
Title stata.com

egen — Extensions to generate

Description Quick start Menu Syntax
Remarks and examples Methods and formulas Acknowledgments References
Also see

Description

egen creates newvar of the optionally specified storage type equal to fcn(arguments). Here fcn()
is a function specifically written for egen, as documented below or as written by users. Only egen
functions may be used with egen, and conversely, only egen may be used to run egen functions.

Depending on fcn(), arguments, if present, refers to an expression, varlist, or a numlist, and the
options are similarly fcn dependent. Explicit subscripting (using N and n), which is commonly
used with generate, should not be used with egen; see [U] 13.7 Explicit subscripting.

Quick start
Generate newv1 for distinct groups of v1 and v2 and create and apply value label mylabel

egen newv1 = group(v1 v2), label lname(mylabel)

Generate newv2 equal to the minimum of v1, v2, and v3 for each observation
egen newv2 = rowmin(v1 v2 v3)

Generate newv3 equal to the overall sum of v1
egen newv3 = total(v1)

As above, but calculate total within each level of catvar
egen newv3 = total(v1), by(catvar)

Generate newv4 equal to the number of nonmissing numeric values across v1, v2, and v3 for each
observation

egen newv4 = rownonmiss(v1 v2 v3)

As above, but allow string values
egen newv4 = rownonmiss(v1 v2 v3), strok

Generate newv5 as the concatenation of numeric v1 and string v4 separated by a space
egen newv5 = concat(v1 v4), punct(" ")

Menu
Data > Create or change data > Create new variable (extended)

1

http://stata.com
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u13.pdf#u13.7Explicitsubscripting

2 egen — Extensions to generate

Syntax

egen
[

type
]

newvar = fcn(arguments)
[

if
] [

in
] [

, options
]

by is allowed with some of the egen functions, as noted below.

where depending on the fcn, arguments refers to an expression, varlist, or numlist, and the options
are also fcn dependent, and where fcn is

anycount(varlist), values(integer numlist)
may not be combined with by. It returns the number of variables in varlist for which values are
equal to any integer value in a supplied numlist. Values for any observations excluded by either
if or in are set to 0 (not missing). Also see anyvalue(varname) and anymatch(varlist).

anymatch(varlist), values(integer numlist)
may not be combined with by. It is 1 if any variable in varlist is equal to any integer value in
a supplied numlist and 0 otherwise. Values for any observations excluded by either if or in
are set to 0 (not missing). Also see anyvalue(varname) and anycount(varlist).

anyvalue(varname) , values(integer numlist)
may not be combined with by. It takes the value of varname if varname is equal to any
integer value in a supplied numlist and is missing otherwise. Also see anymatch(varlist) and
anycount(varlist).

concat(varlist)
[
, format(% fmt) decode maxlength(#) punct(pchars)

]
may not be combined with by. It concatenates varlist to produce a string variable. Values of
string variables are unchanged. Values of numeric variables are converted to string, as is, or
are converted using a numeric format under the format(%fmt) option or decoded under the
decode option, in which case maxlength() may also be used to control the maximum label
length used. By default, variables are added end to end: punct(pchars) may be used to specify
punctuation, such as a space, punct(" "), or a comma, punct(,).

count(exp) (allows by varlist:)
creates a constant (within varlist) containing the number of nonmissing observations of exp.
Also see rownonmiss() and rowmiss().

cut(varname),
{
at(#,#,. . .,#) | group(#)

} [
icodes label

]
may not be combined with by. It creates a new categorical variable coded with the left-hand
ends of the grouping intervals specified in the at() option, which expects an ascending numlist.

at(#,#,. . .,#) supplies the breaks for the groups, in ascending order. The list of breakpoints
may be simply a list of numbers separated by commas but can also include the syntax a(b)c,
meaning from a to c in steps of size b. If no breaks are specified, the command expects the
group() option.

group(#) specifies the number of equal frequency grouping intervals to be used in the absence
of breaks. Specifying this option automatically invokes icodes.

icodes requests that the codes 0, 1, 2, etc., be used in place of the left-hand ends of the
intervals.

label requests that the integer-coded values of the grouped variable be labeled with the
left-hand ends of the grouping intervals. Specifying this option automatically invokes icodes.

diff(varlist)
may not be combined with by. It creates an indicator variable equal to 1 if the variables in
varlist are not equal and 0 otherwise.

http://www.stata.com/manuals14/d.pdf#ddatatypes
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists

egen — Extensions to generate 3

ends(strvar)
[
, punct(pchars) trim

[
head | last | tail

]]
may not be combined with by. It gives the first “word” or head (with the head option), the
last “word” (with the last option), or the remainder or tail (with the tail option) from string
variable strvar.

head, last, and tail are determined by the occurrence of pchars, which is by default one
space (“ ”).

The head is whatever precedes the first occurrence of pchars, or the whole of the string if it
does not occur. For example, the head of “frog toad” is “frog” and that of “frog” is “frog”.
With punct(,), the head of “frog,toad” is “frog”.

The last word is whatever follows the last occurrence of pchars or is the whole of the string
if a space does not occur. The last word of “frog toad newt” is “newt” and that of “frog” is
“frog”. With punct(,), the last word of “frog,toad” is “toad”.

The remainder or tail is whatever follows the first occurrence of pchars, which will be the
empty string "" if pchars does not occur. The tail of “frog toad newt” is “toad newt” and that
of “frog” is "". With punct(,), the tail of “frog,toad” is “toad”.

