Syntax

```
poisson depvar [indepvars] [if] [in] [weight] [, options]
```

Options

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>noconstant</code></td>
<td>suppress constant term</td>
</tr>
<tr>
<td><code>exposure(varname_e)</code></td>
<td>include ln(varname_e) in model with coefficient constrained to 1</td>
</tr>
<tr>
<td><code>offset(varname_o)</code></td>
<td>include varname_o in model with coefficient constrained to 1</td>
</tr>
<tr>
<td><code>constraint(constraints)</code></td>
<td>apply specified linear constraints</td>
</tr>
<tr>
<td><code>collinear</code></td>
<td>keep collinear variables</td>
</tr>
</tbody>
</table>

SE/Robust

- `vce(vcetype)`
 - vcetype may be `oim`, `robust`, `cluster clustvar`, `opg`, `bootstrap`, or `jackknife`

Reporting

- `level(#)`
 - set confidence level; default is `level(95)`
- `irr`
 - report incidence-rate ratios
- `nocnsreport`
 - do not display constraints
- `display_options`
 - control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization

- `maximize_options`
 - control the maximization process; seldom used
- `coeflegend`
 - display legend instead of statistics

Syntax Notes

- `indepvars` may contain factor variables; see [U] 11.4.3 Factor variables.
- `depvar`, `indepvars`, `varname_e`, and `varname_o` may contain time-series operators; see [U] 11.4.4 Time-series varlists.
- `bootstrap`, `by`, `fp`, `jackknife`, `mfp`, `mi estimate`, `nestreg`, `rolling`, `statsby`, `stepwise`, and `svy` are allowed; see [U] 11.1.10 Prefix commands.
- `vce(bootstrap)` and `vce(jackknife)` are not allowed with the `mi estimate` prefix; see [MI] mi estimate.
- Weights are not allowed with the `bootstrap` prefix; see [R] bootstrap.
- `vce()` and weights are not allowed with the `svy` prefix; see [SVY] svy.
- `fweight`, `iweight`, and `pweight` are allowed; see [U] 11.1.6 weight.
- `coeflegend` does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
Menu

Statistics > Count outcomes > Poisson regression

Description

poisson fits a Poisson regression of *depvar* on *indepvars*, where *depvar* is a nonnegative count variable.

If you have panel data, see [XT] xtpoisson.

Options

- **Model**
 - `noconstant`, `exposure(varname_e)`, `offset(varname_o)`, `constraints(constraints)`, `collinear`
 - see [R] estimation options.

- **SE/Robust**
 - `vce(vcetype)` specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

- **Reporting**
 - `level(#)`; see [R] estimation options.
 - `irr` reports estimated coefficients transformed to incidence-rate ratios, that is, \(e^{\beta_i} \) rather than \(\beta_i \). Standard errors and confidence intervals are similarly transformed. This option affects how results are displayed, not how they are estimated or stored. `irr` may be specified at estimation or when replaying previously estimated results.
 - `nocnsreport`; see [R] estimation options.

 - `display_options`: `noolmitted`, `vsquish`, `noemptycells`, `baselabels`, `allbaselabels`, `nofvlabel`, `fwrap(#)`, `fwrapon(style)`, `cformat(%fmt)`, `pformat(%fmt)`, `sformat(%fmt)`, and `nolstretch`; see [R] estimation options.

- **Maximization**
 - `maximize_options`: `difficult`, `technique(algorithm_spec)`, `iterate(#)`, `[no]log`, `trace`, `gradient`, `showstep`, `hessian`, `showtolerance`, `tolerance(#)`, `ltolerance(#)`, `nrtolerance(#)`, `nonrtolerance`, and `from(init_specs)`; see [R] maximize. These options are seldom used.

 - Setting the optimization type to `technique(bhhh)` resets the default `vcetype` to `vce(opg)`.

