Title stata.com

poisson postestimation — Postestimation tools for poisson

Postestimation commands predict margins

estat Remarks and examples Methods and formulas

Reference Also see

Postestimation commands

The following postestimation command is of special interest after poisson:

Command	Description			
estat gof	goodness-of-fit test			
estat gof is not appropriate after the svy prefix.				

The following standard postestimation commands are also available:

_	
Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
*forecast	dynamic forecasts and simulations
*hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
linktest	link test for model specification
*lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions, residuals, influence statistics, and other diagnostic measures
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

^{*} forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as numbers of events, incidence rates, probabilities, linear predictions, standard errors, and equation-level scores.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic nooffset]
```

statistic	Description			
Main				
n	number of events; the default			
ir	incidence rate			
pr(n)	probability $Pr(y_j = n)$			
pr(a,b)	probability $Pr(a \le y_j \le b)$			
хb	linear prediction			
stdp	standard error of the linear prediction			
<u>sc</u> ore	first derivative of the log likelihood with respect to $\mathbf{x}_{i}\boldsymbol{\beta}$			

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

Main

- n, the default, calculates the predicted number of events, which is $\exp(\mathbf{x}_j \boldsymbol{\beta})$ if neither offset() nor exposure() was specified when the model was fit; $\exp(\mathbf{x}_j \boldsymbol{\beta} + \text{offset}_j)$ if offset() was specified; or $\exp(\mathbf{x}_j \boldsymbol{\beta}) \times \exp(\mathbf{x}_j \boldsymbol{\beta})$ if exposure() was specified.
- ir calculates the incidence rate $\exp(\mathbf{x}_j \boldsymbol{\beta})$, which is the predicted number of events when exposure is 1. Specifying ir is equivalent to specifying n when neither offset() nor exposure() was specified when the model was fit.
- pr(n) calculates the probability $Pr(y_j = n)$, where n is a nonnegative integer that may be specified as a number or a variable.
- $\operatorname{pr}(a,b)$ calculates the probability $\Pr(a \leq y_j \leq b)$, where a and b are nonnegative integers that may be specified as numbers or variables;

```
b missing (b \ge .) means +\infty; pr(20,.) calculates \Pr(y_j \ge 20); pr(20,b) calculates \Pr(y_j \ge 20) in observations for which b \ge . and calculates \Pr(20 \le y_j \le b) elsewhere.
```

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a missing value in that observation for pr(a,b).

xb calculates the linear prediction, which is $x_i\beta$ if neither offset() nor exposure() was specified; $\mathbf{x}_i \boldsymbol{\beta} + \text{offset}_i$ if offset() was specified; or $\mathbf{x}_i \boldsymbol{\beta} + \text{ln}(\text{exposure}_i)$ if exposure() was specified; see nooffset below.

stdp calculates the standard error of the linear prediction.

score calculates the equation-level score, $\partial \ln L/\partial(\mathbf{x}_i\beta)$.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modifies the calculations made by predict so that they ignore the offset or exposure variable; the linear prediction is treated as $\mathbf{x}_i \boldsymbol{\beta}$ rather than as $\mathbf{x}_i \boldsymbol{\beta}$ + offset i or $\mathbf{x}_i \boldsymbol{\beta}$ + ln(exposure i). Specifying predict ..., nooffset is equivalent to specifying predict ..., ir.

margins

Description for margins

margins estimates margins of response for numbers of events, incidence rates, probabilities, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist], predict(statistic ...) [predict(statistic ...) ...] [options]
```

statistic	Description
n	number of events; the default
ir	incidence rate
pr(n)	probability $Pr(y_j = n)$
pr(a,b)	probability $\Pr(a \leq y_j \leq b)$
xb	linear prediction
stdp	not allowed with margins
<u>sc</u> ore	not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

estat

Description for estat

estat gof performs a goodness-of-fit test of the model. Both the deviance statistic and the Pearson statistic are reported. If the tests are significant, the Poisson regression model is inappropriate. Then you could try a negative binomial model; see [R] **nbreg**.

