . .). Then stjoin knows that failvar = 0 and
failvar = . (missing) correspond to no event. Two records can be joined if they are contiguous

392 stsplit — Split and join time-span records

and record the same data and the first record has failvar = 0 or failvar = ., meaning no event at
that time.

You may need to specify censored(), and you probably do if, when you stset the dataset, you
specified failure(failvar =. . .). If stjoin is to join records, it needs to know what events do
not count and can be discarded. If the only such event is failvar = ., you do not need to specify
censored().

Remarks and examples

Remarks are presented under the following headings:

What stsplit does and why
Using stsplit to split at designated times
Time versus analysis time
Splitting data on recorded ages
Using stsplit to split at failure times

What stsplit does and why

stsplit splits records into two or more records on the basis of analysis time or on a variable
that depends on analysis time, such as age. stsplit takes data like

id _t0 _t x1 x2 _d
1 0 18 12 11 1

and produces

id _t0 _t x1 x2 _d tcat
1 0 5 12 11 0 0
1 5 10 12 11 0 5
1 10 18 12 11 1 10

or

id _t0 _t x1 x2 _d agecat
1 0 7 12 11 0 30
1 7 17 12 11 0 40
1 17 18 12 11 1 50

The above alternatives record the same underlying data: subject 1 had x1 = 12 and x2 = 11 during
0 < t ≤ 18, and at t = 18, the subject failed.

The difference between the two alternatives is that the first breaks out the analysis times 0–5,
5–10, and 10–20 (although subject 1 failed before t = 20). The second breaks out age 30–40, 40–50,
and 50–60. You cannot tell from what is presented above, but at t = 0, subject 1 was 33 years old.

In our example, that the subject started with one record is not important. The original data on the
subject might have been

id _t0 _t x1 x2 _d
1 0 14 12 11 0
1 14 18 12 9 1

and then we would have obtained

id _t0 _t x1 x2 _d tcat
1 0 5 12 11 0 0
1 5 10 12 11 0 5
1 10 14 12 11 0 10
1 14 18 12 9 1 10

stsplit — Split and join time-span records 393

or

id _t0 _t x1 x2 _d agecat
1 0 7 12 11 0 30
1 7 14 12 11 0 40
1 14 17 12 9 0 40
1 17 18 12 9 1 50

Also we could just as easily have produced records with analysis time or age recorded in single-year
categories. That is, we could start with

id _t0 _t x1 x2 _d
1 0 14 12 11 0
1 14 18 12 9 1

and produce

id _t0 _t x1 x2 _d tcat
1 0 1 12 11 0 0
1 1 2 12 11 0 1
1 2 3 12 11 0 2
. . .

or

id _t0 _t x1 x2 _d agecat
1 0 1 12 11 0 30
1 1 2 12 11 0 31
1 2 3 12 11 0 32
. . .

Moreover, we can even do this splitting on more than one variable. Let’s go back and start with

id _t0 _t x1 x2 _d
1 0 18 12 11 1

Let’s split it into the analysis-time intervals 0–5, 5–10, and 10–20, and let’s split it into 10-year age
intervals 30–40, 40–50, and 50–60. The result would be

id _t0 _t x1 x2 _d tcat agecat
1 0 5 12 11 0 0 30
1 5 7 12 11 0 5 30
1 7 10 12 11 0 5 40
1 10 17 12 11 0 10 40
1 17 18 12 11 1 10 50

Why would we want to do any of this?

We might want to split on a time-dependent variable, such as age, if we want to estimate a Cox
proportional hazards model and include current age among the regressors (although we could instead
use stcox’s tvc() option) or if we want to make tables by age groups (see [ST] strate).

Using stsplit to split at designated times

stsplit’s syntax to split at designated times is, ignoring other options,

stsplit newvar
[

if
]
, at(numlist)

stsplit newvar
[

if
]
, at(numlist) after(spec)

394 stsplit — Split and join time-span records

at() specifies the analysis times at which records are to be split. Typing at(5 10 15) splits records
at the indicated analysis times and separates records into the four intervals 0–5, 5–10, 10–15, and
15+.

In the first syntax, the splitting is done on analysis time, t. In the second syntax, the splitting is
done on 5, 10, and 15 analysis-time units after the time given by after(spec).

In either case, stsplit also creates newvar containing the interval to which each observation
belongs. Here newvar would contain 0, 5, 10, and 15; it would contain 0 if the observation occurred
in the interval 0–5, 5 if the observation occurred in the interval 5–10, and so on. To be precise,

Precise newvar
Category meaning value

0–5 (−∞, 5] 0
5–10 (5, 10] 5
10–15 (10, 15] 10

15+ (15, ∞) 15

If any of the at() numbers are negative (which would be allowed only by specifying the after()
option and would be unusual), the first category is labeled one less than the minimum value specified
by at().

Consider the data
id yr0 yr1 yrborn x1 event
1 1990 1995 1960 5 52
2 1993 1997 1964 3 47

In these data, subjects became at risk in yr0. The failure event of interest is event = 47, so we
stset our dataset by typing

. stset yr1, id(id) origin(time yr0) failure(event==47)
(output omitted)

and that results in
id _t0 _t yr0 yr1 yrborn x1 event _d
1 0 5 1990 1995 1960 5 52 0
2 0 4 1993 1997 1964 3 47 1

In the jargon of st, variables t0 and t record the span of each record in analysis-time (t) units.
Variables yr0 and yr1 also record the time span, but in time units. Variable d records 1 for failure
and 0 otherwise.

Typing stsplit cat, at(2 4 6 8) would split the records on the basis of analysis time:
. stsplit cat, at(2 4 6 8)
(3 observations (episodes) created)

. order id _t0 _t yr0 yr1 yrborn x1 event _d cat

. list id-cat

id _t0 _t yr0 yr1 yrborn x1 event _d cat

1. 1 0 2 1990 1992 1960 5 . 0 0
2. 1 2 4 1990 1994 1960 5 . 0 2
3. 1 4 5 1990 1995 1960 5 52 0 4
4. 2 0 2 1993 1995 1964 3 . 0 0
5. 2 2 4 1993 1997 1964 3 47 1 2

stsplit — Split and join time-span records 395

The first record, which represented the analysis-time span (0, 5], was split into three records: (0, 2],
(2, 4], and (4, 5]. The yrborn and x1 values from the single record were duplicated in (0, 2], (2, 4],
and (4, 5]. The original event variable was changed to missing at t = 2 and t = 4 because we
do not know the value of event; all we know is that event is 52 at t = 5. The d variable was
correspondingly set to 0 for t = 2 and t = 4 because we do know, at least, that the subject did not
fail.

stsplit also keeps your original time variables up to date in case you want to streset or
re-stset your dataset. yr1 was updated, too.

Now let’s go back to our original dataset after we stset it but before we split it,

id _t0 _t yr0 yr1 yrborn x1 event _d
1 0 5 1990 1995 1960 5 52 0
2 0 4 1993 1997 1964 3 47 1

and consider splitting on age. In 1990, subject 1 is age 1990 − yrborn = 1990 − 1960 = 30, and
subject 2 is 29. If we type

. stsplit acat, at(30 32 34) after(time=yrborn)

we will split the data according to

age <= 30 (called acat=0)
30 < age <= 32 (called acat=30)
32 < age <= 34 (called acat=32)
34 < age (called acat=34)

The result will be

id _t0 _t yr0 yr1 yrborn x1 event _d acat
1 0 2 1990 1992 1960 5 . 0 30
1 2 4 1990 1994 1960 5 . 0 32
1 4 5 1990 1995 1960 5 52 0 34
2 0 1 1993 1994 1964 3 . 0 0
2 1 3 1993 1996 1964 3 . 0 30
2 3 4 1993 1997 1964 3 47 1 32

The original record on subject 1 corresponding to (0, 5] was split into (0, 2], (2, 4], and (4, 5]
because those are the t values at which age becomes 32 and 34.

You can stsplit the data more than once. Now having these data, if we typed

. stsplit cat, at(2 4 6 8)

the result would be

id _t0 _t yr0 yr1 yrborn x1 event _d acat cat
1 0 2 1990 1992 1960 5 . 0 30 0
1 2 4 1990 1994 1960 5 . 0 32 2
1 4 5 1990 1995 1960 5 52 0 34 4
2 0 1 1993 1994 1964 3 . 0 0 0
2 1 2 1993 1995 1964 3 . 0 30 0
2 2 3 1993 1996 1964 3 . 0 30 2
2 3 4 1993 1997 1964 3 47 1 32 2

Whether we typed

. stsplit acat, at(30 32 34) after(time=yrborn)

. stsplit cat, at(2 4 6 8)

396 stsplit — Split and join time-span records

or

. stsplit cat, at(2 4 6 8)

. stsplit acat, at(30 32 34) after(time=yrborn)

would make no difference.

Time versus analysis time

Be careful using the after() option if, when you stset your dataset, you specified stset’s
scale() option. We say be careful, but actually we mean be appreciative, because stsplit will do
just what you would expect if you did not think too hard.

When you split a record on a time-dependent variable, at() is still specified in analysis-time units,
meaning units of time/scale().

For instance, if your original data recorded time as Stata dates, that is, number of days since 1960,

id date0 date1 birthdate x1 event
1 14apr1993 27mar1995 12jul1959 5 52
. . .

and you previously stset your dataset by typing

. stset date1, id(id) origin(time date0) scale(365.25) . . .

and you now wanted to split on the age implied by birthdate, you would specify the split points
in years since birth:

. stsplit agecat, at(20(5)60) after(time=birth)

at(20(5)60) means to split the records at the ages, measured in years, of 20, 25, . . . , 60.

When you stset your dataset, you basically told st how you recorded times (you recorded them
as dates) and how to map such times (dates) into analysis time. That was implied by what you typed,
and all of st remembers that. Typing

. stsplit agecat, at(20(5)60) after(time=birth)

tells stsplit to split the data on 20, 25, . . . , 60 analysis-time units after birthdate for each
subject.

Splitting data on recorded ages

Recorded ages can sometimes be tricky. Consider the data

id yr0 yr1 age x1 event
1 1980 1996 30 5 52

. . .

When was age = 30 recorded—1980 or 1996? Put aside that question because things are about to
get worse. Say that you stset this dataset so that yr0 is the origin(),

id _t0 _t yr0 yr1 age x1 event
1 0 16 1980 1996 30 5 52

. . .

stsplit — Split and join time-span records 397

and then split on analysis time by typing stsplit cat, at(5(5)20). The result would be

id _t0 _t yr0 yr1 age x1 event
1 0 5 1980 1985 30 5 .
1 5 10 1980 1990 30 5 .
1 10 15 1980 1995 30 5 .
1 15 16 1980 1996 30 5 52

Regardless of the answer to the question on when age was measured, age is most certainly not 30
in the newly created records, although you might argue that age at baseline was 30 and that is what
you wanted, anyway.

The only truly safe way to deal with ages is to convert them back to birthdates at the outset. Here
we would, early on, type

. generate bdate = yr1 - age (if age was measured at yr1)

or

. generate bdate = yr0 - age (if age was measured at yr0)

In fact, stsplit tries to protect you from making age errors. Suppose that you did not do as we
just recommended. Say that age was measured at yr1, and you typed, knowing that stsplit wants
a date,

. stsplit acat, at(20(5)50) after(time= yr1-age)

on these already stsplit data. stsplit will issue the error message “after() should be constant
within id”. To use the earliest date, you need to type

. stsplit acat, at(20(5)50) after(time= min(yr1-age))

Nevertheless, be aware that when you stsplit data, if you have recorded ages in your data, and if
the records were not already split to control for the range of those ages, then age values, just like all
the other variables, are carried forward and no longer reflect the age of the newly created record.

Example 1: Splitting on age

Consider the data from a heart disease and diet survey. The data arose from a study described
more fully in Morris, Marr, and Clayton (1977) and analyzed in Clayton and Hills (1993). (Their
results differ slightly from ours because the dataset has been updated.)

398 stsplit — Split and join time-span records

. use http://www.stata-press.com/data/r14/diet
(Diet data with dates)

. describe

Contains data from http://www.stata-press.com/data/r14/diet.dta
obs: 337 Diet data with dates

vars: 11 1 May 2014 19:01
size: 8,088

storage display value
variable name type format label variable label

id int %9.0g Subject identity number
fail byte %8.0g Outcome (CHD = 1 3 13)
job byte %8.0g Occupation
month byte %8.0g month of survey
energy float %9.0g Total energy (1000kcals/day)
height float %9.0g Height (cm)
weight float %9.0g Weight (kg)
hienergy byte %9.0g Indicator for high energy
doe int %td Date of entry
dox int %td Date of exit
dob int %td Date of birth

Sorted by: id

In this dataset, the outcome variable, fail, has been coded as 0, 1, 3, 5, 12, 13, 14, and 15. Codes
1, 3, and 13 indicated coronary heart disease (CHD), other nonzero values code other events such as
cancer, and 0 is used to mean “no event” at the end of the study.

The variable hienergy is coded 1 if the total energy consumption is more than 2.75 Mcal and 0
otherwise.

We would like to expand the data, using age as the time scale with 10-year age bands. We do this
by first stsetting the dataset, specifying the date of birth as the origin.

. stset dox, failure(fail) origin(time dob) enter(time doe) scale(365.25) id(id)

id: id
failure event: fail != 0 & fail < .

obs. time interval: (dox[_n-1], dox]
enter on or after: time doe
exit on or before: failure

t for analysis: (time-origin)/365.25
origin: time dob

337 total observations
0 exclusions

337 observations remaining, representing
337 subjects
80 failures in single-failure-per-subject data

4603.669 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 30.07529
last observed exit t = 69.99863

The origin is set to date of birth, making time-since-birth analysis time, and the scale is set to 365.25,
so that time since birth is measured in years.

stsplit — Split and join time-span records 399

Let’s list a few records and verify that the analysis-time variables t0 and t are indeed recorded
as we expect:

. list id dob doe dox fail _t0 _t if id==1 | id==34

id dob doe dox fail _t0 _t

1. 1 04jan1915 16aug1964 01dec1976 0 49.615332 61.908282
34. 34 12jun1899 16apr1959 31dec1966 3 59.841205 67.550992

We see that patient 1 was 49.6 years old at time of entry into our study and left at age 61.9. Patient
34 entered the study at age 59.8 and exited the study with CHD at age 67.6.

Now we can split the data by age:

. stsplit ageband, at(40(10)70)
(418 observations (episodes) created)

stsplit added 418 observations to the dataset in memory and generated a new variable, ageband,
which identifies each observation’s age group.

. list id _t0 _t ageband fail height if id==1 | id==34

id _t0 _t ageband fail height

1. 1 49.615332 50 40 . 175.387
2. 1 50 60 50 . 175.387
3. 1 60 61.908282 60 0 175.387

61. 34 59.841205 60 50 . 177.8
62. 34 60 67.550992 60 3 177.8

The single record for the subject with id = 1 has expanded to three records. The first refers to the
age band 40–49, coded 40, and the subject spends t − t0 = 0.384668 years in this band. The
second refers to the age band 50–59, coded 50, and the subject spends 10 years in this band, and
so on. The follow-up in each of the three bands is censored (fail = .). The single record for the
subject with id = 34 is expanded to two age bands; the follow-up for the first band was censored
(fail = .), and the follow-up for the second band ended in CHD (fail = 3).

The values for variables that do not change with time, such as height, are simply repeated in
the new records. This can lead to much larger datasets after expansion. Dropping unneeded variables
before using split may be necessary.

Example 2: Splitting on age and time in study

To use stsplit to expand the records on two time scales simultaneously, such as age and time in
study, we can first expand on the age scale as described in example 1, and then on the time-in-study
scale with the command

400 stsplit — Split and join time-span records

. stsplit timeband, at(0(5)25) after(time=doe)
(767 observations (episodes) created)

. list id _t0 _t ageband fail if id==1 | id==34

id _t0 _t ageband fail

1. 1 49.615332 50 40 .
2. 1 50 54.615332 50 .
3. 1 54.615332 59.615332 50 .
4. 1 59.615332 60 50 .
5. 1 60 61.908282 60 0

111. 34 59.841205 60 50 .
112. 34 60 64.841205 60 .
113. 34 64.841205 67.550992 60 3

By splitting the data by using two time scales, we partitioned the data into time cells corresponding
to a Lexis diagram as described, for example, in Clayton and Hills (1993). Also see Keiding (1998)
for an overview of Lexis diagrams. Each new observation created by splitting the data records the
time that the individual spent in a Lexis cell. We can obtain the time spent in the cell by calculating
the difference t− t0. For example, the subject with id = 1 spent 0.384668 years (50−49.615332)
in the cell corresponding to age 40–49 and study time 0–5, and 4.615332 years (54.615332− 50) in
the cell for age 50–59 and study time 0–5.

We can also do these expansions in reverse order, that is, split first on study time and then on
age.

Example 3: Explanatory variables that change with time

In the previous examples, time, in the form of age or time in study, is the explanatory variable to
be studied or controlled for, but in some studies other explanatory variables also vary with time. The
stsplit command can sometimes be used to expand the records so that in each new record such an
explanatory variable is constant over time. For example, in the Stanford heart data (see [ST] stset), we
would like to split the data and generate the explanatory variable posttran, which takes the value
0 before transplantation and 1 thereafter. The follow-up must therefore be divided into time before
transplantation and time after.

We first generate for each observation an entry time and an exit time that preserve the correct
follow-up time in such a way that the time of transplants is the same for all individuals. By summarizing
wait, the time to transplant, we obtain its maximum value of 310. By selecting a value greater than
this maximum, say, 320, we now generate two new variables:

. use http://www.stata-press.com/data/r14/stanford, clear
(Heart transplant data)

. generate enter = 320 - wait

. generate exit = 320 + stime

We have created a new artificial time scale where all transplants are coded as being performed at
time 320. By defining enter and exit in this manner, we maintain the correct total follow-up time
for each patient. We now stset and stsplit the data:

stsplit — Split and join time-span records 401

. stset exit, enter(time enter) failure(died) id(id)

id: id
failure event: died != 0 & died < .

obs. time interval: (exit[_n-1], exit]
enter on or after: time enter
exit on or before: failure

103 total observations
0 exclusions

103 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

34589.1 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 10
last observed exit t = 2119

. stsplit posttran, at(0,320)
(69 observations (episodes) created)

. replace posttran=0 if transplant==0
(34 real changes made)

. replace posttran=1 if posttran==320
(69 real changes made)

We replaced posttran in the last command so that it is now a 0/1 indicator variable. We can now
generate our follow-up time, t1, as the difference between our analysis-time variables, list the
data, and stset the dataset.

. generate t1 =_t - _t0

. list id enter exit _t0 _t posttran if id==16 | id==44

id enter exit _t0 _t posttran

41. 44 320 360 320 360 0
110. 16 292 320 292 320 0
111. 16 292 628 320 628 1

. stset t1, failure(died) id(id)

id: id
failure event: died != 0 & died < .

obs. time interval: (t1[_n-1], t1]
exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

31938.1 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 1799

402 stsplit — Split and join time-span records

Using stsplit to split at failure times

To split data at failure times, you would use stsplit with the following syntax, ignoring other
options:

stsplit
[

if
]
, at(failures)

This form of episode splitting is useful for Cox regression with time-varying covariates. Splitting at
the failure times is useful because of a property of the maximum partial-likelihood estimator for a
Cox regression model: the likelihood is evaluated only at the times at which failures occur in the
data, and the computation depends only on the risk pools at those failure times. Changes in covariates
between failure times do not affect estimates for a Cox regression model. Thus, to fit a model with
time-varying covariates, all you have to do is define the values of these time-varying covariates at all
failure times at which a subject was at risk (Collett 2003, chap. 8). After splitting at failure times, you
define time-varying covariates by referring to the system variable t (analysis time) or the timevar
variable used to stset the data.

After splitting at failure times, all st commands still work fine and produce the same results as
before splitting. To fit parametric models with time-varying covariates, it does not suffice to specify
covariates at failure times. Stata can fit “piecewise constant” models by manipulating data using
stsplit, {at() | every()}.

Example 4: Splitting on failure times to test the proportional-hazards assumption

Collett (2003, 187–190) presents data on 26 ovarian cancer patients who underwent two different
chemotherapy protocols after a surgical intervention. Here are a few of the observations:

. use http://www.stata-press.com/data/r14/ocancer, clear

. list patient time cens treat age rdisea in 1/6, separator(0)

patient time cens treat age rdisea

1. 1 156 1 1 66 2
2. 2 1040 0 1 38 2
3. 3 59 1 1 72 2
4. 4 421 0 2 53 2
5. 5 329 1 1 43 2
6. 6 769 0 2 59 2

The treat variable indicates the chemotherapy protocol administered, age records the age of the
patient at the beginning of the treatment, and rdisea records each patient’s residual disease after
surgery. After stsetting this dataset, we fit a Cox proportional-hazards regression model on age and
treat to ascertain the effect of treatment, controlling for age.

stsplit — Split and join time-span records 403

. stset time, failure(cens) id(patient)

id: patient
failure event: cens != 0 & cens < .

obs. time interval: (time[_n-1], time]
exit on or before: failure

26 total observations
0 exclusions

26 observations remaining, representing
26 subjects
12 failures in single-failure-per-subject data

15588 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 1227

. stcox age treat, nolog nohr

failure _d: cens
analysis time _t: time

id: patient

Cox regression -- no ties

No. of subjects = 26 Number of obs = 26
No. of failures = 12
Time at risk = 15588

LR chi2(2) = 15.82
Log likelihood = -27.073767 Prob > chi2 = 0.0004

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .1465698 .0458537 3.20 0.001 .0566982 .2364415
treat -.7959324 .6329411 -1.26 0.209 -2.036474 .4446094

One way to test the proportional-hazards assumption is to include in the model a term for the
interaction between age and time at risk, which is a continuously varying covariate. This can be easily
done by first splitting the data at the failure times and then generating the interaction term.

. stsplit, at(failures)
(12 failure times)
(218 observations (episodes) created)

. generate tage = age * _t

. stcox age treat tage, nolog nohr

failure _d: cens
analysis time _t: time

id: patient

Cox regression -- no ties

No. of subjects = 26 Number of obs = 244
No. of failures = 12
Time at risk = 15588

LR chi2(3) = 16.36
Log likelihood = -26.806607 Prob > chi2 = 0.0010

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .2156499 .1126093 1.92 0.055 -.0050602 .43636
treat -.6635945 .6695492 -0.99 0.322 -1.975887 .6486978
tage -.0002031 .0002832 -0.72 0.473 -.0007582 .000352

404 stsplit — Split and join time-span records

Other time-varying interactions of age and time at risk could be generated. For instance,

. generate lntage = age * ln(_t)

. generate dage = age * (_t >= 500)

Although in most analyses in which we include interactions we also include main effects, if we
include in a Cox regression a multiplicative interaction between analysis time (or any transformation)
and some covariate, we should not include the analysis time as a covariate in stcox. The analysis
time is constant within each risk set, and hence, its effect is not identified.

Technical note

If our interest really were just in performing this test of the proportional-hazards assumption, we
would not have had to use stsplit at all. We could have just typed

. stcox age treat, tvc(age)

to have fit a model including t*age, and if we wanted instead to include ln(t)*age or age*t ≥ 500,
we could have typed

. stcox age treat, tvc(age) texp(ln(_t))

. cstoc age treat, tvc(age) texp(_t >= 500)

Still, it is worth understanding how stsplit could be used to obtain the same results for instances
when stcox’s tvc() and texp() options are not rich enough to handle the desired specification.

Assume that we want to control for rdisea as a stratification variable. If the data are already
split at all failure times, we can proceed with

. stcox age treat tage, strata(rdisea)

If the data are not yet split, and memory is scarce, then we could just split the data at the failure
times within the respective stratum. That is, with the original data in memory, we could type

. stset time, failure(cens) id(patient)

. stsplit, at(failures) strata(rdisea)

. generate tage = age * _t

. stcox treat age tage, strata(rdisea)

This would save memory by reducing the size of the split dataset.

Technical note
Of course, the above model could also be obtained by typing

. stcox age treat, tvc(age) strata(rdisea)

without splitting the data.

stsplit — Split and join time-span records 405

Example 5: Cox regression versus conditional logistic regression

Cox regression with the “exact partial” method of handling ties is tightly related to conditional
logistic regression. In fact, we can perform Cox regression via clogit, as illustrated in the following
example using Stata’s cancer data. First, let’s fit the Cox model.

. use http://www.stata-press.com/data/r14/cancer, clear
(Patient Survival in Drug Trial)

. generate id =_n

. stset studytim, failure(died) id(id)

id: id
failure event: died != 0 & died < .

obs. time interval: (studytime[_n-1], studytime]
exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
48 subjects
31 failures in single-failure-per-subject data

744 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 39

. stcox age drug, nolog nohr exactp

failure _d: died
analysis time _t: studytime

id: id

Cox regression -- exact partial likelihood

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 38.13
Log likelihood = -73.10556 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .1169906 .0374955 3.12 0.002 .0435008 .1904805
drug -1.664873 .3437487 -4.84 0.000 -2.338608 -.9911376

We will now perform the same analysis by using clogit. To do this, we first split the data at
failure times, specifying the riskset() option so that a risk set identifier is added to each observation.
We then fit the conditional logistic regression, using d as the outcome variable and the risk set
identifier as the grouping variable.

406 stsplit — Split and join time-span records

. stsplit, at(failures) riskset(RS)
(21 failure times)
(534 observations (episodes) created)

. clogit _d age drug, group(RS) nolog
note: multiple positive outcomes within groups encountered.

Conditional (fixed-effects) logistic regression

Number of obs = 573
LR chi2(2) = 38.13
Prob > chi2 = 0.0000

Log likelihood = -73.10556 Pseudo R2 = 0.2069

_d Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .1169906 .0374955 3.12 0.002 .0435008 .1904805
drug -1.664873 .3437487 -4.84 0.000 -2.338608 -.9911376

Example 6: Joining data that have been split with stsplit

Let’s return to the first example. We split the diet data into age bands, using the following
commands:

. use http://www.stata-press.com/data/r14/diet, clear
(Diet data with dates)

. stset dox, failure(fail) origin(time dob) enter(time doe) scale(365.25) id(id)
(output omitted)

. stsplit ageband, at(40(10)70)
(418 observations (episodes) created)

We can rejoin the data by typing stjoin:

. stjoin
(option censored(0) assumed)
(0 obs. eliminated)

Nothing happened! stjoin will combine records that are contiguous and record the same data. Here,
when we split the data, stsplit created the new variable ageband, and that variable takes on
different values across the split observations. Remember to drop the variable that stsplit creates:

. drop ageband

. stjoin
(option censored(0) assumed)
(418 obs. eliminated)

� �
Wilhelm Lexis (1837–1914) was born near Aachen in Germany. He studied law, mathematics,
and science at the University of Bonn and developed interests in the social sciences during a
period in Paris. Lexis held posts at universities in Strassburg (now Strasbourg, in France), Dorpat
(now Tartu, in Estonia), Freiburg, Breslau (now Wroclaw, in Poland), and Göttingen. During
this peripatetic career, he carried out original work in statistics on the analysis of dispersion,
foreshadowing the later development of chi-squared and analysis of variance.� �

stsplit — Split and join time-span records 407

Acknowledgments
stsplit and stjoin are extensions of lexis by David Clayton of the Cambridge Institute

for Medical Research and Michael Hills (retired) of the London School of Hygiene and Tropical
Medicine (Clayton and Hills 1995). The original stsplit and stjoin commands were written by
Jeroen Weesie of the Department of Sociology at Utrecht University, The Netherlands (Weesie 1998a,
1998b), as was the revised stsplit command.

References
Clayton, D. G., and M. Hills. 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.

. 1995. ssa7: Analysis of follow-up studies. Stata Technical Bulletin 27: 19–26. Reprinted in Stata Technical
Bulletin Reprints, vol. 5, pp. 219–227. College Station, TX: Stata Press.

Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3
ed. College Station, TX: Stata Press.

Collett, D. 2003. Modelling Survival Data in Medical Research. 2nd ed. London: Chapman & Hall/CRC.

Hertz, S. 2001. Wilhelm Lexis. In Statisticians of the Centuries, ed. C. C. Heyde and E. Seneta, 204–207. New York:
Springer.

Keiding, N. 1998. Lexis diagrams. In Encyclopedia of Biostatistics, ed. P. Armitage and T. Colton, 2844–2850. New
York: Wiley.

Lexis, W. H. 1875. Einleitung in die Theorie der Bevölkerungsstatistik. Strassburg: Trübner.

Mander, A. P. 1998. gr31: Graphical representation of follow-up by time bands. Stata Technical Bulletin 45: 14–17.
Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 50–53. College Station, TX: Stata Press.

Morris, J. N., J. W. Marr, and D. G. Clayton. 1977. Diet and heart: A postscript. British Medical Journal 19:
1307–1314.

Weesie, J. 1998a. ssa11: Survival analysis with time-varying covariates. Stata Technical Bulletin 41: 25–43. Reprinted
in Stata Technical Bulletin Reprints, vol. 7, pp. 268–292. College Station, TX: Stata Press.

. 1998b. dm62: Joining episodes in multi-record survival time data. Stata Technical Bulletin 45: 5–6. Reprinted
in Stata Technical Bulletin Reprints, vol. 8, pp. 27–28. College Station, TX: Stata Press.

Also see
[ST] stset — Declare data to be survival-time data

http://www.stata.com/bookstore/sme.html
http://www.stata.com/products/stb/journals/stb27.pdf
http://www.stata-press.com/books/survival-analysis-stata-introduction/
http://www.stata.com/products/stb/journals/stb45.pdf
http://www.stata.com/products/stb/journals/stb41.pdf
http://www.stata.com/products/stb/journals/stb45.pdf

Title

stsum — Summarize survival-time data

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description

stsum presents summary statistics: time at risk; incidence rate; number of subjects; and the 25th,
50th, and 75th percentiles of survival time.

stsum can be used with single- or multiple-record or single- or multiple-failure st data.

Quick start
Time at risk, incidence rate, number of subjects, and quartiles of survival time for stset data

stsum

As above, but only report statistics for observations with v1 = 1
stsum if v1==1

Report separate summary statistics for each level of v1
stsum, by(v1)

Menu
Statistics > Survival analysis > Summary statistics, tests, and tables > Summarize survival-time data

408

stsum — Summarize survival-time data 409

Syntax
stsum

[
if
] [

in
] [

, by(varlist) noshow
]

You must stset your data before using stsum; see [ST] stset.
by is allowed; see [D] by.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options

� � �
Main �

by(varlist) requests separate summaries for each group along with an overall total. Observations are
in the same group if they have equal values of the variables in varlist. varlist may contain any
number of string or numeric variables.

noshow prevents stsum from showing the key st variables. This option is seldom used because most
people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

Remarks and examples
Remarks are presented under the following headings:

Single-failure data
Multiple-failure data
Video example

Single-failure data

Here is an example of stsum with single-record survival data:

. use http://www.stata-press.com/data/r14/page2

. stset, noshow

. stsum

incidence no. of Survival time
time at risk rate subjects 25% 50% 75%

total 9118 .0039482 40 198 232 261

. stsum, by(group)

incidence no. of Survival time
group time at risk rate subjects 25% 50% 75%

1 4095 .0041514 19 190 216 234
2 5023 .0037826 21 232 233 280

total 9118 .0039482 40 198 232 261

stsum works equally well with multiple-record survival data. Here is a summary of the multiple-record
Stanford heart transplant data introduced in [ST] stset:

410 stsum — Summarize survival-time data

. use http://www.stata-press.com/data/r14/stan3
(Heart transplant data)

. stsum

failure _d: died
analysis time _t: t1

id: id

incidence no. of Survival time
time at risk rate subjects 25% 50% 75%

total 31938.1 .0023483 103 36 100 979

stsum with the by() option may produce results with multiple-record data that, at first, you may
think are in error.

