
Title stata.com

xl() — Excel file I/O class

Description Syntax Remarks and examples Also see

Description

The xl() class allows you to create Excel 1997/2003 (.xls) files and Excel 2007/2013 (.xlsx)
files and load them from and to Mata matrices. The two Excel file types have different data size
limits that you can read about in the technical note Excel data size limits of [D] import excel. The
xl() class is supported on Windows, Mac, and Linux.

Syntax

If you are trying to import or export an Excel file to or from Stata, see [D] import excel. If you are
trying to export a table created by Stata to Excel, see [P] putexcel.

The syntax diagrams below describe a Mata class. For help with class programming in Mata, see
[M-2] class.

Syntax is presented under the following headings:

Step 1: Initialization
Step 2: Creating and opening an Excel workbook
Step 3: Setting the Excel worksheet
Step 4: Reading and writing data from and to an Excel worksheet
Step 5: Formatting cells in an Excel worksheet
Step 6: Formatting text in an Excel worksheet
Utility functions for use in all steps

Step 1: Initialization

B = xl()

Step 2: Creating and opening an Excel workbook

(void) B.create book("filename", "sheetname"
[
, { "xls" | "xlsx" }, "locale"

]
)

(void) B.load book("filename"
[
, "locale"

]
)

(void) B.clear book("filename")

(void) B.set mode("open" | "closed")
(void) B.close book()

1

http://stata.com
http://www.stata.com/manuals14/dimportexcel.pdf#dimportexcelTechnicalnoteExceldatasizelimits
http://www.stata.com/manuals14/dimportexcel.pdf#dimportexcel
http://www.stata.com/manuals14/dimportexcel.pdf#dimportexcel
http://www.stata.com/manuals14/pputexcel.pdf#pputexcel
http://www.stata.com/manuals14/m-2class.pdf#m-2class

2 xl() — Excel file I/O class

Step 3: Setting the Excel worksheet

(void) B.add sheet("sheetname")

(void) B.set sheet("sheetname")

(void) B.set sheet gridlines("sheetname",
{
"on" | "off"

}
)

(void) B.set sheet merge("sheetname", real vector row, real vector col)

(void) B.clear sheet("sheetname")

(void) B.delete sheet("sheetname")

(void) B.delete sheet merge("sheetname", real vector row, real vector col)

string colvector B.get sheets()

Step 4: Reading and writing data from and to an Excel worksheet

string matrix B.get string(real vector row, real vector col)

real matrix B.get number(real vector row, real vector col[
, { "asdate" | "asdatetime" }

]
)

string matrix B.get cell type(real vector row, real vector col)

(void) B.put string(real scalar row, real scalar col, string matrix s)

(void) B.put number(real scalar row, real scalar col, real matrix r[
, { "asdate" | "asdatetime" | "asdatenum" | asdatetimenum }

]
)

(void) B.put formula(real scalar row, real scalar col, string matrix s)

(void) B.put picture(real scalar row, real scalar col, "filename")

(void) B.set missing(
[

real scalar num | string scalar val
]
)

xl() — Excel file I/O class 3

Step 5: Formatting cells in an Excel worksheet

(void) B.set number format(real vector row, real vector col, "format")

(void) B.set vertical align(real vector row, real vector col, "align")

(void) B.set horizontal align(real vector row, real vector col, "align")

(void) B.set border(real vector row, real vector col, "style"[
, "color"

]
)

(void) B.set left border(real vector row, real vector col "style"[
, "color"

]
)

(void) B.set right border(real vector row, real vector col, "style"[
, "color"

]
)

(void) B.set top border(real vector row, real vector col, "style"[
, "color"

]
)

(void) B.set bottom border(real vector row, real vector col, "style"[
, "color"

]
)

(void) B.set diagonal border(real vector row, real vector col, "direction",
"style"

[
, "color"

]
)

(void) B.set fill pattern(real vector row, real vector col, "pattern",
"fgcolor"

[
, "bgcolor"

]
)

(void) B.set column width(real scalar col1, real scalar col2, real scalar width)

(void) B.set row height(real scalar row1, real scalar row2, real scalar height)

4 xl() — Excel file I/O class

Step 6: Formatting text in an Excel worksheet

(void) B.set font(real vector row, real vector col, "format" real scalar size[
, "color"

