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Description
To demonstrate selection models, we will use the following data:

. use http://www.stata-press.com/data/r13/gsem_womenwk
(Fictional data on women and work)

. summarize

Variable Obs Mean Std. Dev. Min Max

age 2000 36.208 8.28656 20 59
educ 2000 13.084 3.045912 10 20

married 2000 .6705 .4701492 0 1
children 2000 1.6445 1.398963 0 5

wage 1343 23.69217 6.305374 5.88497 45.80979

. notes

_dta:
1. Fictional data on 2,000 women, 1,343 of whom work.
2. age ....... age in years
3. educ ...... years of schooling
4. married ... 1 if married spouse present
5. children .. # of children under 12 years
6. wage ...... hourly wage (missing if not working)

See Structural models 7: Dependencies between response variables and Structural models 8:
Unobserved inputs, outputs, or both in [SEM] intro 5 for background.

Remarks and examples stata.com

Remarks are presented under the following headings:

The Heckman selection model as an SEM
Fitting the Heckman selection model as an SEM
Transforming results and obtaining rho
Fitting the model with the Builder

The Heckman selection model as an SEM

We demonstrate below how gsem can be used to fit the Heckman selection model (Gronau 1974;
Lewis 1974; Heckman 1976) and produce results comparable to those of Stata’s dedicated heckman
command; see [R] heckman.

Our purpose is not to promote gsem as an alternative to heckman. We have two other purposes.

One is to show that gsem can be used to generalize the Heckman selection model to response
functions other than linear and, in addition or separately, to include multilevel effects when such
effects are present.

The other is to show how Heckman selection models can be included in more complicated SEMs.
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For those unfamiliar with this model, it deals with a continuous outcome that is observed only
when another equation determines that the observation is selected, and the errors of the two equations
are allowed to be correlated. Subjects often choose to participate in an event or medical trial or even
the labor market, and thus the outcome of interest might be correlated with the decision to participate.
Heckman won a Nobel Prize for this work.

The model is sometimes cast in terms of female labor supply, but it obviously has broader
application. Nevertheless, we will consider a female labor-supply example.

Women are offered employment at a wage of w,

wi = Xiβ + εi

Not all women choose to work, and w is observed only for those women who do work. Women
choose to work if

Ziγ + ξi > 0

where
εi ∼ N(0, σ2)

ξi ∼ N(0, 1)

corr(ε, ξ) = ρ

More generally, we can think of this model as applying to any continuously measured outcome
wi, which is observed only if Ziγ + ξi > 0. The important feature of the model is that the errors ξi
of the selection equation and the errors εi of the observed-data equation are allowed to be correlated.

The Heckman selection model can be recast as a two-equation SEM—one linear regression (for the
continuous outcome) and the other censored regression (for selection)—and with a latent variable Li

added to both equations. The latent variable is constrained to have variance 1 and to have coefficient 1
in the selection equation, leaving only the coefficient in the continuous-outcome equation to be
estimated. For identification, the variance from the censored regression will be constrained to be equal
to that of the linear regression. The results of doing this are the following:

1. Latent variable Li becomes the vehicle for carrying the correlation between the two equations.

2. All the parameters given above, namely, β, γ, σ2, and ρ, can be recovered from the SEM
estimates.

3. If we call the estimated parameters in the SEM formulation β∗, γ∗, and σ2∗, and let κ
denote the coefficient on Li in the continuous-outcome equation, then

β = β∗

γ = γ∗/
√
σ2∗ + 1

σ2 = σ2∗ + κ2

ρ = κ/
√

(σ2∗ + κ2)(σ2∗ + 1)

This parameterization places no restriction on the range or sign of ρ. See Skrondal and
Rabe-Hesketh (2004, 107–108).
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Fitting the Heckman selection model as an SEM

We wish to fit the following Heckman selection model:

married

children

educ

age

selected

Gaussian

identity

ε1 a

wage

ε2 a

L
1

1

What makes this a Heckman selection model is

1. the inclusion of latent variable L in both the continuous-outcome (wage) equation and the
censored-outcome selection equation;

2. constraining the selected <- L path coefficient to be 1;

3. constraining the variance of L to be 1; and

4. constraining the error variances to be equal.

