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Syntax

dfactor obs eq
[

fac eq
] [

if
] [

in
] [

, options
]

obs eq specifies the equation for the observed dependent variables, and it has the form

(depvars =
[

exog d
] [

, sopts
]
)

fac eq specifies the equation for the unobserved factors, and it has the form

(facvars =
[

exog f
] [

, sopts
]
)

depvars are the observed dependent variables. exog d are the exogenous variables that enter into
the equations for the observed dependent variables. (All factors are automatically entered into the
equations for the observed dependent variables.) facvars are the names for the unobserved factors
in the model. You may specify the names of existing variables in facvars, but dfactor treats
them only as names and takes no notice that they are also variables. exog f are the exogenous
variables that enter into the equations for the factors.

options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, display of omitted variables

and base and empty cells, and factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
from(matname) specify initial values for the maximization process; seldom used

Advanced

method(method) specify the method for calculating the log likelihood; seldom used

coeflegend display legend instead of statistics
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2 dfactor — Dynamic-factor models

sopts Description

Model

noconstant suppress constant term from the equation; allowed only
in obs eq

ar(numlist) autoregressive terms
arstructure(arstructure) structure of autoregressive coefficient matrices
covstructure(covstructure) covariance structure

arstructure Description

diagonal diagonal matrix; the default
ltriangular lower triangular matrix
general general matrix

covstructure Description

identity identity matrix
dscalar diagonal scalar matrix
diagonal diagonal matrix
unstructured symmetric, positive-definite matrix

method Description

hybrid use the stationary Kalman filter and the De Jong diffuse Kalman
filter; the default

dejong use the stationary De Jong method and the De Jong diffuse Kalman
filter

You must tsset your data before using dfactor; see [TS] tsset.
exog d and exog f may contain factor variables; see [U] 11.4.3 Factor variables.
depvars, exog d, and exog f may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multivariate time series > Dynamic-factor models

Description
dfactor estimates the parameters of dynamic-factor models by maximum likelihood. Dynamic-

factor models are flexible models for multivariate time series in which unobserved factors have a
vector autoregressive structure, exogenous covariates are permitted in both the equations for the latent
factors and the equations for observable dependent variables, and the disturbances in the equations
for the dependent variables may be autocorrelated.

http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/tstsset.pdf#tstsset
http://www.stata.com/manuals13/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals13/u11.pdf#u11.4.4Time-seriesvarlists
http://www.stata.com/manuals13/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals13/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model �

constraints(constraints) apply linear constraints. Some specifications require linear constraints for
parameter identification.

noconstant suppresses the constant term.

ar(numlist) specifies the vector autoregressive lag structure in the equation. By default, no lags are
included in either the observable or the factor equations.

arstructure(diagonal|ltriangular|general) specifies the structure of the matrices in the vector
autoregressive lag structure.

arstructure(diagonal) specifies the matrices to be diagonal—separate parameters for each
lag, but no cross-equation autocorrelations. arstructure(diagonal) is the default for both
the observable and the factor equations.

arstructure(ltriangular) specifies the matrices to be lower triangular—parameterizes a
recursive, or Wold causal, structure.

arstructure(general) specifies the matrices to be general matrices—separate parameters for
each possible autocorrelation and cross-correlation.

covstructure(identity | dscalar | diagonal | unstructured) specifies the covariance structure
of the errors.

covstructure(identity) specifies a covariance matrix equal to an identity matrix, and it is the
default for the errors in the factor equations.

covstructure(dscalar) specifies a covariance matrix equal to σ2 times an identity matrix.

covstructure(diagonal) specifies a diagonal covariance matrix, and it is the default for the
errors in the observable variables.

covstructure(unstructured) specifies a symmetric, positive-definite covariance matrix with
parameters for all variances and covariances.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, causes dfactor to use the observed information matrix estimator.

vce(robust) causes dfactor to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), and sformat(% fmt); see
[R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no

]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and from(matname); see [R] maximize for all options except from(), and
see below for information on from(). These options are seldom used.

http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/rmaximize.pdf#rmaximizeSyntaxalgorithm_spec
http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
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from(matname) specifies initial values for the maximization process. from(b0) causes dfactor
to begin the maximization algorithm with the values in b0. b0 must be a row vector; the number
of columns must equal the number of parameters in the model; and the values in b0 must be
in the same order as the parameters in e(b). This option is seldom used.