The trim option trims any leading or trailing spaces.

fill(numlist)
may not be combined with by. It creates a variable of ascending or descending numbers or
complex repeating patterns. numlist must contain at least two numbers and may be specified
using standard numlist notation; see [U] 11.1.8 numlist. if and in are not allowed with fill().

group(varlist)
[
, missing label lname(name) truncate(num)

]
may not be combined with by. It creates one variable taking on values 1, 2, . . . for the groups
formed by varlist. varlist may contain numeric variables, string variables, or a combination of
the two. The order of the groups is that of the sort order of varlist. missing indicates that
missing values in varlist (either . or "") are to be treated like any other value when assigning
groups, instead of as missing values being assigned to the group missing. The label option
returns integers from 1 up according to the distinct groups of varlist in sorted order. The integers
are labeled with the values of varlist or the value labels, if they exist. lname() specifies the
name to be given to the value label created to hold the labels; lname() implies label. The
truncate() option truncates the values contributed to the label from each variable in varlist
to the length specified by the integer argument num. The truncate option cannot be used
without specifying the label option. The truncate option does not change the groups that
are formed; it changes only their labels.

iqr(exp) (allows by varlist:)
creates a constant (within varlist) containing the interquartile range of exp. Also see pctile().

kurt(varname) (allows by varlist:)
returns the kurtosis (within varlist) of varname.

mad(exp) (allows by varlist:)
returns the median absolute deviation from the median (within varlist) of exp.

max(exp) (allows by varlist:)
creates a constant (within varlist) containing the maximum value of exp.

mdev(exp) (allows by varlist:)
returns the mean absolute deviation from the mean (within varlist) of exp.

mean(exp) (allows by varlist:)
creates a constant (within varlist) containing the mean of exp.

http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist

4 egen — Extensions to generate

median(exp) (allows by varlist:)
creates a constant (within varlist) containing the median of exp. Also see pctile().

min(exp) (allows by varlist:)
creates a constant (within varlist) containing the minimum value of exp.

mode(varname)
[
, minmode maxmode nummode(integer) missing

]
(allows by varlist:)

produces the mode (within varlist) for varname, which may be numeric or string. The mode
is the value occurring most frequently. If two or more modes exist or if varname contains
all missing values, the mode produced will be a missing value. To avoid this, the minmode,
maxmode, or nummode() option may be used to specify choices for selecting among the multiple
modes, and the missing option will treat missing values as categories. minmode returns the
lowest value, and maxmode returns the highest value. nummode(#) will return the #th mode,
counting from the lowest up. Missing values are excluded from determination of the mode
unless missing is specified. Even so, the value of the mode is recorded for observations for
which the values of varname are missing unless they are explicitly excluded, that is, by if
varname < . or if varname != "".

mtr(year income)
may not be combined with by. It returns the U.S. marginal income tax rate for a married couple
with taxable income income in year year, where 1930 ≤ year ≤ 2016. year and income may
be specified as variable names or constants; for example, mtr(1993 faminc), mtr(surveyyr
28000), or mtr(surveyyr faminc). A blank or comma may be used to separate income from
year.

pc(exp)
[
, prop

]
(allows by varlist:)

returns exp (within varlist) scaled to be a percentage of the total, between 0 and 100. The prop
option returns exp scaled to be a proportion of the total, between 0 and 1.

pctile(exp)
[
, p(#)

]
(allows by varlist:)

creates a constant (within varlist) containing the #th percentile of exp. If p(#) is not specified,
50 is assumed, meaning medians. Also see median().

rank(exp)
[
, field | track | unique

]
(allows by varlist:)

creates ranks (within varlist) of exp; by default, equal observations are assigned the average
rank. The field option calculates the field rank of exp: the highest value is ranked 1, and there
is no correction for ties. That is, the field rank is 1 + the number of values that are higher.
The track option calculates the track rank of exp: the lowest value is ranked 1, and there is
no correction for ties. That is, the track rank is 1 + the number of values that are lower. The
unique option calculates the unique rank of exp: values are ranked 1, . . . , #, and values and
ties are broken arbitrarily. Two values that are tied for second are ranked 2 and 3.

rowfirst(varlist)
may not be combined with by. It gives the first nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing.

rowlast(varlist)
may not be combined with by. It gives the last nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing.

rowmax(varlist)
may not be combined with by. It gives the maximum value (ignoring missing values) in varlist
for each observation (row). If all values in varlist are missing for an observation, newvar is set
to missing.

http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions

egen — Extensions to generate 5

rowmean(varlist)
may not be combined with by. It creates the (row) means of the variables in varlist, ignoring
missing values; for example, if three variables are specified and, in some observations, one of
the variables is missing, in those observations newvar will contain the mean of the two variables
that do exist. Other observations will contain the mean of all three variables. Where none of
the variables exist, newvar is set to missing.

rowmedian(varlist)
may not be combined with by. It gives the (row) median of the variables in varlist, ignoring
missing values. If all variables in varlist are missing for an observation, newvar is set to missing
in that observation. Also see rowpctile().

rowmin(varlist)
may not be combined with by. It gives the minimum value in varlist for each observation (row).
If all values in varlist are missing for an observation, newvar is set to missing.

rowmiss(varlist)
may not be combined with by. It gives the number of missing values in varlist for each
observation (row).

rownonmiss(varlist)
[
, strok

]
may not be combined with by. It gives the number of nonmissing values in varlist for each
observation (row)—this is the value used by rowmean() for the denominator in the mean
calculation.