. stsum, by(posttran) noshow

incidence no. of Survival time
posttran time at risk rate subjects 25% 50% 75%

0 5936 .0050539 103 36 149 340
1 26002.1 .0017306 69 39 96 979

total 31938.1 .0023483 103 36 100 979

For the time at risk, 5,936 + 26,002.1 = 31,938.1, but, for the number of subjects, 103 + 69 6= 103.
The posttran variable is not constant for the subjects in this dataset:

. stset, noshow

. stvary posttran

subjects for whom the variable is
never always sometimes

variable constant varying missing missing missing

posttran 34 69 103 0 0

In this dataset, subjects have one or two records. All subjects were eligible for heart transplantation.
They have one record if they die or are lost because of censoring before transplantation, and they
have two records if the operation was performed. Then the first record records their survival up to
transplantation and the second records their subsequent survival. posttran is 0 in the first record
and 1 in the second.

Thus all 103 subjects have records with posttran = 0, and when stsum reported results for this
group, it summarized the pretransplantation survival. The incidence of death was 0.005, and median
survival time was 149 days.

The posttran = 1 line of stsum’s output summarizes the posttransplantation survival: 69 patients
underwent transplantation, incidence of death was 0.002, and median survival time was 96 days.
For these data, this is not 96 more days, but 96 days in total. That is, the clock was not reset at
transplantation. Thus, without attributing cause, we can describe the differences between the groups
as an increased hazard of death at early times followed by a decreased hazard later.

Multiple-failure data

If you simply type stsum with multiple-failure data, the reported survival time is the survival time
to the first failure, assuming that the hazard function is not indexed by number of failures.

stsum — Summarize survival-time data 411

Here we have some multiple-failure data:

. use http://www.stata-press.com/data/r14/mfail2

. st
-> stset t, id(id) failure(d) time0(t0) exit(time .) noshow

id: id
failure event: d != 0 & d < .

obs. time interval: (t0, t]
exit on or before: time .

. stsum

incidence no. of Survival time
time at risk rate subjects 25% 50% 75%

total 435444 .0018556 926 201 420 703

To understand this output, let’s also obtain output for each failure separately:

. stgen nf = nfailures()

. stsum, by(nf)

incidence no. of Survival time
nf time at risk rate subjects 25% 50% 75%

0 263746 .0020057 926 196 399 604
1 121890 .0018131 529 252 503 816
2 38807 .0014946 221 415 687 .
3 11001 0 58 . . .

total 435444 .0018556 926 201 420 703

The stgen command added, for each subject, a variable containing the number of previous failures.
For a subject, up to and including the first failure, nf is 0. Then nf is 1 up to and including the
second failure, and then it is 2, and so on; see [ST] stgen.

The first line of the output, corresponding to nf = 0, states that among those who had experienced
no failures yet, the incidence rate for (first) failure is 0.0020. The distribution of the time to the first
failure is as shown.

Similarly, the second line, corresponding to nf = 1, is for those who have already experienced
one failure. The incidence rate for (second) failures is 0.0018, and the distribution of time of (second)
failures is as shown.

When we simply typed stsum, we obtained the same information shown as the total line of the
more detailed output. The total incidence rate is easy to interpret, but what is the “total” survival-time
distribution? It is an estimate of the distribution of the time to the first failure assuming that the
hazard function h(t) is the same across failures—that the second failure is no different from the first
failure. This is an odd definition of “same” because the clock, t, is not reset in h(t). What is the
hazard of a failure—any failure—at time t? The answer is h(t).

Another definition of “same” would have it that the hazard of a failure is given by h(τ), where τ
is the time since last failure—that the process repeats. These definitions are different unless h() is a
constant function of t (τ).

412 stsum — Summarize survival-time data

So let’s examine these multiple-failure data under the process-replication idea. The key variables
in these st data are id, t0, t, and d:

. st
-> stset t, id(id) failure(d) time0(t0) exit(time .) noshow

id: id
failure event: d != 0 & d < .

obs. time interval: (t0, t]
exit on or before: time .

Our goal is, for each subject, to reset t0 and t to 0 after every failure event. We are going to have
to trick Stata, or at least trick stset, because it will not let us set data where the same subject has
multiple records summarizing the overlapping periods. So, the trick is to create a new id variable
that is different for every ID–nf combination (remember, nf is the variable we previously created
that records the number of prior failures). Then all the “new” subjects can have their clocks start at
time 0:

. egen newid = group(id nf)

. sort newid t

. by newid: replace t = t - t0[1]
(808 real changes made)

. by newid: generate newt0 = t0 - t0[1]

. stset t, failure(d) id(newid) time0(newt0)

id: newid
failure event: d != 0 & d < .

obs. time interval: (newt0, t]
exit on or before: failure

1734 total observations
0 exclusions

1734 observations remaining, representing
1734 subjects
808 failures in single-failure-per-subject data

435444 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 797

stset no longer thinks that we have multiple-failure data. Whereas with id, subjects had multiple
failures, newid gives a unique identity to each ID–nf combination. Each “new” subject has at most
one failure.

. stsum, by(nf)

failure _d: d
analysis time _t: t

id: newid

incidence no. of Survival time
nf time at risk rate subjects 25% 50% 75%

0 263746 .0020057 926 196 399 604
1 121890 .0018131 529 194 384 580
2 38807 .0014946 221 210 444 562
3 11001 0 58 . . .

total 435444 .0018556 1734 201 404 602

Compare this table with the one we previously obtained. The incidence rates are the same, but the
survival times differ because now we measure the times from one failure to the next. Previously we

stsum — Summarize survival-time data 413

measured the time from a fixed point. The time between events in these data appears to be independent
of event number.

Technical note

The method shown for converting multiple-failure data to replicated-process single-event failure
data is completely general. The generic outline of the conversion process is

. stgen nf = nfailures()

. egen newid = group(id nf)

. sort newid t

. by newid: replace t = t - t0[1]

. by newid: generate newt0 = t0 - t0[1]

. stset t, failure(d) id(newid) t0(newt0)

where id, t, t0, and d are the names of your key survival-time variables.

Once you have done this to your data, you need exercise only one caution. If, in fitting models
with stcox, streg, etc., you wish to obtain robust estimates of variance, you should include the
vce(cluster id) option.

When you specify the vce(robust) option, stcox, streg, etc., assume that you mean
vce(cluster stset id variable), which, here, will be vce(cluster newid). The data, however,
are really more clustered than that. Two “subjects” with different newid values may, in fact, be the
same real subject. vce(cluster id) is what is appropriate.

Video example

How to describe and summarize survival data

Stored results
stsum stores the following in r():

Scalars
r(p25) 25th percentile r(risk) time at risk
r(p50) 50th percentile r(ir) incidence rate
r(p75) 75th percentile r(N sub) number of subjects

Methods and formulas
The 25th, 50th, and 75th percentiles of survival times are obtained from S(t), the Kaplan–Meier

product-limit estimate of the survivor function. The 25th percentile, for instance, is obtained as the
minimum value of t such that S(t) ≤ 0.75.

https://www.youtube.com/watch?v=zw8UvYdI8y8

414 stsum — Summarize survival-time data

Also see
[ST] stci — Confidence intervals for means and percentiles of survival time

[ST] stdescribe — Describe survival-time data

[ST] stgen — Generate variables reflecting entire histories

[ST] stir — Report incidence-rate comparison

[ST] stptime — Calculate person-time, incidence rates, and SMR

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[ST] stvary — Report variables that vary over time

Title

sttocc — Convert survival-time data to case–control data

Description Quick start Menu Syntax Options
Remarks and examples Acknowledgments References Also see

Description
sttocc generates a nested case–control study dataset from a cohort-study dataset by sampling

controls from the risk sets. For each case, the controls are chosen randomly from those members of
the cohort who are at risk at the failure time of the case. That is, the resulting case–control sample
is matched with respect to analysis time—the time scale used to compute risk sets. The following
variables are added to the dataset:

case coded 0 for controls, 1 for cases
set case–control ID; matches cases and controls that belong together
time analysis time of the case’s failure

The names of these three variables can be changed by specifying the generate() option. varlist
defines variables that, in addition to those used in the creation of the case–control study, will be
retained in the final dataset. If varlist is not specified, all variables are carried over into the resulting
dataset.

When the resulting dataset is analyzed as a matched case–control study, odds ratios will estimate
corresponding rate-ratio parameters in the proportional hazards model for the cohort study.

Randomness in the matching is obtained using Stata’s runiform() function. To ensure that the
sample truly is random, you should set the random-number seed; see [R] set seed.

Quick start
Create a nested case–control dataset from a cohort dataset that has been stset, matching cases to

controls based on analysis time
sttocc

As above, but match on analysis time and categorical variable catvar

sttocc, match(catvar)

As above, but match 3 controls for each case
sttocc, match(catvar) number(3)

As above, and name the case indicator case, the matching identifier mid, and the case’s failure time
ftime

sttocc, match(catvar) number(3) generate(case mid ftime)

Menu
Statistics > Survival analysis > Setup and utilities > Convert survival-time data to case-control data

415

416 sttocc — Convert survival-time data to case–control data

Syntax
sttocc

[
varlist

] [
, options

]
options Description

Main

match(matchvarlist) match cases and controls on analysis time and specified
categorical variables; default is to match on analysis time only

number(#) use # controls for each case; default is number(1)

nodots suppress displaying dots during calculation

Options

generate(case set time) new variable names; default is case, set, and time

You must stset your data before using sttocc; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options

� � �
Main �

match(matchvarlist) specifies more categorical variables for matching controls to cases. When
match() is not specified, cases and controls are matched with respect to time only. If
match(matchvarlist) is specified, the cases will also be matched by matchvarlist.

number(#) specifies the number of controls to draw for each case. The default is 1, even though
this is not a sensible choice.

nodots requests that dots not be placed on the screen at the beginning of each case–control group
selection. By default, dots are displayed to show progress.

� � �
Options �

generate(case set time) specifies variable names for the three new variables; the default is case,
set, and time.

Remarks and examples
Nested case–control studies are an attractive alternative to full Cox regression analysis, particularly

when time-varying explanatory variables are involved. They are also attractive when some explanatory
variables involve laborious coding. For example, you can create a file with a subset of variables for
all subjects in the cohort, generate a nested case–control study, and go on to code the remaining data
only for those subjects selected.

In the same way as with Cox regression, the results of the analysis are critically dependent on
the choice of analysis time (time scale). The choice of analysis time may be calendar time—so that
controls would be chosen from subjects still being monitored on the date that the case fails—but other
time scales, such as age or time in study, may be more appropriate in some studies. Remember that
the analysis time set in selecting controls is implicitly included in the model in subsequent analysis.

match() requires that controls also be matched to the case with respect to other categorical
variables, such as sex. This produces an analysis closely mirroring stratified Cox regression. If we
wanted to match on calendar time and 5-year age bands, we could first type stsplit ageband . . .

sttocc — Convert survival-time data to case–control data 417

to create the age bands and then specify match(ageband) on the sttocc command. Analyzing the
resulting data as a matched case–control study would estimate rate ratios in the underlying cohort that
are controlled for calendar time (very finely) and age (less finely). Such analysis could be carried out
by Mantel–Haenszel (odds ratio) calculations, for example, using mhodds, or by conditional logistic
regression using clogit.

When ties occur between entry times, censoring times, and failure times, the following convention
is adopted:

Entry time < Failure time < Censoring time

Thus censored subjects and subjects entering at the failure time of the case are included in the risk
set and are available for selection as controls. Tied failure times are broken at random. See Clayton
and Hills (1997) for more information.

Example 1: Creating a nested case–control study

Using the diet data introduced in example 1 of [ST] stsplit, we will illustrate the use of sttocc,
letting age be analysis time. Controls are chosen from subjects still being monitored at the age at
which the case fails.

. use http://www.stata-press.com/data/r14/diet
(Diet data with dates)

. stset dox, failure(fail) enter(time doe) id(id) origin(time dob) scale(365.25)

id: id
failure event: fail != 0 & fail < .

obs. time interval: (dox[_n-1], dox]
enter on or after: time doe
exit on or before: failure

t for analysis: (time-origin)/365.25
origin: time dob

337 total observations
0 exclusions

337 observations remaining, representing
337 subjects
80 failures in single-failure-per-subject data

4603.669 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 30.07529
last observed exit t = 69.99863

. set seed 9123456

. sttocc, match(job) n(5) nodots

failure _d: fail
analysis time _t: (dox-origin)/365.25

origin: time dob
enter on or after: time doe

id: id
matching for: job

There were 2 tied times involving failure(s)
- failures assumed to precede censorings,
- tied failure times split at random

There are 80 cases
Sampling 5 controls for each case

The above two commands create a new dataset in which there are five controls per case, matched
on job, with the age of the subjects when the case failed recorded in the variable time. The case

418 sttocc — Convert survival-time data to case–control data

indicator is given in case and the matched set number, in set. Because we did not specify the
optional varlist, all variables are carried over into the new dataset.

. describe

Contains data from http://www.stata-press.com/data/r14/diet.dta
obs: 480 Diet data with dates

vars: 14 1 May 2014 19:01
size: 17,760

storage display value
variable name type format label variable label

id int %9.0g Subject identity number
fail byte %8.0g Outcome (CHD = 1 3 13)
job byte %8.0g Occupation
month byte %8.0g month of survey
energy float %9.0g Total energy (1000kcals/day)
height float %9.0g Height (cm)
weight float %9.0g Weight (kg)
hienergy byte %9.0g Indicator for high energy
doe int %td Date of entry
dox int %td Date of exit
dob int %td Date of birth
_case byte %8.0g 0 for controls; 1 for cases
_set long %12.0g case-control ID
_time double %10.0g analysis time of the case’s

failure

Sorted by: _set _case
Note: Dataset has changed since last saved.

We can verify that the controls were correctly selected:

. gen ageentry=(doe-dob)/365.25

. gen ageexit=(dox-dob)/365.25

. sort _set _case id

. list _set id _case _time ageentry ageexit job, sepby(_set)

_set id _case _time ageentry ageexit job

1. 1 65 0 42.57358 40.11225 56.82409 0
2. 1 73 0 42.57358 36.58043 52.70636 0
3. 1 74 0 42.57358 37.09788 53.39083 0
4. 1 75 0 42.57358 31.13484 47.26078 0
5. 1 86 0 42.57358 38.14921 54.10815 0
6. 1 90 1 42.57358 31.4141 42.57358 0

7. 2 203 0 47.8987 41.26215 61.22108 2
8. 2 207 0 47.8987 43.6386 63.51266 2
9. 2 236 0 47.8987 45.30048 57.42368 2

10. 2 281 0 47.8987 44.34223 61.54963 2
11. 2 333 0 47.8987 46.37645 61.8371 2
12. 2 196 1 47.8987 45.46475 47.8987 2

13. 3 37 0 47.964408 35.2115 52.67351 0
14. 3 66 0 47.964408 40.09309 56.9692 0

(output omitted)
479. 80 180 0 68.596851 61.55784 69.99863 1
480. 80 108 1 68.596851 55.72074 68.59686 1

sttocc — Convert survival-time data to case–control data 419

The controls do indeed belong to the appropriate risk set. The controls in each set enter at an age
that is less than the age of the case at failure, and they exit at an age that is greater than the age
of the case at failure. To estimate the effect of high energy, use clogit, just as you would for any
matched case–control study:

. clogit _case hienergy, group(_set) or

Iteration 0: log likelihood = -143.22071
Iteration 1: log likelihood = -143.22071

Conditional (fixed-effects) logistic regression

Number of obs = 480
LR chi2(1) = 0.24
Prob > chi2 = 0.6241

Log likelihood = -143.22071 Pseudo R2 = 0.0008

_case Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

hienergy .88683 .217505 -0.49 0.624 .54837 1.434191

Acknowledgments
The original version of sttocc was written by David Clayton of the Cambridge Institute for

Medical Research and Michael Hills (retired) of the London School of Hygiene and Tropical Medicine.

References
Clayton, D. G., and M. Hills. 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.

. 1995. ssa7: Analysis of follow-up studies. Stata Technical Bulletin 27: 19–26. Reprinted in Stata Technical
Bulletin Reprints, vol. 5, pp. 219–227. College Station, TX: Stata Press.

. 1997. ssa10: Analysis of follow-up studies with Stata 5.0. Stata Technical Bulletin 40: 27–39. Reprinted in
Stata Technical Bulletin Reprints, vol. 7, pp. 253–268. College Station, TX: Stata Press.

Coviello, V. 2001. sbe41: Ordinary case–cohort design and analysis. Stata Technical Bulletin 59: 12–18. Reprinted in
Stata Technical Bulletin Reprints, vol. 10, pp. 121–129. College Station, TX: Stata Press.

Langholz, B., and D. C. Thomas. 1990. Nested case-control and case-cohort methods of sampling from a cohort: A
critical comparison. American Journal of Epidemiology 131: 169–176.

Also see
[ST] stbase — Form baseline dataset

[ST] stdescribe — Describe survival-time data

[ST] stsplit — Split and join time-span records

http://www.stata.com/bookstore/sme.html
http://www.stata.com/products/stb/journals/stb27.pdf
http://www.stata.com/products/stb/journals/stb40.pdf
http://www.stata.com/products/stb/journals/stb59.pdf

Title

sttoct — Convert survival-time data to count-time data

Description Quick start Syntax Options
Remarks and examples Also see

Description
sttoct converts survival-time (st) data to count-time (ct) data; see [ST] ct.
At present, there is absolutely no reason that you would want to do this.

Quick start
Convert survival-time data to count-time data using stset data

sttoct

As above, and specify that counts are recorded for groups identified by v1

sttoct, by(v1)

Syntax
sttoct newfailvar newcensvar

[
newentvar

] [
, options

]
options Description

by(varlist) reflect counts by group, where groups are defined by observations
with equal values of varlist

replace proceed with transformation, even if current data are not saved
noshow do not show st setting information

You must stset your data before using sttoct; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.
There is no dialog-box interface for sttoct.

Options
by(varlist) specifies that counts reflect counts by group where the groups are defined by observations

with equal values of varlist.

replace specifies that it is okay to proceed with the transformation, even though the current dataset
has not been saved on disk.

noshow prevents sttoct from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of every st command; see [ST] stset.

420

sttoct — Convert survival-time data to count-time data 421

Remarks and examples
sttoct is a never-used command that is included only for completeness. The definition of ct data

is found in [ST] ct. In the current version of Stata, all you can do with ct data is convert the data to
st data (which thus provides access to Stata’s survival analysis capabilities to those with ct data), so
there is little point in converting st data to ct data.

The converted dataset will contain

varlist from by(varlist), if specified
t the exit-time variable previously stset
newfailvar number of failures at t
newcensvar number of censored at t (after failures)
newentvar if specified, number of entries at t (after censorings)

The resulting dataset will be ctset automatically.

There are two forms of the sttoct command:

1. sttoct failvar censvar, . . .

2. sttoct failvar censvar entvar, . . .

That is, specifying entvar makes a difference.

Case 1: entvar not specified

This is possible only if

a. the risk is not recurring;

b. the original st data are single-record data, or if the data are multiple-record data, all subjects
enter at time 0 and have no gaps thereafter; and

c. if by(varlist) is specified, subjects do not have changing values of the variables in varlist
over their histories.

If you do not specify entvar, sttoct verifies that (a), (b), and (c) are true. If the assumptions are
true, sttoct converts your data and counts each subject only once. That is, in multiple-record data,
all thrashing (censoring followed by immediate reenter with different covariates) is removed.

Case 2: entvar specified

Any kind of survival-time data can be converted to count-time data with an entry variable. You
can convert your data in this way whether assumptions (a), (b), and (c) are true or not.

When you specify a third variable, thrashing is not removed, even if it could be—even if assumptions
(a), (b), and (c) are true.

Also see
[ST] ct — Count-time data

[ST] st is — Survival analysis subroutines for programmers

[ST] sttocc — Convert survival-time data to case–control data

Title

stvary — Report variables that vary over time

Description Quick start Menu Syntax
Option Remarks and examples Stored results Reference
Also see

Description

stvary is for use with multiple-record datasets, for which id() has been stset. It reports whether
values of variables within subject vary over time and reports their pattern of missing values. Although
stvary is intended for use with multiple-record st data, it may be used with single-record data as
well, but this produces little useful information.

stvary ignores weights, even if you have set them. stvary summarizes the variables in the
computer or data sense of the word.

Quick start
Report whether variables vary over time and whether they have missing values using multiple-record

stset data
stvary

As above, but only show report for x1 and x2

stvary x1 x2

As above, but with separate reports for each level of v1
by v1, sort: stvary x1 x2

Menu
Statistics > Survival analysis > Setup and utilities > Report variables that vary over time

Syntax
stvary

[
varlist

] [
if
] [

in
] [

, noshow
]

You must stset your data before using stvary; see [ST] stset.
by is allowed; see [D] by.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Option

� � �
Main �

noshow prevents stvary from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

422

stvary — Report variables that vary over time 423

Remarks and examples
Consider a multiple-record dataset. A subject’s sex, presumably, does not change, but his or her

age might. stvary allows you to verify that values vary in the way that you expect:

. use http://www.stata-press.com/data/r14/stan3
(Heart transplant data)

. stvary

failure _d: died
analysis time _t: t1

id: id

subjects for whom the variable is
never always sometimes

variable constant varying missing missing missing

year 103 0 103 0 0
age 103 0 103 0 0

stime 103 0 103 0 0
surgery 103 0 103 0 0

transplant 103 0 103 0 0
wait 103 0 103 0 0

posttran 34 69 103 0 0

That 103 values for year are “constant” does not mean that year itself is a constant—it means
merely that, for each subject, the value of year does not change across the records. Whether the
values of year vary across subjects is still an open question.

Now look at the bottom of the table: posttran is constant over time for 34 subjects and varies
for the remaining 69.

Below we have another dataset, and we will examine just two of the variables:

. use http://www.stata-press.com/data/r14/stvaryex

. stvary sex drug

subjects for whom the variable is
never always sometimes

variable constant varying missing missing missing

sex 119 1 119 3 1
drug 121 2 123 0 0

Clearly, there are errors in the sex variable; for 119 of the subjects, sex does not change over time,
but for one, it does. Also we see that we do not know the sex of three of the patients, but for another,
we sometimes know it and sometimes do not. The latter must be a simple data-construction error.
As for drug, we see that for two of our patients, the drug administered varied over time. Perhaps
this is an error, or perhaps those two patients were treated differently from all the rest.

Video example

How to describe and summarize survival data

https://www.youtube.com/watch?v=zw8UvYdI8y8

424 stvary — Report variables that vary over time

Stored results
stvary stores the following in r():

Scalars
r(cons) number of subjects for whom variable is constant when not missing
r(varies) number of subjects for whom nonmissing values vary
r(never) number of subjects for whom variable is never missing
r(always) number of subjects for whom variable is always missing
r(miss) number of subjects for whom variable is sometimes missing

Reference
Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3

ed. College Station, TX: Stata Press.

Also see
[ST] stdescribe — Describe survival-time data

[ST] stfill — Fill in by carrying forward values of covariates

[ST] stset — Declare data to be survival-time data

http://www.stata-press.com/books/survival-analysis-stata-introduction/

Glossary

accelerated failure-time model. A model in which everyone has, in a sense, the same survivor
function, S(τ), and an individual’s τj is a function of his or her characteristics and of time, such
as τj = t ∗ exp(β0 + β1x1j + β2x2j).

AFT, accelerated failure time. See accelerated failure-time model.

analysis time. Analysis time is like time, except that 0 has a special meaning: t = 0 is the time of
onset of risk, the time when failure first became possible.

Analysis time is usually not what is recorded in a dataset. A dataset of patients might record
calendar time. Calendar time must then be mapped to analysis time.

The letter t is reserved for time in analysis-time units. The term time is used for time measured
in other units.

The origin is the time corresponding to t = 0, which can vary subject to subject. Thus t =
time− origin.

at risk. A subject is at risk from the instant the first failure event becomes possible and usually stays
that way until failure, but a subject can have periods of being at risk and not at risk.

attributable fraction. An attributable fraction is the reduction in the risk of a disease or other
condition of interest when a particular risk factor is removed.

baseline. In survival analysis, baseline is the state at which the covariates, usually denoted by the
row vector x, are zero. For example, if the only measured covariate is systolic blood pressure, the
baseline survivor function would be the survivor function for someone with zero systolic blood
pressure. This may seem ridiculous, but covariates are usually centered so that the mathematical
definition of baseline (covariate is zero) translates into something meaningful (mean systolic blood
pressure).

boundary kernel. A boundary kernel is a special kernel used to smooth hazard functions in the
boundaries of the data range. Boundary kernels are applied when the epan2, biweight, or
rectangle kernel() is specified with stcurve, hazard or sts graph, hazard.

cause-specific hazard. In a competing-risks analysis, the cause-specific hazard is the hazard function
that generates the events of a given type. For example, if heart attack and stroke are competing
events, then the cause-specific hazard for heart attacks describes the biological mechanism behind
heart attacks independently of that for strokes. Cause-specific hazards can be modeled using Cox
regression, treating the other events as censored.

censored, censoring, left-censoring, and right-censoring. An observation is left-censored when the
exact time of failure is not known; it is merely known that the failure occurred before tl. Suppose
that the event of interest is becoming employed. If a subject is already employed when first
interviewed, his outcome is left-censored.

An observation is right-censored when the time of failure is not known; it is merely known that
the failure occurred after tr. If a patient survives until the end of a study, the patient’s time of
death is right-censored.

In common usage, censored without a modifier means right-censoring.

Also see truncation, left-truncation, and right-truncation.

CIF. See cumulative incidence function.

425

426 Glossary

competing risks. Competing risks models are survival-data models in which the failures are generated
by more than one underlying process. For example, death may be caused by either heart attack or
stroke. There are various methods for dealing with competing risks. One direct way is to duplicate
failures for one competing risk as censored observations for the other risk and stratify on the risk
type. Another is to directly model the cumulative incidence of the event of interest in the presence
of competing risks. The former method uses stcox and the latter, stcrreg.

confounding. In the analysis of contingency tables, factor or interaction effects are said to be
confounded when the effect of one factor is combined with that of another. For example, the
effect of alcohol consumption on esophageal cancer may be confounded with the effects of age,
smoking, or both. In the presence of confounding, it is often useful to stratify on the confounded
factors that are not of primary interest, in the above example, age and smoking.

count-time data. See ct data.

covariates. Covariates are the explanatory variables that appear in a model. For instance, if survival
time were to be explained by age, sex, and treatment, then those variables would be the covariates.
Also see time-varying covariates.

crude estimate. A crude estimate has not been adjusted for the effects of other variables. Disregarding
a stratification variable, for example, yields a crude estimate.

ct data. ct stands for count time. ct data are an aggregate organized like a life table. Each observation
records a time, the number known to fail at that time, the number censored, and the number of
new entries. See [ST] ctset.

cumulative hazard. See hazard, cumulative hazard, and hazard ratio.

cumulative incidence estimator. In a competing-risks analysis, the cumulative incidence estimator
estimates the cumulative incidence function (CIF). Assume for now that you have one event of
interest (type 1) and one competing event (type 2). The cumulative incidence estimator for type
1 failures is then obtained by

ĈIF1(t) =
∑
j:tj≤t

ĥ1(tj)Ŝ(tj−1)

with
Ŝ(t) =

∏
j:tj≤t

{
1− ĥ1(tj)− ĥ2(tj)

}
The tj index the times at which events (of any type) occur, and ĥ1(tj) and ĥ2(tj) are the cause-
specific hazard contributions for type 1 and type 2, respectively. Ŝ(t) estimates the probability
that you are event free at time t.

The above generalizes to multiple competing events in the obvious way.

cumulative incidence function. In a competing-risks analysis, the cumulative incidence function, or
CIF, is the probability that you will observe the event of primary interest before a given time.
Formally,

CIF(t) = P (T ≤ t and event type of interest)

for time-to-failure, T .

cumulative subhazard. See subhazard, cumulative subhazard, and subhazard ratio.

Glossary 427

DFBETA. A DFBETA measures the change in the regressor’s coefficient because of deletion of that
subject. Also see partial DFBETA.

effect size. The effect size is the size of the clinically significant difference between the treatments
being compared, often expressed as the hazard ratio (or the log of the hazard ratio) in survival
analysis.

event. An event is something that happens at an instant in time, such as being exposed to an
environmental hazard, being diagnosed as myopic, or becoming employed.

The failure event is of special interest in survival analysis, but there are other equally important
events, such as the exposure event, from which analysis time is defined.

In st data, events occur at the end of the recorded time span.

event of interest. In a competing-risks analysis, the event of interest is the event that is the focus
of the analysis, that for which the cumulative incidence in the presence of competing risks is
estimated.

failure event. Survival analysis is really time-to-failure analysis, and the failure event is the event
under analysis. The failure event can be death, heart attack, myopia, or finding employment. Many
authors—including Stata—write as if the failure event can occur only once per subject, but when
we do, we are being sloppy. Survival analysis encompasses repeated failures, and all of Stata’s
survival analysis features can be used with repeated-failure data.

frailty. In survival analysis, it is often assumed that subjects are alike—homogeneous—except for
their observed differences. The probability that subject j fails at time t may be a function of j’s
covariates and random chance. Subjects j and k, if they have equal covariate values, are equally
likely to fail.

Frailty relaxes that assumption. The probability that subject j fails at time t becomes a function of
j’s covariates and j’s unobserved frailty value, νj . Frailty ν is assumed to be a random variable.
Parametric survival models can be fit even in the presence of such heterogeneity.

Shared frailty refers to the case in which groups of subjects share the same frailty value. For
instance, subjects 1 and 2 may share frailty value ν because they are genetically related. Both
parametric and semiparametric models can be fit under the shared-frailty assumption.

future history. Future history is information recorded after a subject is no longer at risk. The word
history is often dropped, and the term becomes simply future. Perhaps the failure event is cardiac
infarction, and you want to know whether the subject died soon in the future, in which case you
might exclude the subject from analysis.

Also see past history.

gaps. Gaps refers to gaps in observation between entry time and exit time; see under observation.

hazard, cumulative hazard, and hazard ratio. The hazard or hazard rate at time t, h(t), is the
instantaneous rate of failure at time t conditional on survival until time t. Hazard rates can exceed
1. Say that the hazard rate were 3. If an individual faced a constant hazard of 3 over a unit interval
and if the failure event could be repeated, the individual would be expected to experience three
failures during the time span.

The cumulative hazard, H(t), is the integral of the hazard function h(t), from 0 (the onset of
risk) to t. It is the total number of failures that would be expected to occur up until time t, if the
failure event could be repeated. The relationship between the cumulative hazard function, H(t),
and the survivor function, S(t), is

428 Glossary

S(t) = exp{−H(t)}

H(t) = −ln{S(t)}

The hazard ratio is the ratio of the hazard function evaluated at two different values of the covariates:
h(t |x)/h(t |x0). The hazard ratio is often called the relative hazard, especially when h(t |x0)
is the baseline hazard function.

hazard contributions. Hazard contributions are the increments of the estimated cumulative hazard
function obtained through either a nonparametric or semiparametric analysis. For these analysis
types, the estimated cumulative hazard is a step function that increases every time a failure occurs.
The hazard contribution for that time is the magnitude of that increase.

Because the time between failures usually varies from failure to failure, hazard contributions do
not directly estimate the hazard. However, one can use the hazard contributions to formulate an
estimate of the hazard function based on the method of smoothing.

ID variable. An ID variable identifies groups; equal values of an ID variable indicate that the
observations are for the same group. For instance, a stratification ID variable would indicate the
strata to which each observation belongs.

When an ID variable is referred to without modification, it means subjects, and usually this occurs in
multiple-record st data. In multiple-record data, each physical observation in the dataset represents
a time span, and the ID variable ties the separate observations together:

idvar t0 t

1 0 5
1 5 7

ID variables are usually numbered 1, 2, . . . , but that is not required. An ID variable might be
numbered 1, 3, 7, 22, . . . , or −5, −4, . . . , or even 1, 1.1, 1.2,

incidence and incidence rate. Incidence is the number of new failures (for example, number of new
cases of a disease) that occur during a specified period in a population at risk (for example, of the
disease).

Incidence rate is incidence divided by the sum of the length of time each individual was exposed
to the risk.

Do not confuse incidence with prevalence. Prevalence is the fraction of a population that has the
disease. Incidence refers to the rate at which people contract a disease, whereas prevalence is the
total number actually sick at a given time.

