Syntax

```
scobit depvar [indevars] [if] [in] [weight] [, options]
```

Options

Model
- `noconstant` suppress constant term
- `offset(varname)` include `varname` in model with coefficient constrained to 1
- `asis` retain perfect predictor variables
- `constraints(constraints)` apply specified linear constraints
- `collinear` keep collinear variables

SE/Robust
- `vce(vcetype)` `vcetype` may be `oim`, `robust`, `cluster clustvar`, `opg`, `bootstrap`, or `jackknife`

Reporting
- `level(#)` set confidence level; default is `level(95)`
- `nocnsreport` do not display constraints
- `display_options` control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization
- `maximize_options` control the maximization process
- `coeflegend` display legend instead of statistics

Remarks and examples

`indevars` may contain factor variables; see [U] 11.4.3 Factor variables.

`bootstrap`, by, `fp`, `jackknife`, `nestreg`, `rolling`, `statsby`, `stepwise`, and `svy` are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the `bootstrap` prefix; see [R] bootstrap.

`vce()` and weights are not allowed with the `svy` prefix; see [SVY] svy.

`fweights`, `iweights`, and `pweights` are allowed; see [U] 11.1.6 weight.

`coeflegend` does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Binary outcomes > Skewed logit regression
Description

scobit fits a maximum-likelihood skewed logit model.

See [R] logistic for a list of related estimation commands.

Options

Model

noconstant, offset(varname), constraints(constraints), collinear; see [R] estimation options.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations and may produce instabilities in maximization; see [R] probit.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

Reporting

level(#) ; see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, e^b rather than b. Standard errors and confidence intervals are similarly transformed. This option affects how results are displayed, not how they are estimated. or may be specified at estimation or when replaying previously estimated results.

nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with scobit but is not shown in the dialog box: coeflegend; see [R] estimation options.

Remarks and examples

Remarks are presented under the following headings:

Skewed logistic model
Robust standard errors
Skewed logistic model

scobit fits maximum likelihood models with dichotomous dependent variables coded as 0/1 (or, more precisely, coded as 0 and not 0).

Example 1

We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles. We wish to fit a model explaining whether a car is foreign based on its mileage. Here is an overview of our data:

```
. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)
. keep make mpg weight foreign
. describe
Contains data from http://www.stata-press.com/data/r13/auto.dta
obs: 74 1978 Automobile Data
vars: 4 13 Apr 2013 17:45
size: 1,702 (_dta has notes)

storage  display  value
variable name  type  format  label  variable label
make    str18  %-18s  Make and Model
mpg     int    %8.0g  Mileage (mpg)
weight  int    %8.0gc Weight (lbs.)
foreign byte   %8.0g  origin  Car type

Sorted by:  foreign
Note:  dataset has changed since last saved
```

```
. inspect foreign
foreign: Car type Number of Observations
          Total  Integers  Nonintegers
#        Negative         -        -        -
#        Zero            52       52        -
#        Positive        22       22        -
#        Total           74       74        -
#        Missing         -

(2 unique values)
foreign is labeled and all values are documented in the label.
```

The variable foreign takes on two unique values, 0 and 1. The value 0 denotes a domestic car, and 1 denotes a foreign car.
The model that we wish to fit is

$$\text{Pr}(\text{foreign} = 1) = F(\beta_0 + \beta_1 \text{mpg})$$

where $F(z) = 1 - 1/\{1 + \exp(z)\}^\alpha$.