String variables may not be specified unless the strok option is also specified. If strok is
specified, string variables will be counted as containing missing values when they contain "".
Numeric variables will be counted as containing missing when their value is “≥ .”.

rowpctile(varlist)
[
, p(#)

]
may not be combined with by. It gives the #th percentile of the variables in varlist, ignoring
missing values. If all variables in varlist are missing for an observation, newvar is set to missing
in that observation. If p() is not specified, p(50) is assumed, meaning medians. Also see
rowmedian().

rowsd(varlist)
may not be combined with by. It creates the (row) standard deviations of the variables in varlist,
ignoring missing values.

rowtotal(varlist)
[
, missing

]
may not be combined with by. It creates the (row) sum of the variables in varlist, treating missing
values as 0. If missing is specified and all values in varlist are missing for an observation,
newvar is set to missing.

sd(exp) (allows by varlist:)
creates a constant (within varlist) containing the standard deviation of exp. Also see mean().

seq()
[
, from(#) to(#) block(#)

]
(allows by varlist:)

returns integer sequences. Values start from from() (default 1) and increase to to() (the
default is the maximum number of values) in blocks (default size 1). If to() is less than
the maximum number, sequences restart at from(). Numbering may also be separate within
groups defined by varlist or decreasing if to() is less than from(). Sequences depend on the
sort order of observations, following three rules: 1) observations excluded by if or in are not
counted; 2) observations are sorted by varlist, if specified; and 3) otherwise, the order is that
when called. No arguments are specified.

skew(varname) (allows by varlist:)
returns the skewness (within varlist) of varname.

http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist

6 egen — Extensions to generate

std(exp) [, mean(#) std(#)]
may not be combined with by. It creates the standardized values of exp. The options specify
the desired mean and standard deviation. The default is mean(0) and std(1), producing a
variable with mean 0 and standard deviation 1.

tag(varlist)
[
, missing

]
may not be combined with by. It tags just 1 observation in each distinct group defined by
varlist. When all observations in a group have the same value for a summary variable calculated
for the group, it will be sufficient to use just one value for many purposes. The result will be
1 if the observation is tagged and never missing, and 0 otherwise. Values for any observations
excluded by either if or in are set to 0 (not missing). Hence, if tag is the variable produced
by egen tag = tag(varlist), the idiom if tag is always safe. missing specifies that missing
values of varlist may be included.

total(exp)
[
, missing

]
(allows by varlist:)

creates a constant (within varlist) containing the sum of exp treating missing as 0. If missing
is specified and all values in exp are missing, newvar is set to missing. Also see mean().

Remarks and examples stata.com

Remarks are presented under the following headings:

Summary statistics
Generating patterns
Marking differences among variables
Ranks
Standardized variables
Row functions
Categorical and integer variables
String variables
U.S. marginal income tax rate

See Mitchell (2010) for numerous examples using egen.

Summary statistics

The functions count(), iqr(), kurt(), mad(), max(), mdev(), mean(), median(), min(),
mode(), pc(), pctile(), sd(), skew(), and total() create variables containing summary statistics.
These functions take a by . . . : prefix and, if specified, calculate the summary statistics within each
by-group.

Example 1: Without the by prefix

Without the by prefix, the result produced by these functions is a constant for every observation
in the data. For instance, we have data on cholesterol levels (chol) and wish to have a variable that,
for each patient, records the deviation from the average across all patients:

. use http://www.stata-press.com/data/r14/egenxmpl

. egen avg = mean(chol)

. generate deviation = chol - avg

http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals14/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://stata.com

egen — Extensions to generate 7

Example 2: With the by prefix

These functions are most useful when the by prefix is specified. For instance, assume that our
dataset includes dcode, a hospital–patient diagnostic code, and los, the number of days that the
patient remained in the hospital. We wish to obtain the deviation in length of stay from the median
for all patients having the same diagnostic code:

. use http://www.stata-press.com/data/r14/egenxmpl2, clear

. by dcode, sort: egen medstay = median(los)

. generate deltalos = los - medstay

Technical note
Distinguish carefully between Stata’s sum() function and egen’s total() function. Stata’s sum()

function creates the running sum, whereas egen’s total() function creates a constant equal to the
overall sum; for example,

. clear

. set obs 5
number of observations (_N) was 0, now 5

. generate a = _n

. generate sum1=sum(a)

. egen sum2=total(a)

. list

a sum1 sum2

1. 1 1 15
2. 2 3 15
3. 3 6 15
4. 4 10 15
5. 5 15 15

Technical note
The definitions and formulas used by these functions are the same as those used by summarize;

see [R] summarize. For comparison with summarize, mean() and sd() correspond to the mean and
standard deviation. total() is the numerator of the mean, and count() is its denominator. min()
and max() correspond to the minimum and maximum. median()—or, equally well, pctile() with
p(50)—is the median. pctile() with p(5) refers to the fifth percentile, and so on. iqr() is the
difference between the 75th and 25th percentiles.

The mode is the most common value of a dataset, whether it contains numeric or string variables.
It is perhaps most useful for categorical variables (whether defined by integers or strings) or for other
integer-valued values, but mode() can be applied to variables of any type. Nevertheless, the modes
of continuous (or nearly continuous) variables are perhaps better estimated either from inspection of
a graph of a frequency distribution or from the results of some density estimation (see [R] kdensity).

Missing values need special attention. It is possible that missing is the most common value in a
variable (whether missing is defined by the period [.] or extended missing values [.a, .b, . . . , .z]
for numeric variables or the empty string [""] for string variables). However, missing values are by
default excluded from determination of modes. If you wish to include them, use the missing option.

http://www.stata.com/manuals14/rsummarize.pdf#rsummarize
http://www.stata.com/manuals14/rkdensity.pdf#rkdensity

8 egen — Extensions to generate

In contrast, egen mode = mode(varname) allows the generation of nonmissing modes for obser-
vations for which varname is missing. This allows use of the mode as one simple means of imputing
categorical variables. If you want the mode to be missing whenever varname is missing, you can
specify if varname < . or if varname != "" or, most generally, if !missing(varname).

mad() and mdev() produce alternative measures of spread. The median absolute deviation from the
median and even the mean deviation will both be more resistant than the standard deviation to heavy
tails or outliers, in particular from distributions with heavier tails than the normal or Gaussian. The
first measure was named the MAD by Andrews et al. (1972) but was already known to K. F. Gauss in
1816, according to Hampel et al. (1986). For more historical and statistical details, see David (1998)
and Wilcox (2003, 72–73).

