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Postestimation commands
The following postestimation commands are of special interest after factor and factormat:

Command Description

estat anti anti-image correlation and covariance matrices
estat common correlation matrix of the common factors
estat factors AIC and BIC model-selection criteria for different numbers of factors
estat kmo Kaiser–Meyer–Olkin measure of sampling adequacy
estat residuals matrix of correlation residuals
estat rotatecompare compare rotated and unrotated loadings
estat smc squared multiple correlations between each variable and the rest
estat structure correlations between variables and common factors
∗estat summarize estimation sample summary
loadingplot plot factor loadings
rotate rotate factor loadings
scoreplot plot score variables
screeplot plot eigenvalues

∗ estat summarize is not available after factormat.

The following standard postestimation commands are also available:

Command Description

∗estimates cataloging estimation results; see [R] estimates
†predict predict regression or Bartlett scores

∗ estimates table is not allowed, and estimates stats is allowed only with the ml factor method.
† predict after factormat works only if you have variables in memory that match the names specified in
factormat. predict assumes mean zero and standard deviation one unless the means() and sds() options
of factormat were provided.
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predict

Description for predict

predict creates new variables containing predictions such as factors scored by the regression
method or by the Bartlett method.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]
{stub* | newvarlist}

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

regression regression scoring method; the default
bartlett Bartlett scoring method

options Description

Main

norotated use unrotated results, even when rotated results are available
notable suppress table of scoring coefficients
format(% fmt) format for displaying the scoring coefficients

Options for predict

� � �
Main �

regression produces factors scored by the regression method. This is the default.

bartlett produces factors scored by the method suggested by Bartlett (1937, 1938). This method
produces unbiased factors, but they may be less accurate than those produced by the default
regression method suggested by Thomson (1951). Regression-scored factors have the smallest
mean squared error from the true factors but may be biased.

norotated specifies that unrotated factors be scored even when you have previously issued a rotate
command. The default is to use rotated factors if they are available and unrotated factors otherwise.

notable suppresses the table of scoring coefficients.

format(% fmt) specifies the display format for scoring coefficients.

http://www.stata.com/manuals14/d.pdf#ddatatypes
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/d.pdf#dformat
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estat

Description for estat

estat anti displays the anti-image correlation and anti-image covariance matrices. These are
minus the partial covariance and minus the partial correlation matrices of all pairs of variables, holding
all other variables constant.

estat common displays the correlation matrix of the common factors. For orthogonal factor
loadings, the common factors are uncorrelated, and hence an identity matrix is shown. estat common
is of more interest after oblique rotations.

estat factors displays model-selection criteria (AIC and BIC) for models with 1, 2, . . . , #
factors. Each model is estimated using maximum likelihood (that is, using the ml option of factor).

estat kmo specifies that the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy be
displayed. KMO takes values between 0 and 1, with small values meaning that overall the variables
have too little in common to warrant a factor analysis. Historically, the following labels are given to
values of KMO (Kaiser 1974):

0.00 to 0.49 unacceptable
0.50 to 0.59 miserable
0.60 to 0.69 mediocre
0.70 to 0.79 middling
0.80 to 0.89 meritorious
0.90 to 1.00 marvelous

estat residuals displays the raw or standardized residuals of the observed correlations with
respect to the fitted (reproduced) correlation matrix.

estat rotatecompare displays the unrotated factor loadings and the most recent rotated factor
loadings.

estat smc displays the squared multiple correlations between each variable and all other variables.
SMC is a theoretical lower bound for communality, so it is an upper bound for uniqueness. The pf
factor method estimates the communalities by smc.

estat structure displays the factor structure, that is, the correlations between the variables and
the common factors.

estat summarize displays summary statistics of the variables in the factor analysis over the
estimation sample. This subcommand is, of course, not available after factormat.

Menu for estat
Statistics > Postestimation
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Syntax for estat

Anti-image correlation/covariance matrices

estat anti
[
, nocorr nocov format(% fmt)

]
Correlation of common factors

estat common
[
, norotated format(% fmt)

]
Model-selection criteria

estat factors
[
, factors(#) detail

]
Sample adequacy measures

estat kmo
[
, novar format(% fmt)

]
Residuals of correlation matrix

estat residuals
[
, fitted obs sresiduals format(% fmt)

]
Comparison of rotated and unrotated loadings

estat rotatecompare
[
, format(% fmt)

]
Squared multiple correlations

estat smc
[
, format(% fmt)

]
Correlations between variables and common factors

estat structure
[
, norotated format(% fmt)

]
Summarize variables for estimation sample

estat summarize
[
, labels noheader noweights

]
Options for estat

� � �
Main �

nocorr, an option used with estat anti, suppresses the display of the anti-image correlation matrix.

nocov, an option used with estat anti, suppresses the display of the anti-image covariance matrix.

format(% fmt) specifies the display format. The defaults differ between the subcommands.

norotated, an option used with estat common and estat structure, requests that the displayed
and returned results be based on the unrotated original factor solution rather than on the last
rotation (orthogonal or oblique).

http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/d.pdf#dformat
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factors(#), an option used with estat factors, specifies the maximum number of factors to
include in the summary table.

detail, an option used with estat factors, presents the output from each run of factor (or
factormat) used in the computations of the AIC and BIC values.

novar, an option used with estat kmo, suppresses the KMO measures of sampling adequacy for the
variables in the factor analysis, displaying the overall KMO measure only.

fitted, an option used with estat residuals, displays the fitted (reconstructed) correlation matrix
on the basis of the retained factors.

obs, an option used with estat residuals, displays the observed correlation matrix.

sresiduals, an option used with estat residuals, displays the matrix of standardized residuals
of the correlations. Be careful when interpreting these residuals; see Jöreskog and Sörbom (1988).

labels, noheader, and noweights are the same as for the generic estat summarize command;
see [R] estat summarize.