]
)

(void) B.set font bold(real vector row, real vector col,
{
"on" | "off"

}
)

(void) B.set font italic(real vector row, real vector col,
{
"on" | "off"

}
)

(void) B.set font strikeout(real vector row, real vector col,
{
"on" | "off"

}
)

(void) B.set font underline(real vector row, real vector col
{
"on" | "off"

}
)

(void) B.set font script(real vector row, real vector col,{
"sub" | "super" | "normal"

}
)

(void) B.set text wrap(real vector row, real vector col,
{
"on" | "off"

}
)

(void) B.set shrink to fit(real vector row, real vector col,
{
"on" | "off"

}
)

(void) B.set text rotate(real vector row, real vector col, real scalar rotation)

(void) B.set text indent(real vector row, real vector col, real scalar indent)

(void) B.set format lock(real vector row, real vector col,
{
"on" | "off"

}
)

(void) B.set format hidden(real vector row, real vector col,
{
"on" | "off"

}
)

Utility functions for use in all steps

(varies) B.query(
[
"item"

]
)

real vector B.get colnum(string vector)

(void) B.set keep cell format("on" | "off")
(void) B.set error mode("on" | "off")
real scalar B.get last error()

string scalar B.get last error message()

where item can be

filename
mode
filetype
sheetname
missing

xl() — Excel file I/O class 5

Remarks and examples stata.com

Remarks are presented under the following headings:

Definition of B
Specifying the Excel workbook
Specifying the Excel worksheet
Reading data from Excel
Writing data to Excel
Dealing with missing values
Dealing with dates
Formatting functions

Numeric formatting
Custom formatting
Custom formatting: Text color
Custom formatting: Conditional formatting

Text alignment
Cell borders
Fonts
Other
Formatting examples
Format colors

Utility functions
Handling errors
Error codes

Definition of B

A variable of type xl is called an instance of the xl() class. B is an instance of xl(). You can use
the class interactively:

b = xl()
b.create_book("results", "Sheet1")
...

In a function, you would declare one instance of the xl() class B as a scalar.

void myfunc()
{

class xl scalar b

b = xl()
b.create_book("results", "Sheet1")
...

}

When using the class inside other functions, you do not need to create the instance explicitly as long
as you declare the member-instance variable to be a scalar:

void myfunc()
{

class xl scalar b

b.create_book("results", "Sheet1")
...

}

http://stata.com
http://www.stata.com/manuals14/m-6glossary.pdf#m-6GlossaryMataglossaryinstance

6 xl() — Excel file I/O class

Specifying the Excel workbook

To read from or write to an existing Excel workbook, you need to tell the xl() class about that
workbook. To create a new workbook to write to, you need to tell the xl() class what to name that
workbook and what type of Excel file that workbook should be. Excel 1997/2003 (.xls) files and
Excel 2007/2010 (.xlsx) files can be created. You must either load or create a workbook before you
can use any sheet or read or write member functions of the xl() class.

B.create book("filename", "sheetname"
[
, { "xls" | "xlsx" }, "locale"

]
)

creates an Excel workbook named filename with the sheet sheetname. By default, an .xlsx file
is created. If you use the optional xls argument, then an .xls file is created. locale specifies
the locale used by the workbook. You might need this option when working with extended
ASCII character sets. This option has no effect on Microsoft Windows. The default locale is
UTF-8.

B.load book("filename"
[
, "locale"

]
)

loads an existing Excel workbook. Once it is loaded, you can read from or write to the
workbook. locale specifies the locale used by the workbook. You might need this option when
working with extended ASCII character sets. This option has no effect on Microsoft Windows.
The default locale is UTF-8.

B.clear book("filename")
removes all worksheets from an existing Excel workbook.

To create an .xlsx workbook, code

b = xl()
b.create_book("results", "Sheet1", "xlsx")

To load an .xls workbook, code

b = xl()
b.load_book("Budgets.xls")

The xl() class will open and close the workbook for each member function you use that reads from
or writes to the workbook. This is done by default, so you do not have to worry about opening and
closing a file handle. This can be slow if you are reading or writing data at the cell level. In these
cases, you should leave the workbook open, deal with your data, and then close the workbook. The
following member functions allow you to control how the class handles file I/O.