Before we can fit this model, we need to create new variables selected and notselected. selected
will equal 0 if the woman works (wage is not missing) and missing otherwise. notselected is the
complement of selected: it equals 0 if the woman does not work (wage is missing) and missing
otherwise. selected and notselected will be used as the dependent variables in the censored
regression, providing the equivalent of a scaled probit regression.

. gen selected = 0 if wage < .
(657 missing values generated)

. gen notselected = 0 if wage >= .
(1343 missing values generated)

. tabulate selected notselected, missing

notselected
selected 0 . Total

0 0 1,343 1,343
. 657 0 657

Total 657 1,343 2,000

Old-time Stata users may be worried that because wage is missing in so many observations, namely,
all those corresponding to nonworking women, there must be something special we need to do so
that gsem uses all the data. There is nothing special we need to do. gsem counts missing values on
an equation-by-equation basis, so it will use all the data for the censored regression part of the model
while simultaneously using only the working-woman subsample for the continuous-outcome (wage)
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part of the model. We use all the data for the censored regression because gsem understands the
meaning of missing values in the censored dependent variables so long as one of them is nonmissing.

To fit this model in command syntax, we type

. gsem (wage <- educ age L)
> (selected <- married children educ age L@1,
> family(gaussian, udepvar(notselected))),
> var(L@1 e.wage@a e.selected@a)

Fitting fixed-effects model:

Iteration 0: log likelihood = -5568.1366
Iteration 1: log likelihood = -5211.0882 (not concave)
Iteration 2: log likelihood = -5209.4228 (not concave)
Iteration 3: log likelihood = -5209.2214
Iteration 4: log likelihood = -5209.1638
Iteration 5: log likelihood = -5208.9052 (not concave)
Iteration 6: log likelihood = -5208.9044 (not concave)
Iteration 7: log likelihood = -5208.9042 (not concave)
Iteration 8: log likelihood = -5208.904
Iteration 9: log likelihood = -5208.9038

Refining starting values:

Grid node 0: log likelihood = -5259.1366

Fitting full model:

Iteration 0: log likelihood = -5557.2489 (not concave)
Iteration 1: log likelihood = -5439.0882 (not concave)
Iteration 2: log likelihood = -5285.2854
Iteration 3: log likelihood = -5229.0964
Iteration 4: log likelihood = -5179.3914
Iteration 5: log likelihood = -5178.3235
Iteration 6: log likelihood = -5178.3046
Iteration 7: log likelihood = -5178.3046

Generalized structural equation model Number of obs = 2000
Log likelihood = -5178.3046

( 1) [selected]L = 1
( 2) [var(e.selected)]_cons - [var(e.wage)]_cons = 0
( 3) [var(L)]_cons = 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

wage <-
educ .9899509 .0532552 18.59 0.000 .8855727 1.094329
age .213128 .020602 10.34 0.000 .1727488 .2535073

L 5.923733 .1846827 32.08 0.000 5.561761 6.285704
_cons .4859256 1.076867 0.45 0.652 -1.624696 2.596547

selected <-
married .624276 .1054324 5.92 0.000 .4176322 .8309197

children .615211 .0652008 9.44 0.000 .4874197 .7430023
educ .0781544 .0162868 4.80 0.000 .0462328 .110076
age .0511984 .006637 7.71 0.000 .0381901 .0642067

L 1 (constrained)
_cons -3.493224 .3730411 -9.36 0.000 -4.224371 -2.762077

var(L) 1 (constrained)

var(e.sele~d) .9664716 .2689702 .5601427 1.667552
var(e.wage) .9664716 .2689702 .5601427 1.667552
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Notes:

1. Some of the estimated coefficients and parameters above will match those reported by the heckman
command and others will not. The above parameters are in the transformed structural equation
modeling metric. That metric can be transformed back to the Heckman metric and results will
match. The relationship to the Heckman metric is

β = β∗

γ = γ∗/
√
σ2∗ + 1

σ2 = σ2∗ + κ2

ρ = κ/
√

(σ2∗ + κ2)(σ2∗ + 1)