Remarks and examples stata.com

Remarks are presented under the following headings:

Postestimation statistics
Plots of eigenvalues, factor loadings, and scores
Rotating the factor loadings
Factor scores

Postestimation statistics

Many postestimation statistics are available after factor and factormat.

Example 1: Squared multiple correlations

After factor and factormat there are several “classical” methods for assessing whether the
variables have enough in common to have warranted the use of a factor model. One method is to
examine the squared multiple correlations of each variable with all other variables—this is usually
an upper bound to communality and thus a lower bound to 1− uniqueness(= communality) of the
variables.

. use http://www.stata-press.com/data/r14/bg2
(Physician-cost data)

. quietly factor bg2cost1-bg2cost6, factors(2) ml

. estat smc

Squared multiple correlations of variables with all other variables

Variable smc

bg2cost1 0.1054
bg2cost2 0.1370
bg2cost3 0.1637
bg2cost4 0.0866
bg2cost5 0.1671
bg2cost6 0.1683

http://www.stata.com/manuals14/restatsummarize.pdf#restatsummarize
http://stata.com
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Other diagnostic tools, such as examining the anti-image correlation and anti-image covariance
matrices (estat anti) and the Kaiser–Meyer–Olkin measure of sampling adequacy (estat kmo),
are also available. See [MV] pca postestimation for an illustration of their use.

Example 2: Model-selection criteria

Another set of postestimation tools help in determining the number of factors that should be retained.
Later we will show the use of screeplot for producing a scree plot—a plot of the explained variance
by the common factors. This is often used as a visual guide for selecting the number of factors to
retain.

Some authors advocate the standard model information criteria AIC and BIC for determining the
number of factors (Schwarz 1978; Akaike 1987). This presupposes that the factors are extracted by
maximum likelihood. estat factors provides these measures.

. estat factors

Factor analysis with different numbers of factors (maximum likelihood)

#factors loglik df_m df_r AIC BIC

1 -60.53727 6 9 133.0745 159.1273
2 -6.842448 11 4 35.6849 83.44823
3 -3.34e-12 15 0 30 95.13182

no Heywood cases encountered

The table shows the AIC and BIC statistics for the models with 1, 2, and 3 factors. The three-factor
model is saturated, with 0 degrees of freedom. In this trivial case, and excluding the saturated case,
both criteria select the two-factor model.

Example 3: Structure matrix and observed correlations

Two estat subcommands display statistics that help in interpreting the model and the results—in
particular after an oblique rotation. estat structure displays the structure matrix containing the
correlations between the (manifest) variables and the common factors.

. estat structure

Structure matrix: correlations between variables and common factors

Variable Factor1 Factor2

bg2cost1 -0.1371 0.4235
bg2cost2 0.4140 0.1994
bg2cost3 0.6199 0.3692
bg2cost4 0.3577 0.0909
bg2cost5 -0.3752 0.4355
bg2cost6 -0.4295 0.4395

This matrix of correlations coincides with the pattern matrix, that is, the matrix with factor loadings.
This holds true for the unrotated factor solution as well as after an orthogonal rotation, such as a
varimax rotation. It does not hold true after an oblique rotation. After an oblique rotation, the common
factors are correlated. This correlation between the common factors also influences the correlation
between the common factors and the manifest variables. The correlation matrix of the common factors
is displayed by the common subcommand of estat. Because we have not yet rotated, we would see
only an identity matrix. Later we show estat common output after an oblique rotation.

http://www.stata.com/manuals14/mvpcapostestimation.pdf#mvpcapostestimation


factor postestimation — Postestimation tools for factor and factormat 7

To assess the quality of a factor model, we may compare the observed correlation matrix C with
the fitted (“reconstructed”) matrix Σ̂ = Λ̂Φ̂Λ̂

′
+ Ψ̂ by examining the raw residuals C− Σ̂.

. estat residuals, obs fit

Observed correlations

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 1.0000
bg2cost2 0.0920 1.0000
bg2cost3 0.0540 0.3282 1.0000
bg2cost4 -0.0380 0.1420 0.2676 1.0000
bg2cost5 0.2380 -0.1394 -0.0550 -0.0567 1.0000
bg2cost6 0.2431 -0.0671 -0.1075 -0.1329 0.3524 1.0000

Fitted ("reconstructed") values for correlations

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 1.0000
bg2cost2 0.0277 1.0000
bg2cost3 0.0714 0.3303 0.9999
bg2cost4 -0.0106 0.1662 0.2553 1.0000
bg2cost5 0.2359 -0.0685 -0.0718 -0.0946 1.0000
bg2cost6 0.2450 -0.0902 -0.1040 -0.1137 0.3525 1.0000

Raw residuals of correlations (observed-fitted)

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 -0.0000
bg2cost2 0.0643 -0.0000
bg2cost3 -0.0174 -0.0021 0.0001
bg2cost4 -0.0274 -0.0242 0.0124 -0.0000
bg2cost5 0.0021 -0.0709 0.0168 0.0379 0.0000
bg2cost6 -0.0019 0.0231 -0.0035 -0.0193 -0.0002 -0.0000

To gauge the size of the residuals, estat residuals can also display the standardized residuals.

. estat residuals, sres

Standardized residuals of correlations

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 -0.0001
bg2cost2 1.5324 -0.0003
bg2cost3 -0.4140 -0.0480 0.0011
bg2cost4 -0.6538 -0.5693 0.2859 -0.0000
bg2cost5 0.0484 -1.6848 0.3993 0.9003 0.0001
bg2cost6 -0.0434 0.5480 -0.0836 -0.4560 -0.0037 -0.0000

Be careful when interpreting these standardized residuals, as they tend to be smaller than normalized
residuals; that is, these residuals tend to have a smaller variance than 1 if the model is true (see
Bollen [1989]).
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Plots of eigenvalues, factor loadings, and scores

Scree plots, factor loading plots, and score plots are easily obtained after factor and factormat.