Generating patterns

To create a sequence of numbers, simply “show” the fill() function how the sequence should
look. It must be a linear progression to produce the expected results. Stata does not understand
geometric progressions. To produce repeating patterns, you present fill() with the pattern twice in
the numlist.

Example 3: Sequences produced by fill()

Here are some examples of ascending and descending sequences produced by fill():

. clear

. set obs 12
number of observations (_N) was 0, now 12

. egen i=fill(1 2)

. egen w=fill(100 99)

. egen x=fill(22 17)

. egen y=fill(1 1 2 2)

. egen z=fill(8 8 8 7 7 7)

. list, sep(4)

i w x y z

1. 1 100 22 1 8
2. 2 99 17 1 8
3. 3 98 12 2 8
4. 4 97 7 2 7

5. 5 96 2 3 7
6. 6 95 -3 3 7
7. 7 94 -8 4 6
8. 8 93 -13 4 6

9. 9 92 -18 5 6
10. 10 91 -23 5 5
11. 11 90 -28 6 5
12. 12 89 -33 6 5

egen — Extensions to generate 9

Example 4: Patterns produced by fill()

Here are examples of patterns produced by fill():

. clear

. set obs 12
number of observations (_N) was 0, now 12

. egen a=fill(0 0 1 0 0 1)

. egen b=fill(1 3 8 1 3 8)

. egen c=fill(-3(3)6 -3(3)6)

. egen d=fill(10 20 to 50 10 20 to 50)

. list, sep(4)

a b c d

1. 0 1 -3 10
2. 0 3 0 20
3. 1 8 3 30
4. 0 1 6 40

5. 0 3 -3 50
6. 1 8 0 10
7. 0 1 3 20
8. 0 3 6 30

9. 1 8 -3 40
10. 0 1 0 50
11. 0 3 3 10
12. 1 8 6 20

Example 5: seq()

seq() creates a new variable containing one or more sequences of integers. It is useful mainly
for quickly creating observation identifiers or automatically numbering levels of factors or categorical
variables.

. clear

. set obs 12

In the simplest case,

. egen a = seq()

is just equivalent to the common idiom

. generate a = _n

a may also be obtained from

. range a 1 _N

(the actual value of N may also be used).

In more complicated cases, seq() with option calls is equivalent to calls to the versatile functions
int and mod.

. egen b = seq(), b(2)

10 egen — Extensions to generate

produces integers in blocks of 2, whereas

. egen c = seq(), t(6)

restarts the sequence after 6 is reached.

. egen d = seq(), f(10) t(12)

shows that sequences may start with integers other than 1, and

. egen e = seq(), f(3) t(1)

shows that they may decrease.

The results of these commands are shown by

. list, sep(4)

a b c d e

1. 1 1 1 10 3
2. 2 1 2 11 2
3. 3 2 3 12 1
4. 4 2 4 10 3

5. 5 3 5 11 2
6. 6 3 6 12 1
7. 7 4 1 10 3
8. 8 4 2 11 2

9. 9 5 3 12 1
10. 10 5 4 10 3
11. 11 6 5 11 2
12. 12 6 6 12 1

All of these sequences could have been generated in one line with generate and with the use of
the int and mod functions. The variables b through e are obtained with

. gen b = 1 + int((_n - 1)/2)

. gen c = 1 + mod(_n - 1, 6)

. gen d = 10 + mod(_n - 1, 3)

. gen e = 3 - mod(_n - 1, 3)

Nevertheless, seq() may save users from puzzling out such solutions or from typing in the needed
values.

In general, the sequences produced depend on the sort order of observations, following three rules:

1. observations excluded by if or in are not counted;

2. observations are sorted by varlist, if specified; and

3. otherwise, the order is that specified when seq() is called.

The fill() and seq() functions are alternatives. In essence, fill() requires a minimal example
that indicates the kind of sequence required, whereas seq() requires that the rule be specified through
options. There are sequences that fill() can produce that seq() cannot, and vice versa. fill()
cannot be combined with if or in, in contrast to seq(), which can.

egen — Extensions to generate 11

Marking differences among variables

Example 6: diff()

We have three measures of respondents’ income obtained from different sources. We wish to create
the variable differ equal to 1 for disagreements:

. use http://www.stata-press.com/data/r14/egenxmpl3, clear

. egen byte differ = diff(inc*)

. list if differ==1

inc1 inc2 inc3 id differ

10. 42,491 41,491 41,491 110 1
11. 26,075 25,075 25,075 111 1
12. 26,283 25,283 25,283 112 1
78. 41,780 41,780 41,880 178 1

100. 25,687 26,687 25,687 200 1

101. 25,359 26,359 25,359 201 1
102. 25,969 26,969 25,969 202 1
103. 25,339 26,339 25,339 203 1
104. 25,296 26,296 25,296 204 1
105. 41,800 41,000 41,000 205 1

134. 26,233 26,233 26,133 234 1

Rather than typing diff(inc*), we could have typed diff(inc1 inc2 inc3).

Ranks

Example 7: rank()

Most applications of rank() will be to one variable, but the argument exp can be more gen-
eral, namely, an expression. In particular, rank(-varname) reverses ranks from those obtained by
rank(varname).