� � �
Advanced �

method(method) specifies how to compute the log likelihood. dfactor writes the model in state-
space form and uses sspace to estimate the parameters; see [TS] sspace. method() offers two
methods for dealing with some of the technical aspects of the state-space likelihood. This option
is seldom used.

method(hybrid), the default, uses the Kalman filter with model-based initial values when the
model is stationary and uses the De Jong (1988, 1991) diffuse Kalman filter when the model
is nonstationary.

method(dejong) uses the De Jong (1988) method for estimating the initial values for the Kalman
filter when the model is stationary and uses the De Jong (1988, 1991) diffuse Kalman filter
when the model is nonstationary.

The following option is available with dfactor but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

An introduction to dynamic-factor models
Some examples

An introduction to dynamic-factor models

dfactor estimates the parameters of dynamic-factor models by maximum likelihood (ML). Dynamic-
factor models represent a vector of k endogenous variables as linear functions of nf < k unobserved
factors and some exogenous covariates. The unobserved factors and the disturbances in the equations
for the observed variables may follow vector autoregressive structures.

Dynamic-factor models have been developed and applied in macroeconomics; see Geweke (1977),
Sargent and Sims (1977), Stock and Watson (1989, 1991), and Watson and Engle (1983).

Dynamic-factor models are very flexible; in a sense, they are too flexible. Constraints must be
imposed to identify the parameters of dynamic-factor and static-factor models. The parameters in the
default specifications in dfactor are identified, but other specifications require additional restrictions.
The factors are identified only up to a sign, which means that the coefficients on the unobserved factors
can flip signs and still produce the same predictions and the same log likelihood. The flexibility of
the model sometimes produces convergence problems.

dfactor is designed to handle cases in which the number of modeled endogenous variables, k,
is small. The ML estimator is implemented by writing the model in state-space form and by using
the Kalman filter to derive and implement the log likelihood. As k grows, the number of parameters
quickly exceeds the number that can be estimated.

http://www.stata.com/manuals13/tssspace.pdf#tssspace
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://stata.com
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A dynamic-factor model has the form

yt = Pft +Qxt + ut

ft = Rwt +A1ft−1 +A2ft−2 + · · ·+At−pft−p + νt

ut = C1ut−1 +C2ut−2 + · · ·+Ct−qut−q + εt

where the definitions are given in the following table:

Item Dimension Definition
yt k × 1 vector of dependent variables
P k × nf matrix of parameters
ft nf × 1 vector of unobservable factors
Q k × nx matrix of parameters
xt nx × 1 vector of exogenous variables
ut k × 1 vector of disturbances
R nf × nw matrix of parameters
wt nw × 1 vector of exogenous variables
Ai nf × nf matrix of autocorrelation parameters for i ∈ {1, 2, . . . , p}
νt nf × 1 vector of disturbances
Ci k × k matrix of autocorrelation parameters for i ∈ {1, 2, . . . , q}
εt k × 1 vector of disturbances

By selecting different numbers of factors and lags, the dynamic-factor model encompasses the six
models in the table below:

Dynamic factors with vector autoregressive errors (DFAR) nf > 0 p > 0 q > 0
Dynamic factors (DF) nf > 0 p > 0 q = 0
Static factors with vector autoregressive errors (SFAR) nf > 0 p = 0 q > 0
Static factors (SF) nf > 0 p = 0 q = 0
Vector autoregressive errors (VAR) nf = 0 p = 0 q > 0
Seemingly unrelated regression (SUR) nf = 0 p = 0 q = 0

In addition to the time-series models, dfactor can estimate the parameters of SF models and SUR
models. dfactor can place equality constraints on the disturbance covariances, which sureg and
var do not allow.

Some examples

Example 1: Dynamic-factor model

Stock and Watson (1989, 1991) wrote a simple macroeconomic model as a DF model, estimated the
parameters by ML, and extracted an economic indicator. In this example, we estimate the parameters
of a DF model. In [TS] dfactor postestimation, we extend this example and extract an economic
indicator for the differenced series.

We have data on an industrial-production index, ipman; real disposable income, income; an
aggregate weekly hours index, hours; and aggregate unemployment, unemp. We believe that these
variables are first-difference stationary. We model their first-differences as linear functions of an
unobserved factor that follows a second-order autoregressive process.

http://www.stata.com/manuals13/tsdfactorpostestimation.pdf#tsdfactorpostestimation
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. use http://www.stata-press.com/data/r13/dfex
(St. Louis Fed (FRED) macro data)

. dfactor (D.(ipman income hours unemp) = , noconstant) (f = , ar(1/2))
searching for initial values ..................