Example 4: The scree plot

The scree plot is a popular tool for determining the number of factors to be retained. A scree
plot is a plot of the eigenvalues shown in decreasing order (Cattell 1966). We fit a factor model,
extracting factors with the principal factor method.

. use http://www.stata-press.com/data/r14/sp2

. factor ghp31-ghp05, pcf
(output omitted )

How many factors should we retain? We issue the screeplot command with the mean option,
specifying that a horizontal line be plotted at the mean of the eigenvalues (a height of 1 because we
are dealing with the eigenvalues of a correlation matrix).

. screeplot, mean

0
2
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8

0 5 10 15 20

Eigenvalues Mean

Scree plot of eigenvalues after factor

The plot suggests that we retain three factors, both because of the shape of the scree plot and
because of Kaiser’s well-known criterion suggesting that we retain factors with eigenvalue larger than
1. We may specify the option mineigen(1) during estimation to enforce this criterion. Here there
is no need—mineigen(1) is the default with pcf.

Example 5: Factor loadings plot

A second plot that is sometimes useful is the factor loadings plot. We display the plot with the
loadings of the leading two factors.
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. loadingplot, xline(0) yline(0) aspect(1) note(unrotated principal factors)
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The plot makes it relatively easy to identify clusters of variables with similar loadings. With more
than two factors, we can choose to see the multiple plots in a matrix style or a combined-graph
style. The default is matrix style, but the combined style allows better control over various graph
options—for instance, the addition of xline(0) and yline(0). Here is a combined style graph.

. loadingplot, factors(3) combined xline(0) yline(0) aspect(1)
> xlabel(-0.8(0.4)0.8) ylabel(-0.8(0.4)0.8)
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Example 6: Score variables plot

Common factor scores can also be plotted for the observations by using the scoreplot command.
(See the discussion of predict to see how you can produce score variables.)
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. scoreplot, msymbol(smcircle) msize(tiny)

−
4

−
2

0
2

4
S

c
o

re
s
 f

o
r 

fa
c
to

r 
2

−4 −2 0 2 4
Scores for factor 1

Score variables (factor)

With so many observations, the plot’s main purpose is to identify extreme cases. With smaller
datasets with meaningful descriptions of the observations (for example, country names, brands), the
score plot is good for visually clustering observations with similar loadings.

See [MV] scoreplot for more examples of loadingplot and scoreplot.

Technical note

The loading plots and score plots we have shown were for the original unrotated factor solution.
After rotating (which we will discuss next), these plots display the most recent rotated solution. Specify
option norotated to refer to the unrotated result. To display the plots of rotated and unrotated results
at the same time, you may use either of the following two approaches. First, you may display them
in different Graph windows.

. plotcmd, norotated name(name1)

. plotcmd, name(name2)

Alternatively, you may save the plots and create a combined graph

. plotcmd, norotated saving(name1)

. plotcmd, saving(name2)

. graph combine name1.gph name2.gph

See [G-2] graph combine for details.

Rotating the factor loadings

Rotation is an attempt to describe the information in several factors by reexpressing them so that
loadings on a few variables are as large as possible, and loadings on the rest of the variables are
as small as possible. We have this freedom to reexpress because of the indeterminant nature of the
factor model. For example, if you find that z1 and z2 are two factors, then z1 + z2 and z1 − z2 are
equally valid solutions.

http://www.stata.com/manuals14/mvscoreplot.pdf#mvscoreplot
http://www.stata.com/manuals14/g-2graphcombine.pdf#g-2graphcombine
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Technical note

Said more technically: we are trying to find a set of f factor variables such that the observed
variables can be best explained by regressing them on the f factor variables. Usually, f is a small
number such as 1 or 2. If f ≥ 2, there is an inherent indeterminacy in the construction of the factors
because any linear combination of the calculated factors serves equally well as a set of regressors.
Rotation capitalizes on this indeterminacy to create a set of variables that looks as much like the
original variables as possible.

The rotate command modifies the results of the last factor or factormat command to create
a set of loadings that are more interpretable than those produced by factor or factormat. You
may perform one factor analysis followed by several rotate commands, thus experimenting with
different types of rotation. If you retain too few factors, the variables for several distinct concepts
may be merged, as in our example below. If you retain too many factors, several factors may attempt
to measure the same concept, causing the factors to get in each other’s way, suggesting too many
distinct concepts after rotation.

Technical note

It is possible to restrict rotation to a number of leading factors. For instance, if you extracted three
factors, you may specify the option factors(2) to rotate to exclude the third factor from being
rotated. The new two leading factors are combinations of the initial two leading factors and are not
affected by the fixed factor.
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Example 7: Orthogonal varimax rotation

We return to our physician-cost example in [MV] factor and perform a factor analysis using the
principal-component factor method, retaining two factors. We then tell rotate to apply the default
orthogonal varimax rotation (Kaiser 1958).

. use http://www.stata-press.com/data/r14/bg2, clear
(Physician-cost data)

. quietly factor bg2cost1-bg2cost6, pcf factors(2)

. rotate

Factor analysis/correlation Number of obs = 568
Method: principal-component factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser off) Number of params = 11

Factor Variance Difference Proportion Cumulative

Factor1 1.57170 0.03430 0.2619 0.2619
Factor2 1.53740 . 0.2562 0.5182

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

bg2cost1 0.6853 0.2300 0.4775
bg2cost2 -0.0126 0.7142 0.4898
bg2cost3 -0.0161 0.7818 0.3886
bg2cost4 -0.1502 0.5703 0.6521
bg2cost5 0.7292 -0.1198 0.4539
bg2cost6 0.7398 -0.1537 0.4290

Factor rotation matrix

Factor1 Factor2

Factor1 0.7460 -0.6659
Factor2 0.6659 0.7460

Here the factors are rotated so that the three “negative” items are grouped together and the three
“positive” items are grouped.