B.set mode("open" | "closed")
sets whether the workbook file is left open for reading or writing data. set mode("closed"),
the default, means that the workbook is opened and closed after every sheet or read or write
member function.

B.close book()
closes a workbook file if the file has been left open using set mode("open").

http://www.stata.com/manuals14/m-2class.pdf#m-2classRemarksandexamplesmember

xl() — Excel file I/O class 7

Below is an example of how to speed up file I/O when writing data.

b = xl()
b.create_book("results", "year1")

b.set_mode("open")
for(i=1;i<10000;i++) {

b.put_number(i,1,i)
...

}
b.close_book()

Specifying the Excel worksheet

The following member functions are used to set the active worksheet the xl() class will use to read
data from or write data to. By default, if you do not specify a worksheet, the xl() class will use the
first worksheet in the workbook.

B.add sheet("sheetname")
adds a new worksheet named sheetname to the workbook and sets the active worksheet to that
sheet.

B.set sheet("sheetname")
sets the active worksheet to sheetname in the xl() class.

The following member functions are sheet utilities:

B.set sheet gridlines("sheetname",
{
"on" | "off"

}
)

sets whether gridlines are displayed for sheetname. The default is on.

B.set sheet merge("sheetname", row, col)
merges the cells in sheetname for each Excel cell in the Excel cell range specified in row and
col. Both row and col can be a 1× 2 real vector. The first value in the vectors must be the
starting (upper-left) cell in the Excel worksheet to which you want to merge. The second value
must be the ending (lower-right) cell in the Excel worksheet to which you want to merge.

B.clear sheet("sheetname")
clears all cell values for sheetname.

B.delete sheet("sheetname")
deletes sheetname from the workbook.

B.delete sheet merge("sheetname", row, col)
deletes the merged cells in sheetname for any Excel cells merged with the cell specified by
row and col.

B.get sheets() returns a string colvector of all the sheetnames in the current workbook.

8 xl() — Excel file I/O class

You may need to make a change to all the sheets in a workbook. get sheets() can help you do
this.

void myfunc()
{

class xl scalar b
string colvector sheets
real scalar i

b.load_book("results")
sheets = b.get_sheets()

for(i=1;i<=rows(sheets);i++) {
b.set_sheet(sheets[i])
b.clear_sheet(sheets[i])
...

}
}

To create a new workbook with multiple new sheets, code

b.create_book("Budgets", "Budget 2009")

for(i=10;i<=13;i++) {
sheet = "Budget 20" + strofreal(i)
b.add_sheet(sheet)

}

Reading data from Excel

The following member functions of the xl() class are used to read data. Both row and col can be a
real scalar or a 1× 2 real vector.

B.get string(row, col)
returns a string matrix containing values in a cell range depending on the range specified in
row and col.

B.get number(row, col
[
, { "asdate" | "asdatetime" }

]
)

returns a real matrix containing values in an Excel cell range depending on the range specified
in row and col.

B.get cell type(row, col)
returns a string matrix containing the string values numeric, string, date, datetime,
or blank for each Excel cell in the Excel cell range specified in row and col.

To get the value in cell A1 from Excel into a string scalar, code

string scalar val

val = b.get_string(1,1)

If A1 contained the value "Yes", then val would contain "Yes". If A1 contained the numeric value
1, then val would contain "1". get string() will convert numeric values to strings.

To get the value in cell A1 from Excel into a real scalar, code

real scalar val

val = b.get_number(1,1)

xl() — Excel file I/O class 9

If A1 contained the value "Yes", then val would contain a missing value. get number will return
a missing value for a string value. If A1 contained the numeric value 1, then val would contain the
value 1.

To read a range of data into Mata, you must specify the cell range by using a 1× 2 rowvector. To
read row 1, columns B through F of a worksheet, code

string rowvector cells
real rowvector cols

cols = (2,6)
cells = b.get_string(1,cols)

To read rows 1 through 3 and columns B through D of a worksheet, code

real matrix cells
real rowvector rows, cols

rows = (1,3)
cols = (2,4)
cells = b.get_number(rows,cols)

Writing data to Excel

The following member functions of the xl() class are used to write data. row and col are real
scalars. When you write a matrix or vector, row and col are the starting (upper-left) cell in the
Excel worksheet to which you want to begin saving.