(setting technique to bhhh)
Iteration 0: log likelihood = -675.18934
Iteration 1: log likelihood = -667.47825

(output omitted )
Refining estimates:
Iteration 0: log likelihood = -662.09507
Iteration 1: log likelihood = -662.09507

Dynamic-factor model

Sample: 1972m2 - 2008m11 Number of obs = 442
Wald chi2(6) = 751.95

Log likelihood = -662.09507 Prob > chi2 = 0.0000

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

f
f

L1. .2651932 .0568663 4.66 0.000 .1537372 .3766491
L2. .4820398 .0624635 7.72 0.000 .3596136 .604466

D.ipman
f .3502249 .0287389 12.19 0.000 .2938976 .4065522

D.income
f .0746338 .0217319 3.43 0.001 .0320401 .1172276

D.hours
f .2177469 .0186769 11.66 0.000 .1811407 .254353

D.unemp
f -.0676016 .0071022 -9.52 0.000 -.0815217 -.0536816

var(De.ipman) .1383158 .0167086 8.28 0.000 .1055675 .1710641
var(De.inc~e) .2773808 .0188302 14.73 0.000 .2404743 .3142873
var(De.hours) .0911446 .0080847 11.27 0.000 .0752988 .1069903
var(De.unemp) .0237232 .0017932 13.23 0.000 .0202086 .0272378

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

For a discussion of the atypical iteration log, see example 1 in [TS] sspace.

The header in the output describes the estimation sample, reports the log-likelihood function at the
maximum, and gives the results of a Wald test against the null hypothesis that the coefficients on the
independent variables, the factors, and the autoregressive components are all zero. In this example,
the null hypothesis that all parameters except for the variance parameters are zero is rejected at all
conventional levels.

The results in the estimation table indicate that the unobserved factor is quite persistent and that
it is a significant predictor for each of the observed variables.

http://www.stata.com/manuals13/tssspace.pdf#tssspaceRemarksandexamplessspace_exar1
http://www.stata.com/manuals13/tssspace.pdf#tssspace
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dfactor writes the DF model as a state-space model and uses the same methods as sspace to
estimate the parameters. Example 5 in [TS] sspace writes the model considered here in state-space
form and uses sspace to estimate the parameters.

Technical note
The signs of the coefficients on the unobserved factors are not identified. They are not identified

because we can multiply the unobserved factors and the coefficients on the unobserved factors by
negative one without changing the log likelihood or any of the model predictions.

Altering either the starting values for the maximization process, the maximization technique()
used, or the platform on which the command is run can cause the signs of the estimated coefficients
on the unobserved factors to change.

Changes in the signs of the estimated coefficients on the unobserved factors do not alter the
implications of the model or the model predictions.

Example 2: Dynamic-factor model with covariates

Here we extend the previous example by allowing the errors in the equations for the observables to
be autocorrelated. This extension yields a constrained VAR model with an unobserved autocorrelated
factor.

We estimate the parameters by typing

http://www.stata.com/manuals13/tssspace.pdf#tssspaceRemarksandexamplessspace_exdfmodel
http://www.stata.com/manuals13/tssspace.pdf#tssspace
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. dfactor (D.(ipman income hours unemp) = , noconstant ar(1)) (f = , ar(1/2))
searching for initial values ..............

(setting technique to bhhh)
Iteration 0: log likelihood = -654.19377
Iteration 1: log likelihood = -627.46986

(output omitted )
Refining estimates:
Iteration 0: log likelihood = -610.28846
Iteration 1: log likelihood = -610.28846

Dynamic-factor model

Sample: 1972m2 - 2008m11 Number of obs = 442
Wald chi2(10) = 990.91

Log likelihood = -610.28846 Prob > chi2 = 0.0000

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

f
f

L1. .4058457 .0906183 4.48 0.000 .2282371 .5834544
L2. .3663499 .0849584 4.31 0.000 .1998344 .5328654

De.ipman
e.ipman

LD. -.2772149 .068808 -4.03 0.000 -.4120761 -.1423538

De.income
e.income

LD. -.2213824 .0470578 -4.70 0.000 -.3136141 -.1291508

De.hours
e.hours

LD. -.3969317 .0504256 -7.87 0.000 -.495764 -.2980994

De.unemp
e.unemp

LD. -.1736835 .0532071 -3.26 0.001 -.2779675 -.0693995

D.ipman
f .3214972 .027982 11.49 0.000 .2666535 .3763408

D.income
f .0760412 .0173844 4.37 0.000 .0419684 .110114

D.hours
f .1933165 .0172969 11.18 0.000 .1594151 .2272179

D.unemp
f -.0711994 .0066553 -10.70 0.000 -.0842435 -.0581553

var(De.ipman) .1387909 .0154558 8.98 0.000 .1084981 .1690837
var(De.inc~e) .2636239 .0179043 14.72 0.000 .2285322 .2987157
var(De.hours) .0822919 .0071096 11.57 0.000 .0683574 .0962265
var(De.unemp) .0218056 .0016658 13.09 0.000 .0185407 .0250704