The default ranking and those obtained by using one of the track, field, and unique options
differ principally in their treatment of ties. The default is to assign the same rank to tied values
such that the sum of the ranks is preserved. The track option assigns the same rank but resembles
the convention in track events; thus, if one person had the lowest time and three persons tied for
second-lowest time, their ranks would be 1, 2, 2, and 2, and the next person(s) would have rank 5.
The field option acts similarly except that the highest is assigned rank 1, as in field events in which
the greatest distance or height wins. The unique option breaks ties arbitrarily: its most obvious use
is assigning ranks for a graph of ordered values. See also group() for another kind of “ranking”.

. use http://www.stata-press.com/data/r14/auto, clear
(1978 Automobile Data)

. keep in 1/10
(64 observations deleted)

. egen rank = rank(mpg)

. egen rank_r = rank(-mpg)

. egen rank_f = rank(mpg), field

12 egen — Extensions to generate

. egen rank_t = rank(mpg), track

. egen rank_u = rank(mpg), unique

. egen rank_ur = rank(-mpg), unique

. sort rank_u

. list mpg rank*

mpg rank rank_r rank_f rank_t rank_u rank_ur

1. 15 1 10 10 1 1 10
2. 16 2 9 9 2 2 9
3. 17 3 8 8 3 3 8
4. 18 4 7 7 4 4 7
5. 19 5 6 6 5 5 6

6. 20 6.5 4.5 4 6 6 5
7. 20 6.5 4.5 4 6 7 4
8. 22 8.5 2.5 2 8 8 2
9. 22 8.5 2.5 2 8 9 3

10. 26 10 1 1 10 10 1

Standardized variables

Example 8: std()

We have a variable called age recording the median age in the 50 states. We wish to create the
standardized value of age and verify the calculation:

. use http://www.stata-press.com/data/r14/states1, clear
(State data)

. egen stdage = std(age)

. summarize age stdage

Variable Obs Mean Std. Dev. Min Max

age 50 29.54 1.693445 24.2 34.7
stdage 50 6.41e-09 1 -3.153336 3.047044

. correlate age stdage
(obs=50)

age stdage

age 1.0000
stdage 1.0000 1.0000

summarize shows that the new variable has a mean of approximately zero; 10−9 is the precision of
a float and is close enough to zero for all practical purposes. If we wanted, we could have typed
egen double stdage = std(age), making stdage a double-precision variable, and the mean would
have been 10−16. In any case, summarize also shows that the standard deviation is 1. correlate
shows that the new variable and the original variable are perfectly correlated.

egen — Extensions to generate 13

We may optionally specify the mean and standard deviation for the new variable. For instance,

. egen newage1 = std(age), std(2)

. egen newage2 = std(age), mean(2) std(4)

. egen newage3 = std(age), mean(2)

. summarize age newage1-newage3

Variable Obs Mean Std. Dev. Min Max

age 50 29.54 1.693445 24.2 34.7
newage1 50 1.28e-08 2 -6.306671 6.094089
newage2 50 2 4 -10.61334 14.18818
newage3 50 2 1 -1.153336 5.047044

. correlate age newage1-newage3
(obs=50)

age newage1 newage2 newage3

age 1.0000
newage1 1.0000 1.0000
newage2 1.0000 1.0000 1.0000
newage3 1.0000 1.0000 1.0000 1.0000

Row functions

Example 9: rowtotal()

generate’s sum() function creates the vertical, running sum of its argument, whereas egen’s
total() function creates a constant equal to the overall sum. egen’s rowtotal() function, however,
creates the horizontal sum of its arguments. They all treat missing as zero. However, if the missing
option is specified with total() or rowtotal(), then newvar will contain missing values if all
values of exp or varlist are missing.

. use http://www.stata-press.com/data/r14/egenxmpl4, clear

. egen hsum = rsum(a b c)

. generate vsum = sum(hsum)

. egen sum = sum(hsum)

. list

a b c hsum vsum sum

1. . 2 3 5 5 63
2. 4 . 6 10 15 63
3. 7 8 . 15 30 63
4. 10 11 12 33 63 63

14 egen — Extensions to generate

Example 10: rowmean(), rowmedian(), rowpctile(), rowsd(), and rownonmiss()

summarize displays the mean and standard deviation of a variable across observations; program
writers can access the mean in r(mean) and the standard deviation in r(sd) (see [R] summarize).
egen’s rowmean() function creates the means of observations across variables. rowmedian() creates
the medians of observations across variables. rowpctile() returns the #th percentile of the vari-
ables specified in varlist. rowsd() creates the standard deviations of observations across variables.
rownonmiss() creates a count of the number of nonmissing observations, the denominator of the
rowmean() calculation:

. use http://www.stata-press.com/data/r14/egenxmpl4, clear

. egen avg = rowmean(a b c)

. egen median = rowmedian(a b c)

. egen pct25 = rowpctile(a b c), p(25)

. egen std = rowsd(a b c)

. egen n = rownonmiss(a b c)

. list

a b c avg median pct25 std n

1. . 2 3 2.5 2.5 2 .7071068 2
2. 4 . 6 5 5 4 1.414214 2
3. 7 8 . 7.5 7.5 7 .7071068 2
4. 10 11 12 11 11 10 1 3

Example 11: rowmiss()

rowmiss() returns k−rownonmiss(), where k is the number of variables specified. rowmiss()
can be especially useful for finding casewise-deleted observations caused by missing values.

. use http://www.stata-press.com/data/r14/auto3, clear
(1978 Automobile Data)

. correlate price weight mpg
(obs=70)

price weight mpg

price 1.0000
weight 0.5309 1.0000

mpg -0.4478 -0.7985 1.0000

. egen excluded = rmiss(price weight mpg)

. list make price weight mpg if excluded~=0

make price weight mpg

5. Buick Electra . 4,080 15
12. Cad. Eldorado 14,500 3,900 .
40. Olds Starfire 4,195 . 24
51. Pont. Phoenix . 3,420 .

http://www.stata.com/manuals14/rsummarize.pdf#rsummarize

egen — Extensions to generate 15

Example 12: rowmin(), rowmax(), rowfirst(), and rowlast()

rowmin(), rowmax(), rowfirst(), and rowlast() return the minimum, maximum, first, or last
nonmissing value, respectively, for the specified variables within an observation (row).