To fit this model, we type

```
. scobit foreign mpg
```

Fitting logistic model:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-45.03321</td>
</tr>
<tr>
<td>1</td>
<td>-39.380959</td>
</tr>
<tr>
<td>2</td>
<td>-39.288802</td>
</tr>
<tr>
<td>3</td>
<td>-39.28864</td>
</tr>
<tr>
<td>4</td>
<td>-39.28864</td>
</tr>
</tbody>
</table>

Fitting full model:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-39.28864</td>
</tr>
<tr>
<td>1</td>
<td>-39.286393</td>
</tr>
<tr>
<td>2</td>
<td>-39.284415</td>
</tr>
<tr>
<td>3</td>
<td>-39.284234</td>
</tr>
<tr>
<td>4</td>
<td>-39.284197</td>
</tr>
<tr>
<td>5</td>
<td>-39.284196</td>
</tr>
</tbody>
</table>

Skewed logistic regression

<table>
<thead>
<tr>
<th></th>
<th>Number of obs</th>
<th>Zero outcomes</th>
<th>Log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>74</td>
<td>52</td>
<td>-39.2842</td>
</tr>
</tbody>
</table>

foreign

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-----------|-------|-------|-----------------------|
| mpg | .1813879 | .2407362 | 0.75 | 0.451 | -.2904463 | .6532222 |
| _cons | -4.274883 | 1.399305 | -3.06 | 0.002 | -7.017471 | -1.532295 |

/lnalpha

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-----------|-------|-------|-----------------------|
| | -.4450405 | 3.879885 | -0.11 | 0.909 | -8.049476 | 7.159395 |

alpha

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-----------|-------|-------|-----------------------|
| | .6407983 | 2.486224 | .0003193 | 1286.133 |

Likelihood-ratio test of alpha=1: chi2(1) = 0.01 Prob > chi2 = 0.9249

Note: likelihood-ratio tests are recommended for inference with scobit models.

We find that cars yielding better gas mileage are less likely to be foreign. The likelihood-ratio test at the bottom of the output indicates that the model is not significantly different from a logit model. Therefore, we should use the more parsimonious model.

Technical note

Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except missing) as positive outcomes (successes). Thus if the dependent variable takes on the values 0 and 1, then 0 is interpreted as failure and 1 as success. If the dependent variable takes on the values 0, 1, and 2, then 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

Formally, when we type `scobit y x`, Stata fits the model

$$\text{Pr}(y_j \neq 0 \mid x_j) = 1 - \frac{1}{\left\{1 + \exp(x_j \beta)\right\}^\alpha}$$
Robust standard errors

If you specify the vce(robust) option, scobit reports robust standard errors as described in [U] 20.21 Obtaining robust variance estimates. For the model of foreign on mpg, the robust calculation increases the standard error of the coefficient on mpg by around 25%:

```
. scobit foreign mpg, vce(robust) nolog
```

Coef. Std. Err.	z	P>	z		[95% Conf. Interval]	
foreign						
mpg	.1813879	.3028487	0.60	0.549	-.4121847	.7749606
_cons	-4.274883	1.335521	-3.20	0.001	-6.892455	-1.657311
/lnalpha	-.4450405	4.71561	-0.09	0.925	-9.687466	8.797385
alpha	.6407983	3.021755		.0000621	6616.919	

Without vce(robust), the standard error for the coefficient on mpg was reported to be 0.241, with a resulting confidence interval of \([-0.29, 0.65]\).

Specifying the vce(cluster clustvar) option relaxes the independence assumption required by the skewed logit estimator to being just independence between clusters. To demonstrate this, we will switch to a different dataset.

> Example 2

We are studying the unionization of women in the United States and have a dataset with 26,200 observations on 4,434 women between 1970 and 1988. For our purposes, we will use the variables age (the women were 14–26 in 1968 and the data thus span the age range of 16–46), grade (years of schooling completed, ranging from 0 to 18), not_smsa (28% of the person-time was spent living outside an SMSA—standard metropolitan statistical area), south (41% of the person-time was in the South), and year. Each of these variables is included in the regression as a covariate along with the interaction between south and year. This interaction, along with the south and year variables, is specified in the scobit command using factor-variables notation, south##c.year. We also have variable union. Overall, 22% of the person-time is marked as time under union membership and 44% of these women have belonged to a union.