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.
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The autoregressive (AR) terms are displayed in error notation. e.varname stands for the error in
the equation for varname. The estimate of the pth AR term from y1 on y2 is reported as Lpe.y1 in
equation e.y2. In the above output, the estimated first-order AR term of D.ipman on D.ipman is
−0.277 and is labeled as LDe.ipman in equation De.ipman.

The previous two examples illustrate how to use dfactor to estimate the parameters of DF models.
Although the previous example indicates that the more general DFAR model fits the data well, we use
these data to illustrate how to estimate the parameters of more restrictive models.

Example 3: A VAR with constrained error variance

In this example, we use dfactor to estimate the parameters of a SUR model with constraints on the
error-covariance matrix. The model is also a constrained VAR with constraints on the error-covariance
matrix, because we include the lags of two dependent variables as exogenous variables to model the
dynamic structure of the data. Previous exploratory work suggested that we should drop the lag of
D.unemp from the model.
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. constraint 1 [cov(De.unemp,De.income)]_cons = 0

. dfactor (D.(ipman income unemp) = LD.(ipman income), noconstant
> covstructure(unstructured)), constraints(1)
searching for initial values ............

(setting technique to bhhh)
Iteration 0: log likelihood = -569.3512
Iteration 1: log likelihood = -548.76963

(output omitted )
Refining estimates:
Iteration 0: log likelihood = -535.12973
Iteration 1: log likelihood = -535.12973

Dynamic-factor model

Sample: 1972m3 - 2008m11 Number of obs = 441
Wald chi2(6) = 88.32

Log likelihood = -535.12973 Prob > chi2 = 0.0000
( 1) [cov(De.income,De.unemp)]_cons = 0

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

D.ipman
ipman

LD. .206276 .0471654 4.37 0.000 .1138335 .2987185

income
LD. .1867384 .0512139 3.65 0.000 .086361 .2871158

D.income
ipman

LD. .1043733 .0434048 2.40 0.016 .0193015 .1894451

income
LD. -.1957893 .0471305 -4.15 0.000 -.2881634 -.1034153

D.unemp
ipman

LD. -.0865823 .0140747 -6.15 0.000 -.1141681 -.0589964

income
LD. -.0200749 .0152828 -1.31 0.189 -.0500285 .0098788

var(De.ipman) .3243902 .0218533 14.84 0.000 .2815584 .3672219
cov(De.ipman,

De.income) .0445794 .013696 3.25 0.001 .0177358 .071423
cov(De.ipman,

De.unemp) -.0298076 .0047755 -6.24 0.000 -.0391674 -.0204478
var(De.inc~e) .2747234 .0185008 14.85 0.000 .2384624 .3109844
cov(De.inc~e,

De.unemp) 0 (constrained)
var(De.unemp) .0288866 .0019453 14.85 0.000 .0250738 .0326994

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

The output indicates that the model fits well, except that the lag of first-differenced income is not
a significant predictor of first-differenced unemployment.
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Technical note
The previous example shows how to use dfactor to estimate the parameters of a SUR model

with constraints on the error-covariance matrix. Neither sureg nor var allows for constraints on the
error-covariance matrix. Without the constraints on the error-covariance matrix and including the lag
of D.unemp,

. dfactor (D.(ipman income unemp) = LD.(ipman income unemp),
> noconstant covstructure(unstructured))

(output omitted )

. var D.(ipman income unemp), lags(1) noconstant
(output omitted )

and

. sureg (D.ipman LD.(ipman income unemp), noconstant)
> (D.income LD.(ipman income unemp), noconstant)
> (D.unemp LD.(ipman income unemp), noconstant)

(output omitted )

produce the same estimates after allowing for small numerical differences.

