Syntax

```
varstable [, options]
```

options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
</tr>
<tr>
<td>estimates(estname)</td>
</tr>
<tr>
<td>amat(matrix_name)</td>
</tr>
<tr>
<td>graph</td>
</tr>
<tr>
<td>dlabel</td>
</tr>
<tr>
<td>modlabel</td>
</tr>
<tr>
<td>marker_options</td>
</tr>
<tr>
<td>rlopts(line_options)</td>
</tr>
<tr>
<td>nogrid</td>
</tr>
<tr>
<td>pgrid([...])</td>
</tr>
</tbody>
</table>

Add plots

| addplot(plot) | add other plots to the generated graph |

Y axis, X axis, Titles, Legend, Overall

| twoway_options | any options other than by() documented in [G-3] twoway_options |

varstable can be used only after *var* or *svar*; see [TS] var and [TS] var svar.

Menu

Statistics > Multivariate time series > VAR diagnostics and tests > Check stability condition of VAR estimates

Description

varstable checks the eigenvalue stability condition after estimating the parameters of a vector autoregression using *var* or *svar*.

Options

- **estimates(estname)** requests that *varstable* use the previously obtained set of *var* estimates stored as *estname*. By default, *varstable* uses the active estimation results. See [R] estimates for information on manipulating estimation results.
amat(matrix_name) specifies a valid Stata matrix name by which the companion matrix A can be saved (see Methods and formulas for the definition of the matrix A). The default is not to save the A matrix.

graph causes varstable to draw a graph of the eigenvalues of the companion matrix.
dlable labels each eigenvalue with its distance from the unit circle. dlabel cannot be specified with modlabel.
modlabel labels the eigenvalues with their moduli. modlabel cannot be specified with dlabel.
marker_options specify the look of markers. This look includes the marker symbol, the marker size, and its color and outline; see [G-3] marker_options.

cline_options) affect the rendition of the reference unit circle; see [G-3] cline_options.
nogrid suppresses the polar grid circles.
pgrid(numlist, line_options) determines the radii and appearance of the polar grid circles. By default, the graph includes nine polar grid circles with radii 0.1, 0.2, . . . , 0.9 that have the grid line style. The numlist specifies the radii for the polar grid circles. The line_options determine the appearance of the polar grid circles; see [G-3] line_options. Because the pgrid() option can be repeated, circles with different radii can have distinct appearances.

addplot(plot) adds specified plots to the generated graph. See [G-3] addplot_option.

twoway_options are any of the options documented in [G-3] twoway_options, except by(). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Remarks and examples
Inference after var and svar requires that variables be covariance stationary. The variables in y_t are covariance stationary if their first two moments exist and are independent of time. More explicitly, a variable y_t is covariance stationary if

1. $E[y_t]$ is finite and independent of t.
2. $\text{Var}[y_t]$ is finite and independent of t
3. $\text{Cov}[y_t, y_s]$ is a finite function of $|t-s|$ but not of t or s alone.

Interpretation of VAR models, however, requires that an even stricter stability condition be met. If a VAR is stable, it is invertible and has an infinite-order vector moving-average representation. If the VAR is stable, impulse–response functions and forecast-error variance decompositions have known interpretations.

Lütkepohl (2005) and Hamilton (1994) both show that if the modulus of each eigenvalue of the matrix A is strictly less than one, the estimated VAR is stable (see Methods and formulas for the definition of the matrix A).
Example 1

After fitting a VAR with \texttt{var}, we can use \texttt{varstable} to check the stability condition. Using the same VAR model that was used in \texttt{[TS] var}, we demonstrate the use of \texttt{varstable}.

```
use http://www.stata-press.com/data/r13/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)
var dln_inv dln_inc dln_consump if qtr>=tq(1961q2) & qtr<=tq(1978q4)
(output omitted)
varstable, graph
```

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>.545625</td>
<td>.545625</td>
</tr>
<tr>
<td>-.378575 + .3853982i</td>
<td>.540232</td>
</tr>
<tr>
<td>-.378575 - .3853982i</td>
<td>.540232</td>
</tr>
<tr>
<td>-.0643276 + .4595944i</td>
<td>.464074</td>
</tr>
<tr>
<td>-.0643276 - .4595944i</td>
<td>.464074</td>
</tr>
<tr>
<td>-.3698058</td>
<td>.369806</td>
</tr>
</tbody>
</table>

All the eigenvalues lie inside the unit circle. VAR satisfies stability condition.