2. β refers to the coefficients on the continuous-outcome (wage) equation. We can read those
coefficients directly, without transformation except that we ignore the wage <- L path:

wage = 0.9900 educ + 0.2131 age + 0.4859

3. γ refers to the selection equation, and because γ = γ∗/
√
σ2∗ + 1, we must divide the reported

coefficients by the square root of σ2∗ + 1. What has happened here is that the scaled probit has
variance σ2∗ + 1, and we are merely transforming back to the standard probit model, which has
variance 1. The results are

Pr(selected = 0) =

Φ(0.4452 married + 0.4387 children + 0.0557 educ + 0.0365 age− 2.4910)

4. To calculate ρ, we first calculate σ2 = σ2∗ + κ2 and then calculate ρ = κ/
√
σ2(σ2∗ + 1) :

σ2 = 0.9664 + 5.92372 = 36.0571

ρ = 5.9237/
√
σ2(.9664 + 1) = 0.7035

5. These transformed results match the results that would have been reported had we typed
. heckman wage educ age, select(married children educ age)

(output omitted )

6. There is an easier way to obtain the transformed results than by hand, and the easier way provides
standard errors. That is the subject of the next section.

Transforming results and obtaining rho

We can use Stata’s nlcom command to perform the transformations we made by hand above, and
we can obtain standard errors.

Let’s start by obtaining σ2 and ρ. To remind you, the formulas are

σ2 = σ2∗ + κ2

ρ = κ/
√
σ2(σ2∗ + 1)

We must describe these two formulas in a way that nlcom can understand. The Stata notation for
parameters σ2∗ and κ fit by gsem is

σ2∗: b[var(e.wage): cons]

κ: b[wage:L]
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We cannot remember that notation; however, we can type gsem, coeflegend to be reminded. We
now have all that we need to obtain the estimates of σ2 and ρ. Because heckman reports σ rather
than σ2, we will tell nlcom to report the sqrt(σ2):

. nlcom (sigma: sqrt(_b[var(e.wage):_cons] +_b[wage:L]^2))
> (rho: _b[wage:L]/(sqrt((_b[var(e.wage):_cons]+1)*(_b[var(e.wage):_cons]
> + _b[wage:L]^2))))

sigma: sqrt(_b[var(e.wage):_cons] +_b[wage:L]^2)
rho: _b[wage:L]/(sqrt((_b[var(e.wage):_cons]+1)*(_b[var(e.wage):_cons

> ] + _b[wage:L]^2)))

Coef. Std. Err. z P>|z| [95% Conf. Interval]

sigma 6.004755 .1656476 36.25 0.000 5.680091 6.329418
rho .7034874 .0511867 13.74 0.000 .6031633 .8038116

The output above nearly matches what heckman reports. heckman does not report the test statistics
and p-values for these two parameters. In addition, the confidence interval that heckman reports for
ρ will differ slightly from the above and is better. heckman uses a method that will not allow ρ to be
outside of −1 and 1, whereas nlcom is simply producing a confidence interval for the calculation we
requested and in absence of the knowledge that the calculation corresponds to a correlation coefficient.
The same applies to the confidence interval for σ, where the bounds are 0 and infinity.

To obtain the coefficients and standard errors for the selection equation, we type
. nlcom (married: _b[selected:married]/sqrt(_b[var(e.wage):_cons]+1))
> (children: _b[selected:children]/sqrt(_b[var(e.wage):_cons]+1))
> (educ: _b[selected:educ]/sqrt(_b[var(e.wage):_cons]+1))
> (age: _b[selected:age]/sqrt(_b[var(e.wage):_cons]+1))

married: _b[selected:married]/sqrt(_b[var(e.wage):_cons]+1)
children: _b[selected:children]/sqrt(_b[var(e.wage):_cons]+1)

educ: _b[selected:educ]/sqrt(_b[var(e.wage):_cons]+1)
age: _b[selected:age]/sqrt(_b[var(e.wage):_cons]+1)

Coef. Std. Err. z P>|z| [95% Conf. Interval]

married .4451771 .0673953 6.61 0.000 .3130847 .5772694
children .4387128 .0277788 15.79 0.000 .3842673 .4931583

educ .0557326 .0107348 5.19 0.000 .0346927 .0767725
age .0365101 .0041534 8.79 0.000 .0283696 .0446505

The above output matches what heckman reports.

Fitting the model with the Builder

Use the diagram in Fitting the Heckman selection model as an SEM above for reference.