The following option is available with poisson but is not shown in the dialog box:

- `coeflegend`; see [R] estimation options.
Remarks and examples

The basic idea of Poisson regression was outlined by Coleman (1964, 378–379). See Cameron and Trivedi (2013; 2010, chap. 17) and Johnson, Kemp, and Kotz (2005, chap. 4) for information about the Poisson distribution. See Cameron and Trivedi (2013), Long (1997, chap. 8), Long and Freese (2014, chap. 9), McNeil (1996, chap. 6), and Selvin (2011, chap. 6) for an introduction to Poisson regression. Also see Selvin (2004, chap. 5) for a discussion of the analysis of spatial distributions, which includes a discussion of the Poisson distribution. An early example of Poisson regression was Cochran (1940).

Poisson regression fits models of the number of occurrences (counts) of an event. The Poisson distribution has been applied to diverse events, such as the number of soldiers kicked to death by horses in the Prussian army (von Bortkiewicz 1898); the pattern of hits by buzz bombs launched against London during World War II (Clarke 1946); telephone connections to a wrong number (Thorndike 1926); and disease incidence, typically with respect to time, but occasionally with respect to space. The basic assumptions are as follows:

1. There is a quantity called the incidence rate that is the rate at which events occur. Examples are 5 per second, 20 per 1,000 person-years, 17 per square meter, and 38 per cubic centimeter.
2. The incidence rate can be multiplied by exposure to obtain the expected number of observed events. For example, a rate of 5 per second multiplied by 30 seconds means that 150 events are expected; a rate of 20 per 1,000 person-years multiplied by 2,000 person-years means that 40 events are expected; and so on.
3. Over very small exposures ϵ, the probability of finding more than one event is small compared with ϵ.
4. Nonoverlapping exposures are mutually independent.

With these assumptions, to find the probability of k events in an exposure of size E, you divide E into n subintervals E_1, E_2, \ldots, E_n, and approximate the answer as the binomial probability of observing k successes in n trials. If you let $n \to \infty$, you obtain the Poisson distribution.

In the Poisson regression model, the incidence rate for the jth observation is assumed to be given by

$$r_j = e^{\beta_0 + \beta_1 x_{1,j} + \cdots + \beta_k x_{k,j}}$$

If E_j is the exposure, the expected number of events, C_j, will be

$$C_j = E_j e^{\beta_0 + \beta_1 x_{1,j} + \cdots + \beta_k x_{k,j}}$$

$$= e^{\ln(E_j) + \beta_0 + \beta_1 x_{1,j} + \cdots + \beta_k x_{k,j}}$$

This model is fit by `poisson`. Without the `exposure()` or `offset()` options, E_j is assumed to be 1 (equivalent to assuming that exposure is unknown), and controlling for exposure, if necessary, is your responsibility.

Comparing rates is most easily done by calculating incidence-rate ratios (IRRs). For instance, what is the relative incidence rate of chromosome interchanges in cells as the intensity of radiation increases; the relative incidence rate of telephone connections to a wrong number as load increases; or the relative incidence rate of deaths due to cancer for females relative to males? That is, you want to hold all the x’s in the model constant except one, say, the ith. The IRR for a one-unit change in x_i is

$$\frac{e^{\ln(E) + \beta_1 x_1 + \cdots + \beta_i (x_i+1) + \cdots + \beta_k x_k}}{e^{\ln(E) + \beta_1 x_1 + \cdots + \beta_i x_i + \cdots + \beta_k x_k}} = e^{\beta_i}$$
More generally, the IRR for a Δx_i change in x_i is $e^{\beta_i \Delta x_i}$. The `lincom` command can be used after `poisson` to display incidence-rate ratios for any group relative to another; see [R] `lincom`.