Because the modulus of each eigenvalue is strictly less than 1, the estimates satisfy the eigenvalue stability condition.

Specifying the \texttt{graph} option produced a graph of the eigenvalues with the real components on the x axis and the complex components on the y axis. The graph below indicates visually that these eigenvalues are well inside the unit circle.

Example 2

This example illustrates two other features of the \texttt{varstable} command. First, \texttt{varstable} can check the stability of the estimates of the VAR underlying an SVAR fit by \texttt{var svar}. Second, \texttt{varstable} can check the stability of any previously stored \texttt{var} or \texttt{var svar} estimates.
We begin by refitting the previous VAR and storing the results as `var1`. Because this is the same VAR that was fit in the previous example, the stability results should be identical.

```
. var dln_inv dln_inc dln_consump if qtr>=tq(1961q2) & qtr<=tq(1978q4)
(output omitted)
. estimates store var1
```

Now we use `svar` to fit an SVAR with a different underlying VAR and check the estimates of that underlying VAR for stability.

```
. matrix A = (.,0,.)
. matrix B = I(2)
. svar d.ln_inc d.ln_consump, aeq(A) beq(B)
(output omitted)
. varstable
```

```
<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>.548711</td>
<td>.548711</td>
</tr>
<tr>
<td>-.2979493 + .4328013i</td>
<td>0.525443</td>
</tr>
<tr>
<td>-.2979493 - .4328013i</td>
<td>0.525443</td>
</tr>
<tr>
<td>-.3570825</td>
<td>0.357082</td>
</tr>
</tbody>
</table>

All the eigenvalues lie inside the unit circle.
VAR satisfies stability condition.
```

The `estimates()` option allows us to check the stability of the `var` results stored as `var1`.

```
. varstable, est(var1)
```

```
<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5456253</td>
<td>.5456253</td>
</tr>
<tr>
<td>-.3785754 + .3853982i</td>
<td>0.540232</td>
</tr>
<tr>
<td>-.3785754 - .3853982i</td>
<td>0.540232</td>
</tr>
<tr>
<td>-.0643276 + .4595944i</td>
<td>0.464074</td>
</tr>
<tr>
<td>-.0643276 - .4595944i</td>
<td>0.464074</td>
</tr>
<tr>
<td>-.3698058</td>
<td>0.369806</td>
</tr>
</tbody>
</table>

All the eigenvalues lie inside the unit circle.
VAR satisfies stability condition.
```

The results are identical to those obtained in the previous example, confirming that we were checking the results in `var1`.

Stored results

`varstable` stores the following in `r()`:

- `r(Re)` — real part of the eigenvalues of `A`
- `r(Im)` — imaginary part of the eigenvalues of `A`
- `r(Modulus)` — modulus of the eigenvalues of `A`
Methods and formulas

varstable forms the companion matrix

\[
A = \begin{pmatrix}
A_1 & A_2 & \cdots & A_{p-1} & A_p \\
I & 0 & \cdots & 0 & 0 \\
0 & I & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & I & 0
\end{pmatrix}
\]

and obtains its eigenvalues by using matrix eigenvalues. The modulus of the complex eigenvalue \(r + ci \) is \(\sqrt{r^2 + c^2} \). As shown by Lütkepohl (2005) and Hamilton (1994), the VAR is stable if the modulus of each eigenvalue of \(A \) is strictly less than 1.

References

Also see

[TES] **var** — Vector autoregressive models

[TES] **var svar** — Structural vector autoregressive models

[TES] **varbasic** — Fit a simple VAR and graph IRFs or FEVDs

[TES] **var intro** — Introduction to vector autoregressive models