. use http://www.stata-press.com/data/r14/egenxmpl5, clear

. egen min = rmin(x y z)
(1 missing value generated)

. egen max = rmax(x y z)
(1 missing value generated)

. egen first = rfirst(x y z)
(1 missing value generated)

. egen last = rlast(x y z)
(1 missing value generated)

. list, sep(4)

x y z min max first last

1. -1 2 3 -1 3 -1 3
2. . -6 . -6 -6 -6 -6
3. 7 . -5 -5 7 7 -5
4.

5. 4 . . 4 4 4 4
6. . . 8 8 8 8 8
7. . 3 7 3 7 3 7
8. 5 -1 6 -1 6 5 6

Categorical and integer variables

Example 13: anyvalue(), anymatch(), and anycount()

anyvalue(), anymatch(), and anycount() are for categorical or other variables taking integer
values. If we define a subset of values specified by an integer numlist (see [U] 11.1.8 numlist),
anyvalue() extracts the subset, leaving every other value missing; anymatch() defines an indicator
variable (1 if in subset, 0 otherwise); and anycount() counts occurrences of the subset across a set
of variables. Therefore, with just one variable, anymatch(varname) and anycount(varname) are
equivalent.

With the auto dataset, we can generate a variable containing the high values of rep78 and a
variable indicating whether rep78 has a high value:

. use http://www.stata-press.com/data/r14/auto, clear
(1978 Automobile Data)

. egen hirep = anyvalue(rep78), v(3/5)
(15 missing values generated)

. egen ishirep = anymatch(rep78), v(3/5)

Here it is easy to produce the same results with official Stata commands:

. generate hirep = rep78 if inlist(rep78,3,4,5)

. generate byte ishirep = inlist(rep78,3,4,5)

http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist

16 egen — Extensions to generate

However, as the specification becomes more complicated or involves several variables, the egen
functions may be more convenient.

Example 14: group()

group() maps the distinct groups of a varlist to a categorical variable that takes on integer values
from 1 to the total number of groups. order of the groups is that of the sort order of varlist. The varlist
may be of numeric variables, string variables, or a mixture of the two. The resulting variable can be
useful for many purposes, including stepping through the distinct groups easily and systematically
and cleaning up an untidy ordering. Suppose that the actual (and arbitrary) codes present in the data
are 1, 2, 4, and 7, but we desire equally spaced numbers, as when the codes will be values on one
axis of a graph. group() maps these to 1, 2, 3, and 4.

We have a variable agegrp that takes on the values 24, 40, 50, and 65, corresponding to age
groups 18–24, 25–40, 41–50, and 51 and above. Perhaps we created this coding using the recode()
function (see [U] 13.3 Functions and [U] 25 Working with categorical data and factor variables)
from another age-in-years variable:

. generate agegrp=recode(age,24,40,50,65)

We now want to change the codes to 1, 2, 3, and 4:

. egen agegrp2 = group(agegrp)

Example 15: group() with missing values

We have two categorical variables, race and sex, which may be string or numeric. We want to
use ir (see [R] epitab) to create a Mantel–Haenszel weighted estimate of the incidence rate. ir,
however, allows only one variable to be specified in its by() option. We type

. use http://www.stata-press.com/data/r14/egenxmpl6, clear

. egen racesex = group(race sex)
(2 missing values generated)

. ir deaths smokes pyears, by(racesex)
(output omitted)

The new numeric variable, racesex, will be missing wherever race or sex is missing (meaning .
for numeric variables and "" for string variables), so missing values will be handled correctly. When
we list some of the data, we see

. list race sex racesex in 1/7, sep(0)

race sex racesex

1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female .
7. Black . .

group() began by putting the data in the order of the grouping variables and then assigned the
numeric codes. Observations 6 and 7 were assigned to racesex==. because, in one case, race was
not known, and in the other, sex was not known. (These observations were not used by ir.)

http://www.stata.com/manuals14/u13.pdf#u13.3Functions
http://www.stata.com/manuals14/u25.pdf#u25Workingwithcategoricaldataandfactorvariables
http://www.stata.com/manuals14/repitab.pdf#repitab

egen — Extensions to generate 17

If we wanted the unknown groups to be treated just as any other category, we could have typed

. egen rs2=group(race sex), missing

. list race sex rs2 in 1/7, sep(0)

race sex rs2

1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female 6
7. Black . 5

The resulting variable from group() does not have value labels. Therefore, the values carry no
indication of meaning. Interpretation requires comparison with the original varlist.

The label option produces a categorical variable with value labels. These value labels are either
the actual values of varname or any value labels of varname, if they exist. The values of varname
could be as long as those of one str2045 variable, but value labels may be no longer than 80
characters.

String variables

Concatenation of string variables is provided in Stata. In context, Stata understands the addition
symbol + as specifying concatenation or adding strings end to end. "soft" + "ware" produces
"software", and given string variables s1 and s2, s1 + s2 indicates their concatenation.

The complications that may arise in practice include wanting 1) to concatenate the string versions
of numeric variables and 2) to concatenate variables, together with some separator such as a space
or a comma. Given numeric variables n1 and n2,

. generate newstr = s1 + string(n1) + string(n2) + s2

shows how numeric values may be converted to their string equivalents before concatenation, and

. generate newstr = s1 + " " + s2 + " " + s3

shows how spaces may be added between variables. Stata will automatically assign the most appropriate
data type for the new string variables.