Look at the uniqueness column. Uniqueness is the percentage of variance for the variable that
is not explained by the common factors; we may also think of it as the variances of the specific
factors for the variables. We stress that rotation involves the “common factors”, so the uniqueness is
not affected by the rotation. As we noted in [MV] factor, the uniqueness is relatively high in this
example, placing doubt on the usefulness of the factor model here.

Example 8: More orthogonal varimax rotation

Here we examine 19 variables describing various aspects of health. These variables were collected
from a random selection of 9,999 visitors to doctors’ offices by Tarlov et al. (1989). Factor analysis
yields three clear factors. We then examine several rotations of these three factors.

http://www.stata.com/manuals14/mvfactor.pdf#mvfactorRemarksandexamplesex1
http://www.stata.com/manuals14/mvfactor.pdf#mvfactor
http://www.stata.com/manuals14/mvfactor.pdf#mvfactor
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. use http://www.stata-press.com/data/r14/sp2

. describe

Contains data from http://www.stata-press.com/data/r14/sp2.dta
obs: 9,999

vars: 20 26 Jan 2014 09:26
size: 779,922 (_dta has notes)

storage display value
variable name type format label variable label

patid int %9.0g Case ID
ghp31 float %9.0g Health excellent, very good,

good, fair, poor
pf01 float %9.0g How long limit vigorous activity
pf02 float %9.0g How long limit moderate activity
pf03 float %9.0g How long limit walk/climb
pf04 float %9.0g How long limit bend/stoop
pf05 float %9.0g How long limit walk 1 block
pf06 float %9.0g How long limit eat/dress/bath
rkeep float %9.0g Does health keep work-job-hse
rkind float %9.0g Can’t do kind/amount of work
sact0 float %9.0g Last month limit activities
mha01 float %9.0g Last month very nervous
mhp03 float %9.0g Last month calm/peaceful
mhd02 float %9.0g Last month downhearted/blue
mhp01 float %9.0g Last month a happy person
mhc01 float %9.0g Last month down in the dumps
ghp01 float %9.0g Somewhat ill
ghp04 float %9.0g Healthy as anybody I know
ghp02 float %9.0g Health is excellent
ghp05 float %9.0g Feel bad lately

Sorted by: patid

We now perform our factorization, requesting that three factors be retained.
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. factor ghp31-ghp05, factors(3)
(obs=9,999)

Factor analysis/correlation Number of obs = 9,999
Method: principal factors Retained factors = 3
Rotation: (unrotated) Number of params = 54

Factor Eigenvalue Difference Proportion Cumulative

Factor1 7.27086 4.90563 0.7534 0.7534
Factor2 2.36523 1.38826 0.2451 0.9985
Factor3 0.97697 1.00351 0.1012 1.0997
Factor4 -0.02654 0.00538 -0.0027 1.0970
Factor5 -0.03191 0.00378 -0.0033 1.0937
Factor6 -0.03569 0.00353 -0.0037 1.0900
Factor7 -0.03922 0.00271 -0.0041 1.0859
Factor8 -0.04193 0.00662 -0.0043 1.0815
Factor9 -0.04855 0.01015 -0.0050 1.0765

Factor10 -0.05870 0.00250 -0.0061 1.0704
Factor11 -0.06120 0.00224 -0.0063 1.0641
Factor12 -0.06344 0.00376 -0.0066 1.0575
Factor13 -0.06720 0.00345 -0.0070 1.0506
Factor14 -0.07065 0.00185 -0.0073 1.0432
Factor15 -0.07250 0.00033 -0.0075 1.0357
Factor16 -0.07283 0.00772 -0.0075 1.0282
Factor17 -0.08055 0.01190 -0.0083 1.0198
Factor18 -0.09245 0.00649 -0.0096 1.0103
Factor19 -0.09894 . -0.0103 1.0000

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Uniqueness

ghp31 -0.6519 -0.0562 0.3440 0.4535
pf01 0.6150 0.3226 -0.0072 0.5177
pf02 0.6867 0.3737 0.2175 0.3415
pf03 0.6712 0.3774 0.1621 0.3807
pf04 0.6540 0.3588 0.2268 0.3921
pf05 0.6209 0.3258 0.2631 0.4392
pf06 0.4370 0.1803 0.2241 0.7263

rkeep 0.6868 0.1820 0.0870 0.4876
rkind 0.7244 0.2464 0.0780 0.4085
sact0 0.6556 -0.0719 0.0461 0.5628
mha01 0.5297 -0.4773 0.1268 0.4755
mhp03 -0.4810 0.5691 -0.1238 0.4294
mhd02 0.5208 -0.5949 0.1623 0.3485
mhp01 -0.4980 0.5955 -0.1225 0.3824
mhc01 0.4927 -0.5215 0.1531 0.4618
ghp01 0.6686 0.0194 -0.3621 0.4215
ghp04 -0.6833 -0.0195 0.4089 0.3656
ghp02 -0.7398 -0.0227 0.4212 0.2748
ghp05 0.6163 -0.2760 -0.1626 0.5175

The first factor is a general health factor. (To understand that claim, compare the factor loadings with
the description of the variables as shown by describe above. Also, just as with the physician-cost
data, the sense of some of the coded responses is reversed.) The second factor loads most highly
on the five “mental health” items. The third factor loads most highly on “general health perception”
items—those with names having the letters ghp in them. The other items describe “physical health”.
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These designations are based primarily on the wording of the questions, which is summarized in the
variable labels.