Kaplan–Meier product-limit estimate. This is an estimate of the survivor function, which is the
product of conditional survival to each time at which an event occurs. The simple form of the
calculation, which requires tallying the number at risk and the number who die and at each time,
makes accounting for censoring easy. The resulting estimate is a step function with jumps at the
event times.

left-censoring. See censored, censoring, left-censoring, and right-censoring.

left-truncation. See truncation, left-truncation, and right-truncation.

life table. Also known as a mortality table or actuarial table, a life table is a table that shows for
each analysis time the fraction that survive to that time. In mortality tables, analysis time is often
age.

Glossary 429

likelihood displacement value. A likelihood displacement value is an influence measure of the effect
of deleting a subject on the overall coefficient vector. Also see partial likelihood displacement
value.

LMAX value. An LMAX value is an influence measure of the effect of deleting a subject on the
overall coefficient vector and is based on an eigensystem analysis of efficient score residuals. Also
see partial LMAX value.

multiarm trial. A multiarm trial is a trial comparing survivor functions of more than two groups.

multiple-record st data. See st data.

odds and odds ratio. The odds in favor of an event are o = p/(1 − p), where p is the probability
of the event. Thus if p = 0.2, the odds are 0.25, and if p = 0.8, the odds are 4.

The log of the odds is ln(o) = logit(p) = ln{p/(1 − p)}, and logistic-regression models, for
instance, fit ln(o) as a linear function of the covariates.

The odds ratio is a ratio of two odds: o1/o0. The individual odds that appear in the ratio are
usually for an experimental group and a control group, or two different demographic groups.

offset variable and exposure variable. An offset variable is a variable that is to appear on the
right-hand side of a model with coefficient 1:

yj = offsetj + b0 + b1xj + · · ·

In the above, b0 and b1 are to be estimated. The offset is not constant. Offset variables are often
included to account for the amount of exposure. Consider a model where the number of events
observed over a period is the length of the period multiplied by the number of events expected in
a unit of time:

nj = Tje(Xj)

When we take logs, this becomes

log(nj) = log(Tj) + log{e(Xj)}

ln(Tj) is an offset variable in this model.

When the log of a variable is an offset variable, the variable is said to be an exposure variable.
In the above, Tj is an exposure variable.

partial DFBETA. A partial DFBETA measures the change in the regressor’s coefficient because of
deletion of that individual record. In single-record data, the partial DFBETA is equal to the DFBETA.
Also see DFBETA.

partial likelihood displacement value. A partial likelihood displacement value is an influence measure
of the effect of deleting an individual record on the coefficient vector. For single-record data, the
partial likelihood displacement value is equal to the likelihood displacement value. Also see
likelihood displacement value.

partial LMAX value. A partial LMAX value is an influence measure of the effect of deleting an
individual record on the overall coefficient vector and is based on an eigensystem analysis of
efficient score residuals. In single-record data, the partial LMAX value is equal to the LMAX value.
Also see LMAX value.

past history. Past history is information recorded about a subject before the subject was both at risk
and under observation. Consider a dataset that contains information on subjects from birth to death
and an analysis in which subjects became at risk once diagnosed with a particular kind of cancer.
The past history on the subject would then refer to records before the subjects were diagnosed.

430 Glossary

The word history is often dropped, and the term becomes simply past. For instance, we might
want to know whether a subject smoked in the past.

Also see future history.

penalized log-likelihood function. This is a log-likelihood function that contains an added term,
usually referred to as a roughness penalty, that reduces its value when the model overfits the data.
In Cox models with frailty, such functions are used to prevent the variance of the frailty from
growing too large, which would allow the individual frailty values to perfectly fit the data.

power. The power of a test is the probability of correctly rejecting the null hypothesis when it is
false. It is often denoted as 1− β in statistical literature, where β is the type II error probability.
Commonly used values for power are 80% and 90%. Also see type I error and type II error.

proportional hazards model. This is a model in which, between individuals, the ratio of the
instantaneous failure rates (the hazards) is constant over time.

right-censoring. See censored, censoring, left-censoring, and right-censoring.

right-truncation. See truncation, left-truncation, and right-truncation.

risk factor. This is a variable associated with an increased or decreased risk of failure.

risk pool. At a particular point in time, this is the subjects at risk of failure.

semiparametric model. This is a model that is not fully parameterized. The Cox proportional hazards
model is such a model:

h(t) = h0(t) exp(β1x1 + · · ·+ βkxk)

In the Cox model, ho(t) is left unparameterized and not even estimated. Meanwhile, the relative
effects of covariates are parameterized as exp(β1x1 + · · ·+ βkxk).

shape parameter. A shape parameter governs the shape of a probability distribution. One example
is the parameter p of the Weibull model.

single-record st data. See st data.

singleton-group data. A singleton is a frailty group that contains only 1 observation. A dataset
containing only singletons is known as singleton-group data.

SMR. See standardized mortality (morbidity) ratio.

snapshot data. Snapshot data are those in which each record contains the values of a set of variables
for a subject at an instant in time. The name arises because each observation is like a snapshot of
the subject.

In snapshot datasets, one usually has a group of observations (snapshots) for each subject.

Snapshot data must be converted to st data before they can be analyzed. This requires making
assumptions about what happened between the snapshots. See [ST] snapspan.

spell data. Spell data are survival data in which each record represents a fixed period, consisting of a
begin time, an end time, possibly a censoring/failure indicator, and other measurements (covariates)
taken during that specific period.

st data. st stands for survival time. In survival-time data, each observation represents a span of
survival, recorded in variables t0 and t. For instance, if in an observation t0 were 3 and t were
5, the span would be (t0, t], meaning from just after t0 up to and including t.

Sometimes variable t0 is not recorded; t0 is then assumed to be 0. In such a dataset, an observation
that had t = 5 would record the span (0, 5].

Glossary 431

Each observation also includes a variable d, called the failure variable, which contains 0 or nonzero
(typically, 1). The failure variable records what happened at the end of the span: 0, the subject
was still alive (had not yet failed) or 1, the subject died (failed).

Sometimes variable d is not recorded; d is then assumed to be 1. In such a dataset, all time-span
observations would be assumed to end in failure.

Finally, each observation in an st dataset can record the entire history of a subject or each can
record a part of the history. In the latter case, groups of observations record the full history. One
observation might record the period (0, 5] and the next, (5, 8]. In such cases, there is a variable
ID that records the subject for which the observation records a time span. Such data are called
multiple-record st data. When each observation records the entire history of a subject, the data are
called single-record st data. In the single-record case, the ID variable is optional.

See [ST] stset.
standardized mortality (morbidity) ratio. Standardized mortality (morbidity) ratio (SMR) is the

observed number of deaths divided by the expected number of deaths. It is calculated using
indirect standardization: you take the population of the group of interest—say, by age, sex, and
other factors—and calculate the expected number of deaths in each cell (expected being defined
as the number of deaths that would have been observed if those in the cell had the same mortality
as some other population). You then take the ratio to compare the observed with the expected
number of deaths. For instance,

(1) (2) (1)×(2) (4)
Population Deaths per 100,000 Expected # Observed

Age of group in general pop. of deaths deaths

25–34 95,965 105.2 100.9 92
34–44 78,280 203.6 159.4 180
44–54 52,393 428.9 224.7 242
55–64 28,914 964.6 278.9 312
Total 763.9 826

SMR = 826/763.9 = 1.08

stratified model. A stratified survival model constrains regression coefficients to be equal across
levels of the stratification variable, while allowing other features of the model to vary across strata.

stratified test. A stratified test is performed separately for each stratum. The stratum-specific results
are then combined into an overall test statistic.

subhazard, cumulative subhazard, and subhazard ratio. In a competing-risks analysis, the hazard
of the subdistribution (or subhazard for short) for the event of interest (type 1) is defined formally
as

h1(t) = limδ→0

{
P (t < T ≤ t+ δ and event type 1)| T > t or (T ≤ t and not event type 1)

δ

}
Less formally, think of this hazard as that which generates failure events of interest while keeping
subjects who experience competing events “at risk” so that they can be adequately counted as not
having any chance of failing.

The cumulative subhazard H1(t) is the integral of the subhazard function h1(t), from 0 (the onset
of risk) to t. The cumulative subhazard plays a very important role in competing-risks analysis.
The cumulative incidence function (CIF) is a direct function of the cumulative subhazard:

432 Glossary

CIF1(t) = 1− exp{−H1(t)}

The subhazard ratio is the ratio of the subhazard function evaluated at two different values of the
covariates: h1(t|x)/h1(t|x0). The subhazard ratio is often called the relative subhazard, especially
when h1(t|x0) is the baseline subhazard function.

survival-time data. See st data.

survivor function. Also known as the survivorship function and the survival function, the survivor
function, S(t), is 1) the probability of surviving beyond time t, or equivalently, 2) the probability
that there is no failure event prior to t, 3) the proportion of the population surviving to time t,
or equivalently, 4) the reverse cumulative distribution function of T , the time to the failure event:
S(t) = Pr(T > t). Also see hazard.

thrashing. Subjects are said to thrash when they are censored and immediately reenter with different
covariates.

time-varying covariates. Time-varying covariates appear in a survival model whose values vary over
time. The values of the covariates vary, not the effect. For instance, in a proportional hazards
model, the log hazard at time t might be b× aget + c× treatmentt. Variable age might be time
varying, meaning that as the subject ages, the value of age changes, which correspondingly causes
the hazard to change. The effect b, however, remains constant.

Time-varying variables are either continuously varying or discretely varying.

In the continuously varying case, the value of the variable x at time t is xt = xo + f(t), where
f() is some function and often is the identity function, so that xt = xo + t.

In the discretely varying case, the value of x changes at certain times and often in no particular
pattern:

idvar t0 t bp

1 0 5 150
1 5 7 130
1 7 9 135

In the above data, the value of bp is 150 over the period (0, 5], then 130 over (5, 7], and 135
over (7, 9].

truncation, left-truncation, and right-truncation. In survival analysis, truncation occurs when sub-
jects are observed only if their failure times fall within a certain observational period of a study.
Censoring, on the other hand, occurs when subjects are observed for the whole duration of a study,
but the exact times of their failures are not known; it is known only that their failures occurred
within a certain time span.

Left-truncation occurs when subjects come under observation only if their failure times exceed
some time tl. It is only because they did not fail before tl that we even knew about their existence.
Left-truncation differs from left-censoring in that, in the censored case, we know that the subject
failed before time tl, but we just do not know exactly when.

Imagine a study of patient survival after surgery, where patients cannot enter the sample until they
have had a post-surgical test. The patients’ survival times will be left-truncated. This is a “delayed
entry” problem, one common type of left-truncation.

Glossary 433

Right-truncation occurs when subjects come under observation only if their failure times do not
exceed some time tr. Right-truncated data typically occur in registries. For example, a cancer
registry includes only subjects who developed a cancer by a certain time, and thus survival data
from this registry will be right-truncated.

type I error or false-positive result. The type I error of a test is the error of rejecting the null
hypothesis when it is true. The probability of committing a type I error, significance level of a
test, is often denoted as α in statistical literature. One traditionally used value for α is 5%. Also
see type II error and power.

type II error or false-negative result. The type II error of a test is the error of not rejecting the null
hypothesis when it is false. The probability of committing a type II error is often denoted as β
in statistical literature. Commonly used values for β are 20% or 10%. Also see type I error and
power.

under observation. A subject is under observation when failure events, should they occur, would be
observed (and so recorded in the dataset). Being under observation does not mean that a subject is
necessarily at risk. Subjects usually come under observation before they are at risk. The statistical
concern is with periods when subjects are at risk but not under observation, even when the subject
is (later) known not to have failed during the hiatus.

In such cases, since failure events would not have been observed, the subject necessarily had to
survive the observational hiatus, and that leads to bias in statistical results unless the hiatus is
accounted for properly.

Entry time and exit time record when a subject first and last comes under observation, between
which there may be observational gaps, but usually there are not. There is only one entry time and
one exit time for each subject. Often, entry time corresponds to analysis time t = 0, or before,
and exit time corresponds to the time of failure.

Delayed entry means that the entry time occurred after t = 0.

Subject and author index

See the combined subject index and the combined author index in the Glossary and Index.

435

	Contents
	[IG] Installation Guide
	Simple installation
	Before you install
	Stata for Windows installation
	Stata for Mac installation
	Stata for Unix installation

	Installing Stata for Windows
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Creating network shortcuts
	Other ways to start Stata
	Exiting Stata
	Verifying installation

	Installing Stata for Mac
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Warning against multiple Stata applications
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Other ways to start Stata
	Exiting Stata

	Installing Stata for Unix
	Installation overview
	Find your installation DVD and paper license
	Obtain superuser access
	Create a directory for Stata
	Upgrading
	Install Stata
	Initialize the license
	Set the message of the day (optional)
	Verify that Stata is working
	Modify shell start-up script
	Update Stata if necessary
	Starting Stata
	Exiting Stata
	Troubleshooting Unix installation
	Troubleshooting Unix start-up
	Stata(console) starts but Stata(GUI) does not

	Platforms and flavors
	Available platforms
	Available flavors

	Documentation

	[GS] Getting Started
	[GSM] Mac
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View > Do-file Editor menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding user-written commands by keyword
	Downloading user-written commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Other ways to launch Stata
	B.3 Stata batch mode
	B.4 Changing Stata's locale
	B.5 Memory size considerations

	C More on Stata for Mac
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Stata and the Notification Manager
	C.4 Stata(console) for Mac OS X

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[GSU] Unix
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer in Stata(GUI)
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor in Stata(GUI)
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager in Stata(GUI)
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting in Stata(GUI)
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor in Stata(GUI)
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Finding user-written commands by keyword
	Downloading user-written commands

	A Troubleshooting Stata
	A.1 If Stata(GUI) and Stata(console) do not start
	A.2 If Stata(console) starts but Stata(GUI) does not
	A.3 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Advanced starting of Stata for Unix
	B.3 Stata batch mode
	B.4 Using X Windows remotely
	B.5 Summary of environment variables
	B.6 Changing Stata's locale
	B.7 Memory size considerations

	C Stata manual pages for Unix
	conren
	Syntax
	Description
	Finding a color scheme
	Can your terminal underline?
	If you had success
	If you did not have success
	Also see

	stata
	Syntax
	Description
	Remarks and examples

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[GSW] Windows
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory
	Fine control of Stata's windows
	Window types
	Docking windows
	Auto Hide and pinning
	Nondocking windows

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding user-written commands by keyword
	Downloading user-written commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 The Windows Properties Sheet
	B.2 Making shortcuts
	B.3 Executing commands every time Stata is started
	B.4 Other ways to launch Stata
	B.5 Stata batch mode
	B.6 Running simultaneous Stata sessions
	B.7 Changing Stata's locale
	B.8 Memory size considerations

	C More on Stata for Windows
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Installing Stata for Windows on a network drive
	C.4 Changing a Stata for Windows license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[U] User's Guide
	Contents
	Stata basics
	1 Read this---it will help
	1.1 Getting Started with Stata
	1.2 The User's Guide and the Reference manuals
	1.3 What's new
	1.4 References

	2 A brief description of Stata
	3 Resources for learning and using Stata
	3.1 Overview
	3.2 Stata on the Internet (www.stata.com and other resources)
	3.3 Stata Press
	3.4 The Stata Journal
	3.5 Updating and adding features from the web
	3.6 Conferences and training
	3.7 Books and other support materials
	3.8 Technical support
	3.9 References

	4 Stata's help and search facilities
	4.1 Introduction
	4.2 Getting started
	4.3 help: Stata's help system
	4.4 Accessing PDF manuals from help entries
	4.5 Searching
	4.6 More on search
	4.7 More on help
	4.8 search: All the details
	4.9 net search: Searching net resources

	5 Flavors of Stata
	5.1 Platforms
	5.2 Stata/MP, Stata/SE, Stata/IC, and Small Stata
	5.3 Size limits of Stata/MP, SE, IC, and Small Stata
	5.4 Speed comparison of Stata/MP, SE, IC, and Small Stata
	5.5 Feature comparison of Stata/MP, SE, and IC

	6 Managing memory
	6.1 Memory-size considerations
	6.2 Compressing data
	6.3 Setting maxvar
	6.4 Setting matsize
	6.5 The memory command

	7 --more-- conditions
	7.1 Description
	7.2 set more off
	7.3 The more programming command

	8 Error messages and return codes
	8.1 Making mistakes
	8.2 The return message for obtaining command timings

	9 The Break key
	9.1 Making Stata stop what it is doing
	9.2 Side effects of clicking on Break
	9.3 Programming considerations

	10 Keyboard use
	10.1 Description
	10.2 F-keys
	10.3 Editing keys in Stata
	10.4 Editing keys in Stata for Unix(console)
	10.5 Editing previous lines in Stata
	10.6 Tab expansion of variable names

	Elements of Stata
	11 Language syntax
	11.1 Overview
	11.2 Abbreviation rules
	11.3 Naming conventions
	11.4 varlists
	11.5 by varlist: construct
	11.6 Filenaming conventions
	11.7 References

	12 Data
	12.1 Data and datasets
	12.2 Numbers
	12.3 Dates and times
	12.4 Strings
	12.5 Formats: Controlling how data are displayed
	12.6 Dataset, variable, and value labels
	12.7 Notes attached to data
	12.8 Characteristics
	12.9 Data Editor and Variables Manager
	12.10 References

	13 Functions and expressions
	13.1 Overview
	13.2 Operators
	13.3 Functions
	13.4 System variables (_variables)
	13.5 Accessing coefficients and standard errors
	13.6 Accessing results from Stata commands
	13.7 Explicit subscripting
	13.8 Using the Expression Builder
	13.9 Indicator values for levels of factor variables
	13.10 Time-series operators
	13.11 Label values
	13.12 Precision and problems therein
	13.13 References

	14 Matrix expressions
	14.1 Overview
	14.2 Row and column names
	14.3 Vectors and scalars
	14.4 Inputting matrices by hand
	14.5 Accessing matrices created by Stata commands
	14.6 Creating matrices by accumulating data
	14.7 Matrix operators
	14.8 Matrix functions
	14.9 Subscripting
	14.10 Using matrices in scalar expressions
	14.11 Reference

	15 Saving and printing output---log files
	15.1 Overview
	15.2 Placing comments in logs
	15.3 Logging only what you type
	15.4 The log-button alternative
	15.5 Printing logs
	15.6 Creating multiple log files for simultaneous use

	16 Do-files
	16.1 Description
	16.2 Calling other do-files
	16.3 Creating and running do-files
	16.4 Programming with do-files
	16.5 References

	17 Ado-files
	17.1 Description
	17.2 What is an ado-file?
	17.3 How can I tell if a command is built in or an ado-file?
	17.4 How can I look at an ado-file?
	17.5 Where does Stata look for ado-files?
	17.6 How do I install an addition?
	17.7 How do I add my own ado-files?
	17.8 How do I install official updates?
	17.9 How do I install updates to user-written additions?
	17.10 Reference

	18 Programming Stata
	18.1 Description
	18.2 Relationship between a program and a do-file
	18.3 Macros
	18.4 Program arguments
	18.5 Scalars and matrices
	18.6 Temporarily destroying the data in memory
	18.7 Temporary objects
	18.8 Accessing results calculated by other programs
	18.9 Accessing results calculated by estimation commands
	18.10 Storing results
	18.11 Ado-files
	18.12 Tools for interacting with programs outside Stata and with other languages
	18.13 A compendium of useful commands for programmers
	18.14 References

	19 Immediate commands
	19.1 Overview
	19.2 The display command
	19.3 The power command

	20 Estimation and postestimation commands
	20.1 All estimation commands work the same way
	20.2 Standard syntax
	20.3 Replaying prior results
	20.4 Cataloging estimation results
	20.5 Saving estimation results
	20.6 Specifying the estimation subsample
	20.7 Specifying the width of confidence intervals
	20.8 Formatting the coefficient table
	20.9 Obtaining the variance--covariance matrix
	20.10 Obtaining predicted values
	20.11 Accessing estimated coefficients
	20.12 Performing hypothesis tests on the coefficients
	20.13 Obtaining linear combinations of coefficients
	20.14 Obtaining nonlinear combinations of coefficients
	20.15 Obtaining marginal means, adjusted predictions, and predictive margins
	20.16 Obtaining conditional and average marginal effects
	20.17 Obtaining pairwise comparisons
	20.18 Obtaining contrasts, tests of interactions, and main effects
	20.19 Graphing margins, marginal effects, and contrasts
	20.20 Dynamic forecasts and simulations
	20.21 Obtaining robust variance estimates
	20.22 Obtaining scores
	20.23 Weighted estimation
	20.24 A list of postestimation commands
	20.25 References

	Advice
	21 Entering and importing data
	21.1 Overview
	21.2 Determining which method to use
	21.3 If you run out of memory
	21.4 ODBC sources
	21.5 Reference

	22 Combining datasets
	22.1 References

	23 Working with strings
	23.1 Description
	23.2 Categorical string variables
	23.3 Mistaken string variables
	23.4 Complex strings
	23.5 Reference

	24 Working with dates and times
	24.1 Overview
	24.2 Inputting dates and times
	24.3 Displaying dates and times
	24.4 Typing dates and times (datetime literals)
	24.5 Extracting components of dates and times
	24.6 Converting between date and time values
	24.7 Business dates and calendars
	24.8 References

	25 Working with categorical data and factor variables
	25.1 Continuous, categorical, and indicator variables
	25.2 Estimation with factor variables

	26 Overview of Stata estimation commands
	26.1 Introduction
	26.2 Means, proportions, and related statistics
	26.3 Linear regression with simple error structures
	26.4 Structural equation modeling (SEM)
	26.5 ANOVA, ANCOVA, MANOVA, and MANCOVA
	26.6 Generalized linear models
	26.7 Binary-outcome qualitative dependent-variable models
	26.8 ROC analysis
	26.9 Conditional logistic regression
	26.10 Fractional-outcome dependent-variable models
	26.11 Multiple-outcome qualitative dependent-variable models
	26.12 Item response theory
	26.13 Count dependent-variable models
	26.14 Exact estimators
	26.15 Linear regression with heteroskedastic errors
	26.16 Stochastic frontier models
	26.17 Regression with systems of equations
	26.18 Models with endogenous sample selection
	26.19 Models with time-series data
	26.20 Panel-data models
	26.21 Multilevel mixed-effects models
	26.22 Survival-time (failure-time) models
	26.23 Treatment-effect models
	26.24 Generalized method of moments (GMM)
	26.25 Estimation with correlated errors
	26.26 Survey data
	26.27 Multiple imputation
	26.28 Multivariate and cluster analysis
	26.29 Pharmacokinetic data
	26.30 Specification search tools
	26.31 Power and sample-size analysis
	26.32 Bayesian analysis
	26.33 Obtaining new estimation commands
	26.34 References

	27 Commands everyone should know
	27.1 41 commands
	27.2 The by construct

	28 Using the Internet to keep up to date
	28.1 Overview
	28.2 Sharing datasets (and other files)
	28.3 Official updates
	28.4 Downloading and managing additions by users
	28.5 Making your own download site

	[BAYES] Bayesian Analysis
	Contents
	intro
	Description
	Remarks and examples
	What is Bayesian analysis?
	Bayesian versus frequentist analysis, or why Bayesian analysis?
	How to do Bayesian analysis
	Advantages and disadvantages of Bayesian analysis
	Brief background and literature review
	Bayesian statistics
	Posterior distribution
	Selecting priors
	Point and interval estimation
	Comparing Bayesian models
	Posterior prediction

	Bayesian computation
	Markov chain Monte Carlo methods
	Metropolis--Hastings algorithm
	Adaptive random-walk Metropolis--Hastings
	Blocking of parameters
	Metropolis--Hastings with Gibbs updates
	Convergence diagnostics of MCMC

	Summary

	References
	Also see

	bayes
	Description
	Remarks and examples
	Overview example

	Acknowledgments
	References
	Also see

	bayesmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesmh
	Setting up a posterior model
	Likelihood model
	Prior distributions
	Declaring model parameters
	Referring to model parameters
	Specifying arguments of likelihood models and prior distributions
	Substitutable expressions
	Checking model specification

	Specifying MCMC sampling procedure
	Reproducing results
	Burn-in period and MCMC sample size
	Improving efficiency of the MH algorithm---blocking of parameters
	Gibbs and hybrid MH sampling
	Adaptation of the MH algorithm
	Specifying initial values

	Summarizing and reporting results
	Posterior summaries and credible intervals
	Saving MCMC results

	Convergence of MCMC
	Getting started examples
	Mean of a normal distribution with a known variance
	Mean of a normal distribution with an unknown variance
	Simple linear regression
	Multiple linear regression
	Improving efficiency of MH sampling
	Graphical diagnostics using multiple chains

	Logistic regression model: a case of nonidentifiable parameters
	Ordered probit regression
	Beta-binomial model
	Multivariate regression
	Panel-data and multilevel models
	Two-level random-intercept model or panel-data model
	Linear growth curve model{---}a random-coefficient model
	Mixed-effects logistic regression

	Bayesian analysis of change-point problem
	Bioequivalence in a crossover trial
	Random-effects meta-analysis of clinical trials
	Item response theory

	Stored results
	Methods and formulas
	Adaptive MH algorithm
	Adaptive MH algorithm for random effects
	Gibbs sampling for some likelihood-prior and prior-hyperprior configurations
	Likelihood-prior configurations
	Prior-hyperprior configurations

	Marginal likelihood

	References
	Also see

	bayesmh evaluators
	Description
	Syntax
	Options
	Remarks and examples
	Program evaluators
	Simple linear regression model
	Logistic regression model
	Multivariate normal regression model
	Cox proportional hazards regression
	Global macros

	Stored results
	Also see

	bayesmh postestimation
	Postestimation commands
	Remarks and examples
	Different ways of specifying model parameters
	Specifying functions of model parameters
	Storing estimation results after bayesmh

	Also see

	bayesgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesgraph
	Examples
	Trace plots
	Autocorrelation plots
	Histogram plots
	Kernel density plots
	Cumulative sum plots
	Bivariate scatterplots
	Diagnostic plots
	Functions of model parameters

	Methods and formulas
	Reference
	Also see

	bayesstats
	Description
	Also see

	bayesstats ess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Effective sample size and MCMC sampling efficiency
	Using bayesstats ess

	Stored results
	Methods and formulas
	Also see

	bayesstats ic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Bayesian information criteria
	Bayes factors
	Using bayesstats ic

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats summary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Bayesian summaries for an auto data example

	Stored results
	Methods and formulas
	Point estimates
	Credible intervals

	References
	Also see

	bayestest
	Description
	Remarks and examples
	Also see

	bayestest interval
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Interval tests for continuous parameters
	Interval tests for discrete parameters

	Stored results
	Methods and formulas
	Also see

	bayestest model
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Testing nested hypotheses
	Comparing models with different priors

	Stored results
	Methods and formulas
	Also see

	set clevel
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Glossary

	[D] Data Management
	Contents
	intro
	Description
	Also see

	data management
	Description
	Reference
	Also see

	append
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	assert
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	bcal
	Description
	Quick start
	Menu
	Syntax
	Option for bcal check
	Options for bcal create
	Remarks and examples
	Stored results
	Also see

	by
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	cd
	Description
	Quick start
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix

	Also see

	cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	changeeol
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	checksum
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	clear
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	clonevar
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Acknowledgments
	Also see

	codebook
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Variablewise or casewise deletion
	Weights
	A final example

	Acknowledgment
	Also see

	compare
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	compress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	contract
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	copy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	corr2data
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	count
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	cross
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	data types
	Description
	Remarks and examples
	Precision of numeric storage types

	Also see

	datasignature
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using datasignature interactively
	Using datasignature in do-files
	Interpreting data signatures
	The logic of data signatures

	Stored results
	Methods and formulas
	Reference
	Also see

	datetime
	Description
	Syntax
	Types of dates and their human readable forms (HRFs)
	Stata internal form (SIF)
	HRF-to-SIF conversion functions
	Displaying SIFs in HRF
	Building SIFs from components
	SIF-to-SIF conversion
	Extracting time-of-day components from SIFs
	Extracting date components from SIFs
	Conveniently typing SIF values
	Obtaining and working with durations
	Using dates and times from other software

	Remarks and examples
	References
	Also see

	datetime business calendars
	Description
	Syntax
	Remarks and examples
	Step 1: Read the data, date as string
	Step 2: Convert date variable to %td date
	Step 3: Convert %td date to %tb date
	Key feature: Each business calendar has its own encoding
	Key feature: Omitted dates really are omitted
	Key feature: Extracting components from %tb dates
	Key feature: Merging on dates

	Also see

	datetime business calendars creation
	Description
	Syntax
	Remarks and examples
	Introduction
	Concepts
	The preliminary commands
	The omit commands: from/to and if
	The omit commands: and
	The omit commands: omit date
	The omit commands: omit dayofweek
	The omit commands: omit dowinmonth
	Creating stbcal-files with bcal create
	Where to place stbcal-files
	How to debug stbcal-files
	Ideas for calendars that may not occur to you

	Also see

	datetime display formats
	Description
	Syntax
	Remarks and examples
	Specifying display formats
	Times are truncated, not rounded, when displayed

	Also see

	datetime translation
	Description
	Syntax
	Remarks and examples
	Introduction
	Specifying the mask
	How the HRF-to-SIF functions interpret the mask
	Working with two-digit years
	Working with incomplete dates and times
	Translating run-together dates, such as 20060125
	Valid times
	The clock() and Clock() functions
	Why there are two SIF datetime encodings
	Advice on using datetime/c and datetime/C
	Determining when leap seconds occurred
	The date() function
	The other translation functions

	Also see

	describe
	Description
	Quick start
	Menu
	Syntax
	Options to describe data in memory
	Options to describe data in file
	Remarks and examples
	describe
	describe, replace

	Stored results
	References
	Also see

	destring
	Description
	Quick start
	Menu
	Syntax
	Options for destring
	Options for tostring
	Remarks and examples
	destring
	tostring
	Saved characteristics

	Acknowledgment
	References
	Also see

	dir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	drawnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	ds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	duplicates
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for duplicates examples and duplicates list
	Option for duplicates tag
	Option for duplicates drop

	Remarks and examples
	Acknowledgments
	References
	Also see

	edit
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Modes
	The current observation and current variable
	Assigning value labels to variables
	Changing values of existing cells
	Adding new variables
	Adding new observations
	Copying and pasting
	Logging changes
	Advice

	References
	Also see

	egen
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Summary statistics
	Generating patterns
	Marking differences among variables
	Ranks
	Standardized variables
	Row functions
	Categorical and integer variables
	String variables
	U.S. marginal income tax rate

	Methods and formulas
	Acknowledgments
	References
	Also see

	encode
	Description
	Quick start
	Menu
	Syntax
	Options for encode
	Options for decode
	Remarks and examples
	encode
	decode

	Reference
	Also see

	erase
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	expand
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	expandcl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	export
	Description
	Remarks and examples
	Summary of the different methods
	export excel
	export delimited
	odbc
	outfile
	export sasxport
	xmlsave

	Also see

	filefilter
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	fillin
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	format
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Setting formats
	Setting European formats
	Details of formats
	Other effects of formats
	Displaying current formats

	References
	Also see

	generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	generate and replace
	set type

	Methods and formulas
	References
	Also see

	gsort
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	hexdump
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	icd
	Description
	Remarks and examples
	Introduction to ICD coding
	Terminology
	Diagnosis codes
	Procedure codes
	Working with multiple codes

	References
	Also see

	icd9
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9 check
	Options for icd9 clean
	Options for icd9 generate
	Option for icd9 search

	Remarks and examples
	Using icd9 and icd9p
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd10
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10 check
	Options for icd10 clean
	Options for icd10 generate
	Option for icd10 lookup
	Options for icd10 search

	Remarks and examples
	Using icd10
	Managing datasets with ICD-10 codes
	Creating new variables

	Stored results
	Acknowledgments
	References
	Also see

	import
	Description
	Remarks and examples
	Summary of the different methods
	import excel
	import delimited
	odbc
	infile (free format)---infile without a dictionary
	infix (fixed format)
	infile (fixed format)---infile with a dictionary
	import sasxport
	import haver (Windows only)
	xmluse