Example 16: concat()

concat() allows us to do everything in one line concisely.

. egen newstr = concat(s1 n1 n2 s2)

carries with it an implicit instruction to convert numeric values to their string equivalents, and the
appropriate string data type is worked out within concat() by Stata’s automatic promotion. Moreover,

. egen newstr = concat(s1 s2 s3), p(" ")

specifies that spaces be used as separators. (The default is to have no separation of concatenated
strings.)

As an example of punctuation other than a space, consider

. egen fullname = concat(surname forename), p(", ")

18 egen — Extensions to generate

Noninteger numerical values can cause difficulties, but

. egen newstr = concat(n1 n2), format(%9.3f) p(" ")

specifies the use of format %9.3f. This is equivalent to

. generate str1 newstr = ""

. replace newstr = string(n1,"%9.3f") + " " + string(n2,"%9.3f")

See [FN] String functions for more about string().

As a final flourish, the decode option instructs concat() to use value labels. With that option,
the maxlength() option may also be used. For more details about decode, see [D] encode. Unlike
the decode command, however, concat() uses string(varname), not "", whenever values of
varname are not associated with value labels, and the format() option, whenever specified, applies
to this use of string().

Example 17: ends()

The ends(strvar) function is used for subdividing strings. The approach is to find specified
separators by using the strpos() string function and then to extract what is desired, which either
precedes or follows the separators, using the substr() string function.

By default, substrings are considered to be separated by individual spaces, so we will give definitions
in those terms and then generalize.

The head of the string is whatever precedes the first space or is the whole of the string if no space
occurs. This could also be called the first “word”. The tail of the string is whatever follows the first
space. This could be nothing or one or more words. The last word in the string is whatever follows
the last space or is the whole of the string if no space occurs.

To clarify, let’s look at some examples. The quotation marks here just mark the limits of each
string and are not part of the strings.

head tail last

"frog" "frog" "" "frog"
"frog toad" "frog" "toad" "toad"

"frog toad newt" "frog" "toad newt" "newt"
"frog toad newt" "frog" " toad newt" "newt"
"frog toad newt" "frog" "toad newt" "newt"

The main subtlety is that these functions are literal, so the tail of "frog toad newt", in which
two spaces follow "frog", includes the second of those spaces, and is thus " toad newt". Therefore,
you may prefer to use the trim option to trim the result of any leading or trailing spaces, producing
"toad newt" in this instance.

The punct(pchars) option may be used to specify separators other than spaces. The general
definitions of the head, tail, and last options are therefore interpreted in terms of whatever
separator has been specified; that is, they are relative to the first or last occurrence of the separator
in the string value. Thus, with punct(,) and the string "Darwin, Charles Robert", the head is
"Darwin", and the tail and the last are both " Charles Robert". Note again the leading space in
this example, which may be trimmed with trim. The punctuation (here the comma, “,”) is discarded,
just as it is with one space.

http://www.stata.com/manuals14/fnstringfunctions.pdf#fnStringfunctions
http://www.stata.com/manuals14/fnstringfunctions.pdf#fnStringfunctionsstring()
http://www.stata.com/manuals14/dencode.pdf#dencode

egen — Extensions to generate 19

pchars, the argument of punct(), will usually, but not always, be one character. If two or more
characters are specified, these must occur together; for example, punct(:;) would mean that words
are separated by a colon followed by a semicolon (that is, :;). It is not implied, in particular, that the
colon and semicolon are alternatives. To do that, you would have to modify the programs presented
here or resort to first principles by using split; see [D] split.

With personal names, the head or last option might be applied to extract surnames if strings
were similar to "Darwin, Charles Robert" or "Charles Robert Darwin", with the surname
coming first or last. What then happens with surnames like "von Neumann" or "de la Mare"? "von
Neumann, John" is no problem, if the comma is specified as a separator, but the last option is
not intelligent enough to handle "Walter de la Mare" properly. For that, the best advice is to use
programs specially written for person-name extraction, such as extrname (Gould 1993).

U.S. marginal income tax rate

mtr(year income) (Schmidt 1993, 1994) returns the U.S. marginal income tax rate for a married
couple with taxable income income in year year, where 1930 ≤ year ≤ 2016.

Example 18: mtr()

Schmidt (1993) examines the change in the progressivity of the U.S. tax schedule over the period
from 1930 to 1990. As a measure of progressivity, he calculates the difference in the marginal tax
rates at the 75th and 25th percentiles of income, using a dataset of percentiles of taxable income
developed by Hakkio, Rush, and Schmidt (1996). (Certain aspects of the income distribution are
imputed in these data.) A subset of the data contains the following:

. describe

Contains data from income1.dta
obs: 61

vars: 4 12 Feb 2016 03:33
size: 1,020

storage display value
variable name type format label variable label

year float %9.0g Year
inc25 float %9.0g 25th percentile
inc50 float %9.0g 50th percentile
inc75 float %9.0g 75th percentile

Sorted by:

. summarize

Variable Obs Mean Std. Dev. Min Max

year 61 1960 17.75293 1930 1990
inc25 61 6948.272 6891.921 819.4 27227.35
inc50 61 11645.15 11550.71 1373.29 45632.43
inc75 61 18166.43 18019.1 2142.33 71186.58

http://www.stata.com/manuals14/dsplit.pdf#dsplit

20 egen — Extensions to generate

Given the series for income and the four-digit year, we can generate the marginal tax rates
corresponding to the 25th and 75th percentiles of income:

. egen mtr25 = mtr(year inc25)

. egen mtr75 = mtr(year inc75)

. summarize mtr25 mtr75

Variable Obs Mean Std. Dev. Min Max

mtr25 61 .1664898 .0677949 .01125 .23
mtr75 61 .2442053 .1148427 .01125 .424625

Methods and formulas
Stata users have written many extra functions for egen. Type net search egen to locate Internet

sources of programs.