Menu for estat

Statistics > Postestimation

Syntax for estat

estat gof

Remarks and examples

stata.com

Example 1

Continuing with example 2 of [R] **poisson**, we use estat gof to determine whether the model fits the data well.

- . use http://www.stata-press.com/data/r14/dollhill3
- . poisson deaths smokes i.agecat, exp(pyears) irr
 (output omitted)
- . estat gof

```
Deviance goodness-of-fit = 12.13237

Prob > chi2(4) = 0.0164

Pearson goodness-of-fit = 11.15533

Prob > chi2(4) = 0.0249
```

The deviance goodness-of-fit test tells us that, given the model, we can reject the hypothesis that these data are Poisson distributed at the 1.64% significance level. The Pearson goodness-of-fit test tells us that we can reject the hypothesis at the 2.49% significance level.

So let us now back up and be more careful. We can most easily obtain the incidence-rate ratios within age categories by using ir; see [R] epitab:

. ir deaths smokes pyears, by(agecat) nohet

age category	IRR	[95% Conf.	Interval]	M-H Weight	
35-44	5.736638	1.463557	49.40468	1.472169	
45-54	2.138812	1.173714	4.272545	9.624747	(exact)
55-64	1.46824	.9863624	2.264107	23.34176	(exact)
65-74	1.35606	.9081925	2.096412	23.25315	(exact)
75-84	.9047304	.6000757	1.399687	24.31435	(exact)
Crude	1.719823	1.391992	2.14353		(exact)
M-H combined	1.424682	1.154703	1.757784		

We find that the mortality incidence ratios are greatly different within age category, being highest for the youngest categories and actually dropping below 1 for the oldest. (In the last case, we might argue that those who smoke and who have not died by age 75 are self-selected to be particularly robust.)

Seeing this, we will now parameterize the smoking effects separately for each category, although we will begin by constraining the smoking effects on third and fourth age categories to be equivalent:

```
. constraint 1 smokes#3.agecat = smokes#4.agecat
. poisson deaths c.smokes#agecat i.agecat, exposure(pyears) irr constraints(1)
               log\ likelihood = -31.95424
Iteration 1:
              log likelihood = -27.796801
Iteration 2: log likelihood = -27.574177
Iteration 3:
              log likelihood = -27.572645
Iteration 4: \log likelihood = -27.572645
Poisson regression
                                                Number of obs
                                                                            10
                                                Wald chi2(8)
                                                                        632.14
Log likelihood = -27.572645
                                               Prob > chi2
                                                                        0.0000
 (1) [deaths]3.agecat#c.smokes - [deaths]4.agecat#c.smokes = 0
```

deaths	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
agecat#c.smokes						
35-44	5.736637	4.181256	2.40	0.017	1.374811	23.93711
45-54	2.138812	.6520701	2.49	0.013	1.176691	3.887609
55-64	1.412229	.2017485	2.42	0.016	1.067343	1.868557
65-74	1.412229	.2017485	2.42	0.016	1.067343	1.868557
75-84	.9047304	.1855513	-0.49	0.625	.6052658	1.35236
agecat						
45-54	10.5631	8.067701	3.09	0.002	2.364153	47.19623
55-64	47.671	34.37409	5.36	0.000	11.60056	195.8978
65-74	98.22765	70.85012	6.36	0.000	23.89324	403.8244
75-84	199.2099	145.3356	7.26	0.000	47.67693	832.3648
_cons ln(pyears)	.0001064	.0000753 (exposure)	-12.94	0.000	.0000266	.0004256

```
. estat gof
        Deviance goodness-of-fit = .0773491
        Prob > chi2(1)
                                   0.7809
        Pearson goodness-of-fit = .0773885
```

Prob > chi2(1)

The goodness-of-fit is now small; we are no longer running roughshod over the data. Let us now consider simplifying the model. The point estimate of the incidence-rate ratio for smoking in age category 1 is much larger than that for smoking in age category 2, but the confidence interval for smokes#1.agecat is similarly wide. Is the difference real?