	Examples
	Video example

	Reference
	Also see

	import delimited
	Description
	Quick start
	Menu
	Syntax
	Options for import delimited
	Options for export delimited
	Remarks and examples
	Introduction
	Importing a text file
	Using other delimiters
	Specifying variable types

	Exporting to a text file
	Video example

	Also see

	import excel
	Description
	Quick start
	Menu
	Syntax
	Options for import excel
	Options for export excel
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	import haver
	Description
	Quick start
	Menu
	Syntax
	Options for import haver
	Options for import haver, describe
	Option for set haverdir
	Remarks and examples
	Installation
	Setting the path to Haver databases
	Download example Haver databases
	Determining the contents of a Haver database
	Loading a Haver database
	Loading a Haver database from a describe file
	Temporal aggregation
	Daily data
	Weekly data

	Stored results
	Acknowledgment
	Also see

	import sasxport
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport
	Option for import sasxport, describe
	Options for export sasxport
	Remarks and examples
	Saving XPORT files for transferring to SAS
	Determining the contents of XPORT files received from SAS
	Using XPORT files received from SAS

	Stored results
	Technical appendix
	A1. Overview of SAS XPORT Transport format
	A2. Implications for writing XPORT datasets from Stata
	A3. Implications for reading XPORT datasets into Stata

	Also see

	infile (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Dictionary directives

	Remarks and examples
	Introduction
	Reading free-format files
	Reading fixed-format files
	Numeric formats
	String formats
	Specifying column and line numbers
	Examples of reading fixed-format files
	Reading fixed-block files
	Reading EBCDIC files

	References
	Also see

	infile (free format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reading free-format data
	Reading comma-separated data
	Specifying variable types
	Reading string variables
	Skipping variables
	Skipping observations
	Reading time-series data

	Also see

	infix (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Specifications

	Remarks and examples
	Two ways to use infix
	Reading string variables
	Reading data with multiple lines per observation
	Reading subsets of observations

	Also see

	input
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	insobs
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	inspect
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ipolate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	isid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	joinby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Reference
	Also see

	label
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	label language
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Creating labels in the first language
	Creating labels in the second and subsequent languages
	Creating labels from a clean slate
	Creating labels from a previously existing language
	Switching languages
	Changing the name of a language
	Deleting a language
	Appendix: Selected ISO 639-1 two-letter codes

	Stored results
	Methods and formulas
	References
	Also see

	labelbook
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for labelbook
	Options for numlabel
	Options for uselabel

	Remarks and examples
	labelbook
	Diagnosing problems
	numlabel
	uselabel

	Stored results
	Acknowledgments
	References
	Also see

	list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	lookfor
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	memory
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Examples
	Serious bug in Linux OS
	Notes for system administrators

	Stored results
	Reference
	Also see

	merge
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic description
	1:1 merges
	m:1 merges
	1:m merges
	m:m merges
	Sequential merges
	Treatment of overlapping variables
	Sort order
	Troubleshooting m:m merges
	Examples

	References
	Also see

	missing values
	Description
	Remarks and examples
	Reference
	Also see

	mkdir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	mvencode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	notes
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	How notes are numbered
	Attaching and listing notes
	Selectively listing notes
	Searching and replacing notes
	Deleting notes
	Warnings

	References
	Also see

	obs
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	odbc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Unicode and ODBC
	Setting up the data sources
	Listing ODBC data source names
	Listing available table names from a specified data source's system catalog
	Describing a specified table
	Loading data from ODBC sources

	Also see

	order
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	outfile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	pctile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	pctile
	xtile
	_pctile

	Stored results
	Methods and formulas
	Acknowledgment
	Also see

	putmata
	Description
	Quick start
	Syntax
	Options for putmata
	Options for getmata
	Remarks and examples
	Use of putmata
	Use of putmata and getmata
	Using putmata and getmata on subsets of observations
	Using views
	Constructing do-files

	Stored results
	Reference
	Also see

	range
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	recast
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	recode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Simple examples
	Setting up value labels with recode
	Referring to the minimum and maximum in rules
	Recoding missing values
	Recoding subsets of the data
	Otherwise rules
	Test for overlapping rules

	Acknowledgment
	Also see

	rename
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	rename group
	Description
	Quick start
	Menu
	Syntax
	Options for renaming variables
	Options for changing the case of groups of variable names
	Remarks and examples
	Advice
	Explanation
	* matches 0 or more characters; use ?* to match 1 or more
	* is greedy
	# is greedier

	Stored results
	Also see

	reshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of basic syntax
	Wide and long data forms
	Avoiding and correcting mistakes
	reshape long and reshape wide without arguments
	Missing variables
	Advanced issues with basic syntax: i()
	Advanced issues with basic syntax: j()
	Advanced issues with basic syntax: xij
	Advanced issues with basic syntax: String identifiers for j()
	Advanced issues with basic syntax: Second-level nesting
	Description of advanced syntax

	Stored results
	Acknowledgment
	References
	Also see

	rmdir
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	sample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	save
	Description
	Quick start
	Menu
	Syntax
	Options for save
	Options for saveold
	Remarks and examples
	Also see

	separate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	shell
	Description
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix(GUI)
	Stata for Unix(console)

	Also see

	snapshot
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	sort
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	split
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	stack
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	statsby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Collecting coefficients and standard errors
	Collecting stored results
	All subsets

	Acknowledgment
	References
	Also see

	sysuse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	A note concerning shipped datasets
	Using user-installed datasets
	How sysuse works

	Stored results
	Also see

	type
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	unicode
	Description
	Remarks and examples
	Also see

	unicode collator
	Description
	Syntax
	Remarks and examples
	Overview of collation
	The role of locales in collation
	Further controlling collation

	Also see

	unicode convertfile
	Description
	Syntax
	Options
	Remarks and examples
	Conversion between encodings
	Invalid and unsupported characters
	Examples

	Also see

	unicode encoding
	Description
	Syntax
	Remarks and examples
	Also see

	unicode locale
	Description
	Syntax
	Remarks and examples
	Overview
	Default locale and locale fallback

	Also see

	unicode translate
	Description
	Syntax
	Options
	Remarks and examples
	What is this about?
	Do I need to translate my files?
	Overview of the process
	How to determine the extended ASCII encoding
	Use of unicode analyze
	Use of unicode translate: Overview
	Use of unicode translate: A word on backups
	Use of unicode translate: Output
	Translating binary strLs

	Also see

	use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	varmanage
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	webuse
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Typical use
	A note concerning example datasets
	Redirecting the source

	Also see

	xmlsave
	Description
	Menu
	Syntax
	Options for xmlsave
	Options for xmluse
	Remarks and examples
	Also see

	xpose
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	zipfile
	Description
	Quick start
	Syntax
	Option for zipfile
	Option for unzipfile
	Remarks and examples

	[FN] Functions
	Contents
	intro
	Description
	Reference
	Also see

	Functions by category
	Contents
	Date and time functions
	Mathematical functions
	Matrix functions
	Programming functions
	Random-number functions
	Selecting time-span functions
	Statistical functions
	String functions
	Trigonometric functions
	Also see

	Functions by name
	
	Also see

	Date and time functions
	Contents
	Functions
	bofd()
	Cdhms()
	Chms()
	Clock()
	clock()
	Cmdyhms()
	Cofc()
	cofC()
	Cofd()
	cofd()
	daily()
	date()
	day()
	dhms()
	dofb()
	dofC()
	dofc()
	dofh()
	dofm()
	dofq()
	dofw()
	dofy()
	dow()
	doy()
	halfyear()
	halfyearly()
	hh()
	hhC()
	hms()
	hofd()
	hours()
	mdy()
	mdyhms()
	minutes()
	mm()
	mmC()
	mofd()
	month()
	monthly()
	msofhours()
	msofminutes()
	msofseconds()
	qofd()
	quarter()
	quarterly()
	seconds()
	ss()
	ssC()
	tC()
	tc()
	td()
	th()
	tm()
	tq()
	tw()
	week()
	weekly()
	wofd()
	year()
	yearly()
	yh()
	ym()
	yofd()
	yq()
	yw()

	Also see

	Mathematical functions
	Contents
	Functions
	abs()
	ceil()
	cloglog()
	comb()
	digamma()
	exp()
	floor()
	int()
	invcloglog()
	invlogit()
	ln()
	lnfactorial()
	lngamma()
	log()
	log10()
	logit()
	max()
	min()
	mod()
	reldif()
	round()
	sign()
	sqrt()
	sum()
	trigamma()
	trunc()

	References
	Also see

	Matrix functions
	Contents
	Functions
	Matrix functions returning a matrix
	cholesky()
	corr()
	diag()
	get()
	hadamard()
	I()
	inv()
	invsym()
	J()
	matuniform()
	nullmat()
	sweep()
	vec()
	vecdiag()
	Matrix functions returning a scalar
	colnumb()
	colsof()
	det()
	diag0cnt()
	el()
	issymmetric()
	matmissing()
	mreldif()
	rownumb()
	rowsof()
	trace()

	Reference
	Also see

	Programming functions
	Contents
	Functions
	autocode()
	byteorder()
	c()
	_caller()
	chop()
	clip()
	cond()
	e()
	e(sample)
	epsdouble()
	epsfloat()
	fileexists()
	fileread()
	filereaderror()
	filewrite()
	float()
	fmtwidth()
	has_eprop()
	inlist()
	inrange()
	irecode()
	matrix()
	maxbyte()
	maxdouble()
	maxfloat()
	maxint()
	maxlong()
	mi()
	minbyte()
	mindouble()
	minfloat()
	minint()
	minlong()
	missing()
	r()
	recode()
	replay()
	return()
	s()
	scalar()
	smallestdouble()

	References
	Also see

	Random-number functions
	Contents
	Functions
	runiform()
	runiform(ab)
	runiformint()
	rbeta()
	rbinomial()
	rchi2()
	rexponential()
	rgamma()
	rhypergeometric()
	rigaussian()
	rlogistic()
	rlogistic(s)
	rlogistic(ms)
	rnbinomial()
	rnormal()
	rnormal(m)
	rnormal(ms)
	rpoisson()
	rt()
	rweibull()
	rweibull(ab)
	rweibull(abg)
	rweibullph()
	rweibullph(ab)
	rweibullph(abg)

	Remarks and examples
	Methods and formulas
	KISS32 generator

	Acknowledgments
	References
	Also see

	Selecting time-span functions
	Contents
	Functions
	tin()
	twithin()

	Also see

	Statistical functions
	Contents
	Functions
	Beta and noncentral beta distributions
	betaden()
	ibeta()
	ibetatail()
	invibeta()
	invibetatail()
	nbetaden()
	nibeta()
	invnibeta()
	Binomial distributions
	binomialp()
	binomial()
	binomialtail()
	invbinomial()
	invbinomialtail()
	Chi-squared and noncentral chi-squared distributions
	chi2den()
	chi2()
	chi2tail()
	invchi2()
	invchi2tail()
	nchi2den()
	nchi2()
	nchi2tail()
	invnchi2()
	invnchi2tail()
	npnchi2()
	Dunnett's multiple range distributions
	dunnettprob()
	invdunnettprob()
	Exponential distributions
	exponentialden()
	exponential()
	exponentialtail()
	invexponential()
	invexponentialtail()
	F and noncentral F distributions
	Fden()
	F()
	Ftail()
	invF()
	invFtail()
	nFden()
	nF()
	nFtail()
	invnF()
	invnFtail()
	npnF()
	Gamma and inverse gamma distributions
	gammaden()
	gammap()
	gammaptail()
	invgammap()
	invgammaptail()
	dgammapda()
	dgammapdada()
	dgammapdadx()
	dgammapdx()
	dgammapdxdx()
	lnigammaden()
	Hypergeometric distributions
	hypergeometricp()
	hypergeometric()
	Inverse Gaussian distributions
	igaussianden()
	igaussian()
	igaussiantail()
	invigaussian()
	invigaussiantail()
	lnigaussianden()
	Logistic distributions
	logisticden(x)
	logisticden(sx)
	logisticden()
	logisticden(msx)
	logistic()
	logistic(x)
	logistic(sx)
	logistic(msx)
	logistictail()
	logistictail(x)
	logistictail(sx)
	logistictail(msx)
	invlogistic()
	invlogistic(p)
	invlogistic(sp)
	invlogistic(msp)
	invlogistictail()
	invlogistictail(p)
	invlogistictail(sp)
	invlogistictail(msp)
	Negative binomial distributions
	nbinomialp()
	nbinomial()
	nbinomialtail()
	invnbinomial()
	invnbinomialtail()
	Normal (Gaussian), log of the normal, binormal, and multivariate normal distributions
	normalden()
	normalden(xs)
	normalden(xms)
	normal()
	invnormal()
	lnnormalden()
	lnnormalden(xs)
	lnnormalden(xms)
	lnnormal()
	binormal()
	lnmvnormalden()
	Poisson distributions
	poissonp()
	poisson()
	poissontail()
	invpoisson()
	invpoissontail()
	Student's t and noncentral Student's t distributions
	tden()
	t()
	ttail()
	invt()
	invttail()
	invnt()
	invnttail()
	ntden()
	nt()
	nttail()
	npnt()
	Tukey's Studentized range distributions
	tukeyprob()
	invtukeyprob()
	Weibull distributions
	weibullden()
	weibullden(abx)
	weibullden(abgx)
	weibull()
	weibull(abx)
	weibull(abgx)
	weibulltail()
	weibulltail(abx)
	weibulltail(abgx)
	invweibull()
	invweibull(abp)
	invweibull(abgp)
	invweibulltail()
	invweibulltail(abp)
	invweibulltail(abgp)
	Weibull (proportional hazards) distributions
	weibullphden()
	weibullphden(abx)
	weibullphden(abgx)
	weibullph()
	weibullph(abx)
	weibullph(abgx)
	weibullphtail()
	weibullphtail(abx)
	weibullphtail(abgx)
	invweibullph()
	invweibullph(abp)
	invweibullph(abgp)
	invweibullphtail()
	invweibullphtail(abp)
	invweibullphtail(abgp)
	Wishart and inverse Wishart distributions
	lnwishartden()
	lniwishartden()

	References
	Also see

	String functions
	Contents
	Functions
	abbrev()
	char()
	uchar()
	collatorlocale()
	collatorversion()
	indexnot()
	plural()
	real()
	regexm()
	regexr()
	regexs()
	ustrregexm()
	ustrregexrf()
	ustrregexra()
	ustrregexs()
	soundex()
	soundex_nara()
	strcat()
	strdup()
	string()
	string(ns)
	stritrim()
	strlen()
	ustrlen()
	udstrlen()
	strlower()
	ustrlower()
	strltrim()
	ustrltrim()
	strmatch()
	strofreal()
	strofreal(ns)
	strpos()
	ustrpos()
	strproper()
	ustrtitle()
	strreverse()
	ustrreverse()
	strrpos()
	ustrrpos()
	strrtrim()
	ustrrtrim()
	strtoname()
	ustrtoname()
	strtrim()
	ustrtrim()
	strupper()
	ustrupper()
	subinstr()
	usubinstr()
	subinword()
	substr()
	usubstr()
	udsubstr()
	tobytes()
	uisdigit()
	uisletter()
	ustrcompare()
	ustrcompareex()
	ustrfix()
	ustrfrom()
	ustrinvalidcnt()
	ustrleft()
	ustrnormalize()
	ustrright()
	ustrsortkey()
	ustrsortkeyex()
	ustrto()
	ustrtohex()
	ustrunescape()
	word()
	ustrword()
	wordbreaklocale()
	wordcount()
	ustrwordcount()

	References
	Also see

	Trigonometric functions
	Contents
	Functions
	acos()
	acosh()
	asin()
	asinh()
	atan()
	atan2()
	atanh()
	cos()
	cosh()
	sin()
	sinh()
	tan()
	tanh()

	Reference
	Also see

	[G] Graphics
	Contents
	Introduction
	intro
	Description
	Also see

	graph intro
	Remarks and examples
	Suggested reading order
	A quick tour
	Using the menus

	References
	Also see

	graph editor
	Remarks and examples
	Quick start
	Introduction
	Starting and stopping the Graph Editor
	The tools
	The Object Browser
	Right-click menus, or Contextual menus
	The Standard Toolbar
	The main Graph Editor menu
	Grid editing
	Graph Recorder
	Tips, tricks, and quick edits

	Also see

	Commands
	graph
	Description
	Syntax
	Remarks and examples
	Also see

	graph bar
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	lookofbar_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of bars
	Treatment of data
	Obtaining frequencies
	Multiple bars (overlapping the bars)
	Controlling the text of the legend
	Multiple over()s (repeating the bars)
	Nested over()s
	Charts with many categories
	How bars are ordered
	Reordering the bars
	Putting the bars in a prespecified order
	Putting the bars in height order
	Putting the bars in a derived order
	Reordering the bars, example
	Use with by()
	Video example
	History

	References
	Also see

	graph box
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	boxlook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of multiple yvars versus treatment of over() groups
	How boxes are ordered
	Reordering the boxes
	Putting the boxes in a prespecified order
	Putting the boxes in median order
	Use with by()
	Video example
	History

	Methods and formulas
	References
	Also see

	graph close
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph combine
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Typical use
	Typical use with memory graphs
	Combining twoway graphs
	Advanced use
	Controlling the aspect ratio of subgraphs

	Reference
	Also see

	graph copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph describe
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	graph dir
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph display
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Changing the size and aspect ratio
	Changing the margins and aspect ratio
	Changing the scheme

	Also see

	graph dot
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	linelook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Relationship between dot plots and horizontal bar charts
	Examples
	Appendix: Examples of syntax

	References
	Also see

	graph drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Typical use
	Relationship between graph drop _all and discard
	Erasing graphs on disk

	Also see

	graph export
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Exporting the graph displayed in a Graph window
	Exporting a graph stored on disk
	Exporting a graph stored in memory

	Also see

	graph manipulation
	Description
	Syntax
	Remarks and examples
	Overview of graphs in memory and graphs on disk
	Summary of graph manipulation commands

	Also see

	graph matrix
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Marker symbols and the number of observations
	Controlling the axes labeling
	Adding grid lines
	Adding titles
	Use with by()
	History

	References
	Also see

	graph other
	Description
	Syntax
	Remarks and examples
	Also see

	graph pie
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Data are summed
	Data may be long rather than wide
	How slices are ordered
	Ordering slices by size
	Reordering the slices
	Use with by()
	Video example
	History

	References
	Also see

	graph play
	Description
	Syntax
	Remarks and examples
	Also see

	graph print
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Printing the graph displayed in a Graph window
	Printing a graph stored on disk
	Printing a graph stored in memory
	Appendix: Setting up Stata for Unix to print graphs

	Also see

	graph query
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph replay
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph save
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	graph set
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Setting defaults

	Also see

	graph twoway
	Description
	Menu
	Syntax
	Remarks and examples
	Definition
	Syntax
	Multiple if and in restrictions
	twoway and plot options

	graph twoway area
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway bar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use: Overlaying
	Advanced use: Population pyramid
	Cautions

	Reference
	Also see

	graph twoway connected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway contour
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contours and their values
	Controlling the colors of the contour areas
	Choose the interpolation method
	Video example

	Reference
	Also see

	graph twoway contourline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contour lines and their values
	Controlling the colors of the contour lines
	Choose the interpolation method

	Also see

	graph twoway dot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	graph twoway dropline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway fpfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway fpfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway function
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use 1
	Advanced use 2

	Reference
	Also see

	graph twoway histogram
	Description
	Quick start
	Menu
	Syntax
	Options for use in the discrete case
	Options for use in the continuous case
	Options for use in both cases
	Remarks and examples
	Relationship between graph twoway histogram and histogram
	Typical use
	Use with by()
	History

	References
	Also see

	graph twoway kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway lfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway line
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Oneway equivalency of line and scatter
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpolyci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mband
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway pcarrow
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use

	References
	Also see

	graph twoway pcarrowi
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pccapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use 1
	Basic use 2

	Also see

	graph twoway pci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use
	Advanced use 2

	Reference
	Also see

	graph twoway qfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway qfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway rarea
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway rbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use

	Reference
	Also see

	graph twoway rcap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway rcapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rconnected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway scatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Scatter syntax
	The overall look for the graph
	The size and aspect ratio of the graph
	Titles
	Axis titles
	Axis labels and ticking
	Grid lines
	Added lines
	Axis range
	Log scales
	Multiple axes
	Markers
	Weighted markers
	Jittered markers
	Connected lines
	Graphs by groups
	Saving graphs
	Video example
	Appendix: Styles and composite styles

	References
	Also see

	graph twoway scatteri
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway spike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway tsline
	Description
	Quick start
	Menu
	Syntax
	Also see

	graph use
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	palette
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	set graphics
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	set printcolor
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	What set printcolor affects
	The problem set printcolor solves
	set printcolor automatic
	set printcolor asis
	set printcolor gs1, gs2, and gs3
	The scheme matters, not the background color you set

	Also see

	set scheme
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	Options
	added_line_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Interpretation of repeated options

	Reference
	Also see

	added_text_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Advanced use
	Use of the textbox option width()

	Reference
	Also see

	addplot_option
	Description
	Syntax
	Option
	Remarks and examples
	Commands that allow the addplot() option
	Advantage of graph twoway commands
	Advantages of graphic commands implemented outside graph twoway
	Use of the addplot() option

	Also see

	advanced_options
	Description
	Syntax
	Options
	Remarks and examples
	Use of yvarlabel() and xvarlabel()
	Use of yvarformat() and xvarformat()
	Use of recast()

	Also see

	area_options
	Description
	Syntax
	Options
	Remarks and examples
	Use with twoway
	Use with graph dot

	Also see

	aspect_option
	Description
	Quick start
	Syntax
	Option
	Suboption
	Remarks and examples
	Reference
	Also see

	axis_choice_options
	Description
	Syntax
	Options
	Remarks and examples
	Usual case: one set of axes
	Special case: multiple axes due to multiple scales
	yaxis(1) and xaxis(1) are the defaults
	Notation style is irrelevant
	yaxis() and xaxis() are plot options
	Specifying the other axes options with multiple axes
	Each plot may have at most one x scale and one y scale
	Special case: Multiple axes with a shared scale

	Reference
	Also see

	axis_label_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default labeling and ticking
	Controlling the labeling and ticking
	Adding extra ticks
	Adding minor labels and ticks
	Adding grid lines
	Suppressing grid lines
	Substituting text for labels
	Contour axes---zlabel(), etc.
	Appendix: Details of syntax

	Reference
	Also see

	axis_options
	Description
	Options
	Remarks and examples
	Also see

	axis_scale_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Use of the yscale() and xscale()
	Specifying the range of a scale
	Obtaining log scales
	Obtaining reversed scales
	Suppressing the axes
	Contour axes---zscale()

	References
	Also see

	axis_title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default axis titles
	Overriding default titles
	Specifying multiline titles
	Suppressing axis titles
	Interpretation of repeated options
	Titles with multiple y axes or multiple x axes
	Contour axes---ztitle()

	Also see

	barlook_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	blabel_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Increasing the information content
	Changing how bars are labeled

	Also see

	by_option
	Description
	Quick start
	Syntax
	Option
	byopts
	Remarks and examples
	Typical use
	Placement of graphs
	Treatment of titles
	by() uses subtitle() with graph
	Placement of the subtitle()
	by() uses the overall note()
	Use of legends with by()
	By-styles
	Labeling the edges
	Specifying separate scales for the separate plots
	History

	References
	Also see

	cat_axis_label_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	cat_axis_line_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	clegend_option
	Description
	Quick start
	Syntax
	Option
	Content and appearance suboptions for use with clegend()
	Suboptions for use with clegend(region())
	Location suboptions for use with clegend()

	Remarks and examples
	When contour legends appear
	Where contour legends appear
	Putting titles on contour legends
	Controlling the axis in contour legends
	Use of legends with by()

	Also see

	cline_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	connect_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	eps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the eps_options
	Setting defaults
	Note about PostScript fonts

	Also see

	fcline_options
	Description
	Syntax
	Options
	Remarks and examples

	fitarea_options
	Description
	Syntax
	Options
	Remarks and examples

	legend_options
	Description
	Quick start
	Syntax
	Options
	Content suboptions for use with legend() and plegend()
	Suboptions for use with legend(region())
	Location suboptions for use with legend()

	Remarks and examples
	When legends appear
	The contents of legends
	Where legends appear
	Putting titles on legends
	Use of legends with by()
	Problems arising with or because of legends

	Also see

	line_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	marker_label_options
	Description
	Syntax
	Options
	Remarks and examples
	Typical use
	Eliminating overprinting and overruns
	Advanced use
	Using marker labels in place of markers

	Also see

	marker_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	name_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	nodraw_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	play_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	png_options
	Description
	Syntax
	Options
	Remarks and examples
	Using png_options
	Specifying the width or height

	Also see

	pr_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the pr_options
	Setting defaults
	Note for Unix users

	Also see

	ps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the ps_options
	Setting defaults
	Note about PostScript fonts
	Note for Unix users

	Also see

	rcap_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	region_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Setting the offset between the axes and the plot region
	Controlling the aspect ratio
	Suppressing the border around the plot region
	Setting background and fill colors
	How graphs are constructed

	Also see

	rspike_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	saving_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Also see

	scale_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	scheme_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	std_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	textbox_options
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a textbox
	Position
	Justification
	Position and justification combined
	Margins
	Width and height
	Appendix: Overriding default or context-specified positioning

	Also see

	tif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using tif_options
	Specifying the width or height

	Also see

	title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Multiple-line titles
	Interpretation of repeated options
	Positioning of titles
	Alignment of titles
	Spanning
	Using the textbox options box and bexpand

	Reference
	Also see

	twoway_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	Styles/concepts/schemes
	addedlinestyle
	Description
	Syntax
	Remarks and examples
	What is an added line?
	What is an addedlinestyle?
	You do not need to specify an addedlinestyle

	Also see

	alignmentstyle
	Description
	Syntax
	Remarks and examples
	Also see

	anglestyle
	Description
	Syntax
	Remarks and examples
	Also see

	areastyle
	Description
	Syntax
	Remarks and examples
	Overview of areastyles
	Numbered styles
	Using numbered styles
	When to use areastyles

	Also see

	axisstyle
	Description
	Syntax
	Remarks and examples
	Also see

	bystyle
	Description
	Syntax
	Remarks and examples
	What is a by-graph?
	What is a bystyle?

	Also see

	clockposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	colorstyle
	Description
	Syntax
	Remarks and examples
	Colors are independent of the background color
	White backgrounds and black backgrounds
	RGB values
	CMYK values
	HSV values
	Adjusting intensity

	Also see

	compassdirstyle
	Description
	Syntax
	Remarks and examples
	Also see

	concept: gph files
	Description
	Remarks and examples
	Background
	Gph files are machine/operating system independent
	Gph files come in three forms
	Advantages of live-format files
	Advantages of as-is format files
	Retrieving data from live-format files

	Also see

	concept: lines
	Description
	Syntax
	Remarks and examples
	linestyle
	linepatternstyle
	linewidthstyle
	colorstyle

	Also see

	concept: repeated options
	Description
	Remarks and examples
	Also see

	connectstyle
	Description
	Remarks and examples
	Syntax
	Also see

	gridstyle
	Description
	Syntax
	Remarks and examples
	What is a grid?
	What is a gridstyle?
	You do not need to specify a gridstyle
	Turning off and on the grid

	Also see

	intensitystyle
	Description
	Syntax
	Remarks and examples
	Also see

	justificationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	legendstyle
	Description
	Syntax
	Remarks and examples
	What is a legend?
	What is a legendstyle?
	You do not need to specify a legendstyle

	Also see

	linepatternstyle
	Description
	Syntax
	Remarks and examples
	Also see

	linestyle
	Description
	Syntax
	Remarks and examples
	What is a line?
	What is a linestyle?
	You do not need to specify a linestyle
	Specifying a linestyle can be convenient
	What are numbered styles?
	Suppressing lines

	Reference
	Also see

	linewidthstyle
	Description
	Syntax
	Remarks and examples
	Also see

	marginstyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerlabelstyle
	Description
	Syntax
	Remarks and examples
	What is a markerlabel?
	What is a markerlabelstyle?
	You do not need to specify a markerlabelstyle
	Specifying a markerlabelstyle can be convenient
	What are numbered styles?

	Also see

	markersizestyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerstyle
	Description
	Syntax
	Remarks and examples
	What is a marker?
	What is a markerstyle?
	You do not have to specify a markerstyle
	Specifying a markerstyle can be convenient
	What are numbered styles?

	Also see

	orientationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	plotregionstyle
	Description
	Syntax
	Remarks and examples
	Also see

	pstyle
	Description
	Syntax
	Remarks and examples
	What is a plot?
	What is a pstyle?
	The pstyle() option
	Specifying a pstyle
	What are numbered styles?

	Also see

	relativesize
	Description
	Syntax
	Remarks and examples
	Also see

	ringposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	schemes intro
	Description
	Syntax
	Remarks and examples
	The role of schemes
	Finding out about other schemes
	Setting your default scheme
	The scheme is applied at display time
	Background color
	Foreground color
	Obtaining new schemes
	Examples of schemes

	Also see

	scheme economist
	Description
	Syntax
	Remarks and examples
	Also see

	scheme s1
	Description
	Syntax
	Remarks and examples
	Also see

	scheme s2
	Description
	Syntax
	Remarks and examples
	Also see

	scheme sj
	Description
	Syntax
	Remarks and examples
	Also see

	shadestyle
	Description
	Syntax
	Remarks and examples
	What is a shadestyle?
	What are numbered styles?