Acknowledgments
The mtr() function of egen was written by Timothy J. Schmidt of the Federal Reserve Bank of

Kansas City.

The cut() function was written by David Clayton of the Cambridge Institute for Medical Research
and Michael Hills (retired) of the London School of Hygiene and Tropical Medicine (1999a, 1999b,
1999c).

Many of the other egen functions were written by Nicholas J. Cox of the Department of Geography
at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics.

References
Andrews, D. F., P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey. 1972. Robust Estimates of

Location: Survey and Advances. Princeton: Princeton University Press.

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications
to maximum simulated likelihood estimation. Stata Journal 6: 156–189.

Clayton, D. G., and M. Hills. 1999a. dm66: Recoding variables using grouped values. Stata Technical Bulletin 49:
6–7. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 23–25. College Station, TX: Stata Press.

. 1999b. dm66.1: Stata 6 version of recoding variables using grouped values. Stata Technical Bulletin 50: 3.
Reprinted in Stata Technical Bulletin Reprints, vol. 9, p. 25. College Station, TX: Stata Press.

. 1999c. dm66.2: Update of cut to Stata 6. Stata Technical Bulletin 51: 2–3. Reprinted in Stata Technical Bulletin
Reprints, vol. 9, pp. 25–26. College Station, TX: Stata Press.

Cox, N. J. 1999. dm70: Extensions to generate, extended. Stata Technical Bulletin 50: 9–17. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 34–45. College Station, TX: Stata Press.

. 2000. dm70.1: Extensions to generate, extended: Corrections. Stata Technical Bulletin 57: 2. Reprinted in Stata
Technical Bulletin Reprints, vol. 10, p. 9. College Station, TX: Stata Press.

. 2009. Speaking Stata: Rowwise. Stata Journal 9: 137–157.

. 2014. Speaking Stata: Self and others. Stata Journal 14: 432–444.

Cox, N. J., and R. Goldstein. 1999a. dm72: Alternative ranking procedures. Stata Technical Bulletin 51: 5–7. Reprinted
in Stata Technical Bulletin Reprints, vol. 9, pp. 48–51. College Station, TX: Stata Press.

http://www.stata-journal.com/
http://www.stata-press.com/books/speaking-stata-graphics/
http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb50.pdf
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/products/stb/journals/stb50.pdf
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=pr0046
http://www.stata-journal.com/article.html?article=dm0075
http://www.stata.com/products/stb/journals/stb51.pdf

egen — Extensions to generate 21

. 1999b. dm72.1: Alternative ranking procedures: Update. Stata Technical Bulletin 52: 2. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, p. 51. College Station, TX: Stata Press.

David, H. A. 1998. Early sample measures of variability. Statistical Science 13: 368–377.

Esman, R. M. 1998. dm55: Generating sequences and patterns of numeric data: An extension to egen. Stata Technical
Bulletin 43: 2–3. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 4–5. College Station, TX: Stata Press.

Gould, W. W. 1993. dm13: Person name extraction. Stata Technical Bulletin 13: 6–11. Reprinted in Stata Technical
Bulletin Reprints, vol. 3, pp. 25–31. College Station, TX: Stata Press.

Hakkio, C. S., M. Rush, and T. J. Schmidt. 1996. The marginal income tax rate schedule from 1930 to 1990. Journal
of Monetary Economics 38: 117–138.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust Statistics: The Approach Based
on Influence Functions. New York: Wiley.

Kohler, U., and J. Zeh. 2012. Apportionment methods. Stata Journal 12: 375–392.

Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

Ryan, P. 1999. dm71: Calculating the product of observations. Stata Technical Bulletin 51: 3–4. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 45–48. College Station, TX: Stata Press.

. 2001. dm87: Calculating the row product of observations. Stata Technical Bulletin 60: 3–4. Reprinted in Stata
Technical Bulletin Reprints, vol. 10, pp. 39–41. College Station, TX: Stata Press.

Salas Pauliac, C. H. 2013. group2: Generating the finest partition that is coarser than two given partitions. Stata
Journal 13: 867–875.

Schmidt, T. J. 1993. sss1: Calculating U.S. marginal income tax rates. Stata Technical Bulletin 15: 17–19. Reprinted
in Stata Technical Bulletin Reprints, vol. 3, pp. 197–200. College Station, TX: Stata Press.

. 1994. sss1.1: Updated U.S. marginal income tax rate function. Stata Technical Bulletin 22: 29. Reprinted in
Stata Technical Bulletin Reprints, vol. 4, p. 224. College Station, TX: Stata Press.

Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640–642.

Wilcox, R. R. 2003. Applying Contemporary Statistical Techniques. San Diego, CA: Academic Press.

Also see
[D] collapse — Make dataset of summary statistics

[D] generate — Create or change contents of variable

[U] 13.3 Functions

http://www.stata.com/products/stb/journals/stb52.pdf
http://www.stata.com/products/stb/journals/stb43.pdf
http://www.stata.com/products/stb/journals/stb13.pdf
http://www.stata-journal.com/article.html?article=st0265
http://www.stata-press.com/books/dmus.html
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata-journal.com/article.html?article=dm0073
http://www.stata.com/products/stb/journals/stb15.pdf
http://www.stata.com/products/stb/journals/stb22.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=st0181
http://www.stata.com/manuals14/dcollapse.pdf#dcollapse
http://www.stata.com/manuals14/dgenerate.pdf#dgenerate
http://www.stata.com/manuals14/u13.pdf#u13.3Functions