Example 1

Chatterjee and Hadi (2012, 174) give the number of injury incidents and the proportion of flights for each airline out of the total number of flights from New York for nine major U.S. airlines in one year:

```
use http://www.stata-press.com/data/r13/airline
list
```

<table>
<thead>
<tr>
<th>airline</th>
<th>injuries</th>
<th>n</th>
<th>XYZowned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
<td>0.0950</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>7</td>
<td>0.1920</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td>0.0750</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>19</td>
<td>0.2078</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>9</td>
<td>0.1382</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4</td>
<td>0.0540</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
<td>0.1292</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>0.0503</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>3</td>
<td>0.0629</td>
</tr>
</tbody>
</table>

To their data, we have added a fictional variable, `XYZowned`. We will imagine that an accusation is made that the airlines owned by XYZ Company have a higher injury rate.

```
. poisson injuries XYZowned, exposure(n) irr
Iteration 0: log likelihood = -23.027197
Iteration 1: log likelihood = -23.027177
Iteration 2: log likelihood = -23.027177
Poisson regression
Number of obs = 9
LR chi2(1) = 1.77
Prob > chi2 = 0.1836
Log likelihood = -23.027177 Pseudo R2 = 0.0370

| injuries | IRR       | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|----------|-----------|-----------|------|------|----------------------|
| XYZowned | 1.463467  | .406872   | 3.57 | 0.000| 1.1977  | 1.81618 |
| _cons    | 58.04416  | 8.568145  | 6.74 | 0.000| 43.47662 | 77.49281|
| ln(n)    | 1.000000  | 1.000000  | 1.00 | 0.000| 1.000000| 1.000000|
```

We specified `irr` to see the IRRs rather than the underlying coefficients. We estimate that XYZ Airlines’ injury rate is 1.46 times larger than that for other airlines, but the 95% confidence interval is 0.85 to 2.52; we cannot even reject the hypothesis that XYZ Airlines has a lower injury rate.

Technical note

In example 1, we assumed that each airline’s exposure was proportional to its fraction of flights out of New York. What if “large” airlines, however, also used larger planes, and so had even more passengers than would be expected, given this measure of exposure? A better measure would be each airline’s fraction of passengers on flights out of New York, a number that we do not have. Even so, we suppose that n represents this number to some extent, so a better estimate of the effect might be
. gen lnN=ln(n)
. poisson injuries XYZowned lnN
Iteration 0: log likelihood = -22.333875
Iteration 1: log likelihood = -22.332276
Iteration 2: log likelihood = -22.332276

Poisson regression

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|----------|-----------|-------|------|----------------------|
| injuries| | | | | |
| XYZowned| .684067 | .389587 | 1.76 | 0.079| -.0795111 1.447645 |
| lnN | 1.42417 | .372515 | 3.82 | 0.000| .6940517 2.154285 |
| _cons | 4.86389 | .709050 | 6.86 | 0.000| 3.474178 6.253603 |

Here rather than specifying the `exposure()` option, we explicitly included the variable that would normalize for exposure in the model. We did not specify the `irr` option, so we see coefficients rather than IRRs. We started with the model

\[
\text{rate} = e^{\beta_0 + \beta_1 \text{XYZowned}}
\]

The observed counts are therefore

\[
\text{count} = ne^{\beta_0 + \beta_1 \text{XYZowned}} = e^{\ln(n) + \beta_0 + \beta_1 \text{XYZowned}}
\]

which amounts to constraining the coefficient on \(\ln(n)\) to 1. This is what was estimated when we specified the `exposure(n)` option. In the above model, we included the normalizing exposure ourselves and, rather than constraining the coefficient to be 1, estimated the coefficient.

The estimated coefficient is 1.42, a respectable distance away from 1, and is consistent with our speculation that larger airlines also use larger airplanes. With this small amount of data, however, we also have a wide confidence interval that includes 1.

Our estimated coefficient on `XYZowned` is now 0.684, and the implied IRR is \(e^{0.684} \approx 1.98\) (which we could also see by typing `poisson, irr`). The 95% confidence interval for the coefficient still includes 0 (the interval for the IRR includes 1), so although the point estimate is now larger, we still cannot be certain of our results.

Our expert opinion would be that, although there is not enough evidence to support the charge, there is enough evidence to justify collecting more data.