	Also see

	stylelists
	Description
	Syntax
	Also see

	symbolstyle
	Description
	Syntax
	Remarks and examples
	Typical use
	Filled and hollow symbols
	Size of symbols

	Also see

	text
	Description
	Remarks and examples
	Overview
	Bold and italics
	Superscripts and subscripts
	Fonts, standard
	Fonts, advanced
	Greek letters and other symbols
	Full list of SMCL tags useful in graph text

	Also see

	textboxstyle
	Description
	Syntax
	Remarks and examples
	What is a textbox?
	What is a textboxstyle?
	You do not need to specify a textboxstyle

	Also see

	textsizestyle
	Description
	Syntax
	Also see

	textstyle
	Description
	Syntax
	Remarks and examples
	What is text?
	What is a textstyle?
	You do not need to specify a textstyle
	Relationship between textstyles and textboxstyles

	Also see

	ticksetstyle
	Description
	Syntax
	Also see

	tickstyle
	Description
	Syntax
	Remarks and examples
	What is a tick? What is a tick label?
	What is a tickstyle?
	You do not need to specify a tickstyle
	Suppressing ticks and/or tick labels

	Also see

	[IRT] Item Response Theory
	Contents
	irt
	Description
	Remarks and examples
	References
	Also see

	Control Panel
	Description
	Remarks and examples
	Reference
	Also see

	irt 1pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt 1pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 2pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt 2pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 3pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt 3pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt grm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt grm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt nrm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt nrm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt pcm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt pcm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt rsm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt rsm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt hybrid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Gauss--Hermite quadrature
	Adaptive quadrature

	References
	Also see

	irt hybrid postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Empirical Bayes
	Other predictions

	References
	Also see

	estat report
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irtgraph icc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irtgraph tcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	irtgraph iif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	irtgraph tif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	dif
	Description
	Remarks and examples
	References
	Also see

	diflogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	difmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	Glossary

	[M] Mata
	Contents
	Introduction to the Mata manual
	intro
	Contents
	Description
	Remarks and examples
	What's new

	Also see

	Introduction and advice
	intro
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	ado
	Description
	Remarks and examples
	A first example
	Where to store the Mata functions
	Passing arguments to Mata functions
	Returning results to ado-code
	Advice: Use of matastrict
	Advice: Some useful Mata functions

	Also see

	first
	Description
	Remarks and examples
	Invoking Mata
	Using Mata
	Making mistakes: Interpreting error messages
	Working with real numbers, complex numbers, and strings
	Working with scalars, vectors, and matrices
	Working with functions
	Distinguishing real and complex values
	Working with matrix and scalar functions
	Performing element-by-element calculations: Colon operators
	Writing programs
	More functions
	Mata environment commands
	Exiting Mata

	Also see

	help
	Description
	Syntax
	Remarks and examples
	Also see

	how
	Description
	Remarks and examples
	What happens when you define a program
	What happens when you work interactively
	What happens when you type a mata environment command
	Working with object code I: .mo files
	Working with object code II: .mlib libraries
	The Mata environment

	Reference
	Also see

	interactive
	Description
	Remarks and examples
	1. Start in Stata; load the data
	2. Create any time-series variables
	3. Create a constant variable
	4. Drop unnecessary variables
	5. Drop observations with missing values
	6. Put variables on roughly the same numeric scale
	7. Enter Mata
	8. Use Mata's st_view() function to access your data
	9. Perform your matrix calculations

	Review
	Reference
	Also see

	LAPACK
	Description
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	limits
	Description
	Summary
	Remarks and examples
	Also see

	naming
	Description
	Syntax
	Remarks and examples
	Interactive use
	Naming variables
	Naming functions
	What happens when functions have the same names
	How to determine if a function name has been taken

	Also see

	permutation
	Description
	Syntax
	Remarks and examples
	Permutation matrices
	How permutation matrices arise
	Permutation vectors

	Also see

	returnedargs
	Description
	Syntax
	Remarks and examples
	Also see

	source
	Description
	Syntax
	Remarks and examples
	Also see

	tolerance
	Description
	Syntax
	Remarks and examples
	The problem
	Absolute versus relative tolerances
	Specifying tolerances

	Also see

	Language definition
	intro
	Contents
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	class
	Description
	Syntax
	Introduction
	Example
	Declaration of member variables
	Declaration and definition of methods (member functions)
	Default exposure in declarations

	Remarks and examples
	Notation and jargon
	Declaring and defining a class
	Saving classes in files
	Workflow recommendation
	When you need to recompile
	Obtaining instances of a class
	Constructors and destructors
	Setting member variable and member function exposure
	Making a member final
	Making a member static
	Virtual functions
	Referring to the current class using this
	Using super to access the parent's concept
	Casting back to a parent
	Accessing external functions from member functions
	Pointers to classes

	Also see

	comments
	Description
	Syntax
	Remarks and examples
	The /* */ enclosed comment
	The // rest-of-line comment

	Also see

	continue
	Description
	Syntax
	Remarks and examples
	Also see

	declarations
	Description
	Syntax
	Remarks and examples
	The purpose of declarations
	Types, element types, and organizational types
	Implicit declarations
	Element types
	Organizational types
	Function declarations
	Argument declarations
	The by-address calling convention
	Variable declarations
	Linking to external globals

	Also see

	do
	Description
	Syntax
	Remarks and examples
	Also see

	errors
	Description
	Remarks and examples
	The error codes

	Also see

	exp
	Description
	Syntax
	Remarks and examples
	What's an expression
	Assignment suppresses display, as does (void)
	The pieces of an expression
	Numeric literals
	String literals
	Variable names
	Operators
	Functions

	Reference
	Also see

	for
	Description
	Syntax
	Remarks and examples
	Also see

	ftof
	Description
	Syntax
	Remarks and examples
	Passing functions to functions
	Writing functions that receive functions, the simplified convention
	Passing built-in functions

	Also see

	goto
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Also see

	op_arith
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_assignment
	Description
	Syntax
	Remarks and examples
	Assignment suppresses display
	The equal-assignment operator
	lvals, what appears on the left-hand side
	Row, column, and element lvals
	Pointer lvals

	Conformability
	Diagnostics
	Also see

	op_colon
	Description
	Syntax
	Remarks and examples
	C-conformability: element by element
	Usefulness of colon logical operators
	Use parentheses

	Conformability
	Diagnostics
	Also see

	op_conditional
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_increment
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_join
	Description
	Syntax
	Remarks and examples
	Comma and backslash are operators
	Comma as a separator
	Warning about the misuse of comma and backslash operators

	Conformability
	Diagnostics
	Also see

	op_kronecker
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	op_logical
	Description
	Syntax
	Remarks and examples
	Introduction
	Use of logical operators with pointers

	Conformability
	Diagnostics
	Also see

	op_range
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_transpose
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	optargs
	Description
	Syntax
	Remarks and examples
	What are optional arguments?
	How to code optional arguments
	Examples revisited

	Also see

	pointers
	Description
	Syntax
	Remarks and examples
	What is a pointer?
	Pointers to variables
	Pointers to expressions
	Pointers to functions
	Pointers to pointers
	Pointer arrays
	Mixed pointer arrays
	Definition of NULL
	Use of parentheses
	Pointer arithmetic
	Listing pointers
	Declaration of pointers
	Use of pointers to collect objects
	Efficiency

	Diagnostics
	References
	Also see

	pragma
	Description
	Syntax
	Remarks and examples
	pragma unset
	pragma unused

	Also see

	reswords
	Description
	Syntax
	Remarks and examples
	Future developments
	Version control

	Also see

	return
	Description
	Syntax
	Remarks and examples
	Functions that return results
	Functions that return nothing (void functions)

	Also see

	semicolons
	Description
	Syntax
	Remarks and examples
	Optional use of semicolons
	You cannot break a statement anywhere even if you use semicolons
	Use of semicolons to create multistatement lines
	Significant semicolons
	Do not use #delimit ;

	Also see

	struct
	Description
	Syntax
	Remarks and examples
	Introduction
	Structures and functions must have different names
	Structure variables must be explicitly declared
	Declare structure variables to be scalars whenever possible
	Vectors and matrices of structures
	Structures of structures
	Pointers to structures
	Operators and functions for use with structure members
	Operators and functions for use with entire structures
	Listing structures
	Use of transmorphics as passthrus
	Saving compiled structure definitions
	Saving structure variables

	Reference
	Also see

	subscripts
	Description
	Syntax
	Remarks and examples
	List subscripts
	Range subscripts
	When to use list subscripts and when to use range subscripts
	A fine distinction

	Conformability
	Diagnostics
	Reference
	Also see

	syntax
	Description
	Syntax
	Remarks and examples
	Treatment of semicolons
	Types and declarations
	Void matrices
	Void functions
	Operators
	Subscripts
	Implied input tokens
	Function argument-passing convention
	Passing functions to functions
	Optional arguments

	Reference
	Also see

	version
	Description
	Syntax
	Remarks and examples
	Purpose of version control
	Recommendations for do-files
	Recommendations for ado-files
	Compile-time and run-time versioning

	Also see

	void
	Description
	Syntax
	Remarks and examples
	Void matrices, vectors, row vectors, and column vectors
	How to read conformability charts

	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	Commands for controlling Mata
	intro
	Contents
	Description
	Remarks and examples
	Also see

	end
	Description
	Syntax
	Remarks and examples
	Also see

	mata
	Description
	Syntax
	Remarks and examples
	Introduction
	The fine distinction between syntaxes 3 and 4
	The fine distinction between syntaxes 1 and 2

	Also see

	mata clear
	Description
	Syntax
	Remarks and examples
	Also see

	mata describe
	Description
	Syntax
	Option
	Remarks and examples
	Diagnostics
	Also see

	mata drop
	Description
	Syntax
	Remarks and examples
	Also see

	mata help
	Description
	Syntax
	Remarks and examples
	Also see

	mata matsave
	Description
	Syntax
	Option for mata matsave
	Option for mata matuse
	Remarks and examples
	Diagnostics
	Also see

	mata memory
	Description
	Syntax
	Remarks and examples
	Also see

	mata mlib
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Outline of the procedure for dealing with libraries
	Creating a .mlib library
	Adding members to a .mlib library
	Listing the contents of a library
	Making it so Mata knows to search your libraries
	Advice on organizing your source code

	Also see

	mata mosave
	Description
	Syntax
	Options
	Remarks and examples
	Example of use
	Where to store .mo files
	Use of .mo files versus .mlib files

	Also see

	mata rename
	Description
	Syntax
	Also see

	mata set
	Description
	Option
	Syntax
	Remarks and examples
	Relationship between Mata's mata set and Stata's set commands
	c() values

	Also see

	mata stata
	Description
	Syntax
	Remarks and examples
	Also see

	mata which
	Description
	Syntax
	Remarks and examples
	Also see

	namelists
	Description
	Syntax
	Remarks and examples
	Also see

	Categorical guide to functions
	intro
	Contents
	Description
	Remarks and examples
	Also see

	io
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	manipulation
	Contents
	Description
	Remarks and examples
	Also see

	mathematical
	Contents
	Description
	Remarks and examples
	Also see

	matrix
	Contents
	Description
	Remarks and examples
	Also see

	programming
	Contents
	Also see

	scalar
	Contents
	Description
	Remarks and examples
	Also see

	solvers
	Contents
	Description
	Remarks and examples
	Also see

	standard
	Contents
	Description
	Remarks and examples
	Also see

	stata
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	statistical
	Contents
	Description
	Remarks and examples
	Also see

	string
	Contents
	Description
	Remarks and examples
	Also see

	utility
	Contents
	Description
	Remarks and examples
	Also see

	Alphabetical index to functions
	intro
	Contents
	Description
	Remarks and examples
	Also see

	abbrev()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	abs()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	adosubdir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	all()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	args()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	asarray()
	Description
	Syntax
	Remarks and examples
	Detailed description
	Example 1: Scalar keys and scalar contents
	Example 2: Scalar keys and matrix contents
	Example 3: Vector keys and scalar contents; sparse matrix
	Setting the efficiency parameters

	Conformability
	Diagnostics
	Also see

	AssociativeArray()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ascii()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	uchar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	assert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	blockdiag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	bufio()
	Description
	Syntax
	Remarks and examples
	Basics
	Argument C
	Arguments B and offset
	Argument fh
	Argument bfmt
	bfmts for numeric data
	bfmts for string data
	Argument X
	Arguments r and c
	Advanced issues

	Conformability
	Diagnostics
	Also see

	byteorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	C()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	c()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	callersversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cat()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	chdir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cholesky()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	cholinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cholsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	comb()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cond()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	conj()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	corr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cross()
	Description
	Syntax
	Remarks and examples
	Comment concerning cross() and missing values

	Conformability
	Diagnostics
	Also see

	crossdev()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cvpermute()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	date()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	deriv()
	Description
	Syntax
	Remarks and examples
	First example
	Notation and formulas
	Type d evaluators
	Example of a type d evaluator
	Type v evaluators
	User-defined arguments
	Example of a type v evaluator
	Type t evaluators
	Example of a type t evaluator
	Functions

	Conformability
	Diagnostics
	Methods and formulas
	References
	Also see

	designmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	det()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_diag()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	diag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diag0cnt()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	dir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	direxists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	direxternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	display()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayas()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayflush()
	Description
	Syntax
	Remarks and examples
	Diagnostics
	Also see

	Dmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	_docx*()
	Description
	Syntax
	Create and save .docx file
	Add paragraph and text
	Add image file
	Add table
	Edit table
	Query routines

	Remarks and examples
	Detailed description
	Error codes
	Functions
	Create and save .docx file
	Add paragraph and text
	Add image
	Add table
	Edit table

	Query routines
	Save document to disk file
	Current paragraph and text
	Supported image types
	Linked and embedded images
	Styles
	Performance
	Examples
	Create a .docx document in memory
	Add paragraphs and text
	Display data
	Display regression results
	Add an image
	Display nested table
	Add images to table cells
	Save the .docx document in memory to a disk file

	Diagnostics
	References
	Also see

	dsign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	e()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	editmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittoint()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittozero()
	Description
	Syntax
	Remarks and examples
	Background
	Treatment of complex values
	Recommendations

	Conformability
	Diagnostics
	Also see

	editvalue()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	eigensystem()
	Description
	Syntax
	Remarks and examples
	Eigenvalues and eigenvectors
	Left eigenvectors
	Symmetric eigensystems
	Normalization and order
	Eigenvalue condition
	Balancing
	eigensystem() and eigenvalues()
	lefteigensystem()
	symeigensystem() and symeigenvalues()

	Conformability
	Diagnostics
	References
	Also see

	eigensystemselect()
	Description
	Syntax
	Remarks and examples
	Introduction
	Range selection
	Index selection
	Criterion selection
	Other functions

	Conformability
	Diagnostics
	Also see

	eltype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	epsilon()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_equilrc()
	Description
	Syntax
	Remarks and examples
	Introduction
	Is equilibration necessary?
	The _equil*() family of functions
	The _perhapsequil*() family of functions
	rowscalefactors() and colscalefactors()

	Conformability
	Diagnostics
	Also see

	error()
	Description
	Syntax
	Remarks and examples
	Use of _error()
	Use of error()

	Conformability
	Diagnostics
	Also see

	errprintf()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exp()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	factorial()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	favorspeed()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ferrortext()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fft()
	Description
	Syntax
	Remarks and examples
	Definitions, notation, and conventions
	Fourier transform
	Convolution and deconvolution
	Correlation
	Utility routines
	Warnings

	Conformability
	Diagnostics
	Also see

	fileexists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	_fillmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	findexternal()
	Description
	Syntax
	Remarks and examples
	Definition of a global
	Use of globals

	Conformability
	Diagnostics
	Also see

	findfile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	floatround()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fmtwidth()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fopen()
	Description
	Syntax
	Remarks and examples
	Opening and closing files
	Reading from a file
	Writing to a file
	Reading and writing in the same file
	Reading and writing matrices
	Repositioning in a file
	Truncating a file
	Error codes

	Conformability
	Diagnostics
	Also see

	fullsvd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Relationship between the full and thin SVDs
	The contents of s
	Possibility of convergence problems

	Conformability
	Diagnostics
	Also see

	geigensystem()
	Description
	Syntax
	Remarks and examples
	Generalized eigenvalues
	Generalized eigenvectors
	Criterion selection
	Range selection
	Index selection

	Conformability
	Diagnostics
	References
	Also see

	ghessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghk()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghkfast()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	gschurd()
	Description
	Syntax
	Remarks and examples
	Generalized Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Also see

	halton()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hash1()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Hilbert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	I()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	inbase()
	Description
	Syntax
	Remarks and examples
	Positive integers
	Negative integers
	Numbers with nonzero fractional parts
	Use of the functions

	Conformability
	Diagnostics
	Reference
	Also see

	indexnot()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	invorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	invsym()
	Description
	Syntax
	Remarks and examples
	Definition of generalized inverse
	Specifying the order in which columns are dropped
	Determining the rank, or counting the number of dropped columns
	Extracting linear dependencies

	Conformability
	Diagnostics
	Also see

	invtokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isdiagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isfleeting()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isrealvalues()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	issymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	isview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	J()
	Description
	Syntax
	Remarks and examples
	First syntax: J(r, c, val), val a scalar
	Second syntax: J(r, c, mat), mat a matrix

	Conformability
	Diagnostics
	Also see

	Kmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	lapack()
	Description
	Syntax
	Remarks and examples
	Mapping calling sequence from Fortran to Mata
	Flopping: Preparing matrices for LAPACK
	Warning on the use of rows() and cols() after _flopin()
	Warning: It is your responsibility to check info
	Example

	Reference
	Also see

	liststruct()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Lmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	logit()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	lowertriangle()
	Description
	Syntax
	Remarks and examples
	Optional argument d
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	lud()
	Description
	Syntax
	Remarks and examples
	LU decomposition
	LAPACK routine

	Conformability
	Diagnostics
	Also see

	luinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	lusolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	makesymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matexpsym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matpowersym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mean()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mindouble()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	minindex()
	Description
	Syntax
	Remarks and examples
	Use of functions when v has all unique values
	Use of functions when v has repeated (tied) values
	Summary

	Conformability
	Diagnostics
	Also see

	minmax()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	missing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	missingof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mod()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	moptimize()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of maximization or minimization problem
	Step 3: Perform optimization or perform a single function evaluation
	Step 4: Post, display, or obtain results
	Utility functions for use in all steps
	Definition of M
	Setting the sample
	Specifying dependent variables
	Specifying independent variables
	Specifying constraints
	Specifying weights or survey data
	Specifying clusters and panels
	Specifying optimization technique
	Specifying initial values
	Performing one evaluation of the objective function
	Performing optimization of the objective function
	Tracing optimization
	Specifying convergence criteria
	Accessing results
	Stata evaluators
	Advanced functions
	Syntax of evaluators
	Syntax of type lf evaluators
	Syntax of type d evaluators
	Syntax of type lf* evaluators
	Syntax of type gf evaluators
	Syntax of type q evaluators
	Passing extra information to evaluators
	Utility functions

	Remarks and examples
	Relationship of moptimize() to Stata's ml and to Mata's optimize()
	Mathematical statement of the moptimize() problem
	Filling in moptimize() from the mathematical statement
	The type lf evaluator
	The type d, lf*, gf, and q evaluators
	Example using type d
	Example using type lf*

	Conformability
	Diagnostics
	References
	Also see

	more()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_negate()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	norm()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	normal()
	Description
	Syntax
	Remarks and examples
	R-conformability
	A note concerning invbinomial() and invbinomialtail()
	A note concerning ibeta()
	A note concerning gammap()

	Conformability
	Diagnostics
	Also see

	optimize()
	Description
	Syntax
	Remarks and examples
	First example
	Notation
	Type d evaluators
	Example of d0, d1, and d2
	d1debug and d2debug
	Type gf evaluators
	Example of gf0, gf1, and gf2
	Functions

	Conformability
	Diagnostics
	References
	Also see

	panelsetup()
	Description
	Syntax
	Remarks and examples
	Definition of panel data
	Definition of problem
	Preparation
	Use of panelsetup()
	Using panelstats()
	Using panelsubmatrix()
	Using panelsubview()

	Conformability
	Diagnostics
	Also see

	pathjoin()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Pdf*()
	Description
	Syntax
	PdfDocument
	PdfParagraph
	PdfText
	PdfTable

	Remarks and examples
	PdfDocument class details
	PdfParagraph class details
	PdfText class details
	PdfTable class details
	Error codes
	Examples
	Add paragraph
	Add paragraph with customized text
	Add table (simple example)
	Add table (table with header and footer)
	Add table (table with graph)

	Also see

	pinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	polyeval()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	printf()
	Description
	Syntax
	Remarks and examples
	printf()
	sprintf()
	The %us and %uds formats

	Conformability
	Diagnostics
	Also see

	qrd()
	Description
	Syntax
	Remarks and examples
	QR decomposition
	Avoiding calculation of Q
	Pivoting
	Least-squares solutions with dropped columns

	Conformability
	Diagnostics
	Also see

	qrinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	qrsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	quadcross()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	range()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rank()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Re()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	reldif()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	rows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rowshape()
	Description
	Syntax
	Remarks and examples
	Example of rowshape()
	Example of colshape()

	Conformability
	Diagnostics
	Also see

	runiform()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	runningsum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	schurd()
	Description
	Syntax
	Remarks and examples
	Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Reference
	Also see

	select()
	Description
	Syntax
	Remarks and examples
	Examples
	Using st_select()

	Conformability
	Diagnostics
	Also see

	setbreakintr()
	Description
	Syntax
	Remarks and examples
	Default break-key processing
	Suspending the break-key interrupt
	Break-key polling

	Conformability
	Diagnostics
	Also see

	sign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sin()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sizeof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solve_tol()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solvelower()
	Description
	Syntax
	Remarks and examples
	Derivation
	Tolerance

	Conformability
	Diagnostics
	Also see

	solvenl()
	Description
	Syntax
	Remarks and examples
	Introduction
	A fixed-point example
	A zero-finding example
	Writing a fixed-point problem as a zero-finding problem and vice versa
	Gauss{--}Seidel methods
	Newton-type methods
	Convergence criteria
	Exiting early
	Functions

	Conformability
	Diagnostics
	References
	Also see

	sort()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	soundex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	spline3()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	sqrt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_addobs()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_addvar()
	Description
	Syntax
	Remarks and examples
	Creating a new variable
	Creating new variables
	Creating new string variables
	Creating a new temporary variable
	Creating temporary variables
	Handling errors
	Using nofill

	Conformability
	Diagnostics
	Reference
	Also see

	st_data()
	Description
	Syntax
	Remarks and examples
	Description of _st_data() and _st_sdata()
	Description of st_data() and st_sdata()
	Details of observation subscripting using st_data() and st_sdata()

	Conformability
	Diagnostics
	Also see

	st_dir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_dropvar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_global()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_isfmt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_isname()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_local()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_macroexpand()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_matrix()
	Description
	Syntax
	Remarks and examples
	Processing Stata's row and column stripes
	Stata's matsize is irrelevant

	Conformability
	Diagnostics
	Also see

	st_numscalar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_nvar()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_rclear()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_store()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_subview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_tempname()
	Description
	Syntax
	Remarks and examples
	Creating temporary objects
	When temporary objects will be eliminated

	Conformability
	Diagnostics
	Also see

	st_tsrevar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_updata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varformat()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_varindex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varrename()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_vartype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_view()
	Description
	Syntax
	Remarks and examples
	Overview
	Advantages and disadvantages of views
	When not to use views
	Cautions when using views 1: Conserving memory
	Cautions when using views 2: Assignment
	Efficiency

	Conformability
	Diagnostics
	Reference
	Also see

	st_viewvars()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_vlexists()
	Description
	Syntax
	Remarks and examples
	Value-label mapping
	Value-label creation and editing
	Loading value labels

	Conformability
	Diagnostics
	Also see

	stata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	stataversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strdup()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udstrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strmatch()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strofreal()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	subinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sublowertriangle()
	Description
	Syntax
	Remarks and examples
	Get lower triangle of a matrix
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	_substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udsubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	svd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Possibility of convergence problems

	Conformability
	Diagnostics
	References
	Also see

	svsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	swap()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Toeplitz()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	tokenget()
	Description
	Syntax
	Remarks and examples
	Concepts
	Function overview

	Conformability
	Diagnostics
	Also see

	tokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trace()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_transpose()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	transposeonly()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trunc()
	Description
	Syntax
	Remarks and examples
	Relationship to Stata's functions
	Examples of rounding

	Conformability
	Diagnostics
	Also see

	uniqrows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	unitcircle()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	unlink()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrcompare()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrfix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrnormalize()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrto()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrunescape()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrword()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	valofexternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Vandermonde()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	vec()
	Description
	Syntax
	Remarks and examples
	Example of vec()
	Example of vech() and invvech()

	Conformability
	Diagnostics
	Also see

	xl()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Creating and opening an Excel workbook
	Step 3: Setting the Excel worksheet
	Step 4: Reading and writing data from and to an Excel worksheet
	Step 5: Formatting cells in an Excel worksheet
	Step 6: Formatting text in an Excel worksheet
	Utility functions for use in all steps

	Remarks and examples
	Definition of B
	Specifying the Excel workbook
	Specifying the Excel worksheet
	Reading data from Excel
	Writing data to Excel
	Dealing with missing values
	Dealing with dates
	Formatting functions
	Numeric formatting
	Text alignment
	Cell borders
	Fonts
	Other
	Formatting examples
	Format colors

	Utility functions
	Handling errors
	Error codes

	Also see

	Mata glossary of common terms
	Glossary
	Description
	Mata glossary
	Also see

	[ME] Multilevel Mixed Effects
	Contents
	me
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Using mixed-effects commands
	Mixed-effects models
	Linear mixed-effects models
	Generalized linear mixed-effects models
	Survival mixed-effects models
	Alternative mixed-effects model specification
	Likelihood calculation
	Computation time and the Laplacian approximation
	Diagnosing convergence problems
	Distribution theory for likelihood-ratio test

	Examples
	Two-level models
	Covariance structures
	Three-level models
	Crossed-effects models

	Acknowledgments
	References
	Also see

	mecloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	mecloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meglm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models for continuous responses
	Two-level models for nonlinear responses
	Three-level models for nonlinear responses
	Crossed-effects models
	Obtaining better starting values
	Survey data
	Video example

	Stored results
	Methods and formulas
	Introduction
	Gauss--Hermite quadrature
	Adaptive Gauss--Hermite quadrature
	Laplacian approximation
	Survey data

	References
	Also see

	meglm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	References
	Also see

	melogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	melogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat icc

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	Also see

	menbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models

	Stored results
	Methods and formulas
	References
	Also see

	menbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	mepoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A two-level model
	A three-level model

	Stored results
	Methods and formulas
	References
	Also see

	mepoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Also see

	meprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat icc

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	Also see

	meqrlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Other covariance structures
	Three-level models
	Crossed-effects models

	Stored results
	Methods and formulas
	References
	Also see

	meqrlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat recovariance
	Option for estat icc

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	References
	Also see

	meqrpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A two-level model
	A three-level model

	Stored results
	Methods and formulas
	References
	Also see

	meqrpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat recovariance

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	Survival models
	Survey data

	References
	Also see

	mestreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mixed
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Covariance structures
	Likelihood versus restricted likelihood
	Three-level models
	Blocked-diagonal covariance structures
	Heteroskedastic random effects
	Heteroskedastic residual errors
	Other residual-error structures
	Crossed-effects models
	Diagnosing convergence problems
	Survey data
	Small-sample inference for fixed effects

	Stored results
	Methods and formulas
	Denominator degrees of freedom
	Residual DDF
	Repeated DDF
	ANOVA DDF
	Satterthwaite DDF
	Kenward{--}Roger DDF

	Acknowledgments
	References
	Also see

	mixed postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat icc
	Options for estat recovariance
	Options for estat wcorrelation
	Options for estat df

	test and testparm
	Description for test and testparm
	Menu for test and testparm
	Syntax for test and testparm
	Options for test and testparm

	lincom
	Description for lincom
	Menu for lincom
	Syntax for lincom
	Options for lincom

	contrast
	Description for contrast
	Menu for contrast
	Syntax for contrast
	Options for contrast

	pwcompare
	Description for pwcompare
	Menu for pwcompare
	Syntax for pwcompare
	Options for pwcompare

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations
	Within-cluster covariance matrix
	Small-sample inference

	References
	Also see

	Glossary
	References

	[MI] Multiple Imputation
	Contents
	intro substantive
	Description
	Remarks and examples
	Motivating example
	What is multiple imputation?
	Theory underlying multiple imputation
	How large should M be?
	Assumptions about missing data
	Patterns of missing data
	Proper imputation methods
	Analysis of multiply imputed data
	A brief introduction to MI using Stata
	Summary

	References
	Also see

	intro
	Description
	Remarks and examples
	A simple example
	Suggested reading order
	What's new

	Acknowledgments
	Also see

	estimation
	Description
	Also see

	mi add
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi append
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Adding new observations
	Adding new observations and imputations
	Adding new observations and imputations, M unequal
	Treatment of registered variables

	Stored results
	Also see

	mi convert
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi convert as a convenience tool
	Converting from flongsep
	Converting to flongsep

	Also see

	mi copy
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi describe
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi query
	mi describe

	Stored results
	Also see

	mi erase
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi estimate
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi estimate
	Example 1: Completed-data logistic analysis
	Example 2: Completed-data linear regression analysis
	Example 3: Completed-data survival analysis
	Example 4: Panel data and multilevel models
	Example 5: Estimating transformations
	Example 6: Monte Carlo error estimates
	Potential problems that can arise when using mi estimate

	Stored results
	Methods and formulas
	Univariate case
	Multivariate case

	Acknowledgments
	References
	Also see

	mi estimate using
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mi estimate postestimation
	Postestimation commands
	Remarks and examples
	Using the command-specific postestimation tools

	Also see

	mi expand
	Description
	Syntax
	Menu
	Options
	Remarks and examples
	Also see

	mi export
	Description
	Syntax
	Remarks and examples
	References
	Also see

	mi export ice
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	mi export nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi extract
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import
	Description
	Syntax
	Remarks and examples
	When to use which mi import command
	Import data into Stata before importing into mi
	Using mi import nhanes1, ice, flong, and flongsep

	References
	Also see

	mi import flong
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import flongsep
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import ice
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mi import nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the nhanes1 format
	Importing nhanes1 data

	Also see

	mi import wide
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi impute
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Imputation methods
	Imputation modeling
	Model building
	Outcome variables
	Transformations
	Categorical variables
	The issue of perfect prediction during imputation of categorical data
	Convergence of iterative methods
	Imputation diagnostics

	Using mi impute
	Univariate imputation
	Multivariate imputation
	Imputing on subsamples
	Conditional imputation
	Imputation and estimation samples
	Imputing transformations of incomplete variables

	Stored results
	Methods and formulas
	References
	Also see

	mi impute chained
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation using chained equations
	Compatibility of conditionals
	Convergence of MICE
	First use
	Using mi impute chained
	Default prediction equations
	Custom prediction equations
	Link between mi impute chained and mi impute monotone
	Examples

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mi impute intreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using interval regression
	Using mi impute intreg
	Example

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute logit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using logistic regression
	Using mi impute logit
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mlogit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using multinomial logistic regression
	Using mi impute mlogit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute monotone
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation when a missing-data pattern is monotone
	First use
	Using mi impute monotone
	Default syntax of mi impute monotone
	The alternative syntax of mi impute monotone---custom prediction equations
	Examples of using default prediction equations
	Examples of using custom prediction equations

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mvn
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Incomplete continuous data with arbitrary pattern of missing values
	Multivariate imputation using data augmentation
	Convergence of the MCMC method
	Using mi impute mvn
	Examples

	Stored results
	Methods and formulas
	Data augmentation
	Prior distribution
	Initial values: EM algorithm
	 Worst linear function

	References
	Also see

	mi impute nbreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using negative binomial regression
	Using mi impute nbreg

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute ologit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using ordered logistic regression
	Using mi impute ologit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute pmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using predictive mean matching
	Using mi impute pmm
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute poisson
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using Poisson regression
	Using mi impute poisson

	Stored results
	Methods and formulas
	References
	Also see

	mi impute regress
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using linear regression
	Using mi impute regress
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute truncreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using truncated regression
	Using mi impute truncreg

	Stored results
	Methods and formulas
	References
	Also see

	mi impute usermethod
	Description
	Syntax
	Options
	Remarks and examples
	Toy example: Naive regression imputation
	Steps for adding a new method to mi impute
	Writing an imputation parser
	Writing an initializer
	Writing an imputer
	Storing additional results
	Writing a cleanup program

	Examples
	Naive regression imputation
	Univariate regression imputation
	Multivariate monotone imputation

	Global macros

	Stored results
	Acknowledgment
	Also see

	mi merge
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Merging with non-mi data
	Merging with mi data
	Merging with mi data containing overlapping variables

	Stored results
	Also see

	mi misstable
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi passive
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi passive basics
	mi passive works with the by prefix
	mi passive works fastest with the wide style
	mi passive and super-varying variables
	Renaming passive variables
	Dropping passive variables
	Update passive variables when imputed values change
	Alternatives to mi passive

	Also see

	mi predict
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using mi predict and mi predictnl
	Example 1: Obtain MI linear predictions and other statistics
	Example 2: Obtain MI linear predictions for the estimation sample
	Example 3: Obtain MI estimates of probabilities
	Example 4: Obtain other MI predictions
	Example 5: Obtain MI predictions after multiple-equation commands

	Methods and formulas
	References
	Also see

	mi ptrace
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi rename
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Specifying the noupdate option
	What to do if you accidentally use rename
	What to do if you accidentally use rename on wide data
	What to do if you accidentally use rename on mlong data
	What to do if you accidentally use rename on flong data
	What to do if you accidentally use rename on flongsep data

	Also see

	mi replace0
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi reset
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi reset
	Technical notes and relation to mi update

	Also see

	mi reshape
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi select
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	mi set
	Description
	Menu
	Syntax
	Remarks and examples
	mi set style
	mi register and mi unregister
	mi set M and mi set m
	mi unset

	Also see

	mi stsplit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Example 1: Testing subsets of coefficients equal to zero
	Example 2: Testing linear hypotheses
	Example 3: Testing nonlinear hypotheses

	Stored results
	Methods and formulas
	References
	Also see

	mi update
	Description
	Menu
	Syntax
	Remarks and examples
	Purpose of mi update
	What mi update does
	mi update is run automatically

	Also see

	mi varying
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Detecting problems
	Fixing problems

	Stored results
	Also see

	mi xeq
	Description
	Syntax
	Remarks and examples
	Using mi xeq with reporting commands
	Using mi xeq with data-modification commands
	Using mi xeq with data-modification commands on flongsep data

	Stored results
	Also see

	mi XXXset
	Description
	Syntax
	Remarks and examples
	Also see

	noupdate option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	styles
	Description
	Syntax
	Remarks and examples
	The four styles
	Style wide
	Style flong
	Style mlong
	Style flongsep
	How we constructed this example