B.put string(row, col, s)
writes a string scalar, vector, or matrix to an Excel worksheet.

B.put number(row, col, r
[
, { "asdate" | "asdatetime" | "asdatenum" | asdatetimenum }

]
)

writes a real scalar, vector, or matrix to an Excel worksheet.

B.put formula(row, col, s)
writes a string scalar, vector, or matrix containing valid Excel formulas to an Excel
worksheet.

B.put picture(row, col, filename)
writes a portable network graphics (.png), JPEG (.jpg), Windows metafile (.wmf), device-
independent bitmap (.dib), enhanced metafile (.emf), or tagged image file format (.tiff)
file to an Excel worksheet.

To write the string "Auto Dataset" in cell A1 of a worksheet, code

b.put_string(1, 1, "Auto Dataset")

To write "mpg", "rep78", and "headroom" to cells B1 through D1 in a worksheet, code

names = ("mpg", "rep78", "headroom")
b.put_string(1, 2, names)

To write values 22, 17, 22, 20, and 15 to cells B2 through B6 in a worksheet, code

mpg_vals = (22\17\22\20\15)
b.put_number(2, 2, mpg_vals)

10 xl() — Excel file I/O class

To sum the cells A1 through A4 in cell A6 in a worksheet, code

b.put_formula(1, 6, "SUM(A1:A4)")

To write the file mygraph.png to starting cell D15 in a worksheet, code

b.put_picture(4, 15, "mygraph.png")

Dealing with missing values

set missing() sets how Mata missing values are to be treated when writing data to a worksheet.
Here are the three syntaxes:

B.set missing() specifies that missing values be written as blank cells. This is the default.

B.set missing(num) specifies that missing values be written as the real scalar num.

B.set missing(val) specifies that missing values be written as the string scalar val.

Let’s look at an example.

my_mat = J(1,3,.)

b.load_book("results")
b.set_sheet("Budget 2012")

b.set_missing(-99)
b.put_number(1, 1, my_mat)
b.set_missing("no data")
b.put_number(2, 1, my_mat)
b.set_missing()
b.put_number(3, 1, my_mat)

This code would write the numeric value -99 in cells A1 through C1 and "no data" in cells A2
through C2; cells A3 through C3 would be blank.

Dealing with dates

Say that cell A1 contained the date value 1/1/1960. If you coded

mydate = b.get_number(1,1)
mydate
21916

the value displayed, 21916, is the number of days since 31dec1899. This is how Excel stores its
dates. If we used the optional get number() argument "asdate" or "asdatetime", mydate
would contain 0 because the date 1/1/1960 is 0 for both td and tc dates. To store 1/1/1960 in
Mata, code

mysdate = b.get_string(1,1)
mysdate
1/1/1960

To write dates to Excel, you must tell the xl() class how to convert the date to Excel’s date or
datetime format. To write the date 1/1/1960 12:00:00 to Excel, code

b.put_number(1,1,0, "asdatetime")

http://www.stata.com/manuals14/m-5date.pdf#m-5date()Syntaxtd
http://www.stata.com/manuals14/m-5date.pdf#m-5date()Syntaxtc

xl() — Excel file I/O class 11

To write the dates 1/1/1960, 1/2/1960, and 1/3/1960 to Excel column A, rows 1 through 3, code

date_vals = (0\1\2)
b.put_number(1, 1, date_vals, "asdate")

"asdate" and "asdatetime" apply an Excel date format to the transformed date value when
written. Use "asdatenum" or "asdatetimenum" to write the transformed Excel date number and
preserve the cell’s format.

Note: Excel has two different date systems; see the technical note Dates and times in [D] import
excel.

