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Description
To demonstrate a one-parameter logistic IRT (Rasch) model, we use the following data:

. use http://www.stata-press.com/data/r13/gsem_cfa
(Fictional math abilities data)

. summarize

Variable Obs Mean Std. Dev. Min Max

school 500 10.5 5.772056 1 20
id 500 50681.71 29081.41 71 100000
q1 500 .506 .5004647 0 1
q2 500 .394 .4891242 0 1
q3 500 .534 .4993423 0 1

q4 500 .424 .4946852 0 1
q5 500 .49 .5004006 0 1
q6 500 .434 .4961212 0 1
q7 500 .52 .5001002 0 1
q8 500 .494 .5004647 0 1

att1 500 2.946 1.607561 1 5
att2 500 2.948 1.561465 1 5
att3 500 2.84 1.640666 1 5
att4 500 2.91 1.566783 1 5
att5 500 3.086 1.581013 1 5

test1 500 75.548 5.948653 55 93
test2 500 80.556 4.976786 65 94
test3 500 75.572 6.677874 50 94
test4 500 74.078 8.845587 43 96

. notes

_dta:
1. Fictional data on math ability and attitudes of 500 students from 20

schools.
2. Variables q1-q8 are incorrect/correct (0/1) on individual math questions.
3. Variables att1-att5 are items from a Likert scale measuring each

student’s attitude toward math.
4. Variables test1-test4 are test scores from tests of four different

aspects of mathematical abilities. Range of scores: 0-100.

These data record results from a fictional instrument measuring mathematical ability. Variables q1
through q8 are the items from the instrument.

For discussions of Rasch models, IRT models, and their extensions, see Embretson and Reise (2000),
van der Linden and Hambleton (1997), Skrondal and Rabe-Hesketh (2004), Andrich (1988), Bond
and Fox (2007), and Fischer and Molenaar (1995). Although not demonstrated in this example, many
of the extensions discussed in these books can be fit with gsem as well.

See Item–response theory (IRT) models in [SEM] intro 5 for background.
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Remarks and examples stata.com

Remarks are presented under the following headings:

1-PL IRT model with unconstrained variance
1-PL IRT model with variance constrained to 1
Obtaining item–characteristic curves
Fitting the model with the Builder

1-PL IRT model with unconstrained variance

Mechanically speaking, one-parameter logistic (1-PL) IRT models are similar to the probit mea-
surement model we demonstrated in [SEM] example 27g. The differences are that we will use logit
rather than probit and that we will place various constraints on the logit model to obtain results that
will allow us to judge the difficulty of the individual questions.

The model we wish to fit is

MathAb

q1

Bernoulli

logit

q2

Bernoulli

logit

q3

Bernoulli

logit

q4

Bernoulli

logit

q5

Bernoulli

logit

q6

Bernoulli

logit

q7

Bernoulli

logit

q8

Bernoulli

logit

1 1 1 1 1 1 1 1

In the 1-PL model, we place constraints that all coefficients, the factor loadings, are equal to 1. The
negative of the intercept for each question will then represent the difficulty of the question:

http://stata.com
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example 28g — One-parameter logistic IRT (Rasch) model 3

. gsem (MathAb -> (q1-q8)@1), logit

Fitting fixed-effects model:

Iteration 0: log likelihood = -2750.3114
Iteration 1: log likelihood = -2749.3709
Iteration 2: log likelihood = -2749.3708

Refining starting values:

Grid node 0: log likelihood = -2653.2353

Fitting full model:

Iteration 0: log likelihood = -2653.2353
Iteration 1: log likelihood = -2651.2171
Iteration 2: log likelihood = -2650.9117
Iteration 3: log likelihood = -2650.9116

Generalized structural equation model Number of obs = 500
Log likelihood = -2650.9116

( 1) [q1]MathAb = 1
( 2) [q2]MathAb = 1
( 3) [q3]MathAb = 1
( 4) [q4]MathAb = 1
( 5) [q5]MathAb = 1
( 6) [q6]MathAb = 1
( 7) [q7]MathAb = 1
( 8) [q8]MathAb = 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

q1 <-
MathAb 1 (constrained)
_cons .0293252 .1047674 0.28 0.780 -.1760152 .2346656

q2 <-
MathAb 1 (constrained)
_cons -.5025012 .1068768 -4.70 0.000 -.7119759 -.2930264