	Using mi system variables
	Advice for using flongsep

	Also see

	technical
	Description
	Remarks and examples
	Notation
	Definition of styles
	Style all
	Style wide
	Style mlong
	Style flong
	Style flongsep
	Style flongsep_sub

	Adding new commands to mi
	Outline for new commands
	Utility routines
	u_mi_assert_set
	u_mi_certify_data
	u_mi_no_sys_vars and u_mi_no_wide_vars
	u_mi_zap_chars
	u_mi_xeq_on_tmp_flongsep
	u_mi_get_flongsep_tmpname
	mata: u_mi_flongsep_erase()
	u_mi_sortback
	u_mi_save and u_mi_use
	mata: u_mi_wide_swapvars()
	u_mi_fixchars
	mata: u_mi_cpchars_get() and mata: u_mi_cpchars_put()
	mata: u_mi_get_mata_instanced_var()
	mata: u_mi_ptrace_*()

	How to write other set commands to work with mi

	Also see

	workflow
	Description
	Remarks and examples
	Suggested workflow for original data
	Suggested workflow for data that already have imputations
	Example

	Also see

	Glossary
	Also see

	[MV] Multivariate Statistics
	Contents
	intro
	Description
	Also see

	multivariate
	Description
	Remarks and examples
	Cluster analysis
	Discriminant analysis
	Factor analysis and principal component analysis
	Rotation
	Multivariate analysis of variance and related techniques
	Structural equation modeling
	Multidimensional scaling and biplots
	Correspondence analysis
	Bayesian analysis
	Item response theory

	Also see

	alpha
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	biplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	How many dimensions?
	Statistics on the points
	Normalization and interpretation of correspondence analysis
	Plotting the points
	Supplementary points
	Matrix input
	Crossed variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation plots
	Postestimation commands
	cabiplot
	Description for cabiplot
	Menu for cabiplot
	Syntax for cabiplot
	Options for cabiplot

	caprojection
	Description for caprojection
	Menu for caprojection
	Syntax for caprojection
	Options for caprojection

	Remarks and examples
	References
	Also see

	candisc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	canon
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	canon postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster
	Description
	Syntax
	Remarks and examples
	Introduction to cluster analysis
	Stata's cluster-analysis system
	Data transformations and variable selection
	Similarity and dissimilarity measures
	Partition cluster-analysis methods
	Hierarchical cluster-analysis methods
	Hierarchical cluster analysis applied to a dissimilarity matrix
	Postclustering commands
	Cluster-management tools

	References
	Also see

	clustermat
	Description
	Syntax
	Remarks and examples
	References
	Also see

	cluster dendrogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	cluster generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cluster kmeans and kmedians
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cluster linkage
	Description
	Quick start
	Menu
	Syntax
	Options for cluster linkage commands
	Options for clustermat linkage commands
	Remarks and examples
	Methods and formulas
	Also see

	cluster notes
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	cluster programming subroutines
	Description
	Remarks and examples
	Adding a cluster subroutine
	Adding a cluster generate function
	Adding a cluster stopping rule
	Applying an alternate cluster dendrogram routine

	Reference
	Also see

	cluster programming utilities
	Description
	Syntax
	Options for cluster set
	Options for cluster delete
	Options for cluster measures
	Remarks and examples
	Stored results
	Also see

	cluster stop
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster utility
	Description
	Menu
	Syntax
	Options for cluster list
	Options for cluster renamevar
	Remarks and examples
	Also see

	discrim
	Description
	Syntax
	Remarks and examples
	Introduction
	A simple example
	Prior probabilities, costs, and ties

	Methods and formulas
	References
	Also see

	discrim estat
	Postestimation commands
	Description for estat
	Quick start for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classtable
	Options for estat errorrate
	Options for estat grsummarize
	Options for estat list
	Options for estat summarize

	Remarks and examples
	Discriminating-variable summaries
	Discrimination listings
	Classification tables and error rates

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Mahalanobis transformation
	Binary data

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	discrim lda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Descriptive LDA
	Predictive LDA
	A classic example

	Stored results
	Methods and formulas
	Predictive LDA
	Descriptive LDA

	References
	Also see

	discrim lda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classfunctions
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances
	Options for estat grmeans
	Options for estat loadings
	Option for estat structure

	Remarks and examples
	Classification tables, error rates, and listings
	ANOVA, MANOVA, and canonical correlations
	Discriminant and classification functions
	Scree, loading, and score plots
	Means and distances
	Covariance and correlation matrices
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Reference
	Also see

	discrim qda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim qda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	factor
	Description
	Quick start
	Menu
	Syntax
	Options for factor and factormat
	Options unique to factormat
	Remarks and examples
	Introduction
	Factor analysis
	Factor analysis from a correlation matrix

	Stored results
	Methods and formulas
	References
	Also see

	factor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, factor loadings, and scores
	Rotating the factor loadings
	Factor scores

	Stored results
	Methods and formulas
	estat
	rotate
	predict

	References
	Also see

	hotelling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	manova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way MANOVA
	Reporting coefficients
	Two-way MANOVA
	N-way MANOVA
	MANCOVA
	MANOVA for Latin-square designs
	MANOVA for nested designs
	MANOVA for mixed designs
	MANOVA with repeated measures

	Stored results
	Methods and formulas
	References
	Also see

	manova postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	manovatest
	Description of manovatest
	Menu for manovatest
	Syntax for manovatest
	Options for manovatest

	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Compare MCA on two variables and CA
	MCA on four variables
	CA of the indicator matrix
	CA of the Burt matrix
	Joint correspondence analysis

	Stored results
	Methods and formulas
	Notation
	Using ca to compute MCA
	CA of an indicator or Burt matrix
	JCA
	Supplementary variables
	predict

	References
	Also see

	mca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat coordinates
	Options for estat summarize

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	mca postestimation plots
	Postestimation commands
	mcaplot
	Description for mcaplot
	Menu for mcaplot
	Syntax for mcaplot
	Options for mcaplot

	mcaprojection
	Description for mcaprojection
	Menu for mcaprojection
	Syntax for mcaprojection
	Options for mcaprojection

	Remarks and examples
	Methods and formulas
	References
	Also see

	mds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Euclidean distances
	Non-Euclidean dissimilarity measures
	Introduction to modern MDS
	Protecting from local minimums

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation plots
	Postestimation commands
	mdsconfig
	Description for mdsconfig
	Menu for mdsconfig
	Syntax for mdsconfig
	Options for mdsconfig

	mdsshepard
	Description for mdsshepard
	Menu for mdsshepard
	Syntax for mdsshepard
	Options for mdsshepard

	Remarks and examples
	References
	Also see

	mdslong
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in long format
	Modern nonmetric MDS

	Stored results
	Methods and formulas
	References
	Also see

	mdsmat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in a Stata matrix
	Modern MDS and local minimums

	Stored results
	Methods and formulas
	Classical multidimensional scaling
	Modern multidimensional scaling
	Conversion of similarities to dissimilarities

	References
	Also see

	measure_option
	Description
	Syntax
	Options
	References
	Also see

	mvreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	mvreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mvtest
	Description
	Syntax
	References
	Also see

	mvtest correlations
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	Stored results
	Methods and formulas
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	References
	Also see

	mvtest covariances
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	Stored results
	Methods and formulas
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	References
	Also see

	mvtest means
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options with one-sample tests
	Remarks and examples
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	Stored results
	Methods and formulas
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	References
	Also see

	mvtest normality
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mardia mSkewness and mKurtosis
	Henze--Zirkler
	Doornik--Hansen

	Acknowledgment
	References
	Also see

	pca
	Description
	Quick start
	Menu
	Syntax
	Options
	Options unique to pcamat
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Inference on eigenvalues and eigenvectors
	More general tests for multivariate normal distributions

	References
	Also see

	pca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, component loadings, and scores
	Rotating the components
	How rotate interacts with pca
	Predicting the component scores

	Stored results
	Methods and formulas
	References
	Also see

	procrustes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to Procrustes methods
	Orthogonal Procrustes analysis
	Is an orthogonal Procrustes analysis symmetric?
	Other transformations

	Stored results
	Methods and formulas
	Introduction
	Orthogonal transformations
	Oblique transformations
	Unrestricted transformations
	Reported statistics

	References
	Also see

	procrustes postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	procoverlay
	Description for procoverlay
	Menu for procoverlay
	Syntax for procoverlay
	Options for procoverlay

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rotate
	Description
	Quick start
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Orthogonal rotations
	Oblique rotations
	Other types of rotation

	Stored results
	Methods and formulas
	References
	Also see

	rotatemat
	Description
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Introduction
	Orthogonal rotations
	Oblique rotations
	Promax rotation

	Stored results
	Methods and formulas
	References
	Also see

	scoreplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	screeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Glossary
	References

	[P] Programming
	Contents
	Combined subject table of contents
	intro
	Description
	References
	Also see

	automation
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	byable
	Description
	Syntax
	Option
	Remarks and examples
	byable(recall) programs
	Using sort in byable(recall) programs
	Byable estimation commands
	byable(onecall) programs
	Using sort in byable(onecall) programs
	Combining byable(onecall) with byable(recall)
	The by-group header

	Also see

	capture
	Description
	Syntax
	Remarks and examples
	Also see

	char
	Description
	Syntax
	Option
	Remarks and examples
	How to program with characteristics

	Also see

	class
	Description
	Remarks and examples
	1. Introduction
	2. Definitions
	3. Version control
	4. Member variables
	5. Inheritance
	6. Member programs' return values
	7. Assignment
	8. Built-ins
	9. Prefix operators
	10. Using object values
	11. Object destruction
	12. Advanced topics
	Appendix A. Finding, loading, and clearing class definitions
	Appendix B. Jargon
	Appendix C. Syntax diagrams

	Also see

	class exit
	Description
	Syntax
	Remarks and examples
	Examples

	Also see

	classutil
	Description
	Syntax
	Options for classutil describe
	Options for classutil dir
	Option for classutil which
	Remarks and examples
	classutil drop
	classutil describe
	classutil dir
	classutil cdir
	classutil which

	Stored results
	Also see

	comments
	Description
	Remarks and examples
	Also see

	confirm
	Description
	Syntax
	Option
	Remarks and examples
	confirm existence
	confirm file
	confirm format
	confirm names
	confirm number
	confirm matrix
	confirm scalar
	confirm variable

	Also see

	continue
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	creturn
	Description
	Menu
	Syntax
	Remarks and examples
	System values
	Directories and paths
	System limits
	Numerical and string limits
	Current dataset
	Memory settings
	Output settings
	Interface settings
	Graphics settings
	Efficiency settings
	Network settings
	Update settings
	Trace (program debugging) settings
	Mata settings
	Unicode settings
	Other settings
	Other

	Also see

	_datasignature
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	#delimit
	Description
	Syntax
	Remarks and examples
	Also see

	dialog programming
	Description
	Remarks and examples
	1. Introduction
	2. Concepts
	2.1 Organization of the .dlg file
	2.2 Positions, sizes, and the DEFINE command
	2.3 Default values
	2.4 Memory (recollection)
	2.5 I-actions and member functions
	2.6 U-actions and communication options
	2.7 The distinction between i-actions and u-actions
	2.8 Error and consistency checking

	3. Commands
	3.1 VERSION
	3.2 INCLUDE
	3.3 DEFINE
	3.4 POSITION
	3.5 LIST
	3.6 DIALOG
	3.6.1 CHECKBOX on/off input control
	3.6.2 RADIO on/off input control
	3.6.3 SPINNER numeric input control
	3.6.4 EDIT string input control
	3.6.5 VARLIST and VARNAME string input controls
	3.6.6 FILE string input control
	3.6.7 LISTBOX list input control
	3.6.8 COMBOBOX list input control
	3.6.9 BUTTON special input control
	3.6.10 TEXT static control
	3.6.11 TEXTBOX static control
	3.6.12 GROUPBOX static control
	3.6.13 FRAME static control
	3.6.14 COLOR input control
	3.6.15 EXP expression input control
	3.6.16 HLINK hyperlink input control
	3.6.17 TREEVIEW tree input control
	3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
	3.8 HELP and RESET helper buttons
	3.9 Special dialog directives

	4. SCRIPT
	5. PROGRAM
	5.1 Concepts
	5.1.1 Vnames
	5.1.2 Enames
	5.1.3 rstrings: cmdstring and optstring
	5.1.4 Adding to an rstring
	5.2 Flow-control commands
	5.2.1 if
	5.2.2 while
	5.2.3 call
	5.2.4 exit
	5.2.5 close
	5.3 Error-checking and presentation commands
	5.3.1 require
	5.3.2 stopbox
	5.4 Command-construction commands
	5.4.1 by
	5.4.2 bysort
	5.4.3 put
	5.4.4 varlist
	5.4.5 ifexp
	5.4.6 inrange
	5.4.7 weight
	5.4.8 beginoptions and endoptions
	5.4.8.1 option
	5.4.8.2 optionarg
	5.5 Command-execution commands
	5.5.1 stata
	5.5.2 clear
	5.6 Special scripts and programs

	6. Properties
	7. Child dialogs
	7.1 Referencing the parent
	8. Example
	Appendix A: Jargon
	Appendix B: Class definition of dialog boxes
	Appendix C: Interface guidelines for dialog boxes
	Frequently asked questions

	Also see

	discard
	Description
	Syntax
	Remarks and examples
	Also see

	display
	Description
	Syntax
	Remarks and examples
	Introduction
	Styles
	display used with quietly and noisily
	Columns
	display and SMCL
	Displaying variable names
	Obtaining input from the terminal

	Also see

	ereturn
	Description
	Syntax
	Options
	Remarks and examples
	Estimation-class programs
	Setting individual estimation results
	Posting estimation coefficient and variance--covariance matrices

	Stored results
	Also see

	error
	Description
	Syntax
	Remarks and examples
	Introduction
	Summary
	Other messages

	Also see

	estat programming
	Description
	Remarks and examples
	Standard subcommands
	Adding subcommands to estat
	Overriding standard behavior of a subcommand

	Also see

	_estimates
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	exit
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	file
	Description
	Syntax
	Options
	Text output specifications

	Remarks and examples
	Use of file
	Use of file with tempfiles
	Writing text files
	Reading text files
	Use of seek when writing or reading text files
	Writing and reading binary files
	Writing binary files
	Reading binary files
	Use of seek when writing or reading binary files
	Appendix A.1 $mskip 	hinmuskip $ Useful commands and functions for use with file
	Appendix A.2 $mskip 	hinmuskip $ Actions of binary output formats with out-of-range values

	Stored results
	Reference
	Also see

	file formats .dta
	Description
	Remarks and examples
	Also see

	findfile
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	foreach
	Description
	Syntax
	Remarks and examples
	Introduction
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of local and foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of global
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of varlist
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of newlist
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of numlist
	Use of foreach with continue
	The unprocessed list elements

	Also see

	forvalues
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	fvexpand
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	gettoken
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Introduction
	Avoid single-line if and else with ++ and -/- macro expansion

	Reference
	Also see

	include
	Description
	Syntax
	Option
	Remarks and examples
	Use with do-files
	Use with Mata
	Warning

	Also see

	java
	Description
	Usage
	Remarks and examples
	Also see

	javacall
	Description
	Syntax
	Option
	Also see

	levelsof
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	macro
	Description
	Syntax
	Remarks and examples
	Formal definition of a macro
	Global and local macro names
	Macro assignment
	Macro extended functions
	Macro extended function for extracting program properties
	Macro extended functions for extracting data attributes
	Macro extended function for naming variables
	Macro extended functions for filenames and file paths
	Macro extended function for accessing operating-system parameters
	Macro extended functions for names of stored results
	Macro extended function for formatting results
	Macro extended function for manipulating lists
	Macro extended functions related to matrices
	Macro extended function related to time-series operators
	Macro extended function for copying a macro
	Macro extended functions for parsing
	Macro expansion operators and function
	The tempvar, tempname, and tempfile commands
	Manipulation of macros
	Macros as arguments

	Also see

	macro lists
	Description
	Syntax
	Remarks and examples
	Treatment of adornment
	Treatment of duplicate elements in lists

	Also see

	makecns
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Mathematics
	Linkage of the mathematics to Stata

	Stored results
	Also see

	mark
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	matlist
	Description
	Syntax
	Style options
	General options
	Required options for the second syntax
	Remarks and examples
	All columns with the same format
	Different formats for each column
	Other output options

	Also see

	matrix
	Description
	Remarks and examples
	Overview of matrix commands
	Creating and replacing matrices
	Namespace
	Naming conventions in programs

	Also see

	matrix accum
	Description
	Syntax
	Options
	Remarks and examples
	matrix accum
	matrix glsaccum
	matrix opaccum
	matrix vecaccum
	Treatment of user-specified weights

	Stored results
	Reference
	Also see

	matrix define
	Description
	Menu
	Syntax
	Remarks and examples
	Introduction
	Inputting matrices by hand
	Matrix operators
	Matrix functions returning matrices
	Matrix functions returning scalars
	Subscripting and element-by-element definition
	Name conflicts in expressions (namespaces)
	Macro extended functions

	References
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	matrix eigenvalues
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix get
	Description
	Syntax
	Remarks and examples
	Also see

	matrix mkmat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mkmat
	svmat

	Acknowledgment
	References
	Also see

	matrix rownames
	Description
	Syntax
	Remarks and examples
	Also see

	matrix score
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix svd
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	matrix symeigen
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix utility
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	more
	Description
	Syntax
	Remarks and examples
	Also see

	nopreserve option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	numlist
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	pause
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	plugin
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	postfile
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	_predict
	Description
	Syntax
	Options
	Methods and formulas
	Reference
	Also see

	preserve
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program properties
	Description
	Option
	Remarks and examples
	Introduction
	Writing programs for use with nestreg and stepwise
	Writing programs for use with svy
	Writing programs for use with mi
	Properties for survival-analysis commands
	Properties for exponentiating coefficients
	Putting it all together
	Checking for program properties

	Also see

	Project Manager
	Description
	Remarks and examples
	Getting started with the Project Manager
	Editing projects
	Properties
	Relative versus absolute paths
	Filtering and searching

	Also see

	putexcel
	Description
	Quick start
	Menu
	Syntax
	Output types

	Options
	Remarks and examples
	Introduction
	Writing expressions and formatting cells
	Exporting summary statistics to Excel
	Export estimation results
	Export graphs and other images

	Appendix
	Codes for numeric formats
	Colors
	Border styles
	Background patterns

	References
	Also see

	putexcel advanced
	Description
	Quick start
	Menu
	Syntax
	Output types

	Options
	Remarks and examples
	Writing expressions and formatting cells
	Using formulas
	Exporting estimation results

	References
	Also see

	quietly
	Description
	Syntax
	Remarks and examples
	quietly used interactively
	quietly used in programs
	Note for programmers

	Also see

	_return
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	return
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Storing results in r()
	Storing results in e()
	Storing results in s()
	Recommended names for stored results
	Using hidden and historical stored results
	Programming hidden and historical stored results

	Also see

	_rmcoll
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	rmsg
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	_robust
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Clustered data
	Survey data
	Controlling the header display
	Maximum likelihood estimators
	Multiple-equation estimators

	Stored results
	Methods and formulas
	References
	Also see

	scalar
	Description
	Syntax
	Remarks and examples
	Naming scalars

	Reference
	Also see

	serset
	Description
	Syntax
	Options
	Options for serset create
	Options for serset create_xmedians
	Option for serset create_cspline
	Option for serset summarize
	Option for serset use

	Remarks and examples
	Introduction
	serset create
	serset create_xmedians
	serset create_cspline
	serset set
	serset sort
	serset summarize
	serset
	serset use
	serset reset_id
	serset drop
	serset clear
	serset dir
	file sersetwrite and file sersetread

	Stored results
	Also see

	set locale_functions
	Description
	Syntax
	Option
	Also see

	set locale_ui
	Description
	Syntax
	Also see

	signestimationsample
	Description
	Syntax
	Remarks and examples
	Using signestimationsample and checkestimationsample
	Signing
	Checking
	Handling of weights
	Do not sign unnecessarily

	Stored results
	Also see

	sleep
	Description
	Syntax
	Remarks and examples

	smcl
	Description
	Remarks and examples
	Introduction
	SMCL modes
	Command summary---general syntax
	Help file preprocessor directive for substituting repeated material
	Formatting directives for use in line and paragraph modes
	Link directives for use in line and paragraph modes
	Formatting directives for use in line mode
	Formatting directives for use in paragraph mode
	Directive for entering the as-is mode
	Inserting values from constant and current-value class
	Displaying characters using ASCII and extended ASCII codes
	Advice on using display
	Advice on formatting help files

	Also see

	sortpreserve
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sortpreserve
	The cost of sortpreserve
	How sortpreserve works
	Use of sortpreserve with preserve
	Use of sortpreserve with subroutines that use sortpreserve

	Also see

	syntax
	Description
	Syntax
	Syntax, continued
	Remarks and examples
	Introduction
	The args command
	The syntax command

	Also see

	sysdir
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sysdir
	adopath
	set adosize

	Also see

	tabdisp
	Description
	Syntax
	Options
	Remarks and examples
	Limits
	Introduction
	Treatment of string variables
	Treatment of missing values

	Also see

	timer
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	tokenize
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	trace
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	unab
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	unabcmd
	Description
	Syntax
	Remarks and examples
	Also see

	varabbrev
	Description
	Syntax
	Remarks and examples
	Also see

	version
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	viewsource
	Description
	Syntax
	Remarks and examples
	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	window programming
	Description
	Syntax
	Also see

	window fopen
	Description
	Syntax
	Remarks and examples
	Also see

	window manage
	Description
	Syntax
	Remarks and examples
	Minimizing or restoring the main window
	Windowing preferences
	Restoring file associations (Windows only)
	Resetting the main window title
	Setting Dock icon's label (Mac only)
	Bringing windows forward
	Commands to manage Graph windows
	Printing
	Bringing forward
	Closing
	Renaming

	Commands to manage Viewer windows
	Printing
	Bringing forward
	Closing

	Also see

	window menu
	Description
	Syntax
	Remarks and examples
	Overview
	Clear previously defined menu additions
	Define submenus
	Define menu items
	Define separator bars
	Activate menu changes
	Add files to the Open recent menu
	Keyboard shortcuts (Windows only)
	Examples
	Advanced features: Dialogs and built-in actions
	Advanced features: Creating checked menu items
	Putting it all together

	Also see

	window push
	Description
	Syntax
	Remarks and examples
	Also see

	window stopbox
	Description
	Syntax
	Remarks and examples
	Also see

	[PSS] Power and Sample Size
	Contents
	intro
	Description
	Remarks and examples
	Power and sample-size analysis
	Hypothesis testing
	Components of PSS analysis
	Study design
	Statistical method
	Significance level
	Power
	Clinically meaningful difference and effect size
	Sample size
	One-sided test versus two-sided test
	Another consideration: Dropout

	Survival data
	Sensitivity analysis
	An example of PSS analysis in Stata
	Video example

	References
	Also see

	GUI
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example with PSS Control Panel

	Also see

	power
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the power command
	Specifying multiple values of study parameters

	One-sample tests
	Two-sample tests
	Paired-sample tests
	Analysis of variance models
	Contingency tables
	Survival analysis
	Tables of results
	Power curves

	Stored results
	Methods and formulas
	References
	Also see

	power, graph
	Description
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	power, table
	Description
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	power onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onemean
	Computing sample size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean
	Video examples

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	power twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twomeans
	Computing sample size
	Computing power
	Computing effect size and experimental-group mean
	Testing a hypothesis about two independent means

	Stored results
	Methods and formulas
	Known standard deviations
	Unknown standard deviations
	Unequal standard deviations
	Equal standard deviations

	References
	Also see

	power pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedmeans
	Computing sample size
	Computing power
	Computing effect size and target mean difference
	Testing a hypothesis about two correlated means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power oneproportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneproportion
	Computing sample size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion
	Video examples

	Stored results
	Methods and formulas
	Large-sample normal approximation
	Binomial test

	References
	Also see

	power twoproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and experimental-group proportion
	Testing a hypothesis about two independent proportions
	Video examples

	Stored results
	Methods and formulas
	Effect size
	Pearsons chi2 test
	Likelihood-ratio test
	Fisher's exact conditional test

	References
	Also see

	power pairedproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target discordant proportions
	Testing a hypothesis about two correlated proportions

	Stored results
	Methods and formulas
	References
	Also see

	power onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onevariance
	Computing sample size
	Computing power
	Computing effect size and target variance
	Performing a hypothesis test on variance

	Stored results
	Methods and formulas
	Reference
	Also see

	power twovariances
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twovariances
	Computing sample size
	Computing power
	Computing effect size and experimental-group variance
	Testing a hypothesis about two independent variances

	Stored results
	Methods and formulas
	References
	Also see

	power onecorrelation
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onecorrelation
	Computing sample size
	Computing power
	Computing effect size and target correlation
	Performing hypothesis tests on correlation

	Stored results
	Methods and formulas
	References
	Also see

	power twocorrelations
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twocorrelations
	Computing sample size
	Computing power
	Computing effect size and experimental-group correlation
	Testing a hypothesis about two independent correlations

	Stored results
	Methods and formulas
	References
	Also see

	power oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and between-group variance
	Testing hypotheses about multiple group means
	Video examples

	Stored results
	Methods and formulas
	Computing power

	References
	Also see

	power twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple populations

	Stored results
	Methods and formulas
	Main effects
	Interaction effects
	Hypothesis testing

	References
	Also see

	power repeated
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power repeated
	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple dependent populations

	Stored results
	Methods and formulas
	Hypothesis testing
	Computing power

	References
	Also see

	power cmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cmh
	Alternative ways of specifying probabilities

	Motivating example
	Computing sample size
	Computing power
	Computing effect size
	Testing hypotheses about association in 2 x 2 x K tables

	Stored results
	Methods and formulas
	References
	Also see

	power mcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power mcc
	Computing sample size
	Computing power
	Computing target odds ratio
	Testing hypotheses in matched case{--}control studies

	Stored results
	Methods and formulas
	References
	Also see

	power trend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power trend
	Alternative ways of specifying probabilities

	Computing sample size
	Computing power
	Testing hypotheses about a trend in J x 2 tables

	Stored results
	Methods and formulas
	Computing power
	Computing sample size

	References
	Also see

	power cox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cox
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Link to the sample-size and power computation for the log-rank test

	Computing power
	Computing effect size
	Performing analyses using a Cox PH model

	Stored results
	Methods and formulas
	References
	Also see

	power exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power exponential
	Alternative ways of specifying effect

	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Nonuniform accrual
	Exponential losses to follow-up

	The conditional versus unconditional approaches
	Link to the sample-size and power computation for the log-rank test
	Computing power
	Testing hypotheses about two exponential survivor functions

	Stored results
	Methods and formulas
	References
	Also see

	power logrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power logrank
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring

	Withdrawal of subjects from the study
	Including information about subject accrual
	Computing power
	Computing effect size
	Testing a hypothesis about two survivor functions using a log-rank test

	Stored results
	Methods and formulas
	References
	Also see

	unbalanced designs
	Description
	Syntax
	Options
	Remarks and examples
	Two samples
	Specifying total sample size and allocation ratio
	Specifying group sample sizes
	Specifying one of the group sample sizes and allocation ratio
	Specifying total sample size and one of the group sample sizes

	Fractional sample sizes

	Also see

	Glossary

	[R] Base Reference
	Contents
	Introduction
	intro
	Description
	Remarks and examples
	Arrangement of the reference manuals
	Arrangement of each entry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	Also see

	A
	about
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	adoupdate
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using adoupdate
	Possible problem the first time you run adoupdate and the solution
	Notes for developers

	Stored results
	Also see

	ameans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	anova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way ANOVA
	Two-way ANOVA
	N-way ANOVA
	Weighted data
	ANCOVA
	Nested designs
	Mixed designs
	Latin-square designs
	Repeated-measures ANOVA
	Video examples

	Stored results
	References
	Also see

	anova postestimation
	Postestimation commands
	predict
	margins
	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Testing effects
	Obtaining symbolic forms
	Testing coefficients and contrasts of margins
	Video example

	References
	Also see

	areg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	areg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	asclogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	asclogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Stored results
	Methods and formulas
	Also see

	asmprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Variance structures

	Stored results
	Methods and formulas
	Simulated likelihood

	References
	Also see

	asmprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat covariance, estat correlation, and estat facweights
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics
	Obtaining marginal effects

	Stored results
	Methods and formulas
	Marginal effects

	Also see

	asroprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	asroprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat covariance, estat correlation, and estat facweights
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Stored results
	Also see

	B
	betareg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	betareg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	BIC note
	Description
	Remarks and examples
	Background
	The problem of determining N
	The problem of conformable likelihoods
	The first problem does not arise with AIC; the second problem does
	Calculating BIC correctly

	Methods and formulas
	References
	Also see

	binreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	binreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	References
	Also see

	biprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	biprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	bitest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	bitest
	bitesti

	Stored results
	Methods and formulas
	Reference
	Also see

	bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using bootstrap
	Regression coefficients
	Expressions
	Combining bootstrap datasets
	A note about macros
	Achieved significance level
	Bootstrapping a ratio
	Warning messages and e(sample)
	Bootstrapping statistics from data with a complex structure

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap postestimation
	Postestimation commands
	predict
	margins
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	boxcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Theta model
	Lambda model
	Left-hand-side-only model
	Right-hand-side-only model

	Stored results
	Methods and formulas
	References
	Also see

	boxcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	brier
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	bsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	bstat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Bootstrap datasets
	Creating a bootstrap dataset

	Stored results
	References
	Also see

	C
	centile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Default case
	Normal case
	meansd case

	Acknowledgment
	References
	Also see

	churdle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	churdle postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	ci
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for ci and cii means
	Options for ci and cii proportions
	Options for ci and cii variances

	Remarks and examples
	Confidence intervals for means
	Normal-based confidence intervals
	Poisson confidence intervals

	Confidence intervals for proportions
	Confidence intervals for variances
	Immediate form

	Stored results
	Methods and formulas
	Normal mean
	Poisson mean
	Binomial proportion
	Variance and standard deviation

	Acknowledgment
	References
	Also see

	clogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Matched case--control data
	Use of weights
	Fixed-effects logit

	Stored results
	Methods and formulas
	References
	Also see

	clogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to complementary log-log regression
	Robust standard errors

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cls
	Description
	Syntax

	cnsreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cnsreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	constraint
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	contrast
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way models
	Estimated cell means
	Testing equality of cell means
	Reference category contrasts
	Reverse adjacent contrasts
	Orthogonal polynomial contrasts

	Two-way models
	Estimated interaction cell means
	Simple effects
	Interaction effects
	Main effects
	Partial interaction effects

	Three-way and higher-order models
	Contrast operators
	Differences from a reference level (r.)
	Differences from the next level (a.)
	Differences from the previous level (ar.)
	Differences from the grand mean (g.)
	Differences from the mean of subsequent levels (h.)
	Differences from the mean of previous levels (j.)
	Orthogonal polynomials (p. and q.)