0.7809

```
. test smokes#1.agecat = smokes#2.agecat
 (1) [deaths]1b.agecat#c.smokes - [deaths]2.agecat#c.smokes = 0
          chi2(1) =
                         1.56
        Prob > chi2 =
                         0.2117
```

The point estimates of the incidence-rate ratio for smoking in the 35-44 age category is much larger than that for smoking in the 45-54 age category, but there is insufficient data, and we may be observing random differences. With that success, might we also combine the smokers in the third and fourth categories with those in the first and second categories?

- . test smokes#2.agecat = smokes#3.agecat, accum
 - [deaths]1b.agecat#c.smokes [deaths]2.agecat#c.smokes = 0
 - (2) [deaths]2.agecat#c.smokes - [deaths]3.agecat#c.smokes = 0

```
chi2(2) =
                4.73
Prob > chi2 =
                0.0938
```

Combining the first four categories may be overdoing it—the 9.38% significance level is enough to stop us, although others may disagree.

Thus we now fit our final model:

- . constraint 2 smokes#1.agecat = smokes#2.agecat
- . poisson deaths c.smokes#agecat i.agecat, exposure(pyears) irr constraints(1/2)

 $log\ likelihood = -31.550722$ Iteration 0: Iteration 1: $log\ likelihood = -28.525057$ log likelihood = -28.514535Iteration 2: Iteration 3: $log\ likelihood = -28.514535$

Poisson regression Number of obs 10 Wald chi2(7) 642.25 0.0000 Log likelihood = -28.514535Prob > chi2

- (1) [deaths]3.agecat#c.smokes - [deaths]4.agecat#c.smokes = 0
- (2) [deaths]1b.agecat#c.smokes - [deaths]2.agecat#c.smokes = 0

deaths	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
agecat#c.smokes						
35-44	2.636259	.7408403	3.45	0.001	1.519791	4.572907
45-54	2.636259	.7408403	3.45	0.001	1.519791	4.572907
55-64	1.412229	.2017485	2.42	0.016	1.067343	1.868557
65-74	1.412229	.2017485	2.42	0.016	1.067343	1.868557
75-84	.9047304	.1855513	-0.49	0.625	.6052658	1.35236
agecat						
45-54	4.294559	.8385329	7.46	0.000	2.928987	6.296797
55-64	23.42263	7.787716	9.49	0.000	12.20738	44.94164
65-74	48.26309	16.06939	11.64	0.000	25.13068	92.68856
75-84	97.87965	34.30881	13.08	0.000	49.24123	194.561
_cons ln(pyears)	.0002166	.0000652 (exposure)	-28.03	0.000	.0001201	.0003908

The above strikes us as a fair representation of the data. The probabilities of observing the deaths seen in these data are estimated using the following predict command:

- . predict p, pr(0, deaths)
- . list deaths p

	deaths	р
1. 2. 3. 4. 5.	32 104 206 186 102	.6891766 .4456625 .5455328 .4910622 .5263011
6. 7. 8. 9.	2 12 28 28 31	.227953 .7981917 .4772961 .6227565 .5475718

The probability $Pr(y \le \text{deaths})$ ranges from 0.23 to 0.80.

Methods and formulas

In the following, we use the same notation as in [R] poisson.

The equation-level scores are given by

$$\operatorname{score}(\mathbf{x}\boldsymbol{\beta})_i = y_i - e^{\xi_j}$$

The deviance (D) and Pearson (P) goodness-of-fit statistics are given by

$$\begin{split} \ln & L_{\max} = \sum_{j=1}^{n} w_{j} \left[-y_{j} \{ \ln(y_{j}) - 1 \} - \ln(y_{j}!) \right] \\ & \chi_{D}^{2} = -2 \{ \ln L - \ln L_{\max} \} \\ & \chi_{P}^{2} = \sum_{j=1}^{n} \frac{w_{j} (y_{j} - e^{\xi_{j}})^{2}}{e^{\xi_{j}}} \end{split}$$

Reference

Manjón, M., and O. Martínez. 2014. The chi-squared goodness-of-fit test for count-data models. Stata Journal 14: 798-816.

Also see

- [R] **poisson** Poisson regression
- [U] 20 Estimation and postestimation commands