q3 <-
MathAb 1 (constrained)
_cons .1607425 .104967 1.53 0.126 -.044989 .3664739

q4 <-
MathAb 1 (constrained)
_cons -.3574951 .105835 -3.38 0.001 -.564928 -.1500623

q5 <-
MathAb 1 (constrained)
_cons -.0456599 .1047812 -0.44 0.663 -.2510274 .1597075

q6 <-
MathAb 1 (constrained)
_cons -.3097521 .1055691 -2.93 0.003 -.5166637 -.1028404

q7 <-
MathAb 1 (constrained)
_cons .09497 .1048315 0.91 0.365 -.1104959 .300436

q8 <-
MathAb 1 (constrained)
_cons -.0269104 .1047691 -0.26 0.797 -.232254 .1784332

var(MathAb) .7929701 .1025406 .6154407 1.02171
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Notes:

1. We had to use gsem and not sem to fit this model because the response variables were 0/1 and
not continuous and because we wanted to use logit and not a continuous model.

2. To place the constraints that all coefficients are equal to 1, in the diagram we placed 1s along
the path from the underlying latent factor MathAb to each of the questions. In the command
language, we added @1 to our command:

gsem (MathAb -> (q1-q8)@1), logit

Had we omitted the @1, we would have obtained coefficients about how well each question
measured math ability.

There are several ways we could have asked that the model above be fit. They include the
following:

gsem (MathAb -> q1@1 q2@1 q3@1 q4@1 q5@1 q6@1 q7@1 q8@1), logit
gsem (MathAb -> (q1 q2 q3 q4 q5 q6 q7 q8)@1), logit
gsem (MathAb -> (q1-q8)@1), logit

Similarly, for the shorthand logit, we could have typed family(bernoulli) link(logit).

3. The negative of the reported intercept represents the difficulty of the item. The most difficult is
q2, and the least difficult is q3.

1-PL IRT model with variance constrained to 1
The goal of the 1-PL model is in fact to constrain the loadings to be equal. In the previous model,

that was achieved by constraining them to be 1 and letting the variance of the latent variable float. An
alternative with perhaps easier-to-interpret results would constrain the variance of the latent variable
to be 1—giving it a standard-normal interpretation—and constrain the loadings to be merely equal:
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. gsem (MathAb -> (q1-q8)@b), logit var(MathAb@1)

Fitting fixed-effects model:

Iteration 0: log likelihood = -2750.3114
Iteration 1: log likelihood = -2749.3709
Iteration 2: log likelihood = -2749.3708

Refining starting values:

Grid node 0: log likelihood = -2645.8536

Fitting full model:

Iteration 0: log likelihood = -2656.1973
Iteration 1: log likelihood = -2650.9139
Iteration 2: log likelihood = -2650.9116
Iteration 3: log likelihood = -2650.9116

Generalized structural equation model Number of obs = 500
Log likelihood = -2650.9116

( 1) [q1]MathAb - [q8]MathAb = 0
( 2) [q2]MathAb - [q8]MathAb = 0
( 3) [q3]MathAb - [q8]MathAb = 0
( 4) [q4]MathAb - [q8]MathAb = 0
( 5) [q5]MathAb - [q8]MathAb = 0
( 6) [q6]MathAb - [q8]MathAb = 0
( 7) [q7]MathAb - [q8]MathAb = 0
( 8) [var(MathAb)]_cons = 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

q1 <-
MathAb .8904887 .0575755 15.47 0.000 .7776429 1.003335
_cons .0293253 .1047674 0.28 0.780 -.1760151 .2346657

q2 <-
MathAb .8904887 .0575755 15.47 0.000 .7776429 1.003335
_cons -.5025011 .1068768 -4.70 0.000 -.7119758 -.2930264

q3 <-
MathAb .8904887 .0575755 15.47 0.000 .7776429 1.003335
_cons .1607425 .104967 1.53 0.126 -.044989 .366474

q4 <-
MathAb .8904887 .0575755 15.47 0.000 .7776429 1.003335
_cons -.3574951 .105835 -3.38 0.001 -.5649279 -.1500622

q5 <-
MathAb .8904887 .0575755 15.47 0.000 .7776429 1.003335
_cons -.0456599 .1047812 -0.44 0.663 -.2510273 .1597076

q6 <-
MathAb .8904887 .0575755 15.47 0.000 .7776429 1.003335
_cons -.309752 .1055691 -2.93 0.003 -.5166637 -.1028403

q7 <-
MathAb .8904887 .0575755 15.47 0.000 .7776429 1.003335
_cons .0949701 .1048315 0.91 0.365 -.1104959 .300436

q8 <-
MathAb .8904887 .0575755 15.47 0.000 .7776429 1.003335
_cons -.0269103 .1047691 -0.26 0.797 -.232254 .1784333

var(MathAb) 1 (constrained)
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Notes:

1. The log-likelihood values of both models is −2650.9116. The models are equivalent.

2. Intercepts are unchanged.

Obtaining item–characteristic curves

Item–characteristic curves graph the conditional probability of a particular response given the latent
trait. In our case, this simply amounts to graphing the probability of a correct answer against math
ability. After estimation, we can obtain the predicted probabilities of a correct answer by typing

. predict pr*, pr
(using 7 quadrature points)

We can obtain the predicted value of the latent variable by typing

. predict ability, latent(MathAb)
(using 7 quadrature points)

and thus we can obtain the item–characteristic curves for all eight questions by typing

. twoway line pr1 pr2 pr3 pr4 pr5 pr6 pr7 pr8 ability, sort xlabel(-1.5(.5)1.5)

.2
.4

.6
.8

−1.5 −1 −.5 0 .5 1 1.5
empirical Bayes’ means for MathAb

Predicted mean (q1 correct)

Predicted mean (q2 correct)

Predicted mean (q3 correct)

Predicted mean (q4 correct)

Predicted mean (q5 correct)

Predicted mean (q6 correct)

Predicted mean (q7 correct)

Predicted mean (q8 correct)
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A less busy graph might show merely the most difficult and least difficult questions:

. twoway line pr2 pr3 ability, sort xlabel(-1.5(.5)1.5)

.2
.4

.6
.8

−1.5 −1 −.5 0 .5 1 1.5
empirical Bayes’ means for MathAb

Predicted mean (q2 correct)

Predicted mean (q3 correct)

The slopes of each curve are identical because we have constrained them to be identical. Thus we
just see the shift between difficulties with the lower items having higher levels of difficulty.

Fitting the model with the Builder

Use the diagram in 1-PL IRT model with unconstrained variance above for reference.

1. Open the dataset.

In the Command window, type

. use http://www.stata-press.com/data/r13/gsem_cfa

2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and
estimation.

3. Put the Builder in gsem mode by clicking on the button.

4. Create the measurement component for MathAb.

Select the Add Measurement Component tool, , and then click in the diagram about one-third
of the way down from the top and slightly left of the center.

In the resulting dialog box,

a. change the Latent variable name to MathAb;

b. select q1, q2, q3, q4, q5, q6, q7, and q8 by using the Measurement variables control;

c. check Make measurements generalized;

d. select Bernoulli, Logit in the Family/Link control;

e. select Down in the Measurement direction control;

f. click on OK.

If you wish, move the component by clicking on any variable and dragging it.
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5. Constrain all path coefficients to 1.

a. Choose the Select tool, .

b. Click on the path from MathAb to q1. In the Contextual Toolbar, type 1 in the box and
press Enter.

c. Repeat this process to add the 1 constraint on the paths from MathAb to each of the other
measurement variables.

6. Estimate.

Click on the Estimate button, , in the Standard Toolbar, and then click on OK in the resulting
GSEM estimation options dialog box.

7. To fit the model in 1-PL IRT model with variance constrained to 1, change the constraints in the
diagram created above.

a. From the SEM Builder menu, select Estimation > Clear Estimates to clear results from the
previous model.

b. Choose the Select tool, .

c. Click on the path from MathAb to q1. In the Contextual Toolbar, type b in the box and
press Enter.

d. Repeat this process to add the b constraint on the paths from MathAb to each of the other
measurement variables.

e. With , click on the oval for MathAb. In the Contextual Toolbar, type 1 in the box
and press Enter.

8. Estimate again.

Click on the Estimate button, , in the Standard Toolbar, and then click on OK in the resulting
GSEM estimation options dialog box.

You can open a completed diagram in the Builder for the first model by typing

. webgetsem gsem_irt1

You can open a completed diagram in the Builder for the second model by typing

. webgetsem gsem_irt2
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Also see
[SEM] example 27g — Single-factor measurement model (generalized response)

[SEM] example 29g — Two-parameter logistic IRT model

[SEM] gsem — Generalized structural equation model estimation command

[SEM] predict after gsem — Generalized linear predictions, etc.

[SEM] intro 5 — Tour of models
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