Formatting functions

The following member functions of the xl() class are used to format cells of the active worksheet.
Both row and col can be a real scalar or a 1 × 2 real vector. The first value in the vectors
must be the starting (upper-left) cell in the Excel worksheet to which you want to format. The second
value must be the ending (lower-right) cell in the Excel worksheet to which you want to format.

http://www.stata.com/manuals14/dimportexcel.pdf#dimportexcelTechnicalnoteDatesandtimes
http://www.stata.com/manuals14/dimportexcel.pdf#dimportexcel
http://www.stata.com/manuals14/dimportexcel.pdf#dimportexcel

12 xl() — Excel file I/O class

Numeric formatting

B.set number format(row, col, "format")
sets the numeric format for each Excel cell in the Excel cell range specified in row and col.

format Example

number 1000
number d2 1000.00
number sep 100,000
number sep d2 100,000.00
number sep negbra (1,000)
number sep negbrared (1,000)
number d2 sep negbra (1,000.00)
number d2 sep negbrared (1000.00)
currency negbra ($4000)
currency negbrared ($4000)
currency d2 negbra ($4000.00)
currency d2 negbrared ($4000.00)
account 5,000
accountcur $ 5,000
account d2 5,000.00
account d2 cur $ 5,000.00
percent 75%
percent d2 75.00%
scientific d2 10.00E+1
fraction onedig 10 1/2
fraction twodig 10 23/95
date 3/18/2007
date d mon yy 18-Mar-07
date d mon 18-Mar
date mon yy Mar-07
time hmm AM 8:30 AM
time HMMSS AM 8:30:00 AM
time HMM 8:30
time HMMSS 8:30:00
time MMSS 30:55
time H0MMSS 20:30:55
time MMSS0 30:55.0
date time 3/18/2007 8:30
text this is text

xl() — Excel file I/O class 13

Custom formatting

format also can be a custom code string formed by sections. Up to four sections of format codes can
be specified. The format codes, separated by semicolons, define the formats for positive numbers,
negative numbers, zero values, and text, in that order. If only two sections are specified, the first is
used for positive numbers and zeros, and the second is used for negative numbers. If only one section
is specified, it is used for all numbers. The following is a four section example:

#,###.00_);[Red](#,###.00);0.00;"sales "@

The following table describes the different symbols that are available for use in custom number
formats:

Cell Fmt Cell
Symbol Description value code displays

0 Digit placeholder (add zeros) 8.9 #.00 8.90
Digit placeholder (no zeros) 8.9 #.## 8.9
? Digit placeholder (add space) 8.9 0.0? 8.9
. Decimal point
% Percentage .1 % 10%
, Thousands separator
E- E+ e- e+ Scientific format 12200000 0.00E+00 1.22E+07
$-+/():space Display the symbol 12 (000) (012)
\ Escape character 3 0\! 3!
* Repeat character 3 3* 3xxxxx

(fill in cell width)
Skip width of next character −1.2 0.0 1.2

"text" Display text in quotes 1.23 0.00 "a" 1.23 a
@ Text placeholder b "a"@"c" abc

14 xl() — Excel file I/O class

The following table describes the different codes that are available for custom datetime formats:

Fmt Cell
code Description displays

m Months 1–12
mm Months 01–12
mmm Months Jan–Dec
mmmm Months January–December
mmmmm Months J–D
d Days 1–31
dd Days 01–31
ddd Days Sun–Sat
dddd Days Sunday–Saturday
yy Years 00–99
yyyy Years 1909–9999
h Hours 0–23
hh Hours 00–23
m Minutes 0–59
mm Minutes 00–59
s Seconds 0–59
ss Seconds 00–59
h AM/PM Time 5 AM
h:mm AM/PM Time 5:36 PM
h:mm:ss A/P Time 5:36:03 P
h:mm:ss.00 Time 5:34:03.75[
h
]
:mm Elapsed time 1:22[

mm
]
:ss Elapsed time 64:16[

ss
]
.00 Elapsed time 3733.71

Custom formatting: Text color

To set the text color for a section of the format, type the name of one of the colors listed in the table
under Format colors in square brackets in the section. The color must be the first item in the section.

xl() — Excel file I/O class 15

Custom formatting: Conditional formatting

To set number formats that will be applied only if a number meets a specified condition, enclose the
condition in square brackets. The condition consists of a comparison operator and a value. Comparison
operators include the following:

Code Description

= Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
<> Not equal to

For example, the following format displays numbers that are less than or equal to 100 in a red font
and numbers that are greater than 100 in a blue font:

[Red][<=100];[Blue][>100]

If the cell value does not meet any of the criteria, then pound signs (#) are displayed across the width
of the cell.