Example 2

In a famous age-specific study of coronary disease deaths among male British doctors, Doll and Hill (1966) reported the following data (reprinted in Rothman, Greenland, and Lash [2008, 264]):

<table>
<thead>
<tr>
<th>Age</th>
<th>Smokers Deaths</th>
<th>Person-years</th>
<th>Nonsmokers Deaths</th>
<th>Person-years</th>
</tr>
</thead>
<tbody>
<tr>
<td>35–44</td>
<td>32</td>
<td>52,407</td>
<td>2</td>
<td>18,790</td>
</tr>
<tr>
<td>45–54</td>
<td>104</td>
<td>43,248</td>
<td>12</td>
<td>10,673</td>
</tr>
<tr>
<td>55–64</td>
<td>206</td>
<td>28,612</td>
<td>28</td>
<td>5,710</td>
</tr>
<tr>
<td>65–74</td>
<td>186</td>
<td>12,663</td>
<td>28</td>
<td>2,585</td>
</tr>
<tr>
<td>75–84</td>
<td>102</td>
<td>5,317</td>
<td>31</td>
<td>1,462</td>
</tr>
</tbody>
</table>
The first step is to enter these data into Stata, which we have done:

```
. use http://www.stata-press.com/data/r13/dollhill3, clear
. list
```

<table>
<thead>
<tr>
<th>agecat</th>
<th>smokes</th>
<th>deaths</th>
<th>pyears</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>35-44</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>2.</td>
<td>45-54</td>
<td>1</td>
<td>104</td>
</tr>
<tr>
<td>3.</td>
<td>55-64</td>
<td>1</td>
<td>206</td>
</tr>
<tr>
<td>4.</td>
<td>65-74</td>
<td>1</td>
<td>186</td>
</tr>
<tr>
<td>5.</td>
<td>75-84</td>
<td>1</td>
<td>102</td>
</tr>
<tr>
<td>6.</td>
<td>35-44</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>45-54</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>8.</td>
<td>55-64</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>9.</td>
<td>65-74</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>10.</td>
<td>75-84</td>
<td>0</td>
<td>31</td>
</tr>
</tbody>
</table>

The most “natural” analysis of these data would begin by introducing indicator variables for each age category and one indicator for smoking:

```
. poisson deaths smokes i.agecat, exposure(pyears) irr
```

```
Iteration 0:  log likelihood =  -33.823284
Iteration 1:  log likelihood =  -33.600471
Iteration 2:  log likelihood =  -33.600153
Iteration 3:  log likelihood =  -33.600153
```

```
Poisson regression
Number of obs = 10
```

```
LR chi2(5) = 922.93
Prob > chi2 = 0.0000
```

```
Log likelihood = -33.600153 Pseudo R2 = 0.9321
```

```
| deaths | IRR     | Std. Err. | z   | P>|z| | [95% Conf. Interval] |
|--------|---------|-----------|-----|-----|----------------------|
| smokes | 1.425519| .1530638  | 3.30| 0.001| 1.154984 1.759421   |
| agecat |         |           |     |      |                      |
| 45-54  | 4.410584| .8605197  | 7.61| 0.000| 3.009011 6.464997   |
| 55-64  | 13.8392 | 2.542638  | 14.30| 0.000| 9.654328 19.83809  |
| 65-74  | 28.5168 | 5.269878  | 18.13| 0.000| 19.85177 40.96395 |
| 75-84  | 40.4512 | 7.775511  | 19.25| 0.000| 27.75326 58.95885 |
| _cons  | .0003636| .0000697  | -41.30| 0.000| .0002497 .0005296 |
| ln(pyears) | 1 (exposure) | |     |      |                      |
```

In the above, we specified `irr` to obtain IRRs. We estimate that smokers have 1.43 times the mortality rate of nonsmokers. See, however, example 1 in [R] poisson postestimation.
Stored results

poisson stores the following in `e()`:

Scalars
- `e(N)` number of observations
- `e(k)` number of parameters
- `e(k_eq)` number of equations in `e(b)`
- `e(k_eq_model)` number of equations in overall model test
- `e(k_dv)` number of dependent variables
- `e(df_m)` model degrees of freedom
- `e(r2_p)` pseudo-R-squared
- `e(ll)` log likelihood
- `e(ll_0)` log likelihood, constant-only model
- `e(N_clust)` number of clusters
- `e(chi2)` χ^2
- `e(p)` significance
- `e(rank)` rank of `e(V)`
- `e(ic)` number of iterations
- `e(rc)` return code
- `e(converged)` 1 if converged, 0 otherwise

Macros
- `e(cmd)` poisson
- `e(cmdline)` command as typed
- `e(depvar)` name of dependent variable
- `e(wtype)` weight type
- `e(wexp)` weight expression
- `e(title)` title in estimation output
- `e(clustvar)` name of cluster variable
- `e(offset)` linear offset variable
- `e(chi2type)` Wald or LR; type of model χ^2 test
- `e(vce)` `vcetype` specified in `vce()`
- `e(vcetype)` title used to label Std. Err.
- `e(opt)` type of optimization
- `e(which)` `max` or `min`; whether optimizer is to perform maximization or minimization
- `e(ml_method)` type of ml method
- `e(user)` name of likelihood-evaluator program
- `e(technique)` maximization technique
- `e(properties)` `b` `V`
- `e(estat_cmd)` program used to implement `estat`
- `e(predict)` program used to implement `predict`
- `e(asbalanced)` factor variables `fvset` as `asbalanced`
- `e(asobserved)` factor variables `fvset` as `asobserved`

Matrices
- `e(b)` coefficient vector
- `e(Cns)` constraints matrix
- `e(llf)` iteration log (up to 20 iterations)
- `e(gradient)` gradient vector
- `e(V)` variance–covariance matrix of the estimators
- `e(V_modelbased)` model-based variance

Functions
- `e(sample)` marks estimation sample
Methods and formulas

The log likelihood (with weights \(w_j \) and offsets) is given by

\[
\Pr(Y = y) = \frac{e^{-\lambda} \lambda^y}{y!}
\]

\(\xi_j = x_j \beta + \text{offset}_j \)

\(f(y_j) = \frac{e^{-\exp(\xi_j)} e^{\xi_j y_j}}{y_j!} \)

\[\ln L = \sum_{j=1}^{n} w_j \left\{ -e^{\xi_j} + \xi_j y_j - \ln(y_j!) \right\} \]

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using `vce(robust)` and `vce(cluster clustvar)`, respectively. See `[P] _robust`, particularly *Maximum likelihood estimators* and *Methods and formulas*.

`poisson` also supports estimation with survey data. For details on VCEs with survey data, see `[SVY] variance estimation`.

Siméon-Denis Poisson (1781–1840) was a French mathematician and physicist who contributed to several fields: his name is perpetuated in Poisson brackets, Poisson’s constant, Poisson’s differential equation, Poisson’s integral, and Poisson’s ratio. Among many other results, he produced a version of the law of large numbers. His rather misleadingly titled *Recherches sur la probabilité des jugements* embraces a complete treatise on probability, as the subtitle indicates, including what is now known as the Poisson distribution. That, however, was discovered earlier by the Huguenot–British mathematician Abraham de Moivre (1667–1754).

References

Poisson — Poisson regression

Also see

[R] poisson postestimation — Postestimation tools for poisson
[R] glm — Generalized linear models
[R] nbreg — Negative binomial regression
[R] tpoisson — Truncated Poisson regression
[R] zip — Zero-inflated Poisson regression
[ME] mepoisson — Multilevel mixed-effects Poisson regression
[MI] estimation — Estimation commands for use with mi estimate
[SVY] svy estimation — Estimation commands for survey data
[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models
[U] 20 Estimation and postestimation commands