Example 4: A lower-triangular VAR with constrained error variance

The previous example estimated the parameters of a constrained VAR model with a constraint on
the error-covariance matrix. This example makes two refinements on the previous one: we use an
unconditional estimator instead of a conditional estimator, and we constrain the AR parameters to
have a lower triangular structure. (See the next technical note for a discussion of conditional and
unconditional estimators.) The results are
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. constraint 1 [cov(De.unemp,De.income)]_cons = 0

. dfactor (D.(ipman income unemp) = , ar(1) arstructure(ltriangular) noconstant
> covstructure(unstructured)), constraints(1)
searching for initial values ............

(setting technique to bhhh)
Iteration 0: log likelihood = -543.89836
Iteration 1: log likelihood = -541.47455

(output omitted )
Refining estimates:
Iteration 0: log likelihood = -540.36159
Iteration 1: log likelihood = -540.36159

Dynamic-factor model

Sample: 1972m2 - 2008m11 Number of obs = 442
Wald chi2(6) = 75.48

Log likelihood = -540.36159 Prob > chi2 = 0.0000
( 1) [cov(De.income,De.unemp)]_cons = 0

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

De.ipman
e.ipman

LD. .2297308 .0473147 4.86 0.000 .1369957 .3224659

De.income
e.ipman

LD. .1075441 .0433357 2.48 0.013 .0226077 .1924805

e.income
LD. -.2209485 .047116 -4.69 0.000 -.3132943 -.1286028

De.unemp
e.ipman

LD. -.0975759 .0151301 -6.45 0.000 -.1272304 -.0679215

e.income
LD. -.0000467 .0147848 -0.00 0.997 -.0290244 .0289309

e.unemp
LD. -.0795348 .0482213 -1.65 0.099 -.1740469 .0149773

var(De.ipman) .3335286 .0224282 14.87 0.000 .2895702 .377487
cov(De.ipman,

De.income) .0457804 .0139123 3.29 0.001 .0185127 .0730481
cov(De.ipman,

De.unemp) -.0329438 .0051423 -6.41 0.000 -.0430226 -.022865
var(De.inc~e) .2743375 .0184657 14.86 0.000 .2381454 .3105296
cov(De.inc~e,

De.unemp) 0 (constrained)
var(De.unemp) .0292088 .00199 14.68 0.000 .0253083 .0331092

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

The estimated AR terms of D.income and D.unemp on D.unemp are −0.000047 and −0.079535,
and they are not significant at the 1% or 5% levels. The estimated AR term of D.ipman on D.income
is 0.107544 and is significant at the 5% level but not at the 1% level.
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Technical note
We obtained the unconditional estimator in example 4 by specifying the ar() option instead of

including the lags of the endogenous variables as exogenous variables, as we did in example 3. The
unconditional estimator has an additional observation and is more efficient. This change is analogous
to estimating an AR coefficient by arima instead of using regress on the lagged endogenous variable.
For example, to obtain the unconditional estimator in a univariate model, typing

. arima D.ipman, ar(1) noconstant technique(nr)
(output omitted )

will produce the same estimated AR coefficient as

. dfactor (D.ipman, ar(1) noconstant)
(output omitted )

We obtain the conditional estimator by typing either

. regress D.ipman LD.ipman, noconstant
(output omitted )

or

. dfactor (D.ipman = LD.ipman, noconstant)
(output omitted )

Example 5: A static factor model

In this example, we fit regional unemployment data to an SF model. We have data on the
unemployment levels for the four regions in the U.S. census: west for the West, south for the
South, ne for the Northeast, and midwest for the Midwest. We treat the variables as first-difference
stationary and model the first-differences of these variables. Using dfactor yields
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. use http://www.stata-press.com/data/r13/urate
(Monthly unemployment rates in US Census regions)

. dfactor (D.(west south ne midwest) = , noconstant ) (z = )
searching for initial values .............

(setting technique to bhhh)
Iteration 0: log likelihood = 872.72029
Iteration 1: log likelihood = 873.04781

(output omitted )
Refining estimates:
Iteration 0: log likelihood = 873.0755
Iteration 1: log likelihood = 873.0755

Dynamic-factor model

Sample: 1990m2 - 2008m12 Number of obs = 227
Wald chi2(4) = 342.56

Log likelihood = 873.0755 Prob > chi2 = 0.0000

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

D.west
z .0978324 .0065644 14.90 0.000 .0849664 .1106983

D.south
z .0859494 .0061762 13.92 0.000 .0738442 .0980546

D.ne
z .0918607 .0072814 12.62 0.000 .0775893 .106132

D.midwest
z .0861102 .0074652 11.53 0.000 .0714787 .1007417

var(De.west) .0036887 .0005834 6.32 0.000 .0025453 .0048322
var(De.south) .0038902 .0005228 7.44 0.000 .0028656 .0049149

var(De.ne) .0064074 .0007558 8.48 0.000 .0049261 .0078887
var(De.mid~t) .0074749 .0008271 9.04 0.000 .0058538 .009096

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

The estimates indicate that we could reasonably suppose that the unobserved factor has the same
effect on the changes in unemployment in all four regions. The output below shows that we cannot
reject the null hypothesis that these coefficients are the same.