. rotate, varimax

Factor analysis/correlation Number of obs = 9,999
Method: principal factors Retained factors = 3
Rotation: orthogonal varimax (Kaiser off) Number of params = 54

Factor Variance Difference Proportion Cumulative

Factor1 4.20556 0.83302 0.4358 0.4358
Factor2 3.37253 0.33756 0.3495 0.7852
Factor3 3.03497 . 0.3145 1.0997

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Uniqueness

ghp31 -0.2968 -0.1647 -0.6567 0.4535
pf01 0.5872 0.0263 0.3699 0.5177
pf02 0.7740 0.0848 0.2287 0.3415
pf03 0.7386 0.0580 0.2654 0.3807
pf04 0.7484 0.0842 0.2018 0.3921
pf05 0.7256 0.1063 0.1518 0.4392
pf06 0.5023 0.1268 0.0730 0.7263

rkeep 0.6023 0.2048 0.3282 0.4876
rkind 0.6590 0.1669 0.3597 0.4085
sact0 0.4187 0.3875 0.3342 0.5628
mha01 0.1467 0.6859 0.1803 0.4755
mhp03 -0.0613 -0.7375 -0.1514 0.4294
mhd02 0.0921 0.7893 0.1416 0.3485
mhp01 -0.0570 -0.7671 -0.1612 0.3824
mhc01 0.1102 0.7124 0.1359 0.4618
ghp01 0.2783 0.1977 0.6797 0.4215
ghp04 -0.2652 -0.1908 -0.7264 0.3656
ghp02 -0.2986 -0.2116 -0.7690 0.2748
ghp05 0.1755 0.4756 0.4748 0.5175

Factor rotation matrix

Factor1 Factor2 Factor3

Factor1 0.6658 0.4796 0.5715
Factor2 0.5620 -0.8263 0.0387
Factor3 0.4908 0.2954 -0.8197

With rotation, the structure of the data becomes much clearer. The first rotated factor is physical
health, the second is mental health, and the third is general health perception. The a priori designation
of the items is confirmed.

After rotation, physical health is the first factor. rotate has ordered the factors by explained
variance. Still, we warn that the importance of any factor must be gauged against the number of
variables that purportedly measure it. Here we included nine variables that measured physical health,
five that measured mental health, and five that measured general health perception. Had we started
with only one mental health item, it would have had a high uniqueness, but we would not want to
conclude that it was, therefore, largely noise.
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Technical note
Some people prefer specifying the option normalize to apply a Kaiser normalization (Horst 1965),

which places equal weight on all rows of the matrix to be rotated.

Example 9: Oblique oblimin rotation

The literature suggests that physical health and mental health are related. Also, general health
perception may be largely a combination of the two. For these reasons, an oblique rotation of a
two-factor solution is worth trying. We try the oblique oblimin rotation (Harman 1976).

. factor ghp31-ghp05, factors(2)
(obs=9,999)

Factor analysis/correlation Number of obs = 9,999
Method: principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 37

Factor Eigenvalue Difference Proportion Cumulative

Factor1 7.27086 4.90563 0.7534 0.7534
Factor2 2.36523 1.38826 0.2451 0.9985
Factor3 0.97697 1.00351 0.1012 1.0997
Factor4 -0.02654 0.00538 -0.0027 1.0970
Factor5 -0.03191 0.00378 -0.0033 1.0937
Factor6 -0.03569 0.00353 -0.0037 1.0900
Factor7 -0.03922 0.00271 -0.0041 1.0859
Factor8 -0.04193 0.00662 -0.0043 1.0815
Factor9 -0.04855 0.01015 -0.0050 1.0765

Factor10 -0.05870 0.00250 -0.0061 1.0704
Factor11 -0.06120 0.00224 -0.0063 1.0641
Factor12 -0.06344 0.00376 -0.0066 1.0575
Factor13 -0.06720 0.00345 -0.0070 1.0506
Factor14 -0.07065 0.00185 -0.0073 1.0432
Factor15 -0.07250 0.00033 -0.0075 1.0357
Factor16 -0.07283 0.00772 -0.0075 1.0282
Factor17 -0.08055 0.01190 -0.0083 1.0198
Factor18 -0.09245 0.00649 -0.0096 1.0103
Factor19 -0.09894 . -0.0103 1.0000

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000
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Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

ghp31 -0.6519 -0.0562 0.5718
pf01 0.6150 0.3226 0.5178
pf02 0.6867 0.3737 0.3888
pf03 0.6712 0.3774 0.4070
pf04 0.6540 0.3588 0.4435
pf05 0.6209 0.3258 0.5084
pf06 0.4370 0.1803 0.7765

rkeep 0.6868 0.1820 0.4952
rkind 0.7244 0.2464 0.4145
sact0 0.6556 -0.0719 0.5650
mha01 0.5297 -0.4773 0.4916
mhp03 -0.4810 0.5691 0.4448
mhd02 0.5208 -0.5949 0.3748
mhp01 -0.4980 0.5955 0.3974
mhc01 0.4927 -0.5215 0.4853
ghp01 0.6686 0.0194 0.5526
ghp04 -0.6833 -0.0195 0.5327
ghp02 -0.7398 -0.0227 0.4522
ghp05 0.6163 -0.2760 0.5439

. rotate, oblimin oblique

Factor analysis/correlation Number of obs = 9,999
Method: principal factors Retained factors = 2
Rotation: oblique oblimin (Kaiser off) Number of params = 37