	User-defined contrasts
	Empty cells
	Empty cells, ANOVA style
	Nested effects
	Multiple comparisons
	Unbalanced data
	Using observed cell frequencies
	Weighted contrast operators

	Testing factor effects on slopes
	Chow tests
	Beyond linear models
	Multiple equations
	Video example

	Stored results
	Methods and formulas
	Marginal linear predictions
	Contrast operators
	Reference level contrasts
	Adjacent contrasts
	Grand mean contrasts
	Helmert contrasts
	Reverse Helmert contrasts
	Orthogonal polynomial contrasts

	Contrasts within interactions
	Multiple comparisons

	References
	Also see

	contrast postestimation
	Postestimation commands
	Remarks and examples
	Also see

	copyright
	Description
	Syntax
	Remarks and examples
	Also see

	copyright apache
	Description
	Also see

	copyright boost
	Description
	Also see

	copyright icd10
	Description
	Also see

	copyright icu
	Description
	Also see

	copyright lapack
	Description
	Also see

	copyright libharu
	Description
	Also see

	copyright libpng
	Description
	Also see

	copyright mersennetwister
	Description
	Also see

	copyright miglayout
	Description
	Also see

	copyright scintilla
	Description
	Also see

	copyright ttf2pt1
	Description
	Also see

	copyright zlib
	Description
	Also see

	correlate
	Description
	Quick start
	Menu
	Syntax
	Options for correlate
	Options for pwcorr
	Remarks and examples
	correlate
	pwcorr
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	cpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	cumul
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	cusum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	D
	db
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	diagnostic plots
	Description
	Quick start
	Menu
	Syntax
	Options for symplot, quantile, and qqplot
	Options for qnorm and pnorm
	Options for qchi and pchi
	Remarks and examples
	symplot
	quantile
	qqplot
	qnorm
	pnorm
	qchi
	pchi

	Methods and formulas
	Acknowledgments
	References
	Also see

	display
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	do
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Reference
	Also see

	doedit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	dotplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References

	dstdize
	Description
	Quick start
	Menu
	Syntax
	Options for dstdize
	Options for istdize
	Remarks and examples
	Direct standardization
	Indirect standardization

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dydx
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	E
	eform_option
	Description
	Remarks and examples
	Reference
	Also see

	eivreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	epitab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Incidence-rate data
	Stratified incidence-rate data
	Standardized estimates with stratified incidence-rate data
	Cumulative incidence data
	Stratified cumulative incidence data
	Standardized estimates with stratified cumulative incidence data
	Case--control data
	Stratified case--control data
	Case--control data with multiple levels of exposure
	Case--control data with confounders and possibly multiple levels of exposure
	Standardized estimates with stratified case--control data
	Matched case--control data
	Video examples
	Glossary

	Stored results
	Methods and formulas
	Unstratified incidence-rate data (ir and iri)
	Unstratified cumulative incidence data (cs and csi)
	Unstratified case--control data (cc and cci)
	Unstratified matched case--control data (mcc and mcci)
	Stratified incidence-rate data (ir with the by() option)
	Stratified cumulative incidence data (cs with the by() option)
	Stratified case--control data (cc with by() option, mhodds, tabodds)

	Acknowledgments
	References
	Also see

	error messages
	Description
	Also see

	esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	estat
	Description
	Syntax

	estat classification
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat gof
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample

	Stored results
	Methods and formulas
	References
	Also see

	estat ic
	Description
	Quick start
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat summarize
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat vce
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estimates
	Description
	Syntax
	Remarks and examples
	Saving and using estimation results
	Storing and restoring estimation results
	Comparing estimation results
	Jargon

	Also see

	estimates describe
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estimates for
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	estimates notes
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	estimates replay
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	estimates save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Setting e(sample)
	Resetting e(sample)
	Determining who set e(sample)

	Stored results
	Also see

	estimates stats
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estimates store
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estimates table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estimates title
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	estimation options
	Description
	Syntax
	Options
	Also see

	exit
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	exlogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Sufficient statistics
	Conditional distribution and CMLE
	Median unbiased estimates and exact CI
	Conditional hypothesis tests
	Sufficient-statistic p-value

	References
	Also see

	exlogistic postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat predict
	Option for estat se

	Remarks and examples
	Stored results
	Reference
	Also see

	expoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Conditional distribution

	References
	Also see

	expoisson postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Also see

	F
	fp
	Description
	Quick start
	Menu
	Syntax
	Options for fp
	Options for fp generate
	Remarks and examples
	Fractional polynomial regression
	Scaling
	Centering
	Examples

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	fp postestimation
	Postestimation commands
	predict
	margins
	fp plot and fp predict
	Description for fp plot and fp predict
	Menu for fp plot and fp predict
	Syntax for fp plot and fp predict
	Options for fp plot
	Options for fp predict

	Remarks and examples
	Examples

	Methods and formulas
	Acknowledgment
	References
	Also see

	fracreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fracreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins

	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Also see

	frontier
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	frontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	fvrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	fvset
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results

	G
	gllamm
	Description
	Remarks and examples
	References
	Also see

	glm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	General use
	Variance estimators
	User-defined functions

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	glm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Predictions
	Other postestimation commands

	Methods and formulas
	References
	Also see

	gmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	The weight matrix and two-step estimation
	Obtaining standard errors
	Factor-variable coefficients in multiple residual functions
	Parameter interpretation using margins
	Exponential (Poisson) regression models
	Specifying derivatives
	Exponential regression models with panel data
	Rational-expectations models
	System estimators
	Dynamic panel-data models
	Details of moment-evaluator programs

	Stored results
	Methods and formulas
	Initial weight matrix
	Weight matrix
	Variance--covariance matrix
	Hansen's J statistic
	Panel-style instruments
	Marginal predictions with unconditional standard errors

	References
	Also see

	gmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Option for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Reference
	Also see

	grmeanby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References

	H
	hausman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	heckman
	Description
	Quick start
	Menu
	Syntax
	Options for Heckman selection model (ML)
	Options for Heckman selection model (two-step)
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	help
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Video examples

	Also see

	hetprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	hetprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	histogram
	Description
	Quick start
	Menu
	Syntax
	Options for use in the continuous case
	Options for use in the discrete case
	Options for use in the continuous and discrete cases
	Remarks and examples
	Histograms of continuous variables
	Overlaying normal and kernel density estimates
	Histograms of discrete variables
	Use with by()
	Video example

	References
	Also see

	I
	icc
	Description
	Quick start
	Menu
	Syntax
	Options for one-way RE model
	Options for two-way RE and ME models
	Remarks and examples
	Introduction
	One-way random effects
	Two-way random effects
	Two-way mixed effects
	Adoption study
	Relationship between ICCs
	Tests against nonzero values

	Stored results
	Methods and formulas
	Mean squares
	One-way random effects
	Two-way random effects
	Two-way mixed effects

	References
	Also see

	inequality
	Remarks and examples
	References

	intreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	intreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	ivpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	GMM estimator for additive model
	GMM estimator for multiplicative model
	CF estimator for multiplicative model

	Stored results
	Methods and formulas
	References
	Also see

	ivpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	ivprobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	ivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	2SLS and LIML estimators
	GMM estimator
	Video example

	Stored results
	Methods and formulas
	Notation
	2SLS and LIML estimators
	GMM estimator

	References
	Also see

	ivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat endogenous
	Options for estat firststage
	Options for estat overid

	Remarks and examples
	estat endogenous
	estat firststage
	estat overid

	Stored results
	Methods and formulas
	Notation
	estat endogenous
	estat firststage
	estat overid

	References
	Also see

	ivtobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivtobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	J
	jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using jackknife
	Jackknifed standard deviation
	Collecting multiple statistics
	Collecting coefficients

	Stored results
	Methods and formulas
	References
	Also see

	jackknife postestimation
	Postestimation commands
	predict
	margins
	Also see

	K
	kappa
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Two raters
	More than two raters

	Stored results
	Methods and formulas
	kap: m=2
	kappa: m>2, k=2
	kappa: m>2, k>2

	References

	kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ksmirnov
	Description
	Quick start
	Menu
	Syntax
	Options for two-sample test
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	kwallis
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	L
	ladder
	Description
	Quick start
	Menu
	Syntax
	Options for ladder
	Options for gladder
	Options for qladder
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	level
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	limits
	Description
	Remarks and examples
	Maximum size limits
	Matrix size
	Determining which flavor of Stata you are running

	Also see

	lincom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using lincom
	Odds ratios and incidence-rate ratios
	Multiple-equation models

	Stored results
	References
	Also see

	linktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lnskew0
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	log
	Description
	Quick start
	Menu
	Syntax
	Options for use with both log and cmdlog
	Options for use with log
	Option for use with set logtype
	Remarks and examples
	Stored results
	Also see

	logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	logistic and logit
	Robust estimate of variance
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	predict without options
	predict with the xb and stdp options
	predict with the residuals option
	predict with the number option
	predict with the deviance option
	predict with the rstandard option
	predict with the hat option
	predict with the dx2 option
	predict with the ddeviance option
	predict with the dbeta option

	Methods and formulas
	References
	Also see

	logit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic usage
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	logit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	loneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The one-way ANOVA model
	R-squared
	The random-effects ANOVA model
	Intraclass correlation
	Estimated reliability of the group-averaged score

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Acknowledgment
	References
	Also see

	lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Local polynomial smoothing
	Choice of a bandwidth
	Confidence bands

	Stored results
	Methods and formulas
	References
	Also see

	lroc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample
	Models other than the last fitted model

	Stored results
	Methods and formulas
	References
	Also see

	lrtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Nested models
	Composite models

	Stored results
	Methods and formulas
	References
	Also see

	lsens
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Models other than the last fitted model

	Stored results
	Methods and formulas
	Reference
	Also see

	lv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	M
	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining margins of responses
	Example 1: A simple case after regress
	Example 2: A simple case after logistic
	Example 3: Average response versus response at average
	Example 4: Multiple margins from one command
	Example 5: Margins with interaction terms
	Example 6: Margins with continuous variables
	Example 7: Margins of continuous variables
	Example 8: Margins of interactions
	Example 9: Decomposing margins
	Example 10: Testing margins---contrasts of margins
	Example 11: Margins of a specified prediction
	Example 12: Margins of a specified expression
	Example 13: Margins with multiple outcomes (responses)
	Example 14: Margins with multiple equations
	Example 15: Margins evaluated out of sample

	Obtaining margins of derivatives of responses (a.k.a. marginal effects)
	Use at() freely, especially with continuous variables
	Expressing derivatives as elasticities
	Derivatives versus discrete differences
	Example 16: Average marginal effect (partial effects)
	Example 17: Average marginal effect of all covariates
	Example 18: Evaluating marginal effects over the response surface

	Obtaining margins with survey data and representative samples
	Example 19: Inferences for populations, margins of response
	Example 20: Inferences for populations, marginal effects
	Example 21: Inferences for populations with svyset data

	Standardizing margins
	Obtaining margins as though the data were balanced
	Balancing using asbalanced
	Balancing by standardization
	Balancing nonlinear responses
	Treating a subset of covariates as balanced
	Using fvset design
	Balancing in the presence of empty cells

	Obtaining margins with nested designs
	Introduction to nested designs
	Margins with nested designs as though the data were balanced
	Coding of nested designs

	Special topics
	Requirements for model specification
	Estimability of margins
	Manipulability of tests
	Using margins after the estimates use command
	Syntax of at()
	Estimation commands that may be used with margins

	Video examples
	Glossary

	Stored results
	Methods and formulas
	Notation
	Marginal effects
	Fixing covariates and balancing factors
	Estimable functions
	Standard errors conditional on the covariates
	Unconditional standard errors

	References
	Also see

	margins postestimation
	Postestimation commands
	Remarks and examples
	Also see

	margins, contrast
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Contrasts of margins
	Contrasts and the over() option
	The overjoint suboption
	The marginswithin suboption

	Contrasts and the at() option
	Estimating treatment effects with margins
	Conclusion

	Stored results
	Methods and formulas
	Reference
	Also see

	margins, pwcompare
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	marginsplot
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Dataset
	Profile plots
	Interaction plots
	Contrasts of margins---effects (discrete marginal effects)
	Three-way interactions
	Continuous covariates
	Plots at every value of a continuous covariate
	Contrasts of at() groups---discrete effects
	Controlling the graph's dimensions
	Pairwise comparisons
	Horizontal is sometimes better
	Marginal effects
	Plotting a subset of the results from margins
	Advanced usage
	Plots with multiple terms
	Plots with multiple at() options
	Adding scatterplots of the data

	Video examples

	Addendum: Advanced uses of dimlist
	Acknowledgments
	References
	Also see

	matsize
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	maximize
	Description
	Syntax
	Maximization options
	Option for set maxiter
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	The mean estimator
	Survey data
	The survey mean estimator
	The standardized mean estimator
	The poststratified mean estimator
	The standardized poststratified mean estimator
	Subpopulation estimation

	References
	Also see

	mean postestimation
	Postestimation commands
	Remarks and examples
	Reference
	Also see

	meta
	Remarks and examples
	References

	mfp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Iteration report
	Estimation algorithm
	Methods of FP model selection
	Zeros and zero categories

	Stored results
	Acknowledgments
	References
	Also see

	mfp postestimation
	Postestimation commands
	fracplot and fracpred
	Description for fracplot and fracpred
	Menu for fracplot and fracpred
	Syntax for fracplot and fracpred
	Options for fracplot
	Options for fracpred

	Remarks and examples
	Methods and formulas
	Also see

	misstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for misstable summarize
	Options for misstable patterns
	Options for misstable tree
	Option for misstable nested
	Common options

	Remarks and examples
	misstable summarize
	misstable patterns
	misstable tree
	misstable nested
	Execution time of misstable nested

	Stored results
	Also see

	mkspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Linear splines
	Restricted cubic splines

	Methods and formulas
	Linear splines
	Restricted cubic splines

	Acknowledgment
	References
	Also see

	ml
	Description
	Syntax
	Syntax of subroutines for use by evaluator programs
	Syntax of user-written evaluator

	Options
	Options for use with ml model in interactive or noninteractive mode
	Options for use with ml model in noninteractive mode
	Options for use when specifying equations
	Options for use with ml search
	Option for use with ml plot
	Options for use with ml init
	Options for use with ml maximize
	Option for use with ml graph
	Options for use with ml display
	Options for use with mleval
	Option for use with mlsum
	Option for use with mlvecsum
	Option for use with mlmatsum
	Options for use with mlmatbysum
	Options for use with ml score

	Remarks and examples
	Survey options and ml

	Stored results
	Methods and formulas
	References
	Also see

	mlexp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	Parameter interpretation using margins
	Parameter constraints
	Specifying derivatives

	Stored results
	Methods and formulas
	References
	Also see

	mlexp postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the model
	Fitting unconstrained models
	Fitting constrained models

	Stored results
	Methods and formulas
	References
	Also see

	mlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Calculating marginal effects
	Testing hypotheses about coefficients

	Reference
	Also see

	more
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	mprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	N
	nbreg
	Description
	Quick start
	Menu
	Syntax
	Options for nbreg
	Options for gnbreg
	Remarks and examples
	Introduction to negative binomial regression
	nbreg
	gnbreg

	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	References
	Also see

	nbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Reference
	Also see

	nestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Estimation commands
	Wald tests
	Likelihood-ratio tests
	Programming for nestreg

	Stored results
	Acknowledgment
	References
	Also see

	net
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a package
	The purpose of the net and ado commands
	Content pages
	Package-description pages
	Where packages are installed
	A summary of the net command
	A summary of the ado command
	Relationship of net and ado to the point-and-click interface
	Creating your own site
	Format of content and package-description files
	Example 1
	Example 2
	Additional package directives
	SMCL in content and package-description files
	Error-free file delivery

	References
	Also see

	net search
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Topic searches
	Author searches
	Command searches
	Where does net search look?
	How does net search work?

	References
	Also see

	netio
	Description
	Syntax
	Options
	Remarks and examples
	1. remote connection failed r(677);
	2. connection timed out r(2);

	Also see

	news
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Substitutable expressions
	Substitutable expression programs
	Built-in functions
	Lognormal errors
	Other uses
	Weights
	Potential errors
	General comments on fitting nonlinear models
	Function evaluator programs

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	nl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	nlcom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Basics
	Using the post option
	Reparameterizing ML estimators for univariate data
	nlcom versus eform

	Stored results
	Methods and formulas
	References
	Also see

	nlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Specification and options for lev#_equation
	Options for nlogit
	Specification and options for nlogitgen
	Specification and options for nlogittree

	Remarks and examples
	Introduction
	Data setup and the tree structure
	Estimation
	Testing for the IIA
	Nonnormalized model

	Stored results
	Methods and formulas
	Two-level nested logit model
	Three-level nested logit model

	References
	Also see

	nlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	nlsur
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expression programs
	Function evaluator programs

	Stored results
	Methods and formulas
	References
	Also see

	nlsur postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	nptrend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	O
	ologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining observed means
	Multiple-comparison tests
	Weighted data
	Video example

	Stored results
	Methods and formulas
	One-way analysis of variance
	Bartlett's test
	Multiple-comparison tests

	References
	Also see

	oprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	oprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	orthog
	Description
	Quick start
	Menu
	Syntax
	Options for orthog
	Options for orthpoly
	Remarks and examples
	Methods and formulas
	References
	Also see

	P
	pcorr
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	permute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	pk
	Description
	Remarks and examples
	References

	pkcollapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	pkcross
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pkequiv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pkexamine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pkshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	pksumm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	poisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	poisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	postest
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	predict
	Description
	Quick start
	Menu for predict
	Syntax
	Options
	Remarks and examples
	Estimation-sample predictions
	Out-of-sample predictions
	Residuals
	Single-equation (SE) models
	SE model scores
	Multiple-equation (ME) models
	ME model scores

	Methods and formulas
	Also see

	predictnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonlinear transformations and standard errors
	Using xb() and predict()
	Multiple-equation (ME) estimators
	Test statistics and significance levels
	Manipulability
	Confidence intervals

	Methods and formulas
	References
	Also see

	probit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Robust standard errors
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	probit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Methods and formulas
	Also see

	proportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Confidence intervals

	References
	Also see

	proportion postestimation
	Postestimation commands
	Remarks and examples
	Also see

	prtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pwcompare
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Pairwise comparisons of means
	Marginal means
	All pairwise comparisons

	Overview of multiple-comparison methods
	Fisher's protected least-significant difference (LSD)
	Bonferroni's adjustment
	{accent 20 S}id{accent 19 a}k's adjustment
	Scheff{accent 19 e}'s adjustment
	Tukey's HSD adjustment
	Student--Newman--Keuls's adjustment
	Duncan's adjustment
	Dunnett's adjustment

	Example adjustments using one-way models
	Fisher's protected LSD
	Tukey's HSD
	Dunnett's method for comparisons to a control

	Two-way models
	Pairwise comparisons of slopes
	Nonlinear models
	Multiple-equation models
	Unbalanced data
	Empty cells

	Stored results
	Methods and formulas
	Notation
	Unadjusted comparisons
	Bonferroni's method
	{accent 20 S}id{accent 19 a}k's method
	Scheff{accent 19 e}'s method
	Tukey's method
	Student--Newman--Keuls's method
	Duncan's method
	Dunnett's method

	References
	Also see

	pwcompare postestimation
	Postestimation commands
	Remarks and examples
	Also see

	pwmean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Group means
	Pairwise differences of means
	Group output
	Adjusting for multiple comparisons
	Tukey's method
	Dunnett's method

	Multiple over() variables
	Equal variance assumption

	Stored results
	Methods and formulas
	Reference
	Also see

	pwmean postestimation
	Postestimation commands
	Remarks and examples
	Also see

	Q
	qc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	qreg
	Description
	Quick start
	Menu
	Syntax
	Options for qreg
	Options for iqreg
	Options for sqreg
	Options for bsqreg
	Remarks and examples
	Median regression
	Quantile regression
	Estimated standard errors
	Interquantile and simultaneous-quantile regression
	What are the parameters?

	Stored results
	Methods and formulas
	Introduction
	Linear programming formulation of quantile regression
	Standard errors when residuals are i.i.d.
	Pseudo-R2

	References
	Also see

	qreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	query
	Description
	Syntax
	Remarks and examples
	Also see

	R
	ranksum
	Description
	Quick start
	Menu
	Syntax
	Options for ranksum
	Options for median
	Remarks and examples
	Stored results
	Methods and formulas
	ranksum
	median

	References
	Also see

	ratio
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The ratio estimator
	Survey data
	The survey ratio estimator
	The standardized ratio estimator
	The poststratified ratio estimator
	The standardized poststratified ratio estimator
	Subpopulation estimation

	References
	Also see

	ratio postestimation
	Postestimation commands
	Remarks and examples
	Also see

	reg3
	Description
	Nomenclature

	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	reg3 postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Ordinary least squares
	Treatment of the constant
	Robust standard errors
	Weighted regression
	Video example

	Stored results
	Methods and formulas
	Coefficient estimation and ANOVA table
	Weighted regression
	A general notation for the robust variance calculation
	Robust calculation for regress

	Acknowledgments
	References
	Also see

	regress postestimation
	Postestimation commands
	Predictions
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict
	Remarks and examples for predict
	Terminology
	Fitted values and residuals
	Prediction standard errors
	Prediction with weighted data
	Leverage statistics
	Standardized and Studentized residuals
	DFITS, Cook's Distance, and Welsch Distance
	COVRATIO

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	DFBETA influence statistics
	Description for dfbeta
	Menu for dfbeta
	Syntax for dfbeta
	Option for dfbeta
	Remarks and examples for dfbeta

	Tests for violation of assumptions
	Description for estat hettest
	Menu for estat
	Syntax for estat hettest
	Options for estat hettest
	Description for estat imtest
	Menu for estat
	Syntax for estat imtest
	Options for estat imtest
	Description for estat ovtest
	Menu for estat
	Syntax for estat ovtest
	Option for estat ovtest
	Description for estat szroeter
	Menu for estat
	Syntax for estat szroeter
	Options for estat szroeter
	Remarks and examples for estat hettest, estat imtest, estat ovtest, and estat szroeter
	Stored results for estat hettest, estat imtest, and estat ovtest

	Variance inflation factors
	Description for estat vif
	Menu for estat
	Syntax for estat vif
	Option for estat vif
	Remarks and examples for estat vif

	Measures of effect size
	Description for estat esize
	Menu for estat
	Syntax for estat esize
	Options for estat esize
	Remarks and examples for estat esize
	Stored results for estat esize

	Methods and formulas
	predict
	Special-interest postestimation commands

	Acknowledgments
	References
	Also see

	regress postestimation diagnostic plots
	Description
	rvfplot
	Description for rvfplot
	Menu for rvfplot
	Syntax for rvfplot
	Options for rvfplot
	Remarks and examples for rvfplot

	avplot
	Description for avplot
	Menu for avplot
	Syntax for avplot
	Options for avplot
	Remarks and examples for avplot

	avplots
	Description for avplots
	Menu for avplots
	Syntax for avplots
	Options for avplots
	Remarks and examples for avplots

	cprplot
	Description for cprplot
	Menu for cprplot
	Syntax for cprplot
	Options for cprplot
	Remarks and examples for cprplot

	acprplot
	Description for acprplot
	Menu for acprplot
	Syntax for acprplot
	Options for acprplot
	Remarks and examples for acprplot

	rvpplot
	Description for rvpplot
	Menu for rvpplot
	Syntax for rvpplot
	Options for rvpplot
	Remarks and examples for rvpplot

	lvr2plot
	Description for lvr2plot
	Menu for lvr2plot
	Syntax for lvr2plot
	Options for lvr2plot
	Remarks and examples for lvr2plot

	Methods and formulas
	References
	Also see

	regress postestimation time series
	Postestimation commands
	estat archlm
	Description for estat archlm
	Menu for estat
	Syntax for estat archlm
	Options for estat archlm

	estat bgodfrey
	Description for estat bgodfrey
	Menu for estat
	Syntax for estat bgodfrey
	Options for estat bgodfrey

	estat durbinalt
	Description for estat durbinalt
	Menu for estat
	Syntax for estat durbinalt
	Options for estat durbinalt

	estat dwatson
	Description for estat dwatson
	Menu for estat
	Syntax for estat dwatson

	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	#review
	Description
	Syntax
	Remarks and examples

	roc
	Description
	Reference

	roccomp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Comparing areas under the ROC curve
	Correlated data
	Independent data
	Comparing areas with a gold standard

	Stored results
	Methods and formulas
	References
	Also see

	rocfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rocfit postestimation
	Postestimation commands
	rocplot
	Description for rocplot
	Menu for rocplot
	Syntax for rocplot
	Options for rocplot

	Remarks and examples
	Using lincom and test
	Using rocplot

	Also see

	rocreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for nonparametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using maximum likelihood

	Remarks and examples
	Introduction
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Stored results
	Methods and formulas
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Acknowledgments
	References
	Also see

	rocreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat nproc
	Options for estat nproc

	Remarks and examples
	Using predict after rocreg
	Using estat nproc

	Stored results
	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	rocregplot
	Description
	Quick start
	Menu
	Syntax
	probit_options
	common_options
	boot_options
	Remarks and examples
	Plotting covariate-specific ROC curves
	Plotting marginal ROC curves

	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	roctab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonparametric ROC curves
	Lorenz-like curves

	Stored results
	Methods and formulas
	References
	Also see

	rologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Examples
	Comparing respondents
	Incomplete rankings and ties
	Clustered choice data
	Comparison of rologit and clogit
	On reversals of rankings

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	rreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	runtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References

	S
	scobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Skewed logistic model
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	scobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	sdtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic form
	Immediate form
	Robust test

	Stored results
	Methods and formulas
	References
	Also see

	search
	Description
	Quick start
	Menu
	Syntax
	Options for search
	Option for set searchdefault
	Remarks and examples
	Introduction
	Internet searches
	Author searches
	Entry ID searches
	Return codes

	Acknowledgment
	Also see

	serrbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	set
	Description
	Syntax
	Remarks and examples
	Also see

	set cformat
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set_defaults
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set emptycells
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set rng
	Description
	Syntax
	Remarks and examples
	Also see

	set seed
	Description
	Syntax
	Remarks and examples
	Examples
	Setting the seed
	How to choose a seed
	Do not set the seed too often
	Preserving and restoring the random-number generator state
	Random-number generators in Stata

	Reference
	Also see

	set showbaselevels
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	signrank
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	signrank
	signtest

	References
	Also see

	simulate
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	sj
	Description
	Remarks and examples
	Installing the Stata Journal software
	Installing the STB software

	Also see

	sktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	slogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-dimensional model
	Higher-dimension models

	Stored results
	Methods and formulas
	References
	Also see

	slogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	smooth
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Methods and formulas
	Running median smoothers of odd span
	Running median smoothers of even span
	Repeat operator
	Endpoint rule
	Splitting operator
	Hanning smoother
	Twicing

	Acknowledgments
	References
	Also see

	spearman
	Description
	Quick start
	Menu
	Syntax
	Options for spearman
	Options for ktau
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	spikeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	ssc
	Description
	Command overview

	Quick start
	Syntax
	Options
	Options for use with ssc new
	Options for use with ssc hot
	Option for use with ssc describe
	Options for use with ssc install
	Option for use with ssc type
	Options for use with ssc copy

	Remarks and examples
	Acknowledgments
	References
	Also see

	stem
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	stepwise
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Search logic for a step
	Full search logic
	Examples
	Estimation sample considerations
	Messages
	Programming for stepwise

	Stored results
	Methods and formulas
	References
	Also see

	stored results
	Description
	Syntax
	Option
	Remarks and examples
	References
	Also see

	suest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using suest
	Remarks on regress
	Testing the assumption of the independence of irrelevant alternatives
	Testing proportionality
	Testing cross-model hypotheses

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	sunflower
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References

	sureg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sureg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	swilk
	Description
	Quick start
	Menu
	Syntax
	Options for swilk
	Options for sfrancia
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	symmetry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Asymptotic tests
	Exact symmetry test

	References
	Also see

	T
	table
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	One-way tables
	Two-way tables
	Three-way tables
	Four-way and higher-dimensional tables
	Video example

	Methods and formulas
	Also see

	tabstat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Acknowledgments
	Also see

	tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	tab1
	Video example

	Stored results
	References
	Also see

	tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	Measures of association
	N-way tables
	Weighted data
	Tables with immediate data
	tab2
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	tabulate, summarize()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-way tables
	Two-way tables

	Also see

	test
	Description
	Quick start
	Menu
	Syntax
	Options for testparm
	Options for test
	Remarks and examples
	Introductory examples
	Special syntaxes after multiple-equation estimation
	Constrained coefficients
	Multiple testing

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	testnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using testnl to perform linear tests
	Specifying constraints
	Dropped constraints
	Multiple constraints
	Manipulability

	Stored results
	Methods and formulas
	References
	Also see

	tetrachoric
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Association in 2-by-2 tables
	Factor analysis of dichotomous variables
	Tetrachoric correlations with simulated data

	Stored results
	Methods and formulas
	References
	Also see

	tnbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Acknowledgment
	References
	Also see

	tnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	tobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	total
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The total estimator
	Survey data
	The survey total estimator
	The poststratified total estimator
	Subpopulation estimation

	References
	Also see

	total postestimation
	Postestimation commands
	Remarks and examples
	Also see

	tpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	translate
	Description
	Quick start
	Syntax
	Options for print
	Options for translate
	Remarks and examples
	Overview
	Printing files
	Printing files, Mac and Windows
	Printing files, Unix
	Translating files from one format to another

	Stored results
	Also see

	truncreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	truncreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	ttest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample t test
	Two-sample t test
	Paired t test
	Two-sample t test compared with one-way ANOVA
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	U
	update
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	V
	vce_option
	Description
	Syntax
	Options
	Remarks and examples
	Prefix commands
	Passing options in vce()

	Methods and formulas
	Also see

	view
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	vwls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vwls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	W
	which
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	X
	xi
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Background
	Indicator variables for simple effects
	Controlling the omitted dummy
	Categorical variable interactions
	Interactions with continuous variables
	Using xi: Interpreting output
	How xi names variables
	xi as a command rather than a command prefix
	Warnings

	Stored results
	References
	Also see

	Z
	zinb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zinb postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	References
	Also see

	zip
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zip postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	ztest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample z test
	Two-sample z test
	Paired z test
	Immediate form

	Stored results
	Methods and formulas
	One-sample z test
	Two-sample unpaired z test
	Paired z test

	References
	Also see

	[SEM] Structural Equation Modeling
	Contents
	Acknowledgments
	Reference
	Also see

	intro 1
	Description
	Remarks and examples
	Also see

	intro 2
	Description
	Remarks and examples
	Using path diagrams to specify standard linear SEMs
	Specifying correlation
	Using the command language to specify standard linear SEMs
	Specifying generalized SEMs: Family and link
	Specifying generalized SEMs: Family and link, multinomial logistic regression
	Specifying generalized SEMs: Family and link, paths from response variables
	Specifying generalized SEMs: Multilevel mixed effects (2 levels)
	Specifying generalized SEMs: Multilevel mixed effects (3 levels)
	Specifying generalized SEMs: Multilevel mixed effects (4+ levels)
	Specifying generalized SEMs: Multilevel mixed effects with random intercepts
	Specifying generalized SEMs: Multilevel mixed effects with random slopes

	Reference
	Also see

	intro 3
	Description
	Remarks and examples
	Specifying indicator variables
	Specifying interactions with indicator variables
	Specifying categorical variables
	Specifying interactions with categorical variables
	Specifying endogenous variables
	Inconsistency between gsem and other estimation commands

	Also see

	intro 4
	Description
	Remarks and examples
	Differences in assumptions between sem and gsem
	sem: Choice of estimation method
	gsem: Choice of estimation method

	Treatment of missing values
	Variable types: Observed, latent, endogenous, exogenous, and error
	Constraining parameters
	Constraining path coefficients to specific values
	Constraining intercepts to specific values (suppressing the intercept)
	Constraining path coefficients or intercepts to be equal
	Constraining covariances to be equal (or to specific values)
	Constraining variances to specific values (or to be equal)

	Identification 1: Substantive issues
	Not all models are identified
	How to count parameters
	What happens when models are unidentified
	How to diagnose and fix the problem

	Identification 2: Normalization constraints (anchoring)
	Why the problem arises
	How the problem would manifest itself
	How sem (gsem) solves the problem for you
	Overriding sem's (gsem's) solution

	References
	Also see

	intro 5
	Description
	Remarks and examples
	Single-factor measurement models
	Item response theory (IRT) models
	Multiple-factor measurement models
	Confirmatory factor analysis (CFA) models
	Structural models 1: Linear regression
	Structural models 2: Gamma regression
	Structural models 3: Binary-outcome models
	Structural models 4: Count models
	Structural models 5: Ordinal models
	Structural models 6: Multinomial logistic regression
	Structural models 7: Survival models
	Structural models 8: Dependencies between response variables
	Structural models 9: Unobserved inputs, outputs, or both
	Structural models 10: MIMIC models
	Structural models 11: Seemingly unrelated regression (SUR)
	Structural models 12: Multivariate regression
	Structural models 13: Mediation models
	Correlations
	Higher-order CFA models
	Correlated uniqueness model
	Latent growth models
	Models with reliability
	Multilevel mixed-effects models