Text alignment

B.set vertical align(row, col, "align")
sets the text to vertical alignment for each Excel cell in the Excel cell range specified in row
and col. align may be "top", "center", "bottom", "justify", or "distributed".

B.set horizontal align(row, col, "align")
sets the text to horizontal alignment for each Excel cell in the Excel cell range specified in
row and col. align may be "left", "center", "right", "fill", "justify", "merge", or
"distributed".

16 xl() — Excel file I/O class

Cell borders

B.set border(row, col, "style"
[
, "color"

]
)

sets the top, left, right, and bottom border style and color for each Excel cell in the Excel cell
range specified in row and col.

style

none

thin

medium

dashed

dotted

thick

double

hair

medium dashed

dash dot

medium dash dot

dash dot dot

medium dash dot dot

slant dash dot

B.set left border(row, col, "style"
[
, "color"

]
)

sets the left border style and color for each Excel cell in the Excel cell range specified in row
and col.

B.set right border(row, col, "style"
[
, "color"

]
)

sets the right border style and color for each Excel cell in the Excel cell range specified in row
and col.

B.set top border(row, col, "style"
[
, "color"

]
)

sets the top border style and color for each Excel cell in the Excel cell range specified in row
and col.

B.set bottom border(row, col, "style"
[
, "color"

]
)

sets the bottom border style and color for each Excel cell in the Excel cell range specified in
row and col.

B.set diagonal border(row, col, "direction", "style"
[
, "color"

]
)

sets the diagonal border direction, style, and color for each Excel cell in the Excel cell range
specified in row and col. direction may be "none", "down", "up", or "both".

xl() — Excel file I/O class 17

B.set fill pattern(row, col, "pattern", "fgcolor"
[
, "bgcolor"

]
)

sets the fill color for each Excel cell in the Excel cell range specified in row and col.

pattern

none

solid

gray50

gray75

gray25

horstripe

verstripe

revdiagstripe

diagstripe

diagcrosshatch

thickdiagcrosshatch

thinhorstripe

thinverstripe

thinrevdiagstripe

thindiagstripe

thinhorcrosshatch

thindiagcrosshatch

gray12p5

gray6p25

fgcolor may be any color name specified in Format colors or an RGB (red, green, blue) value
specified in double quotes ("255 255 255").

bgcolor may be any color name specified in Format colors or an RGB (red, green, blue) value
specified in double quotes ("255 255 255").

B.set column width(col1, col2, width)
sets the column width for each Excel cell in the Excel cell column range specified in col1
through col2. Column width is measured as the number of characters (0–255) rendered in
Excel’s default style’s font.

B.set row height(row1, row2, height)
sets the row height for each Excel cell in the Excel cell row range specified in row1 through
row2. height is measured in point size.

Fonts

The following member functions of the xl() class are used to format text of a given cell in the active
worksheet. Both row and col can be a real scalar or a 1 × 2 real vector. The first value in
the vectors must be the starting (upper-left) cell in the Excel worksheet that you want to format. The
second value must be the ending (lower-right) cell in the Excel worksheet that you want to format.

B.set font(row, col, "fontname", size
[
, "color"

]
)

sets the font, font size, and font color for each Excel cell in the Excel cell range specified in
row and col.

18 xl() — Excel file I/O class

B.set font bold(row, col,
{
"on" | "off"

}
)

bolds or unbolds text for each Excel cell in the Excel cell range specified in row and col.

B.set font italic(row, col,
{
"on" | "off"

}
)

italicizes or unitalicizes text for each Excel cell in the Excel cell range specified in row and
col.

B.set font strikeout(row, col,
{
"on" | "off"

}
)

strikesout or unstrikesout text for each Excel cell in the Excel cell range specified in row and
col.

B.set font underline(row, col,
{
"on" | "off"

}
)

underlines or ununderlines text for each Excel cell in the Excel cell range specified in row and
col.

B.set font script(row, col,
{
"sub" | "super" | "normal"

}
)

sets the script type for each Excel cell in the Excel cell range specified in row and col.

Other

The following member functions of the xl() class control other various cell formatting for a given
cell in the active worksheet. Both row and col can be a real scalar or a 1 × 2 real vector.
The first value in the vectors must be the starting (upper-left) cell in the Excel worksheet to which
you want to format. The second value must be the ending (lower-right) cell in the Excel worksheet
to which you want to format.