Factor Variance Proportion Rotated factors are correlated

Factor1 6.58719 0.6826
Factor2 4.65444 0.4823

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

ghp31 -0.5517 -0.2051 0.5718
pf01 0.7179 -0.0747 0.5178
pf02 0.8115 -0.0968 0.3888
pf03 0.8022 -0.1068 0.4070
pf04 0.7750 -0.0951 0.4435
pf05 0.7249 -0.0756 0.5084
pf06 0.4743 -0.0044 0.7765

rkeep 0.6712 0.0939 0.4952
rkind 0.7478 0.0449 0.4145
sact0 0.4608 0.3340 0.5650
mha01 0.0652 0.6869 0.4916
mhp03 0.0401 -0.7587 0.4448
mhd02 -0.0280 0.8003 0.3748
mhp01 0.0462 -0.7918 0.3974
mhc01 0.0039 0.7160 0.4853
ghp01 0.5378 0.2484 0.5526
ghp04 -0.5494 -0.2541 0.5327
ghp02 -0.5960 -0.2736 0.4522
ghp05 0.2805 0.5213 0.5439
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Factor rotation matrix

Factor1 Factor2

Factor1 0.9277 0.6831
Factor2 0.3733 -0.7303

The first factor is defined predominantly by physical health and the second by mental health. General
health perception loads on both, but more on physical health than mental health. To compare the
rotated and unrotated solution, looking at both in parallel form is often useful.

. estat rotatecompare

Rotation matrix oblique oblimin (Kaiser off)

Variable Factor1 Factor2

Factor1 0.9277 0.6831
Factor2 0.3733 -0.7303

Factor loadings

Rotated Unrotated
Variable Factor1 Factor2 Factor1 Factor2

ghp31 -0.5517 -0.2051 -0.6519 -0.0562
pf01 0.7179 -0.0747 0.6150 0.3226
pf02 0.8115 -0.0968 0.6867 0.3737
pf03 0.8022 -0.1068 0.6712 0.3774
pf04 0.7750 -0.0951 0.6540 0.3588
pf05 0.7249 -0.0756 0.6209 0.3258
pf06 0.4743 -0.0044 0.4370 0.1803

rkeep 0.6712 0.0939 0.6868 0.1820
rkind 0.7478 0.0449 0.7244 0.2464
sact0 0.4608 0.3340 0.6556 -0.0719
mha01 0.0652 0.6869 0.5297 -0.4773
mhp03 0.0401 -0.7587 -0.4810 0.5691
mhd02 -0.0280 0.8003 0.5208 -0.5949
mhp01 0.0462 -0.7918 -0.4980 0.5955
mhc01 0.0039 0.7160 0.4927 -0.5215
ghp01 0.5378 0.2484 0.6686 0.0194
ghp04 -0.5494 -0.2541 -0.6833 -0.0195
ghp02 -0.5960 -0.2736 -0.7398 -0.0227
ghp05 0.2805 0.5213 0.6163 -0.2760

Look again at the factor output. The variances of the first and second factor of the unrotated
solution are 7.27 and 2.37, respectively. After an orthogonal rotation, the explained variance of
7.27 + 2.37 is distributed differently over the two factors. For instance, after an orthogonal varimax
rotation, the first factor has variance 5.75, and the second factor has 3.88—within rounding error
7.27 + 2.37 = 5.75 + 3.88. The situation after an oblique rotation is different. The variances of the
first and second factors are 6.59 and 4.65, which add up to more than in the orthogonal case. In
the oblique case, the common factors are correlated and thus “partly explain the same variance”.
Therefore, the cumulative proportion of variance explained by the factors is not displayed here.

Most researchers would not be willing to accept a solution in which the common factors are highly
correlated.
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. estat common

Correlation matrix of the oblimin(0) rotated common factors

Factors Factor1 Factor2

Factor1 1
Factor2 .3611 1

The correlation of .36 seems acceptable, so we think that the oblique rotation was a success here.

Factor scores
The predict command creates a set of new variables that are estimates of the first k common

factors produced by factor, factormat, or rotate. Two types of scoring are available: regression
or Thomson scoring and Bartlett scoring.

The number of variables may be less than the number of factors. If so, the first such factors will be
used. If the number of variables is greater than the number of factors created or rotated, the unused
factors will be filled with missing values.

Example 10: Predicting scores

Using our automobile data, we wish to develop an index of roominess on the basis of a car’s
headroom, rear-seat leg room, and trunk space. We begin by extracting the factors of the three
variables:

. use http://www.stata-press.com/data/r14/autofull
(Automobile Models)

. factor headroom rear_seat trunk
(obs=74)

Factor analysis/correlation Number of obs = 74
Method: principal factors Retained factors = 1
Rotation: (unrotated) Number of params = 3

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.71426 1.79327 1.1799 1.1799
Factor2 -0.07901 0.10329 -0.0544 1.1255
Factor3 -0.18231 . -0.1255 1.0000

LR test: independent vs. saturated: chi2(3) = 82.93 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Uniqueness

headroom 0.7280 0.4700
rear_seat 0.7144 0.4897

trunk 0.8209 0.3261

All the factor loadings are positive, so we have indeed obtained a “roominess” factor. The predict
command will now create the one retained factor, which we will call f1:
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. predict f1
(regression scoring assumed)

Scoring coefficients (method = regression)

Variable Factor1

headroom 0.28323
rear_seat 0.26820

trunk 0.45964

The table with scoring coefficients informs us that the factor is obtained as a weighted sum of
standardized versions of headroom, rear seat, and trunk with weights 0.28, 0.27, and 0.46.

