Syntax

Standard estimation command syntax

```
nestreg [ , options ]: command_name depvar (varlist) [ (varlist) ... ]
```

```
[ if ] [ in ] [ weight ] [ command_options ]
```

Survey estimation command syntax

```
nestreg [ , options ]: svy [ vcetype ] [ , svy_options ]: command_name depvar
```

```
(varlist) [ (varlist) ... ] [ if ] [ in ] [ , command_options ]
```

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>waldtable</td>
<td>report Wald test results; the default</td>
</tr>
<tr>
<td>lrtable</td>
<td>report likelihood-ratio test results</td>
</tr>
<tr>
<td>quietly</td>
<td>suppress any output from command_name</td>
</tr>
<tr>
<td>store(stub)</td>
<td>store nested estimation results in _est_stub_#</td>
</tr>
</tbody>
</table>

by is allowed; see [U] 11.1.10 Prefix commands.

Weights are allowed if *command_name* allows them; see [U] 11.1.6 weight.

A *varlist* in parentheses indicates that this list of variables is to be considered as a block. Each variable in a *varlist* not bound in parentheses will be treated as its own block.

All postestimation commands behave as they would after *command_name* without the *nestreg* prefix; see the postestimation manual entry for *command_name*.

Menu

Statistics > Other > Nested model statistics

Description

nestreg fits nested models by sequentially adding blocks of variables and then reports comparison tests between the nested models.
Options

waldtable specifies that the table of Wald test results be reported. *waldtable* is the default.

lrtable specifies that the table of likelihood-ratio tests be reported. This option is not allowed if *pweights*, the *vce(robust)* option, or the *vce(cluster clustvar)* option is specified. *lrtable* is also not allowed with the *svy* prefix.

quietly suppresses the display of any output from *command_name*.

store(*stub*) specifies that each model fit by *nestreg* be stored under the name _est-_stub#, where # is the nesting order from first to last.

Remarks and examples

Remarks are presented under the following headings:

- *Estimation commands*
- *Wald tests*
- *Likelihood-ratio tests*
- *Programming for nestreg*

Estimation commands

nestreg removes collinear predictors and observations with missing values from the estimation sample before calling *command_name*.

The following Stata commands are supported by *nestreg*:

- clogit
- nbreg
- regress
- cloglog
- ologit
- scobit
- glm
- oprobit
- stcox
- intreg
- poisson
- stcrreg
- logistic
- probit
- streg
- logit
- qreg
- tobit

You do not supply a *depvar* for *stcox*, *stcrreg*, or *streg*; otherwise, *depvar* is required. You must supply two *depvars* for *intreg*.

Wald tests

Use *nestreg* to test the significance of blocks of predictors, building the regression model one block at a time. Using the data from example 1 of [R] test, we wish to test the significance of the following predictors of birth rate: *medage*, *medagesq*, and *region* (already partitioned into four indicator variables: *reg1*, *reg2*, *reg3*, and *reg4*).
. use http://www.stata-press.com/data/r13/census4
(birth rate, median age)

.nestreg: regress brate (medage) (medagesq) (reg2-reg4)

Block 1: medage

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>32675.1044</td>
<td>1</td>
<td>32675.1044</td>
<td>F(1, 48) = 164.72</td>
</tr>
<tr>
<td>Residual</td>
<td>9521.71561</td>
<td>48</td>
<td>198.369075</td>
<td>Prob > F = 0.0000</td>
</tr>
</tbody>
</table>

| Total | 42196.82 | 49 | 861.159592 | Adj R-squared = 0.7696 |

| brate | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------------------|---------|-----------|-------|------|---------------------|
| medage | -15.24893 | 1.188141 | -12.83 | 0.000 | -17.63785 to -12.86002 |
| _cons | 618.3935 | 35.15416 | 17.59 | 0.000 | 547.7113 to 689.0756 |

Block 2: medagesq

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>36755.8524</td>
<td>2</td>
<td>18377.9262</td>
<td>F(2, 47) = 158.75</td>
</tr>
<tr>
<td>Residual</td>
<td>5440.96755</td>
<td>47</td>
<td>115.765267</td>
<td>R-squared = 0.8711</td>
</tr>
</tbody>
</table>

| Total | 42196.82 | 49 | 861.159592 | Root MSE = 10.759 |

| brate | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------------------|---------|-----------|-------|------|---------------------|
| medage | -109.8925 | 15.96663 | -6.88 | 0.000 | -142.0132 to -77.7718 |
| medagesq | 1.607332 | 0.2707228 | 5.94 | 0.000 | 1.062708 to 2.151956 |
| _cons | 2007.071 | 235.4316 | 8.53 | 0.000 | 1533.444 to 2480.698 |