We fit the following model, ignoring that women are observed an average of 5.9 times each in these data:
. use http://www.stata-press.com/data/r13/union, clear
(NLS Women 14-24 in 1968)
. scobit union age grade not_smsa south##c.year, nrtol(1e-3)
(output omitted)

Skewed logistic regression
Number of obs = 26200
Zero outcomes = 20389
Log likelihood = -13540.61 Nonzero outcomes = 5811

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-----------|-----------|-------|-----|---------------------|
| age | 0.0185365 | 0.0043615 | 4.25 | 0.000 | 0.0099881 - 0.0270849 |
| grade | 0.0452803 | 0.0057124 | 7.93 | 0.000 | 0.0340842 - 0.0564674 |
| not_smsa | -0.1886849| 0.0317802 | -5.94 | 0.000 | -0.2509734 - 0.1263968 |
| 1.south | -1.422381 | 0.3949298 | -3.60 | 0.000 | -2.1964292 - 0.6483327 |
| year | -0.0133017| 0.0049575 | -2.68 | 0.007 | -0.0230182 - 0.0035853 |
| south#c.year 1 | 0.0105663 | 0.0049233 | 2.15 | 0.032 | 0.0009168 - 0.0202158 |
| _cons | -10.19247 | 63.69015 | -0.16 | 0.873 | -135.02290 - 114.63792 |

/Lnalpha 8.972796 63.68825 0.14 0.888 -115.8539 133.7995
alpha 7885.615 502221.1 4.85e-51 1.28e+58

Likelihood-ratio test of alpha=1: chi2(1) = 3.76 Prob > chi2 = 0.0524
Note: likelihood-ratio tests are recommended for inference with scobit models.

The reported standard errors in this model are probably meaningless. Women are observed repeatedly, so the observations are not independent. Looking at the coefficients, we find a large southern effect against unionization and a different time trend for the south. The vce(cluster clustvar) option provides a way to fit this model and obtains correct standard errors:

. scobit union age grade not_smsa south##c.year, vce(cluster id) nrtol(1e-3)
(output omitted)

Skewed logistic regression
Number of obs = 26200
Zero outcomes = 20389
Log pseudolikelihood = -13540.61 Nonzero outcomes = 5811

(Std. Err. adjusted for 4434 clusters in idcode)

| | Coef. | Robust Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-----------|------------------|-------|-----|---------------------|
| age | 0.0185365 | 0.004867 | 2.18 | 0.029 | 0.0019029 - 0.0351701 |
| grade | 0.0452803 | 0.0125764 | 3.60 | 0.000 | 0.0206311 - 0.0699296 |
| not_smsa | -0.1886849| 0.0642035 | -2.94 | 0.003 | -0.3145214 - 0.0628484 |
| 1.south | -1.422381 | 0.5064916 | -2.81 | 0.005 | -2.4150866 - 0.4296756 |
| year | -0.0133017| 0.0090621 | -1.47 | 0.142 | -0.0310632 - 0.0035853 |
| south#c.year 1 | 0.0105663 | 0.0063172 | 1.67 | 0.094 | -0.0018152 - 0.0229478 |
| _cons | -10.19247 | 945772 | -10.78 | 0.000 | -12.04615 - 8.33879 |

/Lnalpha 8.972796 7482517 11.99 0.000 7.506249 10.43934
alpha 7885.615 5900.426 1819.377 34178.16
Technical note

The scobit model can be difficult to fit because of the functional form. Often it requires many iterations, or the optimizer prints out warning and informative messages during the optimization. For example, without the `nrtol(1e-3)` option, the model using the `union` dataset will not converge. See [R] `maximize` for details about the optimizer.

Technical note

The main reason for using `scobit` rather than `logit` is that the effects of the regressors on the probability of success are not constrained to be the largest when the probability is 0.5. Rather, the independent variables might show their largest impact when the probability of success is 0.3 or 0.6. This added flexibility results because the scobit function, unlike the logit function, can be skewed and is not constrained to be mirror symmetric about the 0.5 probability of success.