If factor had retained more than one factor, typing predict f1 would still have added only
the first factor to our data. Typing predict f1 f2, however, would have added the first two factors
to our data. f1 is now our “roominess” index, so we might compare the roominess of domestic and
foreign cars:

. table foreign, c(mean f1 sd f1) row

Foreign mean(f1) sd(f1)

Domestic .2022442 .9031404
Foreign -.4780318 .6106609

Total 4.51e-09 .8804116

We find that domestic cars are, on average, roomier than foreign cars, at least in our data.

Technical note
Are common factors not supposed to be normalized to have mean 0 and standard deviation 1? In

our example above, the mean is 4.5× 10−9 and the standard deviation is 0.88. Why is that?

For the mean, the deviation from zero is due to numerical roundoff, which would diminish
dramatically if we had typed predict double f1 instead. The explanation for the standard deviation
of 0.88, on the other hand, is not numerical roundoff. At a theoretical level, the factor is supposed to
have standard deviation 1, but the estimation method almost never yields that result unless an exact
solution to the factor model is found. This happens for the same reason that, when you regress y on
x, you do not get the same equation as if you regress x on y, unless x and y are perfectly collinear.

By the way, if you had two factors, you would expect the correlation between the two factors to
be zero because that is how they are theoretically defined. The matrix algebra, however, does not
usually work out that way. It is somewhat analogous to the fact that if you regress y on x and the
regression assumption that the errors are uncorrelated with the dependent variable is satisfied, then it
automatically cannot be satisfied if you regress x on y.

The covariance matrix of the estimated factors is

E(f̂ f̂ ′) = I− (I+ Γ)−1

where
Γ = Λ′Ψ−1Λ
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The columns of Λ are orthogonal to each other, but the inclusion of Ψ in the middle of the equation
destroys that relationship unless all the elements of Ψ are equal.

Example 11: Rescaling the scores

Let’s pretend that we work for the K. E. Watt Company, a fictional industry group that generates
statistics on automobiles. Our “roominess” index has mean 0 and standard deviation 0.88, but indexes
we present to the public generally have mean 100 and standard deviation 10. First, we wish to rescale
our index:

. generate roomidx = (f1/.88041161)*10 + 100

. table foreign, c(mean roomidx sd roomidx freq) row format(%9.2f)

Foreign mean(roomidx) sd(roomidx) Freq.

Domestic 102.30 10.26 52.00
Foreign 94.57 6.94 22.00

Total 100.00 10.00 74.00

Now when we release our results, we can write, “The K. E. Watt index of roominess shows that
domestic cars are, on average, roomier, with an index of 102 versus only 95 for foreign cars.”

Now let’s find the “roomiest” car in our data:

. sort roomidx

. list fullname roomidx in l

fullname roomidx

74. Merc. Marquis 116.7469

We can also write, “K. E. Watt finds that the Mercury Marquis is the roomiest automobile among
those surveyed, with a roominess index of 117 versus an average of 100.”

Technical note
predict provides two methods of scoring: the default regression scoring, which we have used

above, and the optional Bartlett method. An artificial example will best illustrate the use and meaning
of the methods. We begin by creating a known-to-be-correct factor model in which the true loadings
are 0.4, 0.6, and 0.8. The variances of the unique factors are 1− 0.42 = 0.84, 1− 0.62 = 0.64, and
1− 0.82 = 0.36, respectively. We make the sample size large enough so that random fluctuations are
not important.

. drop _all

. set seed 12345

. set obs 10000
number of observations (_N) was 0, now 10,000

. generate ftrue = rnormal()

. generate x1 = .4*ftrue + sqrt(.84)*rnormal()
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. generate x2 = .6*ftrue + sqrt(.64)*rnormal()

. generate x3 = .8*ftrue + sqrt(.36)*rnormal()

. summarize x1 x2 x3

Variable Obs Mean Std. Dev. Min Max

x1 10,000 .0195519 1.011165 -3.778123 4.267452
x2 10,000 .0127835 1.001259 -3.828994 4.102375
x3 10,000 .0058335 1.002475 -3.595906 3.89754

Because we concocted our data, the iterated principal-factor method reproduces the true loadings most
faithfully:

. factor x1 x2 x3, ipf factors(1)
(obs=10,000)

Factor analysis/correlation Number of obs = 10,000
Method: iterated principal factors Retained factors = 1
Rotation: (unrotated) Number of params = 3

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.16678 1.16662 1.0000 1.0000
Factor2 0.00016 0.00036 0.0001 1.0002
Factor3 -0.00020 . -0.0002 1.0000

LR test: independent vs. saturated: chi2(3) = 3887.29 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Uniqueness

x1 0.4156 0.8273
x2 0.6046 0.6345
x3 0.7928 0.3715

Let us now compare regression and Bartlett scoring:
. predict freg
(regression scoring assumed)

Scoring coefficients (method = regression)

Variable Factor1

x1 0.14449
x2 0.27410
x3 0.61377

. predict fbar, bartlett

Scoring coefficients (method = Bartlett)

Variable Factor1

x1 0.20285
x2 0.38475
x3 0.86162

Comparing the two scoring vectors, we see that Bartlett scoring yields larger coefficients. The
regression scoring method is biased insofar as E(freg|ftrue) is not ftrue, something we can
reveal by regressing freg on ftrue:
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. regress freg ftrue

Source SS df MS Number of obs = 10,000
F(1, 9998) = 25339.34

Model 5107.57467 1 5107.57467 Prob > F = 0.0000
Residual 2015.26671 9,998 .201566984 R-squared = 0.7171

Adj R-squared = 0.7170
Total 7122.84138 9,999 .712355374 Root MSE = .44896

freg Coef. Std. Err. t P>|t| [95% Conf. Interval]

ftrue .7169557 .004504 159.18 0.000 .708127 .7257843
_cons -.0088417 .00449 -1.97 0.049 -.0176429 -.0000404

Note the coefficient on ftrue of 0.717 < 1. The Bartlett scoring method, on the other hand, is
unbiased:

. regress fbar ftrue

Source SS df MS Number of obs = 10,000
F(1, 9998) = 25339.33

Model 10065.1734 1 10065.1734 Prob > F = 0.0000
Residual 3971.35998 9,998 .397215441 R-squared = 0.7171

Adj R-squared = 0.7170
Total 14036.5334 9,999 1.40379372 Root MSE = .63025

fbar Coef. Std. Err. t P>|t| [95% Conf. Interval]

ftrue 1.006458 .0063226 159.18 0.000 .9940642 1.018851
_cons -.0124119 .006303 -1.97 0.049 -.024767 -.0000568

The zero bias of the Bartlett method comes at the costs of less accuracy, for example, in terms of
the mean squared error.