B.set text wrap(row, col,
{
"on" | "off"

}
)

sets whether text is wrapped for each Excel cell in the Excel cell range specified in row and
col.

B.set shrink to fit(row, col,
{
"on" | "off"

}
)

sets whether text is shrunk-to-fit the cell width for each Excel cell in the Excel cell range
specified in row and col.

B.set text rotate(row, col, rotation)
sets the text rotation for each Excel cell in the Excel cell range specified in row and col.

rotation Meaning

0–90 text rotated counterclockwise 0 to 90 degrees
91–180 text rotated clockwise 1 to 90 degrees
255 vertical text

B.set text indent(row, col, indent)
sets the text indention for each Excel cell in the Excel cell range specified in row and col.
indent must be an integer less than or equal to 15.

B.set format lock(row, col,
{
"on" | "off"

}
)

sets the locked protection property for each Excel cell in the Excel cell range specified in row
and col.

xl() — Excel file I/O class 19

B.set format hidden(row, col,
{
"on" | "off"

}
)

sets the hidden protection property for each Excel cell in the Excel cell range specified in row
and col.

Formatting examples

To change a cell’s numeric format so that a number has commas and two decimal points and places
all negative numbers in braces (number sep d2 negbra) for rows 2 through 7 and columns 2
through 4 for a worksheet, code

real rowvector rows, cols
b = xl()
...
rows = (2,7)
cols = (2,4)
b.set_number_format(rows, cols, "number_sep_d2_negbra")

To add a medium thick border to all cell sides for the same cell range, code

b.set_border(rows, cols, "medium")

To change the font and font color for rows 1 through 7, column 1, code

rows = (1,7)
b.set_font(rows, 1, "Arial", 12, "white")

and to change the background fill color of the same cells, code

b.set_fill_pattern(rows, 1, "solid", "white", "lightblue")

To bold the text in cell B1 through C3, code

rows = (1,3)
cols = (2,3)
b.set_font_bold(rows, cols, "on")

20 xl() — Excel file I/O class

Format colors

color may be any of the color names listed below or an RGB (red, green, blue) value specified in
double quotes ("255 255 255").

aliceblue deeppink

antiquewhite deepskyblue

aqua dimgray

aquamarine dodgerblue

azure firebrick

beige floralwhite

bisque forestgreen

black fuchsia

blanchedalmond gainsboro

blue ghostwhite

blueviolet gold

brown goldenrod

burlywood gray

cadetblue green

chartreuse greenyellow

chocolate honeydew

coral hotpink

cornflowerblue indianred

cornsilk indigo

crimson ivory

cyan khaki

darkblue lavender

darkcyan lavenderblush

darkgoldenrod lawngreen

darkgray lemonchiffon

darkgreen lightblue

darkkhaki lightcoral

darkmagenta lightcyan

darkolivegreen lightgoldenrodyellow

darkorange lightgray

darkorchid lightgreen

darkred lightpink

darksalmon lightsalmon

darkseagreen lightseagreen

darkslateblue lightskyblue

darkslategray lightslategray

darkturquoise lightsteelblue

darkviolet lightyellow

xl() — Excel file I/O class 21

lime peru

limegreen pink

linen plum

magenta powerblue

maroon purple

mediumaquamarine red

mediumblue rosybrown

mediumorchid royalblue

mediumpurple saddlebrown

mediumseagreen salmon

mediumslateblue sandybrown

mediumspringgreen seagreen

mediumturquoise seashell

mediumvioletred sienna

midnightblue silver

mintcream skyblue

mistyrose slateblue

moccasin snow

navajowhite springgreen

navy steelblue

oldlace tan

olive teal

olivedrab thistle

orange tomato

orangered turquoise

orchid violet

palegoldenrod wheat

palegreen white

paleturquoise whitesmoke

palevioletred yellow

papayawhip yellowgreen

peachpuff

Note: .xls files can only contain 56 unique colors.

Utility functions

The following functions can be used whenever you have an instance of the xl() class.

query() returns information about an xl() class. Here are the syntaxes for query():
void B.query()
string scalar B.query("filename")
real scalar B.query("mode")
real scalar B.query("filetype")
string scalar B.query("sheetname")
transmorphic scalar B.query("missing")

22 xl() — Excel file I/O class

B.query()
lists the current values and settings of the class.