Block 3: reg2 reg3 reg4

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>38803.419</td>
<td>5</td>
<td>7760.68381</td>
<td>F(5, 44) = 100.63</td>
</tr>
<tr>
<td>Residual</td>
<td>3393.40095</td>
<td>44</td>
<td>77.1227489</td>
<td>R-squared = 0.9196</td>
</tr>
</tbody>
</table>

| Total | 42196.82 | 49 | 861.159592 | Root MSE = 8.782 |

| brate | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------------------|---------|-----------|-------|------|---------------------|
| medage | -109.0957 | 13.52452 | -8.07 | 0.000 | -136.3526 to -81.83886 |
| medagesq | 1.635208 | 0.2290536 | 7.14 | 0.000 | 1.173581 to 2.096835 |
| reg2 | 15.00284 | 4.252068 | 3.53 | 0.001 | 6.433365 to 23.57233 |
| reg3 | 7.366435 | 3.953336 | 1.86 | 0.069 | -0.6009898 to 15.33386 |
| reg4 | 21.39679 | 4.650602 | 4.60 | 0.000 | 12.02412 to 30.76946 |
| _cons | 1947.61 | 199.8405 | 9.75 | 0.000 | 1544.858 to 2350.362 |

<table>
<thead>
<tr>
<th>Block</th>
<th>F</th>
<th>df</th>
<th>Residual F</th>
<th>df</th>
<th>Pr > F</th>
<th>R2 in R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.72</td>
<td>1</td>
<td>48</td>
<td>0.0000</td>
<td>0.7743</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35.25</td>
<td>1</td>
<td>47</td>
<td>0.0000</td>
<td>0.8711</td>
<td>0.0967</td>
</tr>
<tr>
<td>3</td>
<td>8.85</td>
<td>3</td>
<td>44</td>
<td>0.0001</td>
<td>0.9196</td>
<td>0.0485</td>
</tr>
</tbody>
</table>
This single call to `nestreg` ran `regress` three times, adding a block of predictors to the model for each run as in

```
. regress brate medage
    Source | SS    df  MS
----------+--------+-------+
    Model  | 32675.1044  1  32675.1044
    Residual | 9521.71561  48  198.369075
----------+--------+-------+
    Total  | 42196.82  49  861.159592
----------+--------+-------+
    Number of obs = 50
F( 1, 48) = 164.72
Prob > F = 0.0000
R-squared = 0.7743
Adj R-squared = 0.7696
Root MSE = 14.084

| Coef.   | Std. Err. | t    | P>|t|   [95% Conf. Interval] |
|---------|-----------|------|------|-------------------------|
| medage  | -15.24893 | 1.188141 | -12.83 | 0.000 | -17.63785 to -12.86002 |
| _cons   | 618.3935  | 35.15416 | 17.59  | 0.000 | 547.7113 to 689.0756   |
```

```
. regress brate medage medagesq
    Source | SS    df  MS
----------+--------+-------+
    Model  | 36755.8524  2  18377.9262
    Residual | 5440.96755  47  115.765267
----------+--------+-------+
    Total  | 42196.82  49  861.159592
----------+--------+-------+
    Number of obs = 50
F( 2, 47) = 158.75
Prob > F = 0.0000
R-squared = 0.8711
Adj R-squared = 0.8656
Root MSE = 10.759

| Coef.   | Std. Err. | t    | P>|t|   [95% Conf. Interval] |
|---------|-----------|------|------|-------------------------|
| medage  | -109.8925 | 15.96663 | -6.88  | 0.000 | -142.0132 to -77.7718  |
| medagesq| 1.607332  | .2707228 | 5.94   | 0.000 | 1.062708 to 2.151956   |
| _cons   | 2007.071  | 235.4316 | 8.53   | 0.000 | 1533.444 to 2480.698   |
```

```
. regress brate medage medagesq reg2-reg4
    Source | SS    df  MS
----------+--------+-------+
    Model  | 38803.419  5  7760.68381
    Residual | 3393.40095  44  77.1227489
----------+--------+-------+
    Total  | 42196.82  49  861.159592
----------+--------+-------+
    Number of obs = 50
F( 5, 44) = 100.63
Prob > F = 0.0000
R-squared = 0.9196
Adj R-squared = 0.9104
Root MSE = 8.782

| Coef.   | Std. Err. | t    | P>|t|   [95% Conf. Interval] |
|---------|-----------|------|------|-------------------------|
| medage  | -109.0957 | 13.52452 | -8.07  | 0.000 | -136.3526 to -81.83886 |
| medagesq| 1.635208  | .2290536 | 7.14   | 0.000 | 1.173581 to 2.096835   |
| reg2    | 15.00284  | 4.252068 | 3.53   | 0.001 | 6.433365 to 23.57233   |
| reg3    | 7.366435  | 3.953336 | 1.86   | 0.069 | -6.009898 to 15.33386  |
| reg4    | 21.39679  | 4.650602 | 4.60   | 0.000 | 12.02412 to 30.76946   |
| _cons   | 1947.61   | 199.8405 | 9.75   | 0.000 | 1544.858 to 2350.362   |
```

`nestreg` collected the F statistic for the corresponding block of predictors and the model R^2 statistic from each model fit.