. generate dbar = (fbar - ftrue)^2

. generate dreg = (freg - ftrue)^2

. summarize ftrue fbar freg dbar dreg

Variable Obs Mean Std. Dev. Min Max

ftrue 10,000 .0123322 .996866 -4.196032 3.815439
fbar 10,000 2.08e-10 1.184818 -3.78561 4.550449
freg 10,000 -6.44e-10 .8440115 -2.696714 3.241498
dbar 10,000 .3973295 .5654751 1.31e-09 7.656609
dreg 10,000 .2812835 .4053233 9.68e-10 4.814044

Neither estimator follows the assumption that the scaled factor has unit variance. The regression
estimator has a variance less than 1, and the Bartlett estimator has a variance greater than 1.

The difference between the two scoring methods is not as important as it might seem because the
bias in the regression method is only a matter of scaling and shifting.

. correlate freg fbar ftrue
(obs=10,000)

freg fbar ftrue

freg 1.0000
fbar 1.0000 1.0000

ftrue 0.8468 0.8468 1.0000
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Therefore, the choice of which scoring method we apply is largely immaterial.

Stored results
Let p be the number of variables and f , the number of factors.

predict, in addition to generating variables, also stores the following in r():

Macros
r(method) regression or Bartlett

Matrices
r(scoef) p×f matrix of scoring coefficients

estat anti stores the following in r():

Matrices
r(acov) p×p anti-image covariance matrix
r(acorr) p×p anti-image correlation matrix

estat common stores the following in r():

Matrices
r(Phi) f×f correlation matrix of common factors

estat factors stores the following in r():

Matrices
r(stats) k×5 matrix with log likelihood, degrees of freedom, AIC, and BIC

for models with 1 to k factors estimated via maximum likelihood

estat kmo stores the following in r():

Scalars
r(kmo) the Kaiser–Meyer–Olkin measure of sampling adequacy

Matrices
r(kmow) column vector of KMO measures for each variable

estat residuals stores the following in r():

Matrices
r(fit) fitted matrix for the correlations, Ĉ=Λ̂Φ̂Λ̂

′
+Ψ̂

r(res) raw residual matrix C−Ĉ
r(SR) standardized residuals (sresiduals option only)

estat smc stores the following in r():

Matrices
r(smc) vector of squared multiple correlations of variables with all other variables

estat structure stores the following in r():

Matrices
r(st) p×f matrix of correlations between variables and common factors

See [R] estat summarize for the stored results of estat summarize.

http://www.stata.com/manuals14/restatsummarize.pdf#restatsummarize
http://www.stata.com/manuals14/restatsummarize.pdf#restatsummarizeStoredresults
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rotate after factor and factormat add to the existing e():

Scalars
e(r f) number of factors in rotated solution
e(r fmin) rotation criterion value

Macros
e(r class) orthogonal or oblique
e(r criterion) rotation criterion
e(r ctitle) title for rotation
e(r normalization) kaiser or none

Matrices
e(r L) rotated loadings
e(r T) rotation
e(r Phi) correlations between common factors
e(r Ev) explained variance by common factors

The factors in the rotated solution are in decreasing order of e(r Ev).

Methods and formulas
Methods and formulas are presented under the following headings:

estat
rotate
predict

estat

See Methods and formulas of [MV] pca postestimation for the formulas for estat anti, estat
kmo, and estat smc.

estat residuals computes the standardized residuals r̃ij as

r̃ij =

√
N(rij − fij)√
f2
ij + fiifjj

suggested by Jöreskog and Sörbom (1986), where N is the number of observations, rij is the
observed correlation of variables i and j, and fij is the fitted correlation of variables i and j.
Also see Bollen (1989). Caution is warranted in interpretation of these residuals; see Jöreskog and
Sörbom (1988).

estat structure computes the correlations of the variables and the common factors as ΛΦ.

rotate
See Methods and formulas of [MV] rotatemat for the details of rotation.

The correlation of common factors after rotation is T′T, where T is the factor rotation matrix,
satisfying Lrotated = Lunrotated(T

′)−1

http://www.stata.com/manuals14/mvpcapostestimation.pdf#mvpcapostestimationMethodsandformulas
http://www.stata.com/manuals14/mvpcapostestimation.pdf#mvpcapostestimation
http://www.stata.com/manuals14/mvrotatemat.pdf#mvrotatematMethodsandformulas
http://www.stata.com/manuals14/mvrotatemat.pdf#mvrotatemat
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predict

The formula for regression scoring (Thomson 1951) in the orthogonal case is

f̂ = Λ′Σ−1x

where Λ is the unrotated or orthogonally rotated loading matrix. For oblique rotation, the regression
scoring is defined as

f̂ = ΦΛ′Σ−1x

where Φ is the correlation matrix of the common factors.

The formula for Bartlett scoring (Bartlett 1937, 1938) is

Γ−1Λ′Ψ−1x

where
Γ = Λ′Ψ−1Λ

See Harman (1976) and Lawley and Maxwell (1971).
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