As Nagler (1994) pointed out, the point of maximum impact is constrained under the scobit model to fall within the interval $(0, 1 - e^{-1})$ or approximately $(0, 0.63)$. Achen (2002) notes that if we believe the maximum impact to be outside that range, we can instead estimate the “power logit” model by simply reversing the 0s and 1s of our outcome variable and estimating a scobit model on failure, rather than success. We would need to reverse the signs of the coefficients if we wanted to interpret them in terms of impact on success, or we could leave them as they are and interpret them in terms of impact on failure. The important thing to remember is that the scobit model, unlike the logit model, is not invariant to the choice of which result is assigned to success.
Stored results

`scobit` stores the following in `e()`:

Scalars

- `e(N)` number of observations
- `e(k)` number of parameters
- `e(k_eq)` number of equations in `e(b)`
- `e(k_aux)` number of auxiliary parameters
- `e(k_dv)` number of dependent variables
- `e(ll)` log likelihood
- `e(ll_c)` log likelihood, comparison model
- `e(N_f)` number of failures (zero outcomes)
- `e(N_s)` number of successes (nonzero outcomes)
- `e(alpha)` alpha
- `e(N_clust)` number of clusters
- `e(chi2)` χ^2
- `e(chi2_c)` χ^2 for comparison test
- `e(p)` significance
- `e(rank)` rank of `e(V)`
- `e(ic)` number of iterations
- `e(rc)` return code
- `e(converged)` 1 if converged, 0 otherwise

Macros

- `e(cmd)` scobit
- `e(cmdline)` command as typed
- `e(depvar)` name of dependent variable
- `e(wtype)` weight type
- `e(wexp)` weight expression
- `e(title)` title in estimation output
- `e(clustvar)` name of cluster variable
- `e(offset)` linear offset variable
- `e(chi2type)` Wald or LR: type of model χ^2 test
- `e(chi2_ct)` Wald or LR: type of model χ^2 test corresponding to `e(chi2_c)`
- `e(vce)` vcetype specified in `vce()`
- `e(vcetype)` title used to label Std. Err.
- `e(opt)` type of optimization
- `e(which)` max or min: whether optimizer is to perform maximization or minimization
- `e(ml_method)` type of ml method
- `e(user)` name of likelihood-evaluator program
- `e(technique)` maximization technique
- `e(properties)` b V
- `e(predict)` program used to implement `predict`
- `e(footnote)` program used to implement the footnote display
- `e(asbalanced)` factor variables fvset as asbalanced
- `e(asobserved)` factor variables fvset as asobserved

Matrices

- `e(b)` coefficient vector
- `e(Cns)` constraints matrix
- `e(ilog)` iteration log (up to 20 iterations)
- `e(gradient)` gradient vector
- `e(V)` variance–covariance matrix of the estimators
- `e(V_modelbased)` model-based variance

Functions

- `e(sample)` marks estimation sample
Methods and formulas

Skewed logit analysis is an alternative to logit that relaxes the assumption that individuals with initial probability of 0.5 are most sensitive to changes in independent variables.

The log-likelihood function for skewed logit is

$$\ln L = \sum_{j\in S} w_j \ln F(x_j b) + \sum_{j\notin S} w_j \ln \{1 - F(x_j b)\}$$

where S is the set of all observations j such that $y_j \neq 0$, $F(z) = 1 - 1/\{1 + \exp(z)\}^\alpha$, and w_j denotes the optional weights. $\ln L$ is maximized as described in [R] maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas.

scobit also supports estimation with survey data. For details on VCEs with survey data, see [SVY] variance estimation.

References

Also see

[R] scobit postestimation — Postestimation tools for scobit
[R] cloglog — Complementary log-log regression
[R] glm — Generalized linear models
[R] logistic — Logistic regression, reporting odds ratios
[SVY] svy estimation — Estimation commands for survey data
[U] 20 Estimation and postestimation commands