B.query("filename")
returns the filename of the current workbook.

B.query("mode")
returns 0 if the workbook is always closed by member functions or returns 1 if the current
workbook is open.

B.query("filetype")
returns 0 if the workbook is of type .xls or returns 1 if the workbook is of type .xlsx.

B.query("sheetname")
returns the active sheetname in a string scalar.

B.query("missing")
returns J(1,0,.) (if set to blanks), a string scalar, or a real scalar depending on
what was set with set missing().

When working with different Excel file types, you need to know the type of Excel file you are using
because the two file types have different column and row limits. You can use xl.query("filetype")
to obtain that information.

...
if (xl.query("filetype")) {

...
}
else {

...
}

B.get colnum()
returns a vector of column numbers based on the Excel column labels in the string vector
argument.

To get the column number for Excel columns AA and AD, code

: mycol = ("AA","AD")
: col = b.get_colnum(mycol)
: col

1 2

1 27 30

xl() — Excel file I/O class 23

The following function is used for cell formats and styles.

B.set keep cell format("on" | "off")
sets whether the put number() class member function preserves a cell’s style and format
when writing a value. By default, preserving a cell’s style and format is off.

The following functions are used for error handling with an instance of class xl.

B.set error mode("on" | "off")
sets whether xl() class member functions issue errors. By default, errors are turned on.

B.get last error()
returns the last error code issued by the xl() class if set error mode() is set off.

B.get last error message()
returns the last error message issued by the xl() class if set error mode() is set off.

Handling errors

Turning errors off for an instance of the xl() class is useful when using the class in an ado-file.
You should issue a Stata error code in the ado-file instead of a Mata error code. For example, in
Mata, when trying to load a file that does not exist within an instance, you will receive the error
code r(16103):

: b = xl()
: b.load_book("zzz")
file zzz.xls could not be loaded
r(16103);

The correct Stata error code for this type of error is 603, not 16103. To issue the correct error, code

b = xl()
b.set_error_mode("off")
b.load_book("zzz")
if (b.get_last_error()==16103) {

error(603)
}

You should also turn off errors if you set mode("open") because you need to close your Excel
file before exiting your ado-file. You should code

b = xl()
b.set_mode("open")
b.set_error_mode("off")
b.load_book("zzz")
...
b.put_string(1,300, "test")
if (b.get_last_error()==16116) {

b.close_book()
error(603)

}

If set mode("closed") is used, you do not have to worry about closing the Excel file because it
is done automatically.

http://www.stata.com/manuals14/m-1ado.pdf#m-1ado

24 xl() — Excel file I/O class

Error codes

The error codes specific to the xl() class are the following:

Code Meaning

16101 file not found
16102 file already exists
16103 file could not be opened
16104 file could not be closed
16105 file is too big
16106 file could not be saved
16111 worksheet not found
16112 worksheet already exists
16113 could not clear worksheet
16114 could not add worksheet
16115 could not read from worksheet
16116 could not write to worksheet
16121 invalid syntax
16122 invalid range
16130 could not read cell format
16131 could not write cell format
16132 invalid column format
16133 invalid column width
16134 invalid row format
16135 invalid row height
16136 invalid color
16140 invalid number format
16141 invalid alignment format
16142 invalid border style format
16143 invalid border direction format
16144 invalid fill pattern style format
16145 invalid font format
16146 invalid font size format
16147 invalid font name format
16148 invalid cell format

Also see

[M-2] class — Object-oriented programming (classes)

[M-4] io — I/O functions

[M-5] docx*() — Generate Office Open XML (.docx) file

[M-5] Pdf*() — Create a PDF file

[D] import excel — Import and export Excel files

[P] putexcel — Export results to an Excel file

http://www.stata.com/manuals14/m-2class.pdf#m-2class
http://www.stata.com/manuals14/m-4io.pdf#m-4io
http://www.stata.com/manuals14/m-5_docx.pdf#m-5_docx*()
http://www.stata.com/manuals14/m-5pdf.pdf#m-5Pdf*()
http://www.stata.com/manuals14/dimportexcel.pdf#dimportexcel
http://www.stata.com/manuals14/pputexcel.pdf#pputexcel