	References
	Also see

	intro 6
	Description
	Remarks and examples
	The generic SEM model
	Fitting the model for different groups of the data
	Which parameters vary by default, and which do not
	Specifying which parameters are allowed to vary in broad, sweeping terms
	Adding constraints for path coefficients across groups
	Adding constraints for means, variances, or covariances across groups
	Adding constraints for some groups but not others
	Adding paths for some groups but not others
	Relaxing constraints

	Reference
	Also see

	intro 7
	Description
	Remarks and examples
	Replaying the model (sem and gsem)
	Displaying odds ratios, incidence-rate ratios, etc. (gsem only)
	Obtaining goodness-of-fit statistics (sem and gsem)
	Performing tests for including omitted paths and relaxing constraints (sem only)
	Performing tests of model simplification (sem and gsem)
	Displaying other results, statistics, and tests (sem and gsem)
	Obtaining predicted values (sem)
	Obtaining predicted values (gsem)
	Using contrast, pwcompare, and margins (sem and gsem)
	Accessing stored results

	Reference
	Also see

	intro 8
	Description
	Options
	Remarks and examples
	Also see

	intro 9
	Description
	Options
	Remarks and examples
	Reference
	Also see

	intro 10
	Description
	Remarks and examples
	Also see

	intro 11
	Description
	Remarks and examples
	Background
	How to use sem with SSD
	What you cannot do with SSD
	Entering SSD
	Entering SSD for multiple groups
	What happens when you do not set all the summary statistics
	Labeling SSD
	Making summary statistics from data for use by others

	Reference
	Also see

	intro 12
	Description
	Remarks and examples
	Is your model identified?
	Convergence solutions generically described
	Temporarily eliminate option reliability()
	Use default normalization constraints
	Temporarily eliminate feedback loops
	Temporarily simplify the model
	Try other numerical integration methods (gsem only)
	Get better starting values (sem and gsem)
	Get better starting values (gsem)

	Also see

	Builder
	Description
	Remarks and examples
	Video example

	Reference

	Builder, generalized
	Description
	Remarks and examples
	Video example

	Reference

	estat eform
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	estat eqgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat eqtest
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estat framework
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estat ggof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estat ginvariant
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat gof
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat mindices
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat residuals
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat scoretests
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat stable
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat stdize
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	estat summarize
	Description
	Menu
	Syntax
	Options
	Stored results
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	example 1
	Description
	Remarks and examples
	Single-factor measurement model
	Satorra--Bentler scaled chi-squared test
	Fitting the same model with gsem
	Fitting the same model with the Builder
	The measurement-error model interpretation

	References
	Also see

	example 2
	Description
	Remarks and examples
	Background
	Creating the SSD
	At this point, we could save the dataset and stop
	Labeling the SSD
	Listing the SSD

	Reference
	Also see

	example 3
	Description
	Remarks and examples
	Fitting multiple-factor measurement models
	Displaying standardized results
	Fitting the model with the Builder
	Obtaining equation-level goodness of fit by using estat eqgof

	References
	Also see

	example 4
	Description
	Remarks and examples
	Reference
	Also see

	example 5
	Description
	Remarks and examples
	Reference
	Also see

	example 6
	Description
	Remarks and examples
	Fitting linear regression models
	Displaying standardized results
	Fitting the model with the Builder

	Also see

	example 7
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Checking stability with estat stable
	Reporting total, direct, and indirect effects with estat teffects

	References
	Also see

	example 8
	Description
	Remarks and examples
	Using test to evaluate adding constraints
	Refitting the model with added constraints
	Using estat scoretests to test whether constraints can be relaxed

	Also see

	example 9
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Evaluating omitted paths with estat mindices
	Refitting the model

	References
	Also see

	example 10
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the MIMIC model with the Builder
	Evaluating the residuals with estat residuals
	Performing likelihood-ratio tests with lrtest

	Reference
	Also see

	example 11
	Description
	Remarks and examples
	Also see

	example 12
	Description
	Remarks and examples
	Fitting the seemingly unrelated regression model
	Fitting the model with the Builder

	Also see

	example 13
	Description
	Remarks and examples
	Also see

	example 14
	Description
	Remarks and examples
	Also see

	example 15
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 16
	Description
	Remarks and examples
	Using sem to obtain correlation matrices
	Fitting the model with the Builder
	Testing correlations with estat stdize and test

	Also see

	example 17
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 18
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 19
	Description
	Remarks and examples
	Reference
	Also see

	example 20
	Description
	Remarks and examples
	Background
	Fitting the model with all the data
	Fitting the model with the group() option
	Fitting the model with the Builder

	Reference
	Also see

	example 21
	Description
	Remarks and examples
	Also see

	example 22
	Description
	Remarks and examples
	Also see

	example 23
	Description
	Remarks and examples
	Background
	Fitting the constrained model

	Also see

	example 24
	Description
	Remarks and examples
	Baseline model (reliability ignored)
	Model with reliability
	Model with two measurement variables and reliability

	Also see

	example 25
	Description
	Remarks and examples
	Preparing data for conversion
	Converting to summary statistics form
	Publishing SSD
	Creating SSD with multiple groups

	Also see

	example 26
	Description
	Remarks and examples
	Fitting the model with method(ml)
	Fitting the model with method(mlmv)
	Fitting the model with the Builder

	Also see

	example 27g
	Description
	Remarks and examples
	Single-factor pass/fail measurement model
	Single-factor pass/fail + continuous measurement model
	Fitting the model with the Builder

	Also see

	example 28g
	Description
	Remarks and examples
	1-PL IRT model with unconstrained variance
	1-PL IRT model with variance constrained to 1
	Obtaining item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	example 29g
	Description
	Remarks and examples
	Fitting the 2-PL IRT model
	Obtaining predicted difficulty and discrimination
	Using coeflegend to obtain the symbolic names of the parameters
	Graphing item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	example 30g
	Description
	Remarks and examples
	Fitting the two-level model
	Fitting the variance-components model
	Fitting the model with the Builder

	References
	Also see

	example 31g
	Description
	Remarks and examples
	Fitting the two-factor model
	Fitting the model with the Builder

	Also see

	example 32g
	Description
	Remarks and examples
	Structural model with measurement component
	Fitting the model with the Builder

	Also see

	example 33g
	Description
	Remarks and examples
	Fitting the logit model
	Obtaining odds ratios
	Fitting the model with the Builder

	Reference
	Also see

	example 34g
	Description
	Remarks and examples
	Fitting the combined model
	Obtaining odds ratios and incidence-rate ratios
	Fitting the model with the Builder

	Reference
	Also see

	example 35g
	Description
	Remarks and examples
	Ordered probit
	Ordered logit
	Fitting the model with the Builder

	Reference
	Also see

	example 36g
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the model with the Builder

	Reference
	Also see

	example 37g
	Description
	Remarks and examples
	Simple multinomial logistic regression model
	Multinomial logistic regression model with constraints
	Fitting the simple multinomial logistic model with the Builder
	Fitting the multinomial logistic model with constraints with the Builder

	Reference
	Also see

	example 38g
	Description
	Remarks and examples
	Random-intercept model, single-equation formulation
	Random-intercept model, within-and-between formulation
	Random-slope model, single-equation formulation
	Random-slope model, within-and-between formulation
	Fitting the random-intercept model with the Builder
	Fitting the random-slope model with the Builder

	Reference
	Also see

	example 39g
	Description
	Remarks and examples
	Three-level negative binomial model
	Three-level Poisson model
	Testing for overdispersion
	Fitting the models with the Builder

	References
	Also see

	example 40g
	Description
	Remarks and examples
	The crossed model
	Fitting the model with the Builder

	Reference
	Also see

	example 41g
	Description
	Remarks and examples
	Two-level multinomial logistic model with shared random effects
	Two-level multinomial logistic model with separate but correlated random effects
	Fitting the model with the Builder

	References
	Also see

	example 42g
	Description
	Remarks and examples
	One-level model with sem
	One-level model with gsem
	Two-level model with gsem
	Fitting the models with the Builder

	References
	Also see

	example 43g
	Description
	Remarks and examples
	Fitting tobit regression models
	Fitting the model with the Builder

	Also see

	example 44g
	Description
	Remarks and examples
	Fitting interval regression models
	Fitting the model with the Builder

	Also see

	example 45g
	Description
	Remarks and examples
	The Heckman selection model as an SEM
	Fitting the Heckman selection model as an SEM
	Transforming results and obtaining rho
	Fitting the model with the Builder

	References
	Also see

	example 46g
	Description
	Remarks and examples
	Fitting the treatment-effects model
	Fitting the model with the Builder

	References
	Also see

	gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	Also see

	gsem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem family-and-link options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Specifying multilevel nested latent variables
	Specifying multilevel crossed latent variables
	Specifying family and link

	Also see

	gsem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	gsem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	lincom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lrtest
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	methods and formulas for gsem
	Description
	Remarks and examples
	Introduction
	Families of distributions
	The Bernoulli family
	The beta family
	The binomial family
	The ordinal family
	The multinomial family
	The Poisson family
	The negative binomial family
	The Gaussian family
	Reliability

	Link functions
	The logit link
	The probit link
	The complementary log-log link
	The log link
	The identity link

	Survival distributions
	The exponential distribution
	The Weibull distribution
	The gamma distribution
	The loglogistic distribution
	The lognormal distribution

	The likelihood
	Gauss--Hermite quadrature
	Adaptive quadrature
	Laplacian approximation

	Survey data
	Postestimation
	Empirical Bayes
	Other predictions

	References
	Also see

	methods and formulas for sem
	Description
	Remarks and examples
	Variable notation
	Model and parameterization
	Summary data
	Maximum likelihood
	Weighted least squares
	Groups
	Fitted parameters
	Satorra{--}Bentler variance estimation
	Standardized parameters
	Reliability
	Postestimation

	References
	Also see

	nlcom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	predict after gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	predict after sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	Reference
	Also see

	sem and gsem option constraints()
	Description
	Syntax
	Remarks and examples
	Use with sem
	Use with gsem

	Also see

	sem and gsem option covstructure()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem and gsem option from()
	Description
	Syntax
	Option
	Remarks and examples
	Syntax 1, especially useful when dealing with convergence problems
	Syntax 2, seldom used

	Also see

	sem and gsem option reliability()
	Description
	Syntax
	Option
	Remarks and examples
	Background
	Dealing with measurement error of exogenous variables
	Dealing with measurement error of endogenous variables
	What can go wrong

	Also see

	sem and gsem path notation
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem and gsem syntax options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option method()
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option noxconditional
	Description
	Syntax
	Option
	Remarks and examples
	What is x conditional?
	When to specify noxconditional
	Option forcexconditional (a technical note)

	Also see

	sem option select()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	sem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem ssd options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	ssd
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	testnl
	Description
	Syntax
	Menu
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary

	[ST] Survival Analysis
	Contents
	intro
	Description
	Also see

	survival analysis
	Description
	Remarks and examples
	Introduction
	Declaring and converting count data
	Converting snapshot data
	Declaring and summarizing survival-time data
	Manipulating survival-time data
	Obtaining summary statistics, confidence intervals, tables, etc.
	Fitting regression models
	Sample size and power determination for survival analysis
	Converting survival-time data
	Programmer's utilities

	Reference
	Also see

	ct
	Description
	Also see

	ctset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Examples
	Data errors flagged by ctset

	Also see

	cttost
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	discrete
	Description
	Acknowledgment
	References
	Also see

	ltable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	Acknowledgments
	References
	Also see

	snapspan
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Snapshot and time-span datasets
	Specifying varlist

	Also see

	st
	Description
	Reference
	Also see

	st_is
	Description
	Syntax
	Remarks and examples
	Definitions of characteristics and st variables
	Outline of an st command
	Using the st_ct utility
	Comparison of st_ct with sttoct
	Verifying data
	Converting data

	Also see

	stbase
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stbase without the at() option
	stbase with the at() option
	Single-failure st data where all subjects enter at time 0
	Single-failure st data where some subjects enter after time 0
	Single-failure st data with gaps and perhaps delayed entry
	Multiple-failure st data

	Also see

	stci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data

	Stored results
	Methods and formulas
	References
	Also see

	stcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Cox regression with uncensored data
	Cox regression with censored data
	Treatment of tied failure times
	Cox regression with discrete time-varying covariates
	Cox regression with continuous time-varying covariates
	Robust estimate of variance
	Cox regression with multiple-failure data
	Stratified estimation
	Cox regression as Poisson regression
	Cox regression with shared frailty

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox PH-assumption tests
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for stphplot
	Options for stcoxkm
	Options for estat phtest

	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Baseline functions
	Making baseline reasonable
	Residuals and diagnostic measures
	Multiple records per subject
	Predictions after stcox with the tvc() option
	Predictions after stcox with the shared() option
	estat concordance

	Stored results
	Methods and formulas
	estat concordance

	References
	Also see

	stcrreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The case for competing-risks regression
	Using stcrreg
	Multiple competing-event types
	stcrreg as an alternative to stcox
	Multiple records per subject
	Option tvc() and testing the proportional-subhazards assumption

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcrreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Baseline functions
	Null models
	Measures of influence

	Methods and formulas
	References
	Also see

	stcurve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stcurve after stcox
	stcurve after streg
	stcurve after stcrreg

	References
	Also see

	stdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	stfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	stgen
	Description
	Quick start
	Menu
	Syntax
	Functions
	Remarks and examples
	Also see

	stir
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	stptime
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	strate
	Description
	Quick start
	Menu
	Syntax
	Options for strate
	Options for stmh and stmc
	Remarks and examples
	Tabulation of rates by using strate
	Stratified rate ratios using stmh
	Log-linear trend test for metric explanatory variables using stmh
	Controlling for age with fine strata by using stmc

	Stored results
	Acknowledgments
	References
	Also see

	streg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Distributions
	Examples
	Parameterization of ancillary parameters
	Stratified estimation
	(Unshared-) frailty models
	Shared-frailty models

	Stored results
	Methods and formulas
	Parameter estimation

	References
	Also see

	streg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	sts
	Description
	Syntax
	Remarks and examples
	Listing, graphing, and generating variables
	Comparing survivor or cumulative hazard functions
	Testing equality of survivor functions
	Adjusted estimates
	Counting the number lost due to censoring
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	sts generate
	Description
	Quick start
	Menu
	Syntax
	Functions
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	sts graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Including the number lost on the graph
	Graphing the Nelson{--}Aalen cumulative hazard function
	Graphing the hazard function
	Adding an at-risk table
	On boundary bias for smoothed hazards
	Video example

	Methods and formulas
	References
	Also see

	sts list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	sts test
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The log-rank test
	The Wilcoxon (Breslow--Gehan) test
	The Tarone--Ware test
	The Peto--Peto--Prentice test
	The generalized Fleming--Harrington tests
	The ``Cox'' test
	The trend test
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	stset
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use with stset and streset
	Options unique to streset
	Options for st

	Remarks and examples
	What are survival-time data?
	Key concepts
	Survival-time datasets
	Using stset
	Two concepts of time
	The substantive meaning of analysis time
	Setting the failure event
	Setting multiple failures
	First entry times
	Final exit times
	Intermediate exit and reentry times (gaps)
	if() versus if exp
	Past and future records
	Using streset
	Performance and multiple-record-per-subject datasets
	Sequencing of events within t
	Weights
	Data warnings and errors flagged by stset
	Using survival-time data in Stata
	Video example

	References
	Also see

	stsplit
	Description
	Quick start
	Menu
	Syntax
	Options for stsplit
	Option for stjoin
	Remarks and examples
	What stsplit does and why
	Using stsplit to split at designated times
	Time versus analysis time
	Splitting data on recorded ages
	Using stsplit to split at failure times

	Acknowledgments
	References
	Also see

	stsum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data
	Video example

	Stored results
	Methods and formulas
	Also see

	sttocc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	sttoct
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Case 1: entvar not specified
	Case 2: entvar specified

	Also see

	stvary
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	Glossary

	[SVY] Survey Data
	Contents
	intro
	Description
	Also see

	survey
	Description
	Remarks and examples
	Introduction
	Survey design tools
	Survey data analysis tools
	Survey data concepts
	Tools for programmers of new survey commands
	Video examples

	Acknowledgments
	References
	Also see

	bootstrap_options
	Description
	Syntax
	Options
	Also see

	brr_options
	Description
	Syntax
	Options
	Also see

	direct standardization
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for estat effects
	Options for estat lceffects
	Options for estat size
	Options for estat sd
	Options for estat cv
	Options for estat gof
	Options for estat vce

	Remarks and examples
	Stored results
	Methods and formulas
	Design effects
	Linear combinations
	Misspecification effects
	Population and subpopulation standard deviations
	Coefficient of variation
	Goodness of fit for binary response models

	References
	Also see

	jackknife_options
	Description
	Syntax
	Options
	Also see

	ml for svy
	Remarks and examples
	Reference
	Also see

	poststratification
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	sdr_options
	Description
	Syntax
	Options
	Also see

	subpopulation estimation
	Description
	Remarks and examples
	Methods and formulas
	Subpopulation totals
	Subpopulation estimates other than the total
	Subpopulation with replication methods

	References
	Also see

	svy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy brr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy estimation
	Description
	Menu
	Remarks and examples
	Overview of survey analysis in Stata
	Descriptive statistics
	Regression models
	Health surveys

	References
	Also see

	svy jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy postestimation
	Postestimation commands
	predict
	margins
	Remarks and examples
	References
	Also see

	svy sdr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The Rao and Scott correction
	Wald statistics
	Properties of the statistics

	Stored results
	Methods and formulas
	The table items
	Confidence intervals
	The test statistics

	References
	Also see

	svydescribe
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	svymarkout
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	svyset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to survey design characteristics
	Finite population correction (FPC)
	Multiple-stage designs and with-replacement sampling
	Replication-weight variables
	Combining datasets from multiple surveys
	Video example

	Stored results
	References
	Also see

	variance estimation
	Description
	Remarks and examples
	Variance of the total
	Variance for census data
	Certainty sampling units
	Strata with one sampling unit
	Ratios and other functions of survey data
	Linearized/robust variance estimation
	The bootstrap
	BRR
	The jackknife
	Successive difference replication
	Confidence intervals

	References
	Also see

	Glossary

	[TE] Treatment Effects
	Contents
	intro
	Description
	Also see

	treatment effects
	Description
	Also see

	eteffects
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	eteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	etpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic example
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	References
	Also see

	etpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	etregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimates
	Options for two-step consistent estimates
	Options for control-function estimates
	Remarks and examples
	Overview
	Basic examples
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	Constrained model
	General potential-outcome model
	Average treatment effect
	Average treatment effect on the treated

	References
	Also see

	etregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	stteffects
	Description
	Syntax
	Also see

	stteffects intro
	Description
	Remarks and examples
	Introduction
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Combinations of RA and IPW
	Weighted regression adjustment

	Average treatment effect on the treated
	Comparison of treatment-effects estimators
	Assumptions and trade-offs
	The conditional independence assumption
	The sufficient overlap assumption
	The correct adjustment for censoring assumption
	Assumptions for the ATET

	Specification diagnostics and tests
	Multivalued treatments

	Acknowledgments
	References
	Also see

	stteffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Regression-adjusted estimators
	Weighted-adjusted-censoring assumptions
	Weighted regression-adjusted estimators
	Inverse-probability-weighted estimators
	Uncensored data

	Inverse-probability-weighted regression-adjustment estimators
	Weighted-adjusted-censoring IPWRA
	Likelihood-adjusted-censoring IPWRA

	Functional-form details

	References
	Also see

	stteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after stteffects ipw
	Syntax for predict after stteffects ipwra
	Syntax for predict after stteffects ra
	Syntax for predict after stteffects wra

	Options for predict
	Options for predict after stteffects ipw
	Options for predict after stteffects ipwra
	Options for predict after stteffects ra
	Options for predict after stteffects wra

	Remarks and examples
	References
	Also see

	stteffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects wra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tebalance
	Description
	Syntax
	Remarks and examples
	Methods and formulas
	Introduction
	Matched samples
	IPW samples
	Testing the propensity-score model specification

	References
	Also see

	tebalance box
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	tebalance density
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	tebalance overid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	tebalance summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	teffects
	Description
	Syntax
	Also see

	teffects intro
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	Estimating treatment effects
	Regression adjustment
	Inverse-probability weighting
	Doubly robust combinations of RA and IPW
	Matching

	Caveats and assumptions
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Inverse-probability-weighted regression adjustment
	Augmented inverse-probability weighting
	Nearest-neighbor matching
	Propensity-score matching

	Video examples

	Reference
	Also see

	teffects intro advanced
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	The potential-outcome model
	Assumptions needed for estimation
	The CI assumption
	The overlap assumption
	The i.i.d. assumption

	Comparing the ATE and ATET
	Overview of treatment-effect estimators
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators
	Nearest-neighbor matching estimators
	Propensity-score matching estimators
	Choosing among estimators
	Model choice

	Acknowledgments
	References
	Also see

	teffects aipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Parameters and notation
	Overview of EE estimators
	VCE for EE estimators
	TM and OM estimating functions
	TM estimating functions
	OM estimating functions

	Effect estimating functions
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators

	References
	Also see

	teffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	teffects multivalued
	Description
	Remarks and examples
	Introduction
	Parameters and notation
	Illustrating multivalued treatments
	Examples

	References
	Also see

	teffects nnmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Nearest-neighbor matching estimator
	Bias-corrected matching estimator

	Propensity-score matching estimator
	PSM, ATE, and ATET variance adjustment

	References
	Also see

	teffects overlap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	teffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after aipw and ipwra
	Syntax for predict after ipw
	Syntax for predict after nnmatch and psmatch
	Syntax for predict after ra

	Options for predict
	Options for predict after aipw and ipwra
	Options for predict after ipw
	Options for predict after nnmatch and psmatch
	Options for predict after ra

	Remarks and examples
	Also see

	teffects psmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	Glossary

	[TS] Time Series
	Contents
	intro
	Description
	Also see

	time series
	Description
	Remarks and examples
	Data management tools and time-series operators
	Univariate time series
	Multivariate time series
	Forecasting models
	Additional resources

	References
	Also see

	arch
	Description
	Quick start
	Menu
	Syntax
	Details of syntax
	Common models
	Reading arch output

	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Priming values
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	arfima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The likelihood function
	The autocovariance function
	The profile likelihood
	The MPL

	References
	Also see

	arfima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARFIMA
	IRF results for ARFIMA

	Methods and formulas
	References
	Also see

	arima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	ARIMA models
	Multiplicative seasonal ARIMA models
	ARMAX models
	Dynamic forecasting
	Video example

	Stored results
	Methods and formulas
	ARIMA model
	Kalman filter equations
	Kalman filter or state-space representation of the ARIMA model
	Kalman filter recursions
	Kalman filter initial conditions
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARIMA
	IRF results for ARIMA

	Reference
	Also see

	corrgram
	Description
	Quick start
	Menu
	Syntax
	Options for corrgram
	Options for ac and pac
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cumsp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	dfactor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to dynamic-factor models
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	dfactor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dfgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dfuller
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat acplot
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat aroots
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat sbknown
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat sbsingle
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fcast compute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	fcast graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	forecast
	Description
	Quick start
	Syntax
	Remarks and examples
	Video example

	References
	Also see

	forecast adjust
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast clear
	Description
	Syntax
	Remarks and examples
	Also see

	forecast coefvector
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Simulations with coefficient vectors

	Methods and formulas
	Also see

	forecast create
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	forecast describe
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast drop
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast estimates
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	The advise option
	Using saved estimation results
	The predict option
	Forecasting with ARIMA models

	References
	Also see

	forecast exogenous
	Description
	Syntax
	Remarks and examples
	Also see

	forecast identity
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast list
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	forecast query
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	forecast solve
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Performing conditional forecasts
	Using simulations to measure forecast accuracy

	Stored results
	Methods and formulas
	References
	Also see

	irf
	Description
	Quick start
	Syntax
	Remarks and examples
	References
	Also see

	irf add
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf cgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf create
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Technical aspects of IRF files
	IRFs and FEVDs
	IRF results for VARs
	IRF results for VECMs
	IRF results for ARIMA and ARFIMA

	Methods and formulas
	Impulse--response function formulas for VARs
	Dynamic-multiplier function formulas for VARs
	Forecast-error variance decomposition formulas for VARs
	Impulse{--}response function formulas for VECMs
	Algorithms for bootstrapping the VAR IRF and FEVD standard errors
	Impulse--response function formulas for ARIMA and ARFIMA

	References
	Also see

	irf ctable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf drop
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf ograph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	irf set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mgarch
	Description
	Syntax
	Remarks and examples
	An introduction to MGARCH models
	Diagonal vech MGARCH models
	Conditional correlation MGARCH models
	Constant conditional correlation MGARCH model
	Dynamic conditional correlation MGARCH model
	Varying conditional correlation MGARCH model

	Error distributions and quasimaximum likelihood
	Treatment of missing data

	References
	Also see

	mgarch ccc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch ccc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dvech
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dvech postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch vcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch vcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mswitch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Markov-switching dynamic regression
	Markov-switching AR

	Stored results
	Methods and formulas
	Markov-switching regression models
	Markov chains
	Specification of Markov-switching models
	Markov-switching dynamic regression
	Markov-switching AR

	Likelihood function with latent states
	Smoothed probabilities
	Unconditional probabilities

	References
	Also see

	mswitch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	One-step predictions
	Dynamic predictions
	Model fit and state predictions

	Stored results
	Methods and formulas
	References
	Also see

	newey
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	newey postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	pergram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pperron
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	prais
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	prais postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	psdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The frequency-domain approach to time series
	Some ARMA examples

	Methods and formulas
	Introduction
	Spectral density after arima or arfima
	Spectral density after ucm

	References
	Also see

	rolling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	sspace
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to state-space models
	Some stationary state-space models
	Some nonstationary state-space models

	Stored results
	Methods and formulas
	References
	Also see

	sspace postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	tsappend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using tsappend with time-series data
	Using tsappend with panel data

	Stored results
	Also see

	tsfill
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using tsfill with time-series data
	Using tsfill with panel data
	Video example

	Also see

	tsfilter
	Description
	Syntax
	Remarks and examples
	An example dataset
	A baseline method: Symmetric moving-average (SMA) filters
	An overview of filtering in the frequency domain
	SMA revisited: The Baxter--King filter
	Filtering a random walk: The Christiano--Fitzgerald filter
	A one-parameter high-pass filter: The Hodrick--Prescott filter
	A two-parameter high-pass filter: The Butterworth filter

	Methods and formulas
	Acknowledgments
	References
	Also see

	tsfilter bk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter bw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter hp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Advanced example
	Video example

	References
	Also see

	tsreport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Also see

	tsrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	tsset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Panel data
	Video example

	Stored results
	References
	Also see

	tssmooth
	Description
	Syntax
	Remarks and examples
	References
	Also see

	tssmooth dexponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tssmooth exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Treatment of missing values

	Stored results
	Methods and formulas
	References
	Also see

	tssmooth hwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tssmooth ma
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	tssmooth nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	tssmooth shwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Holt{--}Winters seasonal multiplicative method
	Holt{--}Winters seasonal additive method

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ucm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to UCMs
	A random-walk model example
	Frequency-domain concepts used in the stochastic-cycle model
	Another random-walk model example
	Comparing UCM and ARIMA
	A local-level model example
	Comparing UCM and ARIMA, revisited
	Models for the trend and idiosyncratic components
	Seasonal component

	Stored results
	Methods and formulas
	Introduction
	State-space formulation
	Cyclical component extensions

	References
	Also see

	ucm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat period

	Remarks and examples
	Methods and formulas
	Also see

	var intro
	Description
	Remarks and examples
	Introduction to VARs
	Introduction to SVARs
	Short-run SVAR models
	Long-run restrictions
	IRFs and FEVDs

	References
	Also see

	var
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Fitting models with some lags excluded
	Fitting models with exogenous variables
	Fitting models with constraints on the coefficients

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	var svar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Short-run SVAR models
	Long-run SVAR models

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var svar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	varbasic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varbasic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	vargranger
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varlmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varsoc
	Description
	Quick start
	Menu
	Syntax
	Preestimation options
	Postestimation option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varwle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vec intro
	Description
	Remarks and examples
	Introduction to cointegrating VECMs
	VECM estimation in Stata

	References
	Also see

	vec
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Specification of constants and trends
	Collinearity

	Stored results
	Methods and formulas
	General specification of the VECM
	The log-likelihood function
	Estimation with Johansen identification
	Estimation with constraints: beta identified
	Estimation with constraints: beta not identified
	Formulas for the information criteria
	Formulas for predict

	References
	Also see

	vec postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	veclmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	vecnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vecrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The trace statistic
	The maximum-eigenvalue statistic
	Minimizing an information criterion

	Stored results
	Methods and formulas
	References
	Also see

	vecstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	wntestb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	wntestq
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	Glossary
	References

	[XT] Longitudinal Data/Panel Data
	Contents
	intro
	Description
	Also see

	xt
	Description
	Remarks and examples
	References
	Also see

	quadchk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	What makes a good random-effects model fit?
	How do I know whether I have a good quadrature approximation?
	What can I do to improve my results?

	vce_options
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	xtabond
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtabond postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Also see

	xtcloglog
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtcloglog, re and the robust VCE estimator

	References
	Also see

	xtcloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	xtdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	xtdpd
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpd postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtdpdsys
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpdsys postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtfrontier
	Description
	Quick start
	Menu
	Syntax
	Options for time-invariant model
	Options for time-varying decay model
	Remarks and examples
	Introduction
	Time-invariant model
	Time-varying decay model

	Stored results
	Methods and formulas
	References
	Also see

	xtfrontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtgee
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Calculating GEE for GLM
	Correlation structures
	Nonstationary and unstructured

	References
	Also see

	xtgee postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	xtgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Heteroskedasticity across panels
	Correlation across panels (cross-sectional correlation)
	Autocorrelation within panels

	Stored results
	Methods and formulas
	References
	Also see

	xtgls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xthtaylor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xthtaylor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	xtintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtivreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for FD model
	Remarks and examples
	Stored results
	Methods and formulas
	xtivreg, fd
	xtivreg, fe
	xtivreg, be
	xtivreg, re

	Acknowledgment
	References
	Also see

	xtivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtline
	Description
	Quick start
	Menu
	Syntax
	Options for graph by panel
	Options for overlaid panels
	Remarks and examples
	Also see

	xtlogit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtlogit, re and the robust VCE estimator

	References
	Also see

	xtlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtnbreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE/FE models
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	xtologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	xtologit and the robust VCE estimator

	References
	Also see

	xtologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	xtoprobit and the robust VCE estimator

	References
	Also see

	xtoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtpcse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtpcse postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtpoisson
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtpoisson, re and the robust VCE estimator

	References
	Also see

	xtpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtprobit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtprobit, re and the robust VCE estimator

	References
	Also see

	xtprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtrc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtrc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for MLE model
	Options for PA model
	Remarks and examples
	Assessing goodness of fit
	xtreg and associated commands

	Stored results
	Methods and formulas
	xtreg, fe
	xtreg, be
	xtreg, re
	xtreg, mle
	xtreg, pa

	Acknowledgments
	References
	Also see

	xtreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	xttest0
	Description for xttest0
	Menu for xttest0
	Syntax for xttest0

	Remarks and examples
	Methods and formulas
	References
	Also see

	xtregar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The fixed-effects model
	The random-effects model

	Stored results
	Methods and formulas
	Estimating rho
	Transforming the data to remove the AR(1) component
	The within estimator of the fixed-effects model
	The Baltagi--Wu GLS estimator
	The test statistics

	Acknowledgment
	References
	Also see

	xtregar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	xtstreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Survival models
	xtstreg and the robust VCE estimator

	References
	Also see

	xtstreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtsum
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	xttab
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	xttobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xttobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtunitroot
	Description
	Quick start
	Menu
	Syntax
	Options
	LLC_options
	HT_options
	Breitung_options
	IPS_options
	Fisher_options
	Hadri_options

	Remarks and examples
	Overview
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Stored results
	Methods and formulas
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Acknowledgments
	References
	Also see

	Glossary

	[I] Index
	Contents
	Combined subject table of contents
	Acronym glossary
	Glossary
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Vignette index
	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