1. Open the dataset and create the selection variable.

In the Command window, type
. use http://www.stata-press.com/data/r13/gsem_womenwk
. gen selected = 0 if wage < .
. gen notselected = 0 if wage >= .

2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and
estimation.
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3. Put the Builder in gsem mode by clicking on the button.

4. Create the independent variables.

Select the Add Observed Variables Set tool, , and then click in the diagram about one-fourth
of the way in from the left and one-fourth of the way up from the bottom.

In the resulting dialog box,

a. select the Select variables radio button (it may already be selected);

b. use the Variables control to select the variables married, children, educ, and age in this
order;

c. select Vertical in the Orientation control;

d. click on OK.

If you wish, move the set of variables by clicking on any variable and dragging it.

5. Create the generalized response for selection.

a. Select the Add Generalized Response Variable tool, .

b. Click about one-third of the way in from the right side of the diagram, to the right of the
married rectangle.

c. In the Contextual Toolbar, select Gaussian, Identity in the Family/Link control (it may
already be selected).

d. In the Contextual Toolbar, select selected in the Variable control.

e. In the Contextual Toolbar, click on the Properties button.

f. In the resulting Variable properties dialog box, click on the Censoring button in the Variable
tab.

g. In the resulting Censoring dialog box, select the Interval measured, depvar is lower boundary
radio button. In the resulting Interval measured box below, use the Upper bound control to
select the variable notselected.

h. Click on OK in the Censoring dialog box, and then click on OK in the Variable properties
dialog box. The Details pane will now show selected as the lower bound and notselected
as the upper bound of our interval measure.

6. Create the endogenous wage variable.

a. Select the Add Observed Variable tool, , and then click about one-third of the way in
from the right side of the diagram, to the right of the age rectangle.

b. In the Contextual Toolbar, select wage with the Variable control.

7. Create paths from the independent variables to the dependent variables.

a. Select the Add Path tool, .

b. Click in the right side of the married rectangle (it will highlight when you hover over it),
and drag a path to the left side of the selected rectangle (it will highlight when you can
release to connect the path).

c. Continuing with the tool, create the following paths by clicking first in the right side of
the rectangle for the independent variable and dragging it to the left side of the rectangle
for the dependent variable:
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children -> selected
educ -> selected
age -> selected
educ -> wage
age -> wage

8. Clean up the direction of the error terms.

We want the error for selected to be above the rectangle and the error for wage to be below
the rectangle, but it is likely they have been created in other directions.

a. Choose the Select tool, .

b. Click in the selected rectangle.

c. Click on one of the Error Rotation buttons, , in the Contextual Toolbar until the error
is above the rectangle.

d. Click in the wage rectangle.

e. Click on one of the Error Rotation buttons, , in the Contextual Toolbar until the error
is below the rectangle.

9. Create the latent variable.

a. Select the Add Latent Variable tool, , and then click at the far right of the diagram and
vertically centered between the selected and wage variables.

b. In the Contextual Toolbar, type L in the Name control and press Enter.

10. Draw paths from the latent variable to each endogenous variable.

a. Select the Add Path tool, .

b. Click in the upper left quadrant of the L oval, and drag a path to the right side of the
selected rectangle.

c. Continuing with the tool, create another path by clicking first in the lower-left quadrant
of the L oval and dragging a path to the right side of the wage rectangle.

11. Place constraints on the variances and on the path from L to selected.

a. Choose the Select tool, .

b. Click on the L oval. In the Contextual Toolbar, type 1 in the box and press Enter.

c. Click on the error oval attached to the wage rectangle. In the Contextual Toolbar, type a in
the box and press Enter.

d. Click on the error oval attached to the selected rectangle. In the Contextual Toolbar, type
a in the box and press Enter.

e. Click on the path from L to selected. In the Contextual Toolbar, type 1 in the box
and press Enter.

12. Clean up the location of the paths.

If you do not like where a path has been connected to its variables, use the Select tool, ,
to click on the path, and then simply click on where it connects to a rectangle and drag the
endpoint.
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13. Estimate.

Click on the Estimate button, , in the Standard Toolbar, and then click on OK in the resulting
GSEM estimation options dialog box.

You can open a completed diagram in the Builder by typing

. webgetsem gsem_select
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