The F statistic for the first block, 164.72, is for a test of the joint significance of the first block of variables; it is simply the F statistic from the regression of `brate` on `medage`. The F statistic for the second block, 35.25, is for a test of the joint significance of the second block of variables in a regression of both the first and second blocks of variables. In our example, it is an F test of `medagesq` in the regression of `brate` on `medage` and `medagesq`. Similarly, the third block’s F statistic of 8.85 corresponds to a joint test of `reg2`, `reg3`, and `reg4` in the final regression.
Likelihood-ratio tests

The `nestreg` command provides a simple syntax for performing likelihood-ratio tests for nested model specifications; also see `lrtest`. Using the data from example 1 of \[R\] `lrtest`, we wish to jointly test the significance of the following predictors of low birthweight: `age`, `lwt`, `ptl`, and `ht`.

```
use http://www.stata-press.com/data/r13/lbw
(Hosmer & Lemeshow data)
```

```
.xi: nestreg, lr: logistic low (i.race smoke ui) (age lwt ptl ht)
.i.race
   _Irace_1-3 (naturally coded; _Irace_1 omitted)
Block 1: _Irace_2 _Irace_3 smoke ui
Logistic regression
Number of obs = 189
LR chi2(4) = 18.80
Prob > chi2 = 0.0009
Log likelihood = -107.93404 Pseudo R2 = 0.0801

Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_Irace_2 3.052746 1.498087 2.27 0.023 1.166747 7.987382
_Irace_3 2.922693 1.189229 2.64 0.008 1.316457 6.489285
smoke 2.945742 1.101838 2.89 0.004 1.415167 6.131715
ui 2.419131 1.047359 2.04 0.041 1.035459 5.651788
_cons .1402209 .0512295 -5.38 0.000 .0685216 .2869447
```

```
Block 2: age lwt ptl ht
Logistic regression
Number of obs = 189
LR chi2(8) = 33.22
Prob > chi2 = 0.0001
Log likelihood = -100.724 Pseudo R2 = 0.1416

Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_Irace_2 3.534767 1.860737 2.40 0.016 1.259736 9.918406
_Irace_3 2.368079 1.039949 1.96 0.050 1.001356 5.600207
smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534
age .9732636 .0354759 -0.74 0.457 .9015758 .9480231
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249
ptl 1.719161 .5952579 1.55 0.122 1.212455 2.427877
ht 6.249602 4.322408 2.66 0.008 1.611152 24.214199
_cons 1.586014 1.910496 0.80 0.417 .1496092 16.8134
```

```
Block LL LR df Pr > LR AIC BIC
1 -107.934 18.80 4 0.0009 225.8681 242.0768
2 -100.724 14.42 4 0.0061 219.448 248.6237
```

The estimation results from the full model are left in `e()`, so we can later use `estat` and other postestimation commands.

```
.estat gof
Logistic model for low, goodness-of-fit test
number of observations = 189
number of covariate patterns = 182
Pearson chi2(173) = 179.24
Prob > chi2 = 0.3567
```
Programming for \texttt{nestreg}

If you want your user-written command (\textit{command name}) to work with \texttt{nestreg}, it must follow standard Stata syntax and allow the \texttt{if} qualifier. Furthermore, \textit{command name} must have \texttt{sw} or \texttt{swml} as a program property; see [P] \texttt{program properties}. If \textit{command name} has \texttt{swml} as a property, \textit{command name} must store the log-likelihood value in \texttt{e(ll)} and the model degrees of freedom in \texttt{e(df_m)}.

\section*{Stored results}

\texttt{nestreg} stores the following in \texttt{r()}:

\begin{itemize}
\item Matrices
 \begin{itemize}
 \item \texttt{r(wald)} \quad \text{matrix corresponding to the Wald table}
 \item \texttt{r(lr)} \quad \text{matrix corresponding to the likelihood-ratio table}
 \end{itemize}
\end{itemize}

\section*{Acknowledgment}

We thank Paul H. Bern of Syracuse University for developing the hierarchical regression command that inspired \texttt{nestreg}.

\section*{Reference}

Acock, A. C. 2014. \textit{A Gentle Introduction to Stata}. 4th ed. College Station, TX: Stata Press.

\section*{Also see}

[P] \texttt{program properties} — Properties of user-defined programs