. test [D.west]z = [D.south]z = [D.ne]z = [D.midwest]z

( 1) [D.west]z - [D.south]z = 0
( 2) [D.west]z - [D.ne]z = 0
( 3) [D.west]z - [D.midwest]z = 0

chi2( 3) = 3.58
Prob > chi2 = 0.3109

Example 6: A static factor with constraints

In this example, we impose the constraint that the unobserved factor has the same impact on
changes in unemployment in all four regions. This constraint was suggested by the results of the
previous example. The previous example did not allow for any dynamics in the variables, a problem
we alleviate by allowing the disturbances in the equation for each observable to follow an AR(1)
process.
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. constraint 2 [D.west]z = [D.south]z

. constraint 3 [D.west]z = [D.ne]z

. constraint 4 [D.west]z = [D.midwest]z

. dfactor (D.(west south ne midwest) = , noconstant ar(1)) (z = ),
> constraints(2/4)
searching for initial values .............

(setting technique to bhhh)
Iteration 0: log likelihood = 828.22533
Iteration 1: log likelihood = 874.84221

(output omitted )
Refining estimates:
Iteration 0: log likelihood = 880.97488
Iteration 1: log likelihood = 880.97488

Dynamic-factor model

Sample: 1990m2 - 2008m12 Number of obs = 227
Wald chi2(5) = 363.34

Log likelihood = 880.97488 Prob > chi2 = 0.0000
( 1) [D.west]z - [D.south]z = 0
( 2) [D.west]z - [D.ne]z = 0
( 3) [D.west]z - [D.midwest]z = 0

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

De.west
e.west

LD. .1297198 .0992663 1.31 0.191 -.0648386 .3242781

De.south
e.south

LD. -.2829014 .0909205 -3.11 0.002 -.4611023 -.1047004

De.ne
e.ne
LD. .2866958 .0847851 3.38 0.001 .12052 .4528715

De.midwest
e.midwest

LD. .0049427 .0782188 0.06 0.950 -.1483634 .1582488

D.west
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

D.south
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

D.ne
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

D.midwest
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

var(De.west) .0038959 .0005111 7.62 0.000 .0028941 .0048977
var(De.south) .0035518 .0005097 6.97 0.000 .0025528 .0045507

var(De.ne) .0058173 .0006983 8.33 0.000 .0044488 .0071859
var(De.mid~t) .0075444 .0008268 9.12 0.000 .0059239 .009165

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.
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The results indicate that the model might not fit well. Two of the four AR coefficients are statistically
insignificant, while the two significant coefficients have opposite signs and sum to about zero. We
suspect that a DF model might fit these data better than an SF model with autocorrelated disturbances.

Stored results
dfactor stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k obser) number of observation equations
e(k factor) number of factors specified
e(o ar max) number of AR terms for the disturbances
e(f ar max) number of AR terms for the factors
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(tmin) minimum time in sample
e(tmax) maximum time in sample
e(stationary) 1 if the estimated parameters indicate a stationary model, 0 otherwise
e(rank) rank of VCE
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) dfactor
e(cmdline) command as typed
e(depvar) unoperated names of dependent variables in observation equations
e(obser deps) names of dependent variables in observation equations
e(covariates) list of covariates
e(indeps) independent variables
e(factor deps) names of unobserved factors in model
e(tvar) variable denoting time within groups
e(eqnames) names of equations
e(model) type of dynamic-factor model specified
e(title) title in estimation output
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(o ar) list of AR terms for disturbances
e(f ar) list of AR terms for factors
e(observ cov) structure of observation-error covariance matrix
e(factor cov) structure of factor-error covariance matrix
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(method) likelihood method
e(initial values) type of initial values
e(technique) maximization technique
e(tech steps) iterations taken in maximization technique(s)
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
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e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
dfactor writes the specified model as a state-space model and uses sspace to estimate the

parameters by maximum likelihood. See Lütkepohl (2005, 619–621) for how to write the DF model
in state-space form. See [TS] sspace for the technical details.
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